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§1 The problem

§1.1 Some motivation

Imagine we have a finite set of points G ⊆ R2. We’ll also consider lines in R2; the equation of a line in R2

looks like y + mx = c, and we’ll refer to m as the slope of this line. (This is nonstandard — usually the
slope is defined as −m — but it’ll be a bit more convenient for our purposes.)
Suppose that we know every line with slope −1 intersects G at most once.

And suppose we also have information about G in one more direction — specifically, we’ll look at lines with
slope r, and consider the number of lines of slope r needed to cover G, which we define as Lr(G).

Question 1.1. If we know that Lr(G) ≤ n, then can we say anything about |G|?

Unfortunately, the answer is no — imagine that we take a bunch of lines with slope 1 and a single line
with slope r, and take G to consist of all the corresponding intersections. Then Lr(G) = 1, but |G| can be
arbitrarily large.
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So this situation isn’t so nice — having just one slope r isn’t enough to tell us anything about |G|. So let’s
imagine we have one more slope to work with.

Question 1.2. If we know that Lr1(G) ≤ n and Lr2(G) ≤ n (for distinct slopes r1 and r2), then can we
say anything about G?

Now we’re in business — we have lines in two different directions, which give us a sort of coordinate system.
A point is completely determined by its coordinates, and there’s at most n coordinates in both directions,
so there’s at most n2 points — so we get |G| ≤ n2.

And this is the best bound we can get — we can achieve equality by taking a n × n grid (with directions
chosen such that every line with slope −1 intersects G at most once).

Question 1.3. What if we have information in another direction (i.e., that Lr3(G) ≤ n) — can we keep
pushing the bound on |G| downwards?

And that’s essentially what the sum-difference conjecture is about.

§1.2 The sum-difference conjecture

We’ve set things up in R2 so far, but we’ll actually instead be working in W ×W for a finite-dimensional
real vector space W .

Definition 1.4. For any r ∈ R, we define πr:W ×W → W as the map (g1, g2) 7→ g1 + rg2. We also
define π∞:W ×W →W as the map (g1, g2) 7→ g2.

Intuitively, we think of r as a ‘slope’; when W = R, the map πr keeps track of which line with slope r the
point (g1, g2) lies on (e.g., by recording its y-intercept).

r

πr(g1, g2)

(g1, g2)
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Definition 1.5. Given a finite set of ‘slopes’ R = {r1, . . . , rm}, none of which is −1, we say that SD(R,α)
holds if for all G ⊆W ×W such that π−1 is injective on G, if |πr(G)| ≤ n for all r ∈ R, then |G| ≤ nα.

The condition that π−1 is injective on G corresponds to the statement (in the case W = R) that every line
of slope −1 intersects G at most once. And we’re given that for each of the directions r ∈ R, we only need
n lines in the direction r in order to cover G; and we want to conclude that G has at most nα points.

Example 1.6
Our argument from earlier (with two slopes) shows that SD({r1, r2}, 2) holds (for any r1 6= r2).

Definition 1.7. We say the statement SD(α) holds if for every ε > 0, we can find some set of slopes Rε
for which the statement SD(Rε, α+ ε) holds.

In other words, SD(α) states that by having information about G in sufficiently many directions, we can
push our bounds on |G| arbitrarily close to nα.

Conjecture 1.8 (Sum-difference conjecture) — The statement SD(1) holds.

Remark 1.9. Why is this called the sum-difference conjecture? First, as an alternative definition of
SD(R,α), we could remove the condition that π−1 is injective on G and instead ask for the conclusion
that |π−1(S)| ≤ nα. Clearly this formulation implies the original; meanwhile, the original formulation
also implies this one, as we can delete points with repeated values of π−1.

Then we’re given a set of points (g1, g2), and we know there aren’t too many sums g1 + rg2 for several
‘slopes’ r; and we want to deduce that there aren’t too many differences g1 − g2.

§1.3 History

We saw just that with two slopes, the best bound we can get is α = 2. Bourgain showed that we can do a
bit better using three slopes instead.

Theorem 1.10 (Bourgain)
The statement SD({0, 1,∞}, 2− 1/13) holds.

(The specific slopes 0, 1, and∞ are somewhat important — we can modify them by performing a projective
transformation, but the argument relies on having a certain cross ratio.)

And we can do even better by allowing four slopes.

Theorem 1.11 (Katz–Tao 1999)
The statement SD({0, 1, 2,∞}, 7/4) holds.

And the best-known bound comes from two years later.

Theorem 1.12 (Katz–Tao 2001)
The statement SD(α) holds, where α ≈ 1.675 is the root of α3 − 4α+ 2 = 0 in [1, 2].
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In the two decades since this bound, we haven’t really been able to improve it.

