
Explicit separations between deterministic and
randomized number-on-forehead communication

Talk by Kai Zheng
Notes by Sanjana Das

December 1, 2023

This is based on a recent paper by Kelley, Lovett, and Meka.

§1 Introduction

§1.1 The number-on-forehead model

Number-on-forehead (NOF) communication is a fairly well-studied communication model in theoretical
computer science. We’ll define a three-player number-on-forehead model, but the same setup can be used
for more players as well.
Suppose we have three players, who we’ll call A, B, and C. Each of these players has an input; we’ll call
their inputs x, y, and z (respectively), and we’ll suppose they’re drawn from [n]. And there’s a function
f : [n]3 → {0, 1} that they wish to compute on their inputs — i.e., their goal is to calculate f(x, y, z). But
there’s a twist — each player can only see the other two players’ inputs.

Remark 1.1. You can imagine that the three players are all in a room, and they each have their own
input on their forehead — and they can see the other two players’ foreheads, but not their own.

To compute f(x, y, z), the players are allowed to perform some communication — they have a fixed com-
munication protocol, and at the end of this protocol they should all be able to compute f(x, y, z). (We can
think of this communication as the players writing messages on a shared blackboard.) And we’re interested
in the minimum amount of communication this takes.

Question 1.2. Given a function f , how many bits of communication are needed to compute f?

§1.2 Deterministic vs. randomized protocols

There’s a few different kinds of communication protocols we can work with — in particular, we can consider
both deterministic and randomized protocols.
In a deterministic protocol, all the messages are fixed given the inputs, and the players must always succeed
— i.e., they must always output the correct value of f(x, y, z).
On the other hand, in a randomized protocol, the players’ messages don’t have to be fixed given their inputs
— in this setting, the players have a shared source of randomness, and their communication can depend on
this randomness. And instead of having to always succeed, we’ll say that the players have to succeed with
probabiltiy 2

3 , where the probability is over the shared randomness — so for all inputs, the players output
the correct value of f(x, y, z) with probability at least 2

3 over the shared randomness.

Page 1 of 11

Explicit separations between deterministic and randomized NOF Talk by Kai Zheng (December 1, 2023)

Remark 1.3. Here we’re using public randomness (where there’s a shared random string everyone has
access to). Private randomness is at most as powerful as public randomness (since the players could
agree to split up the shared string into their own pieces), but it’s actually strictly less powerful. (It
might even be more similar to the deterministic model.)

Definition 1.4. We define the deterministic communication complexity of f , denoted Detcc(f), as the
minimum number of bits in a deterministic protocol computing f . Similarly, we define the randomized
communication complexity of f , denoted Randcc(f), as the minimum number of bits in a randomized
protocol computing f .

§1.3 Some examples

We’ll first see an example that only has two players (where there are two inputs x and y, with one player
seeing x and the other seeing y, and the players’ goal is to compute f(x, y)).

Example 1.5
Let f(x, y) = 1[x = y] be the two-input equality function.

For a deterministic protocol, it turns out that the best thing we can do is just to have one player send over
the entire input they see (i.e., the first player looks at x and sends it over to the second, who checks whether
it’s equal to y and announces the answer); so we have

Detcc(f) = logn.

On the other hand, the randomized communication complexity is a lot smaller.

Claim 1.6 — We have Randcc(f) = O(1).

Proof. We’ll describe a randomized protocol with only a constant amount of communication. First, both
players treat the numbers x and y that they see as vectors in {0, 1}log n (by taking their binary expansions).
Then they jointly choose a random vector v ∈ {0, 1}log n, and they write down the single bits 〈x, v〉 and
〈y, v〉 (respectively) — the point is that if they write down different bits, then they automatically know
their inputs are not equal, and so they can output f(x, y) = 0. We can repeat this a few times to boost the
success probability over 2

3 — so if 〈x, v〉 = 〈y, v〉 on all the repetitions, then the players output f(x, y) = 1,
while if this fails on any trial, then they output f(x, y) = 0.

Remark 1.7. It might feel somewhat troubling that even though we’re only communicating a constant
number of bits here, we’re actually using logn bits of randomness — does it really make sense to think
of this as way more efficient than actually communicating logn bits? But one way to think about this
(so that this does make sense) is that in the randomized protocol, the players aren’t telling a lot to
each other, which means each player only has to reveal a constant amount of information about the
input they see to the other player.

We’ve looked at the equality function over two players; what about the equality function over three players?

Example 1.8
Let f(x, y, z) = 1[x = y = z] be the three-input equality function.

Page 2 of 11

Talk by Kai Zheng (December 1, 2023) Explicit separations between deterministic and randomized NOF

Now we actually have Detcc(f) = O(1) as well — each player can just look at the other two players’ inputs
and say whether they’re equal (e.g., player A outputs whether y = z), and once all three players have done
so, they’ll know whether all three inputs are equal. And of course we always have Randcc(f) ≤ Detcc(f)
(any deterministic protocol can also be viewed as a randomized one), so Randcc(f) = O(1) as well.

§1.4 Separations

Question 1.9. How big can the gap between Detcc(f) and Randcc(f) be?

Of course, we always have Detcc(f) ≥ Randcc(f), since we can get a randomized protocol for f by just
ignoring the randomness and running our deterministic protocol. But we’re interested in how much bigger
Detcc(f) can be.
With two players, we’ve already seen that the two-input equality function (as in Example 1.5) has a gap
of Ω(logn). And this is the largest possible gap, since we trivially have Detcc(f) ≤ logn (each players
can always communicate the entire input they see) and Randcc(f) ≥ 1. So over two players, we’ve already
satisfactorily answered this question — there’s a simple function f achieving the biggest possible gap.
But over three players, things are very different. We do know there’s still a gap of Ω(logn) — i.e., there
exist functions with Detcc(f) = Ω(logn) and Randcc(f) = O(1). But we don’t know any actual examples of
such functions — we know such functions exist, but we don’t know explicitly what they are. (The proof that
such functions exist is via a counting argument, due to Beame; so it doesn’t give us actual constructions.)
The main theorem of the Kelley–Lovett–Meka paper gives an explicit function that achieves a fairly large
separation.

Theorem 1.10 (Kelley–Lovett–Meka)
Let q be a prime, fix k ≥ 34, and identify [n] with Fk

q (so we view x, y, and z as elements of Fk
q). Let

f(x, y, z) = 1[〈x, y〉 = 〈y, z〉 = 〈x, z〉].

Then we have Detcc(f) = Ω((logn)1/3) and Randcc(f) = O(1).

(We think of k as fixed and q as large, chosen such that qk ≈ n. We certainly need q to grow, because if q
is fixed then even Detcc(f) would be O(1) — we can write down each inner product using log q bits.)

Remark 1.11. For this function, do we think that (logn)1/3 is the right deterministic complexity, or
do we think the truth is larger? We think that the true deterministic complexity is probably logn —
there’s no obvious protocol that does better.
In fact, the authors more generally show that any ‘random-looking’ function (in a certain sense) achieves
the bound Detcc(f) = Ω((logn)1/3), and it’s plausible that these random-looking functions might
actually have Detcc(f) = Ω(logn).

The proof that Randcc(f) = O(1) is not too hard.

Proof of randomized complexity. We can use the following randomized protocol for f . First, each player can
compute one of these inner products on their own — A knows 〈y, z〉, B knows 〈x, z〉, and C knows 〈x, y〉.
Then they can split into pairs, and each pair runs the randomized 2-player equality protocol (from Claim
1.6) on the inner products they have (e.g., A and B use the protocol to figure out whether 〈y, z〉 = 〈x, z〉).
Finally, the players all output the results of these protocols, which tell us whether 〈x, y〉 = 〈y, z〉 = 〈x, z〉.

Page 3 of 11

Explicit separations between deterministic and randomized NOF Talk by Kai Zheng (December 1, 2023)

Lower-bounding the deterministic complexity is much more difficult (this is generally the case in these sorts
of problems). To do so, the authors define some new notions of pseudorandomness and show any function
satisfying these notions has high deterministic complexity; and then they show this function f does satisfy
these notions. Today we’ll focus on the parts of the proof where they define these notions and use them to
get high deterministic complexity; so we’re not actually going to work with this specific function f .

§2 Ideas behind the proof

§2.1 A method for bounding deterministic complexity

To motivate what comes next, we’ll first talk about a general method for lower-bounding deterministic
communication complexity (and we’ll see a combinatorial way of looking at it).

Definition 2.1. We say a set T ⊆ [n]3 is a cylinder intersection if we can write it as

T = {(x, y, z) | (x, y) ∈ S1, (x, z) ∈ S2, (y, z) ∈ S3}

for some sets S1, S2, S3 ⊆ [n]3.

Here we think of the sets {(x, y, z) | (x, y) ∈ S1}, {(x, y, z) | (x, z) ∈ S2}, and {(x, y, z) | (y, z) ∈ S3} as
cylinders — the point is that for each of these sets, there’s one input that doesn’t affect membership in the
set (e.g., membership in the first set doesn’t depend on z).

Example 2.2
• The set {(x, x, x)} is a cylinder intersection (as it’s the intersection of the three cylinders defined

by x = y, y = z, and x = z).
• The set {(x, y, z) | x+ y = z} is not a cylinder intersection — this is because all pairs (x, y) with
x + y ≤ n appear in this set, as do all pairs (x, z) with x ≤ z and all pairs (y, z) with y ≤ z, so
S1, S2, and S3 must then contain all such pairs (respectively); but most ways of combining such
pairs don’t satisfy x+ y = z.

The reason cylinder intersections are useful is because of the following result (which we won’t prove).

Theorem 2.3
If a function f has Detcc(f) = b, then there are 2b cylinder intersections T1, . . . , T2b such that

{(x, y, z) | f(x, y, z) = 1} = T1 ∪ · · · ∪ T2b .

(The cylinder intersections Ti don’t have to be disjoint — they’re allowed to overlap.)

§2.2 A high-level overview of the proof

Theorem 2.3 means that one way to prove a lower bound on deterministic communication complexity is to
show that the set D = {(x, y, z) | f(x, y, z) = 1} can’t be expressed as a union of a small number of cylinder
intersections. In particular, in order to get an explicit function f with Detcc(f) = Ω((logn)1/3), we want
to construct a set D ⊆ [n]3 such that D cannot be written as T1 ∪ · · · ∪ T2b for b = (logn)1/3. If we can
construct such a set, then we can take f = 1[D], and since D can’t be written as a union of a small number
of cylinder intersections, Theorem 2.3 will give the desired lower bound on its deterministic communication

Page 4 of 11

Talk by Kai Zheng (December 1, 2023) Explicit separations between deterministic and randomized NOF

complexity. (Theorem 1.10 already specifies f (and therefore D), but imagine for now that we don’t yet
know this, and we’re just trying to construct some nice function with high deterministic complexity.)
At a high level, the proof works by imposing some nice properties on D, and showing that if D satisfies these
properties, then any cylinder intersection with low density also has low density inside D. More precisely,
letting F be the indicator function of our cylinder intersection, we show that if E(x,y,z)∈[n]3 [F (x, y, z)] — the
density of the cylinder intersection in the entire space — is small, then E(x,y,z)∈D[F (x, y, z)] — the density
of the cylinder intersection in D — is small as well.
Then we construct D to be a sparse (i.e., low-density) set satisfying these nice properties, and suppose that
we can write D = T1 ∪ · · · ∪ T2b as a union of cylinder intersections. Then since D itself has low density (in
the entire space), so does each cylinder intersection Ti. But this means the density of each Ti inside D is
also small; and this means we’ll need a lot of these cylinder intersections to cover D.
(The set D that the authors construct is the one in Theorem 1.10 — i.e., {(x, y, z) | 〈x, y〉 = 〈y, z〉 = 〈x, z〉}
— and they show that it satisfies these nice properties. We won’t discuss this part of the proof, though —
we’ll just focus on what the nice properties are and how they imply this statement about density.)

§2.3 Some notions of pseudorandomness

To capture the properties of D that we want, we’ll define some notions of pseudorandomness for sets (or
more generally functions).

Definition 2.4 (Spreadness). Let A:X × Y → [0, 1] be a function, and let r ≥ 1 and ε ∈ (0, 1). Then
we say A is (r, ε)-spread if for any rectangle R = X ′ × Y ′ ⊆ X × Y of size |R| ≥ 2−r |X × Y |, we have

E(x,y)∈R[A(x, y)] ≤ (1 + ε)E[A].

We use E[A] to mean E(x,y)∈X×Y [A(x, y)]. This condition says that if we look at the density of A restricted to
any reasonably large rectangle R, it’s not too much bigger than the original density of A (where r represents
what we mean by ‘reasonably large,’ and ε represents what we mean by ‘not too much bigger’). (This is a
one-sided pseudorandomness condition; this property is also sometimes called upper regularity.)

A

R

Definition 2.5 (Left-lower boundedness). For ε ∈ (0, 1), we say a function A:X×Y → [0, 1] is ε-left-lower
bounded if for every x ∈ X, we have Ey∈Y [A(x, y)] ≥ (1− ε)E[A].

Intuitively, we can think of A as a matrix (with rows indexed by X and columns by Y , and entries A(x, y));
then this condition states that the average of each row of A is at least 1− ε of the global average of A (i.e.,
the average of the entire matrix).

E[A]

Ey[A(x, y)]x

Page 5 of 11

Explicit separations between deterministic and randomized NOF Talk by Kai Zheng (December 1, 2023)

Definition 2.6 (Near-uniformity). For ε ∈ (0, 1) and k ∈ N, we say A is (k, ε)-near uniform if

P(x,y)∈X×Y [(1− ε)E[A] ≤ A(x, y) ≤ (1 + ε)E[A]] ≥ 1− 2−k.

Intuitively, this states that nearly all entries of A are close to the global average of A (where ‘close’ is given
by ε, and ‘nearly all’ by k).
All three of these conditions can be interpreted as regularity conditions — they measure how close A is to a
constant function in some sense (though the senses in which they measure this are different — for example,
the first two conditions can be satisfied by a {0, 1}-valued function, while the third cannot be).

§2.4 The main analytical theorem

The main theorem we’ll prove today (which we can think of as the main analytical theorem of the paper),
regarding these pseudorandomness conditions, is as follows.

Theorem 2.7
Let A:X ×Z → [0, 1] and B:Y ×Z → [0, 1] be functions, and let d, k ≥ 1 and ε ∈ (0, 1). Suppose that:

(1) E[A] and E[B] are both at least 2−d.
(2) A and B are both (r, ε)-spread for r = Ω(dk/ε).
(3) A and B are both ε-left-lower bounded.

Then A ◦B:X × Y → [0, 1], defined as (A ◦B)(x, y) = Ez[A(x, z)B(y, z)], is (k, 320ε)-near uniform.

If we think of A and B as matrices, then A ◦ B corresponds to the matrix product ABᵀ. In particular,
for intuition, we can think of A and B as {0, 1}-valued matrices representing bipartite graphs (between X
and Z for A, and Y and Z for B); then Theorem 2.7 says that if we take two graphs with good regularity
properties (specifically, the density between any two large vertex subsets shouldn’t be too large, and no
vertex on the right should have too small degree), then their matrix product is roughly constant.
To prove Theorem 2.7, we’ll need some machinery — we’ll introduce a seminorm called the grid norm —
and prove two lemmas about it.

Definition 2.8. For a function f on X × Y and `, k ∈ N, we define

U(`,k)(f) = Ex1,...,x`∈X,y1,...,yk∈Y

∏̀
i=1

k∏
j=1

f(xi, yj)

 .
Intuitively, we’re choosing a random `× k grid in X × Y and taking the expectation of the product of the
f -values of all the grid points.

x1 x2 x3 x4 x5

y1

y2

y3

Page 6 of 11

Talk by Kai Zheng (December 1, 2023) Explicit separations between deterministic and randomized NOF

In particular, if we think of f as representing a bipartite graph, then U(`,k)(f) corresponds to the subgraph
(or rather, homomorphism) count of K`,k in this graph.

Definition 2.9. We define the U(`,k) norm (or grid norm) of f as ‖f‖U(`,k)
= |U(`,k)(f)|1/`k.

The first step of the proof is the following lemma, which states that if the U(`,k) norm of A is large, then A
cannot be (r, ε)-spread — equivalently, if A is (r, ε)-spread, then its U(`,k) norm is small.

Lemma 2.10
If ‖A‖1 ≥ δ and A is (r, ε)-spread with r = (`k + 1) log(1/δ) + log(1/ε), then

‖A‖U(`,k)
≤ (1 + 2ε) ‖A‖1 .

(We use ‖A‖1 to denote E |A|; this is the same as E[A], as A is always nonnegative.)
Note that the U(`,k) norm of A is always at least its 1-norm. So Lemma 2.10 says that the U(`,k) norm of A
is pretty close to the minimum it could possibly be, which is quite strong.

Proof. We’ll prove the contrapositive — we’ll assume that
‖A‖U(`,k)

> (1 + 2ε) ‖A‖1 , (1)

and we’ll use this to find a large rectangle R on which A is too dense — specifically, such that
E(x,y)∈R[A(x, y)] > (1 + ε) ‖A‖1 ,

which will violate the spreadness condition.
To start with, we’ll raise both sides of our assumption (1) to the `kth power to get

‖A‖`k
U(`,k)

> (1 + 2ε)`k ‖A‖`k
1 . (2)

Our goal is to go from here to some equation where the left-hand side looks like a weighted average of A,
and the right-hand side still gives a lower bound involving ‖A‖1. If we can do this, then we can try to
decompose this weighted average in terms of rectangles; and then we can just find one rectangle with a large
contribution, which will be the one that we take as R.
If our goal is to make the left-hand side a weighted average of A, then we want to write it as an expectation
over just two variables (right now, it’s an expectation over ` and k variables). First, we use � to denote the
lexicographic ordering on [`]× [k], and for each (i, j) ∈ [`]× [k] and for vectors x = x1 . . . x` and y = y1 . . . yk

(of lengths ` and k), we consider the prefix product
ϕ�(i,j)(x, y) =

∏
(i′,j′)�(i,j)

A(xi′ , yj′).

So we’re considering the product of A over only the part of the grid that’s (weakly) smaller than (i, j) in
the lexicographic order.

x1 x2 x3 x4 x5

y1

y2

y3

(i, j)

Page 7 of 11

Explicit separations between deterministic and randomized NOF Talk by Kai Zheng (December 1, 2023)

Similarly, we can also define
ϕ≺(i,j)(x, y) =

∏
(i′,j′)≺(i,j)

A(xi′ , yj′)

(where we have all the same terms except the one from (i, j)).

x1 x2 x3 x4 x5

y1

y2

y3

(i, j)

In particular, for vectors x and y of lengths ` and k, we have

‖A‖`k
U(`,k)

= Ex,y[ϕ≤(`,k)(x, y)]

by definition (since ϕ≤(`,k) corresponds to taking a product over the entire grid). We’ll then write this as a
telescoping product, as

‖A‖`k
U(`,k)

=
E[ϕ�(1,1)]

1 ·
E[ϕ�(1,2)]
E[ϕ≺(1,2)]

· · ·
E[ϕ�(`,k)]
E[ϕ≺(`,k)]

=
∏

(i,j)∈[`]×[k]

E[ϕ�(i,j)]
E[ϕ≺(i,j)]

. (3)

There are `k terms in this product, and we know from (2) that it’s greater than (1 + 2ε)`k ‖A‖`k
1 . So at least

one of these terms must be fairly large — there must exist (i∗, j∗) ∈ [`]× [k] for which we have

E[ϕ�(i∗,j∗)]
E[ϕ≺(i∗,j∗)]

> (1 + 2ε) ‖A‖1 . (4)

Remark 2.11. One way to think about this step intuitively is that if we think of A as a {0, 1}-valued
function representing a subset of X×Y , then on the left-hand side of (3), we’re choosing a random grid
and looking at the probability that all the grid points are in our set A. And we can imagine computing
this probability by looking at one point at a time (in lexicographic order), and writing our probability
as a product of conditional probabilities (where for each point (i, j), we look at the probability this
point is in our set conditional on all the previous points being in the set); these conditional probabilities
exactly correspond to the terms in the telescoping product. And we’re focusing on one term where this
conditional probability is much bigger than what we might expect.

We now fix this special point (i∗, j∗); for simplicity, we’ll just assume it’s (`, k).
Recall that our goal was in some sense to write the left-hand side of (2) as an expectation over two variables
(rather than ` + k). We’re now getting closer to being able to do so — we define an auxiliary function in
two variables as

F (x`, yk) = Ex1,...,x`−1∈X,y1,...,yk−1∈Y

∏
(i,j)≺(`,k)

A(xi, yj). (5)

This is very similar to E[ϕ≺(`,k)], but here we’re fixing the values of x` and yk, and only taking an expectation
over the remaining variables (of the same product).

Page 8 of 11

Talk by Kai Zheng (December 1, 2023) Explicit separations between deterministic and randomized NOF

x1 x2 x3 x4 x5

y1

y2

y3
(`, k)

Now we can use F to rewrite the relevant expectations from before — we have
E[ϕ≺(`,k)] = Ex,y[F (x, y)] and E[ϕ�(`,k)] = Ex,y[F (x, y)A(x, y)].

(Here x ∈ X and y ∈ Y are single variables, not vectors — they correspond to x` and yk from before.) We’ll
use 〈F,A〉 to denote Ex,y[F (x, y)A(x, y)] (since we can think of this as a normalized inner product). Then
plugging this into (4) gives that

E[ϕ�(`,k)]
E[ϕ≺(`,k)]

= 〈F,A〉
‖F‖1

> (1 + 2ε) ‖A‖1 ,

which we can rearrange to 〈
F

‖F‖1
,
A

‖A‖1

〉
> 1 + 2ε.

And we can think of this as a weighted average of A/‖A‖1, where the weight function is given by F/‖F‖1 —
so we’ve accomplished our first goal (which was essentially to lower-bound a weighted average of A/‖A‖1).
Then to finish the proof, we can decompose F as a sum of rectangles — to perform this decomposition, we
need to use the fact that we can write F in the form

F (x, y) = Ew[f(x,w)g(y, w)h(w)]
(where x and y correspond to xk and y` in (5), w corresponds to the choices for all the remaining variables
x1, . . . , x`−1 ∈ X and y1, . . . , yk−1 ∈ Y , and f , g, and h correspond to the parts of the product involving x`,
yk, and neither, respectively).

h f

g

x1 x2 x3 x4 x5

y1

y2

y3
(`, k)

We can use this to decompose F as a sum of rectangles (where we have a rectangle corresponding to each
w) — intuitively, if A is {0, 1}-valued (so f , g, and h are as well), then for each w, the set of inputs for
which F (x, y) = 1 forms a rectangle (namely, the rectangle {x | f(x,w) = 1} × {y | g(y, w) = 1}).
So now we have a weighted average of A/‖A‖1 over rectangles that’s larger than it should be, and we can
use this to find a sufficiently large rectangle R with a large contribution to this weighted average — meaning
that A is overly dense on that rectangle.

Page 9 of 11

Explicit separations between deterministic and randomized NOF Talk by Kai Zheng (December 1, 2023)

Remark 2.12. This proof is similar in spirit to the proof of the counting lemma from graph regularity
(and the statement is also kind of similar).

We’ll now get to the second lemma; this is called the sifting of rectangles step.

Lemma 2.13
Fix ε ∈ (0, 1/80) and let p = dk/εe. Let A:X × Z → R≥0 and B:Y × Z → R≥0 be such that:

• ‖A‖U(2,p)
≤ (1 + ε) ‖A‖1.

• ‖B‖U(2,p)
≤ (1 + ε) ‖B‖1.

• A and B are ε-left-lower bounded.
Define the function D:X × Y → R≥0 as

D(x, y) = (A ◦B)(x, y)
E[A ◦B] .

Then we have ‖D − 1‖k ≤ 80ε.

This lemma together with Lemma 2.10 implies Theorem 2.7.

Proof. We can assume that E[A] = E[B] = 1 (by scaling A and B otherwise). We then define the auxiliary
functions Ax = A(x, •) and By = B(y, •) — i.e., the row functions of A and B. (The statement that A and
B are ε-left-lower bounded translates to a condition on these auxiliary functions, which we’ll use later.)

A

Ax

X

Z

Now we can write D as
D(x, y) = 〈Ax, By〉

Ex,y[〈Ax, By〉]
(where we use 〈f, g〉 to denote Ezf(z)g(z)). We’re going to show that

‖〈Ax, By〉 − 1‖k = O(ε)

(where when we talk about the k-norm of this quantity, we’re viewing it as a function of x and y). This will
also mean that the denominator of D, namely Ex,y[〈Ax, By〉], is close to 1; and then this gives the desired
statement (that D is close to 1 in k-norm).
We’re interested in bounding the k-norm of 〈Ax, By〉 − 1, and we’ll do so by decomposing this into three
terms and using the triangle inequality — we have

〈Ax, By〉 − 1 = 〈Ax − 1, By − 1〉+ 〈Ax − 1, 1〉+ 〈By − 1, 1〉, (6)

so it suffices to bound the k-norm of each term on the right-hand side individually.
We’ll first bound ‖〈Ax − 1, 1〉‖k. To do so, define the function a:X → R≥0 as

a(x) = Ez[Ax(z)],

Page 10 of 11

Talk by Kai Zheng (December 1, 2023) Explicit separations between deterministic and randomized NOF

i.e., a(x) is the average of the xth row of A. Then by definition, we have

‖〈Ax − 1, 1〉‖k = ‖a− 1‖k .

We’ll bound this by focusing on its positive part and negative part separately — we define

(a− 1)+ = max(0, a− 1) and (a− 1)− = max(0, 1− a)

(the first term captures all the positive parts of a − 1, and the second captures all the negative parts, but
flipped to be positive). Then a− 1 = (a− 1)+ − (a− 1)−, so by the triangle inequality we have

‖a− 1‖k ≤ ‖(a− 1)+‖k + ‖(a− 1)−‖k ,

which means it suffices to bound the positive and negative parts separately.
For the negative part, we use the fact that A is ε-left-lower bounded, which means a(x) ≥ 1 − ε for all x
(since we assumed E[A] = 1). So (a− 1)− is at most ε pointwise, which means its k-norm is also at most ε.
Bounding ‖(a− 1)+‖k involves more steps (and another lemma). The idea is that we first use the fact that
‖A‖U(2,p)

is small to show that ‖a‖k ≤ 1 + ε. (So we can essentially pass down from the U(2,p) norm to the
k-norm, where p = dk/εe.) Then since even the small values of a are always at least 1 − ε, this means the
large values of a can’t be too large (i.e., too far away from 1) either. So with some work we can get the
bound ‖(a− 1)+‖k ≤ 4ε, which means ‖a− 1‖k ≤ 5ε.
We can bound the term ‖〈By − 1, 1〉‖k in (6) in the same way. We’re not going to go through the proof of
how we bound the first term ‖〈Ax − 1, By − 1〉‖, but here’s a high-level overview — we first have

‖〈Ax − 1, By − 1〉‖k ≤ ‖A− 1‖U(2,k) ‖B − 1‖U(2,k)
.

And then we can use some more facts to pass from bounds on ‖A‖U(2,p)
(where p = dk/εe is much larger

than k) to bounds on ‖A− 1‖U(2,k)
. This will end up giving us a bound of O(ε), as desired.

§2.5 The conclusion

Finally, we’ll talk about how Theorem 2.7 relates to the big-picture idea of the proof of Theorem 1.10. Recall
that in Theorem 1.10, we had an explicitly defined set D ⊆ X × Y ×Z, and as described in Subsection 2.2,
in order to lower-bound the deterministic communication complexity of 1[D], we wanted to show that any
cylinder intersection can only occupy a small fraction of D.
It’s not obvious how to get there, but the idea is that we first use Theorem 2.7 to say that D is ‘quasir-
andom’ in some sense (in particular, in a sense closely related to rectangles). Then we’re taking a cylinder
intersection, which is in some sense a kind of rectangle-like object, and looking at its intersection with D.
And if the cylinder intersection has total density α in the global set, we can use the quasirandomness of D
to show that it only fills up about an α-fraction of D as well.

Page 11 of 11

	Introduction
	The number-on-forehead model
	Deterministic vs. randomized protocols
	Some examples
	Separations

	Ideas behind the proof
	A method for bounding deterministic complexity
	A high-level overview of the proof
	Some notions of pseudorandomness
	The main analytical theorem
	The conclusion

