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§1 Latin squares, Steiner triple systems, and edge colorings

Definition 1.1. A Latin square is a n× n array of numbers xij ∈ [n] such that for each y ∈ [n], every
row and every column has exactly one instance of y.

Example 1.2

Here is one example of a 3× 3 Latin square:

1 3 2

2 1 3

3 2 1

So a Latin square is a sort of 2-dimensional generalization of a permutation — it’s a grid where every row
and every column is a permutation of [n].

Another way to think about a Latin square is as a (proper) edge-coloring of Kn,n using n colors. Here, each
row represents a vertex on the left side of the graph, and each column represents a vertex on the right; and
the color of the edge connecting two vertices corresponds to the entry in that position. It’s easy to check
that the Latin square condition corresponds precisely to the condition that this edge-coloring is proper.

row 1 column 1

row 2 column 2

row 3 column 3

One can also think of a Latin square as a 3-partite 3-uniform hypergraph with the property that every pair
of vertices in different parts is contained in exactly one hyperedge. For this correspondence, the three parts
correspond to rows, columns, and entries, respectively; and we draw a hyperedge (i, j, y) if the entry in
position (i, j) is y.
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There’s also many more variations of these viewpoints — for example, we can think of an edge-coloring of
Kn,n as a decomposition of Kn,n into n perfect matchings, and so on.

The definition of Steiner triple systems is similar to the hypergraph viewpoint on Latin squares, but without
tripartiteness.

Definition 1.3. A Steiner triple system is a 3-uniform hypergraph on n vertices where each pair of
vertices is contained in exactly one hyperedge.

As another related object, we saw that Latin squares correspond to edge-colorings of Kn,n. We can also
define hypergraphs associated with edge-colorings of complete graphs — suppose we have an edge-coloring
of K2n using 2n − 1 colors. Then we can draw a 3-uniform hypergraph, one of size 2n − 1 (representing
colors) and one of size 2n (representing vertices), where edges (c, u, v) correspond to the color c being used
on the edge uv. This leads to the following definition.

Definition 1.4. An edge coloring is a hypergraph with vertex parts of sizes 2n− 1 and 2n, where each
hyperedge connects two vertices on the right and one on the left, and every pair of vertices (with either
both on the right, or one on the right and one on the left) is contained in exactly one hyperedge.
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§2 Thresholds

We’re interested in the following question:

Question 2.1. When does a random 3-uniform hypergraph contain one of these structures (a Latin
square, Steiner triple system, or edge coloring) with reasonable probability?

We’ll work with the 3-uniform Erdős–Rényi random hypergraph model.
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Definition 2.2. The 3-uniform Erdős–Rényi random hypergraph, denoted by G(3)(n, p), is the random
n-vertex hypergraph where for each unordered triple of vertices, we place a hyperedge with probability
p, independently.

Definition 2.3. Given a family H of 3-uniform hypergraphs, the threshold for H, denoted by pc(H), is
the value of p for which

P[G(3)(n, p) ⊇ H for some H ∈ H] =
1

2
.

We’ll use HLS to denote the collection of 3-uniform hypergraphs corresponding to Latin squares, HSTS to
denote the collection of hypergraphs corresponding to Steiner triple systems, andHEC to denote the collection
of hypergraphs corresponding to edge colorings. (The number of vertices n is the same throughout — so
we’re looking for spanning substructures.)

Question 2.4. What is the order of magnitude of the threshold for HLS, HSTS, and HEC?

§2.1 Expectation thresholds

Several recent works suggest a way to determine the threshold of a given family of hypergraphs, by looking
at a related quantity called the expectation threshold.

Definition 2.5. The expectation threshold of a collection H of n-vertex hypergraphs, denoted by pe(H),
is the largest value of p such that there exists a collection H′ of n-vertex hypergraphs such that every
H ∈ H contains at least one H ′ ∈ H′, and such that∑

H′∈H′

p|E(H′)| ≤ 1

2
.

Proposition 2.6

We always have pe(H) ≤ pc(H).

Proof. The idea is to look at the expected number of H ′ ∈ H′ that G(3)(n, p) contains (where H′ is as in the
definition of the expectation threshold). For p < pe(H), this number is precisely∑

H′∈H′

P[G(3)(n, p) ⊇ H ′] =
∑

H′∈H′

p|E(H′)| <
1

2
.

Meanwhile, for p ≥ pc(H), this number is at least 1
2 — this is because G(3)(n, p) contains some H ∈ H with

probability at least 1
2 , and every H ∈ H contains some H ′ ∈ H′.

In many nice, symmetric situations, the expectation threshold turns out to be relatively easy to estimate,
so we would like to know whether it’s actually a good approximation for the actual threshold. This is true
by the Kahn–Kalai conjecture, which was proved recently in joint work with Jinyoung Park.

Theorem 2.7 (Park–Pham)

For some universal constant C, we always have pc(H) ≤ C log n · pe(H).
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It’s not immediately clear how easy the expectation threshold is to estimate, though. It’s easy to find a
lower bound on the expectation threshold, because we can explicitly construct a family H′ with the desired
containment property and with small weight. But looking at the definition of the expectation threshold, it’s
unclear how we can get an upper bound.

But it turns out that there is often still an easy way to do this. We first take a fractional relaxation of the
expectation threshold, and then use linear programming duality to certify an upper bound. We’ll skip how
this works, but it ends up giving the following.

Definition 2.8. A probability measure λ on H is called p-spread if for all S ⊆ E(K
(3)
n ) (i.e., subsets of

the edges of the complete 3-uniform hypergraph), we have

λ({H ∈ H | H ⊇ S}) ≤ 2p|S|.

Proposition 2.9

If there exists a p-spread measure on H, then pe(H) ≤ p.

Remark 2.10. Even before Theorem 2.7, there were earlier works (due to Alweiss–Lorett–Wu–Zhang,
Frankston–Kahn–Narayanan–Park, and Mossel–Niles-Weed–Sun–Zadik) showing that to prove an upper
bound on the threshold, it suffices to construct a p-spread measure — specifically, if there exists a p-
spread measure on H, then pc(H) ≤ Cp log n.

§2.2 Finding a p-spread measure

These results on thresholds hold for very general properties, but we’ll be interested in applying them to our
specific families of hypergraphs (HLS, HSTS, and HEC). In this case, the main challenge will be finding a
p-spread measure on our family of hypergraphs.

Before we get into the details, in many simple cases establishing such a spread measure can be easy.

Example 2.11

ConsiderHPM, the family of 3-uniform perfect matchings on n vertices (a perfect matching is a collection
of hyperedges such that every vertex is contained in exactly one hyperedge).

Here we can take λ to be the uniform measure on HPM. It’s not hard to verify that λ is O(1/n2)-spread,
and by the Kahn–Kalai conjecture, this implies that the threshold is O(log n/n2). This turns out to be the
correct order of the threshold — we can prove a matching lower bound by simple considerations (for smaller
values of p, the hypergraph will typically have isolated vertices).

The main reason we can determine the spread here is that the family HPM is very nice and symmetric, and
we can enumerate things very explicitly — the number of 3-uniform perfect matchings on n vertices is

n!

3n/3(n/3)!
,
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and we can similarly enumerate the number of perfect matchings containing a given set of edges S.

But with the families we’re interested in — HLS, HSTS, and HEC — we can’t enumerate things explicitly,
so things become much harder. In particular, having a spread measure on H immediately implies a lower
bound on the number of hypergraphs in H (taking S = E(H) gives λ(H) ≤ 2p|e(H)| for all H ∈ H; and in
our settings e(H) is fixed). And it’s already hard to prove lower bounds on the sizes of the families we’re
interested in. A lower bound on the number of Latin squares can be obtained using bounds on the permanent
(like Bregman’s proof on the Minc conjecture, or a result resolving the van der Waerden conjecture). For
Steiner triple systems, a lower bound was only obtained very recently by Peter Keevash, in his breakthrough
on the existence of designs.

In general, if we have very good control on counts in certain induced families, then we can get spread
properties by taking λ to be uniform. But for the families we’re interested in, even proving lower bounds
for counts in the entire 3-uniform complete hypergraph is difficult, and these bounds don’t let us deal with
more general induced hypergraphs. So even with the strongest results we know, it’s not clear how to show
spread by taking λ to be the uniform distribution.

So in our proofs, we won’t take λ to be the uniform distribution; instead, we’ll take a certain algorithmically
constructed measure on our family of hypergraphs.

§3 History and results

First, what are the values for the thresholds that we expect?

Conjecture 3.1 — The threshold for the family of Latin squares is Θ(log n/n); the same is true for
Steiner triple systems and edge colorings.

(This is due to several authors.)

It’s easy to prove that log n/n is a lower bound (by considering when it becomes the case that every pair of
vertices is in at least one hyperedge), so we want to prove it’s an upper bound.

Theorem 3.2 (Sah–Sawhney–Simkin)

For each of HLS, HSTS, and HEC, we have pc(H) = O(exp((log n)3/4)/n).

This gets the threshold up to a subexponential factor. It was proved by establishing a spread measure on
these families of hypergraphs, using the absorption method and a boosting procedure.

Theorem 3.3 (Kang–Kelly–Kühn–Methuku–Osthus)

For each of HLS, HSTS, and HEC, we have pc(H) = O((log n)2/n).

This was also proved by establishing a spread measure — the authors showed that there is an O(log n/n)-
spread measure on these families of hypergraphs.

Theorem 3.4 (Jain–Pham)

There is an O(1/n)-spread measure on each of HLS, HSTS, and HEC; so their thresholds are O(log n/n).

Since the matching lower bound is easy to obtain, this obtains the correct order of the threshold for these
families.

In the remaining time, we’ll sketch the ideas of the proof.
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§4 Some setup

First, the KKKMO paper reduced the problem of constructing spread measures for the three families to
a single problem: Suppose we have a regular bipartite graph G with n vertices on each side and common
degree dG ≥ (1− δ)n (where δ is a small absolute constant). Then we can construct a 3-partite graph HG

by taking G and adding a third part of size dG, and drawing all edges between the two original parts and
this third part.

 

Then we consider the familyH of 3-uniform hypergraphs H with the property that each edge of this 3-partite
graph HG is contained in exactly one hyperedge of H. And our goal is to construct a spread measure on H.

Latin squares directly correspond to the case where HG is the complete 3-partite graph where each part
has size n; then this condition requires each pair of vertices in different parts to be contained in exactly
one hyperedge. In this more general setting, we have two parts between which HG is regular and almost
complete, and a third part such that HG is regular and complete between it and each of the other two. And
it turns out that if we can get a spread measure in this slightly more general case, then we can get a spread
measure for the other two types of objects (Steiner triple systems and edge colorings) as well.

An equivalent and slightly more intuitive way to think about members of H is as decompositions of G
(the original bipartite graph) into dG perfect matchings R1, R2, . . . , RdG . (To see the equivalence between
these, we think of vertices in the third part as indices of the perfect matchings — so a hyperedge (x, y, i)
corresponds to placing the edge xy in the ith perfect matching Ri.)

It’s an easy result that a dG-regular graph always has at least one way to decompose its edges into dG
perfect matchings. We’re interested in not just finding one way to do this, but a distribution over all of
them that satisfies the spread property — i.e., that for all S1, . . . , SdG ⊆ E(G), we have

P[Si ⊆ Ri for all i] ≤ 2p
∑

i|Si|. (4.1)

And our goal is to get this with p = O(1/n).

For the rest of the talk, we’ll assume we’re working with Latin squares (so G = Kn,n); this simplifies the
setting a bit but still illustrates all the ideas in the argument.

§5 Proof ideas for Theorem 3.3

This is the setting where the work of KKKMO takes place. Their idea is that instead of directly decomposing
G into perfect matchings, we first decompose it into regular graphs; we want to make their degrees as small
as possible and to do this in a sufficiently random way that we get good spread. Specifically, we decompose G
into d-regular graphs with R1, . . . , Rt where d = Θ(log n) and t = n/d = Θ(n/log n) (we’ll see the reason for
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these parameters later), in such a way that (4.1) holds with p = Θ(log n/n). This gives a O(log n/n)-spread
measure (we can decompose each Ri into d perfect matchings arbitrarily), which gets Theorem 3.3.

To get this decomposition, we start with G and randomly partition it into t graphs H1, . . . , Ht, where for
each edge in G, we assign it a uniformly random index between 1 and t (independently). If d = Θ(log n),
then each Hi is close to regular (with high probability).

H1 H2 H3

· · ·

The idea is that the partition into these graphs Hi is as random as we could wish, because every edge was
assigned completely at random; so it’s easy to see that the Hi satisfy the spread condition that we want.
However, the problem is that they’re not regular; they’re only close to regular. So our goal is to fix these
almost-regular graphs into actually regular graphs.

The approach of KKKMO is to do this dyadically. We first look at the last t/2 graphs Hi. These graphs
are all very close to regular, so we can isolate a very small part of the edges of each one and throw it away,
such that the remaining graph becomes regular.

R4

leftover

R5

leftover

R6

leftover

R7

leftover

Now we need to deal with these leftover edges; so we take the next t/4 graphs Hi (from the right), and we
assign our leftover edges randomly to one of these t/4 graphs.

R4
R5 R6

R7

So in this next dyadic block, we have t/4 random graphs Hi from the original sampling, and each of them
is absorbing some piece of the leftovers from the first dyadic block. So we take each of these Hi together
with the leftovers assigned to it, and find a regular graph that contains most of the edges of Hi as well as
the assigned leftovers. This gives us more leftover edges, which we randomly assign to the next dyadic block
(the next t/8 graphs Hi), and so on.
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It seems magical that this just works out; but the feature where we fix the graphs in a block from almost
regular to regular makes things a bit nicer as we continue, which is how we can push this argument all the
way through to end up with a collection of regular graphs.

Then the graphs Ri we obtain are almost the same as the random graphs Hi from the original partition, so
the spread property is still retained. Finally, this gives a decomposition of G into d-regular graphs; if we
take an arbitrary partition of each into perfect matchings, we get a decomposition into perfect matchings
with the same spread parameter.

§6 Proof ideas for Theorem 3.4

The only thing that forces us to stop at log n in the KKKMO argument (i.e., to take d = Θ(log n) instead
of d constant) is that for this to work, we really do need all the random graphs Hi to be almost regular, so
that this kind of fixing procedure can go through. If we want a smaller average degree, then we won’t get
such good control over concentration, so we’ll have to do things a bit differently.

We’ll have an outer iteration over an index r. For each r, we define dr ≈ n/16r. Then in this outer iteration,
we find a distribution Pr over decompositions Pr of the original graph G into regular graphs R1, . . . , Rt,
each of degree dRi = (1 + o(1))dr. (We stop the iteration once the degree hits a large constant.)

Inside, we run an inner iteration where we use Pr−1 to obtain Pr — this means we take a decomposition
Pr−1 of the original graph G into regular subgraphs of degree roughly dr−1, and we want to decompose each
of its pieces into regular subgraphs of degree roughly dr. From now on, we’ll use G to denote the piece of
Pr−1 that we’re trying to partition (instead of the original graph).

We’ll first partition G into random graphs Hi, which we again think of as coming in dyadic blocks. On top
of this, inside each Hi, we sample a small fraction of its edges, which we call H+

i .

H1

H+
1

H2

H+
2

H3

H+
3

H4

H+
4

H5

H+
5

H6

H+
6

H7

H+
7

In the first dyadic interval (the last t/2 graphs Hi), we try to find a regular subgraph of each Hi such
that the leftover is contained in H+

i . Then we take all these leftover edges and random assign them to the
graphs Hj in the previous dyadic interval (the previous t/4 graphs). For each of those graphs, we try to
do the same thing — we take the original graph Hj together with the leftover edges it got assigned, and
find a regular subgraph such that the leftovers are contained in H+

j . And we again iterate (assigning these
leftovers randomly to the next dyadic block, and so on).

The main caveat is that if we choose the original partition into graphs Hi uniformly at random, then we
won’t have good concentration of degrees — we won’t be able to say that these graphs are close to regular.
So in fact, we won’t use a completely random assignment of edges to graphs Hi.

The idea is that if we look at the degree of a vertex v in some Hi (under a uniform random assignment of
edges), it will have somewhat good concentration — for example, we have

P
[
|dHi(v)− E[dHi(v)]| ≥

√
E[dHi(v)] log dG

]
≤ d−9G .

The only issue is that when dG is small, we can’t do a union bound (over all vertices).
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But this suggests that we can use the Lovász local lemma — the Lovász local lemma tells us that there
exists an assignment of edges to the graphs Hi such that the degree of each vertex in each Hi is close
to its expected value. This is because the degree of a vertex only depends on where we assign the edges
incident to it. So we have independent random variables for each edge (corresponding to which graph we
assign that edge to), and a dependency graph where each bad event has degree roughly dG (since an event
corresponding to v only depends on the events corresponding to neighbors of v in G). And the upper bound
on the probabilities of bad events is certainly good enough that we can apply the Lovász local lemma.

So instead of taking a uniformly random assignment (of edges to graphs Hi), we’ll actually sample from the
local lemma distribution — we’ll take a uniformly random satisfying assignment (i.e., one that avoids all
the bad events).

In the end, we still need to control the spread, and it seems we’re losing a lot by switching from a uniform
assignment to a uniform satisfying one (the probability a random assignment is satisfying could be expo-
nentially small, so it seems we could lose an exponential factor in the relevant probability for spread). To
get this control on the spread, we use the following variant on the local lemma, which states that for events
B that don’t have too many dependencies, the probabilities of B under a uniform assignment and uniform
satisfying assignment are not too different.

Lemma 6.1

Suppose we have bad events Ei and real numbers xi ∈ (0, 1) such that P[Ei] ≤ xi
∏

j∼i(1 − xj) for all
i. Then for every event B, we have

Psat[B] ≤ P[B]∏
j∼B(1− xj)

.

(Here j ∼ i and j ∼ B denote dependencies (i.e., adjacency in the dependency graph), and P and Psat denote
the probability distributions over a uniform assignment and uniform satisfying assignment, respectively.)

This has a very cute proof, so we’ll finish the talk by giving this proof.

Proof. We can prove this by closely following the proof of the local lemma. In that proof, we inductively
show that P[Ei |

⋂
j∈S Ej ] ≤ xi for all i and S, which implies that

P
[ ⋂
j∈S1

Ej

∣∣∣ ⋂
j∈S2

Ej

]
≥
∏
j∈S1

(1− xj) (6.1)

by iterating Bayes’ rule (for any S1 and S2).

And we can use this to prove the statement we want — we’ll show that for all S, we have

P
[
B
∣∣∣ ⋂
j∈S

Ej

]
≤ P[B]∏

j∈S,j∼B(1− xj)
.

(The desired statement corresponds to taking S to be the entire index set — taking a uniform satisfying
assignment is equivalent to conditioning on the intersection of all Ej .)

For this, similarly to the proof of the original local lemma, we can split the conditioning into events that
are adjacent and non-adjacent to B, and write

P
[
B
∣∣∣ ⋂
j∈S

Ej

]
=

P[B ∩
⋂

j∈S,j∼B Ej |
⋂

j∈S,j 6∼B Ej ]

P[
⋂

j∈S,j∼B Ej |
⋂

j∈S,j 6∼B Ej ]
.

For the numerator, we can first drop the intersection with
⋂

j∈S,j∼B Ej (this only decreases the probability);
then the conditioning has no effect (because we’re only conditioning on events j 6∼ B, which are independent
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of B); so the numerator is at most P[B]. Meanwhile, the denominator is at least
∏

j∈S,j∼B(1− xj) by (6.1);
putting these together gives the bound we want.

Then we need some technical things to show that we can do the dyadic fixing procedure; this requires some
control over the distribution of edges in the pieces. For certain large sets, this control can be obtained
inductively; the main problem is in dealing with the distribution of edges between small sets (we need small
sets to have quite significant expansion). For this, the inductive approach doesn’t work; we instead have to
prove this by bootstrapping on the spread of the outer iteration (i.e., we use that Pr−1 has good spread).
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