Remark 1.13. These bounds are true for W of any dimension. In fact, the general setting should be
equivalent to the one-dimensional case (as we can take a generic projection down to one dimension).

§2 Connection to the Kakeya conjecture

The way we’ve stated the sum-difference conjecture makes it look like a natural additive combinatorics
problem, but the reason people first started studying it was actually because of a connection to the Kakeya
conjecture.

§2.1 The Kakeya conjecture

The story of the Kakeya conjecture begins in 1917.

Question 2.1 (Kakeya). Suppose we have a unit needle in R2, and we’re allowed to translate and rotate
it (inside some shape). What’s the smallest possible shape (in terms of area) that we need to be able
to make the needle point in every direction?

As a simple example, we can imagine rotating the needle about its center; this gives a circle.

Kakeya came up with a slightly better construction using a cycloid, and he thought that this would be tight.
But surprisingly, it turns out the real answer — for the minimum area necessary — is (almost) zero!

Theorem 2.2 (Besikovich 1918)
For any ε > 0, there exists a set of area at most ε which works (meaning that we can move a unit needle
around in the set and make it point in every direction).

We can do this in higher dimensions as well; there, instead of thinking about moving a needle around, we’ll
just ask that the set contains a unit segment in each possible direction.

Definition 2.3. A set K ⊆ Rk is Kakeya if it is compact and contains a unit segment in every direction.

The same construction of Besikovich still works, giving that there is a Kakeya set of measure ε for any
ε > 0; and in fact taking the limit as ε→ 0 gives a construction with measure 0. This seems very surprising
— we might expect that containing a unit segment in every direction should force K to be ‘large’ in some
sense, but this isn’t true if we think of ‘largeness’ in terms of measure. So instead, we’ll use a different way
of quantifying the ‘largeness’ of a set, namely the Minkowski dimension. (This can also be done with the
Hausdorff dimension, but today we’ll only discuss the Minkowski dimension.)
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Definition 2.4 (Minkowski dimension). Let K ⊆ [0, 1]k. For each ε > 0, consider the ε-grid over [0, 1]k,
and let bε(K) be the number of cubes of this grid needed to cover K. Then we define the Minkowski
dimension of K as

dim(K) = lim
ε→0

log(bε(K))
log(1/ε) .

Intuitively, this means we’d expect bε(K) to scale according to (1/ε)d for some d as ε shrinks, and we define
the Minkowski dimension as this value of d. We can check that objects such as lines and planes do have the
dimension we’d expect them to (1 and 2, respectively) — for example, for a line segment, halving the grid
length should double the number of squares the segment passes through.

If a set in Rk has positive measure, then it definitely has Minkowski dimension k. But it’s possible for a set
to have measure zero but still have Minkowski dimension k.

And the Kakeya conjecture is that any Kakeya set should be large if we measure largeness by Minkowski
dimension — specifically, it has to have the maximum possible dimension.

Conjecture 2.5 (Kakeya conjecture) — If K ⊆ Rk is a Kakeya set, then dim(K) = k.

§2.2 History

It’s known that when d = 2, the Kakeya conjecture is true — this is a result due to Davies (1971), which
uses just the fact that two lines intersect at one point together with Cauchy–Schwarz.

Meanwhile, for large n, the best bound we have (on the dimension of a Kakeya set) is again due to Katz–Tao
(from the same paper from 2001).
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Theorem 2.6 (Katz–Tao 2001)
If K ⊆ Rk is a Kakeya set, then dim(K) ≥ βk, where β ≈ 0.59 is some irrational constant.

In fact, the value of β here is precisely 1/α for the value of α from Theorem 1.12, and this isn’t a coincidence
— there’s a reduction from the sum-difference problem to the Kakeya one, and in fact solving the sum-
difference conjecture would actually solve the Kakeya conjecture as well. (We don’t have a reduction in the
other direction, and don’t expect one to exist.)

§2.3 Reduction from sum-difference to Kakeya

Now we’ll state and prove this reduction.

Lemma 2.7
If SD(α) holds, then any Kakeya set K ⊆ Rk must satisfy dim(K) ≥ k/α.

In particular, SD(1) would imply the Kakeya conjecture.

Proof. Suppose that SD({1, . . . ,m}, α) holds. Here we’re taking a very particular choice of slopes, but we
can actually do this without loss of generality — it’s possible to show that if SD(R,α) holds for some R,
then we can replace R with a (possibly bigger) set {1, . . . ,m}. (Technically, we only get to assume that
SD({1, . . . ,m}, α+ ε) holds for some m for each ε > 0 (where m depends on ε), but this is good enough —
if we can show dim(K) ≥ k/(α+ ε) for all ε > 0, then we get dim(K) ≥ k/α. So we’ll ignore this.)
First, since K is compact, it must be bounded, so we can scale so that K ⊆ [0, 1]n.
Now take an ε-grid of [0, 1]k, and let D be an ε-separated set of directions. (We can think of our directions
as living in (k − 1)-dimensional projective space, and we can assign a metric to this space — the choice of
metric doesn’t really matter, since we think of k as fixed; and then we’re requiring all our directions to be
at least ε apart under this metric.) The set of directions is (k− 1)-dimensional, so we’ll have D � (1/ε)k−1.

K

D

We want to get some set on which we can apply the sum-difference problem, and we’ll do so by looking at
the line segments inside K in just the directions given by D, and taking appropriate linear combinations.
Specifically, for each direction d ∈ D, let ad and bd be the endpoints of a unit line segment in K with direction
d. (Technically, since we scaled K down, we really only know that it has a line segment in each direction
of some constant length — not necessarily unit length — but this doesn’t matter.) We then consider the
linear combinations

ad + rbd
r + 1 for r ∈ [m],

which give us some m points on the line segment [ad, bd].

Page 6 of 14



Talk by Manik Dhar (November 17, 2023) The sum-difference conjecture

ad

bd

We’d like to lower-bound the number of these points, and relate this number to the covering number bε(K)
of our set. For this, things would work out most nicely if these points were all grid points, and we can
actually ensure this is the case by wiggling around our line segment [ad, bd] a bit (possibly moving them
outside of K).

Claim 2.8 — For each d, we can move ad and bd by Om(ε) to produce points a′d and b′d such that a′d,
b′d, and all the linear combinations

a′d + rb′d
r + 1

(for r ∈ [m]) are grid points.

Proof sketch. We can first move ad by at most roughly ε so that it becomes a grid point. Then we can move
bd by at most roughly (m + 1)! ε so that b′d is also on the grid and the number of grid steps we take to go
from a′d to b′d (in each direction) is a multiple of 2, . . . , m+ 1 (i.e., b′d − a′d is a multiple of (m+ 1)! ε). This
ensures all the linear combinations we’re working with lie on the grid as well.

ad

bd

(The dependence on m is huge, but this is fine — all that matters is the dependence on ε.)

Now we define K ′ to be the set of all these grid points — i.e., we let

K ′ =
{
a′d, b

′
d,
a′d + rb′d
r + 1 | d ∈ D, r ∈ [m]

}
.

Then since we obtained K ′ by taking a bunch of points in K and just moving them over by Om(ε), we have
|K ′| �m,k bε(K). This is because if we’ve moved all our points by at most cε, then each point in K ′ comes
from a point in K which is in a grid cube at most c steps away, and there’s a constant number of such boxes
(roughly (2c)k) — in particular, only a constant number of boxes in the covering of K can be collapsed to
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the same point in K ′. (This is why |K ′| &m,k bε(K), but that’s the direction we need; the other direction
can be shown similarly.)

Now K ′ is a finite set of points, and we’ll apply the sum-difference problem to it — let

S = {(a′d, b′d) | d ∈ D} ⊆ Rk × Rk.

Then for each r ∈ [m] we have
πr(S) = #{a′d + rb′d | d ∈ D} ≤

∣∣K ′∣∣
(since K ′ contains a fixed multiple of each of the points a′d + rb′d). Furthermore, since the directions d ∈ D
are sufficiently separated, the values of b′d − a′d are all distinct — this is because b′d − a′d is very close to
bd − ad, which has direction d. (To be more precise, we’ve moved each bd − ad by Om(ε) to get b′d − a′d, so
we actually need to take the directions d ∈ D to be Θm(ε)-separated — not just ε-separated — but this
doesn’t affect the rest of the argument.)
So then the statement SD({1, . . . ,m}, α) (which we assumed is true) implies that |D| ≤ |K ′|α (since we have
one element of S for each direction d ∈ D). And |D| �m,k (1/ε)k−1 (since D is an Θm(ε)-separated set in
k − 1 dimensions), so we get that (1/ε)k−1 .m,k |K ′|α, and therefore |K ′| .m,k (1/ε)(k−1)/α. And finally,
since |K ′| �m,k bε(K), we get that bε(K) &m,k (1/ε)(k−1)/α (as ε→ 0), so dim(K) ≥ (k − 1)/α.
Now we’re almost done; but we wanted dim(K) ≥ k/α, so it just remains to get rid of the extra 1/α. And
this is not hard — consider the t-fold product Kt = K×· · ·×K ⊆ Rkt. This is a Kakeya set in kt dimensions,
and we’ll have dim(Kt) = tdim(K). Then the above proof applied to Kt gives that dim(Kt) ≥ kt/α− 1/α,
and taking t→∞ gives that dim(K) ≥ k/α.

So bounds for the sum-difference problem also give bounds for the Kakeya problem, which is why Bourgain
and Katz–Tao were working on this problem.

§3 Proving sum-difference bounds

We’ll now discuss how to prove bounds for the sum-difference problem. We’ll prove the bound with α = 7/4
(as in Theorem 1.11, but possibly with different slopes), and then sketch how to improve it to reach α =
1 + 1/

√
2 ≈ 1.7. (For comparison, the best bound — in Theorem 1.12 — is α ≈ 1.67.) This will illustrate

the main ideas of the Katz–Tao arguments; we’ll then see that even if we could take these arguments to
their limit, there’s no hope of getting all the way to α = 1.

§3.1 Some setup

We’ll first set up a few pieces of notation and facts that will be useful for the proof. We’ll state things pretty
generally here — imagine we’ve got two finite sets X and Y , and a function f :X → Y . We’ll think of f as
defining an equivalence relation on X.

Definition 3.1. We write x1 ∼f x2 to denote that f(x1) = f(x2).

We can imagine f chops up X into a bunch of parts; we’ll use the following notation to refer to these parts.

Page 8 of 14



Talk by Manik Dhar (November 17, 2023) The sum-difference conjecture

Definition 3.2. Let x ∈ X. We use [x]f to denote the equivalence class of x — i.e.,

[x]f = {v ∈ X | f(v) = f(x)}.

x
[x]f

YX

We’ll use two simple facts. The first gives a lower bound for the size of the ‘collision set’ of f (the number
of pairs (x1, x2) with x1 ∼f x2).

Lemma 3.3
For any f :X → Y , we have

#{(x1, x2) ∈ X ×X | x1 ∼f x2} ≥
|X|2

|Y |
.

Proof. This follows from Cauchy–Schwarz — let a1, . . . , am be the sizes of the equivalence classes of X (i.e.,
the number of elements mapped to each y ∈ Y ).

a3

a2

a1

X
Y

Then by Cauchy–Schwarz we have

#{(x1, x2) ∈ X ×X | x1 ∼f x2} =
∑

a2
i ≥

(
∑
ai)2

|Y |
= |X|

2

|Y |
.

The proof will involve taking refinements where we throw away some points in X and only keep the ones
whose parts (under a certain function f) are not too small; the other fact bounds how much we lose by
doing so.
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Definition 3.4. For f :X → Y , we define the refinement of X corresponding to f as

X(f) =
{
x ∈ X | |[x]Xf | ≥

|X|
2 |Y |

}
.

Lemma 3.5
For any f :X → Y , we have |X(f)| ≥ 1

2 |X|.

Proof. This follows from Markov (or an averaging argument) — if we consider all the equivalence classes
|x|Xf which are too small (and therefore not included in X(f)), their total size is at most

|Y | · |X|2 |Y | = 1
2 |X|

(since there’s at most |Y | equivalence classes in total).

X
Y

X(f)

small parts

So the refinement throws away at most 1
2 |X| elements, which means |X(f)| ≥ 1

2 |X|.

§3.2 Defining the slopes

In order to prove that SD(R,α) holds (where α = 7/4, and R is some set of slopes), the intuition is that
if our set G is too large, then the condition that the set πr(G) = {g1 + rg2 | (g1, g2) ∈ G} is not too large
means that there’s lots of collisions. And we’re going to take these collisions along various slopes r ∈ R and
use linear algebra to generate a collision along the slope −1 (i.e., two points with the same value of g1− g2),
which will contradict the assumption that π−1 is injective on G.

To get these cancellations to happen, we’ll want the slopes we use to be ‘nice’ in some way. So we’ll start
by making some definitions regarding our slopes.

First, we’re going to take a special slope r0 (which we can think of as 0; its value won’t matter for this argu-
ment, but we leave it as a variable so that we’ll be able to change its value when discussing improvements).
We’ll then define

V = {(g, g′) ∈ G×G | πr0(g) = πr0(g′)}. (1)

In words, V is the set of pairs of points in G which are on the same line of slope r0 (for example, if r0 = 0,
then it’s the set of pairs of points which are vertically on top of each other).
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r0

πr0(g) = πr0(g′)

g

g′

Note that Lemma 3.3 means V is reasonably large (here we’re taking X to be G, f to be πr0 , and Y to be
πr0(G) — V is by definition the collision set of πr0 on G) — specifically, we have

|V | ