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§1 Random reconstruction

§1.1 Reconstruction problems

The sort of questions we’ll talk about today are of the following form:

Question 1.1. Is it possible to reconstruct a discrete structure S from small snapshots?

Maybe the most famous question of this nature is the Kelly–Ulam graph reconstruction conjecture.

Conjecture 1.2 (Kelly–Ulam) — Any graph with n ≥ 3 vertices can be uniquely reconstructed from its
deck, the multiset of the n induced subgraphs obtained by deleting one vertex.

(In the deck, we’re only given the isomorphism types of each induced subgraph, and not the vertex labels.)

 

This seems like it should be massively true, and you probably shouldn’t even need so many subgraphs to
reconstruct the graph. But we don’t know how to prove it.

As another example, we can consider such questions in finite groups.

Question 1.3. Suppose that we have a set S ⊆ Z/nZ, and we’re shown what all small subsets of S look
like, up to translation — so we define the k-deck of S as

Dk(S) = {Orb(T ) | T ⊆ S, |T | = k}

(where Orb(T ) is the orbit of T under translations). Can we say what S looks like up to translation?

(In this talk, all sets are actually multisets unless otherwise specified.)

Theorem 1.4 (Pebody)

For S ⊆ Z/nZ, we can reconstruct S up to translation using just its 6-deck D6(S).
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There are also similar results about reconstructing subsets of R2 up to rigid motion, and there are interesting
open problems about what happens when we replace R2 with R3. In particular, it’s known that in R2, if we
get to see what all subsets of size 20 (for example) look like up to rigid motion, then we can reconstruct the
original set (up to rigid motion). But we don’t know this in R3 (with 20 replaced by any finite number). In
general, 2-dimensional problems tend to be easier than their higher-dimensional analogs.

§1.2 Probabilistic reconstruction problems

Today we’ll talk about some probabilistic reconstruction problems. Here, we’re still trying to reconstruct an
object using its k-deck (for some appropriate definition of the k-deck). But instead of proving results for
arbitrary (worst-case) objects, we want to know what we can do for typical objects.

For the types of problems mentioned earlier, these types of questions are often a lot easier — for example,
you can reconstruct a random graph almost immediately. But these types of questions turn out to be more
interesting on the geometry of the lattice; so almost all the questions we’ll talk about will have some sort of
lattice structure.

The real-world motivation for where these sorts of questions come from is the simple one-dimensional problem
of sequencing DNA.

Question 1.5 (Shotgun sequencing of DNA). Suppose S is a uniform random string in {0, 1}n, and we’re
given its k-deck, the multiset of all (consecutive) length-k substrings. For what values of k do we have
enough information to reconstruct S?

(Here we’re working over a 2-letter alphabet {0, 1} rather than {A,C,G,T} for simplicity.)

It’s known that the answer is k ≈ log n (we won’t prove this, but it’ll become clear from some other things
we’ll talk about); this was known since the 1990s, and it’s useful but not too hard.

There are also variants that are more relevant to practice — for example, what if you get substrings with
some errors? Lots of these variants are pretty well-understood as well.

§1.3 Two-dimensional reconstruction problems

Today we’ll look at variants of such problems in two dimensions. (For most of what we’ll talk about, we
don’t know how to solve the analogous problems in higher dimensions.)

In 2015, Mossel and Ross raised a number of questions of this nature: why stop with strings, and what
happens with more general structures? In particular, they raised the following general question.

Question 1.6 (Mossel–Ross 2015). Can we construct a labelled graph from its r-balls?

This means that the deck shows us what the graph looks like around every vertex, and we want to piece
this together to get back the whole graph.

It’s hard to say precise results at this level of generality, but in two dimensions, they raised two concrete
questions. The first question is the jigsaw problem.

Definition 1.7. A n × n jigsaw is a q-coloring of the edges of a n × n grid. Its deck is the multiset
consisting of what each vertex looks like locally (the colors of its four incident edges, with orientation).

(Here we’re looking at balls of a fixed size, but we’ll think of q as varying. We also extend the edges a bit
at the boundary, so that every piece in the jigsaw has four edges.)
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Another natural question is with pictures, where we take a {0, 1}-coloring and look at larger pieces.

Definition 1.8. An n × n picture is a filling of the n × n grid with 0’s and 1’s (i.e., an element of
{0, 1}n2

). We define its k-deck (denoted by Dk) as the set of k × k subpictures.
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(Again, we get the pieces with orientation.)

We consider the following questions:

Question 1.9. Suppose we sample a random n × n jigsaw. For what q (as a function of n) can we
(typically) reconstruct it from its deck?

Question 1.10. For what k (as a function of n) can we reconstruct a random n× n picture?

§1.4 History

Mossel and Ross looked at the probability that a random jigsaw is reconstructible, and showed that

P[reconstructible]→

{
1 if q = ω(n2)

0 if q = o(n2/3).

They thought that the threshold should occur at nα for some α, but weren’t sure what α should be. Then
BFMNPS improved the first case by showing that

P[reconstructible]→ 1 if q = n1+o(1).

(More explicitly, this asymptotic notation means that for every ε and sufficiently large n, if q > n1+ε then
the jigsaw is reconstructible with high probability.)
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Meanwhile, for the picture problem, Mossel and Ross showed that

P[reconstructible]→

{
1 if k ≥ C

√
log n

0 if k ≤ c
√

log n.

Later Ding and Liu worked out the sharp threshold — they showed that

P[reconstructible]→

{
1 if k ≥ (1 + ε)

√
2 log2 n

0 if k ≤ (1− ε)
√

2 log2 n.

(These results also have analogs that work in higher dimensions.)

§1.5 Main results

For the jigsaw problem, the authors determine the order of the threshold.

Theorem 1.11 (Ballister–Bollobás–Narayanan)

For the jigsaw problem, we have

P[reconstructible]→

{
1 if q ≥ Cn
0 if q ≤ cn.

Unfortunately, this doesn’t get a sharp threshold — they have guesses for where the sharp threshold should
be, but don’t know how to prove it.

Meanwhile, for the picture problem, it turns out that we can get a 2-point result.

Theorem 1.12 (Narayanan–Yap)

For the picture problem, there exists kc �
√

2 log2 n such that

P[reconstructible]→

{
1 if k > kc

0 if k < kc.

There’s a specific formula for kc; and we know that if we’re one above it then we can reconstruct, and if
we’re one below it then we can’t. (The authors have pretty good guesses for what happens at kc as well,
but don’t know how to push things through in that case.)

§2 Ideas for lower bounds

We’ll talk about the two problems interchangeably, because the methods are similar.

§2.1 Local obstacles

The earlier lower bounds came from looking at local obstacles. For example, for jigsaws, suppose we have
two portions of the jigsaw which look as follows.
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Then when we’re putting together the jigsaw, we won’t know which location has the purple edge and which
has the green one — the two are interchangeable (i.e., if we took a jigsaw and flipped the purple and green
edges around, we’d get the same multiset of pieces).

More generally, this occurs whenever the six edges other than the middle one line up; so the expected number
of such pairs is n4q−6. This is how Mossel and Ross showed that when q � n2/3, we can’t reconstruct — at
such values of q we start seeing these configurations, and that’s an obstacle to reconstruction.

§2.2 Entropy

But in fact, there’s an even bigger obstacle staring us in the face. As a simple question, why can’t you
reconstruct a picture from its 1-deck? One answer is just that there’s not enough information. And it turns
out that the correct obstacle to consider in this problem is entropy — looking at the amount of information
you have.

For pictures, the point is that if k is too small, there’s just not enough information to be able to reconstruct.
The number of possible pictures is 2n

2
; meanwhile, the number of possible k-decks is at most the number

of solutions to
x1 + · · ·+ x

2k2
= (n− k + 1)2

(there are 2k
2

possible k× k subpictures; here xi represents the number of times the ith subpicture appears
in the deck). This immediately tells us that the probability we can reconstruct is bounded above by the
ratio of these quantities, which gives that

P[reconstructible] ≤
(

(n− k + 1)2 + 2k
2

2k2

)
· 2−n2

.

This goes to 0 when k < kc (for our definition of kc), showing that in tht case, we can’t reconstruct.

Remark 2.1. We expect that it should be true that as soon as you have enough information, you should
be able to reconstruct. Depending on what kc is, you might or might not have enough information at
kc; at kc + 1 you definitely have enough information, and we show that reconstruction is possible.

The more fine-grained conjecture is that at the critical point kc, you can look at whether this ratio goes
to 0 and ∞, and that should determine whether reconstruction is possible or not. But we don’t know
how to prove this (since we need a bit of wiggle room in the upper bound argument).

So the short summary is that you look at how much information you have, and that gives a bound that we
expect should be right. (The authors think this is where the answer ought to be in higher dimensions as
well, though we don’t know how to prove that.) For pictures, we more or less get upper bounds that match
the information-theoretic lower bounds; for jigsaws, we get there up to a constant factor.

§3 Upper bounds

Now we’ll talk about upper bounds, and why there are some difficulties that are fine in two dimensions, but
which we don’t know how to deal with in higher dimensions.
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Let’s do a concrete calculation in the picture situation. Imagine we have a fixed k×k tile, and we’re looking
for which tile fits next to it. There’s one tile in the deck that should slot in next to it (the one that actually
belongs there); so we can ask, what’s the probability that there’s a different tile that also fits? (We call
such tiles impostors.)
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We can compute the expected number of impostors — if we’re trying to find an impostor in a generic
location, we need to engineer k2 − k equalities of random bits (the first k− 1 columns of the impostor need
to match our tile), which means

E[#impostors] ≈ n2 · 2−k2+k ≈ 1

k

(when k ∼ kc). This tells us that most tiles aren’t going to have impostors that slot in next to them. But
if your reconstruction algorithm is to just greedily piece things together (finding a piece that slots in and
adding it), you’ll make lots of mistakes (since you have to run for n2 steps).

So it’s not enough to look locally ; and that’s not surprising, because the bottleneck in the lower bounds
doesn’t come from local obstacles, but rather global ones. (This reconstruction procedure would work if you
increased kc to kc + log n, but we’re trying to get an exact answer.)

Here’s a better strategy: suppose that we’ve pieced together some part S of our picture, and we’re confident
that it’s okay.

S

And suppose we have another piece B and we’re asking, should we put it down? If B isn’t near the edge,
then it should fit into some window of tiles that also fit together. So instead of asking whether we can just
slot in B, we ask, can we slot in some w × w window around B?

(It’s possible that the w×w window you find will have some errors; but we might hope that there’s enough
constraints that only the right piece will fit in.)
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B

It turns out that this is a good algorithm for the right scale of window size — you can piece the puzzle
together this way. What’s interesting is how you analyze whether the algorithm works or not. We’re trying
to understand things of the form

P[there exists a fake w × w window].

The naive thing to do is to use a union bound. But this doesn’t work — it’s too expensive.

Instead, what ends up working is contour arguments from percolation theory. The idea is that instead of
union bounding over everything, we do a more efficient union bound over the things we really want to pay
for, and that’s the interfaces between tiles that are correct and tiles that are fake. So we decompose into
contours and do a union bound over all possible diagrams with contours; and that’s efficient enough to get
sharp bounds.

This doesn’t work in three dimensions because there we don’t have contours, but rather surfaces; and we
don’t know how to deal with those.
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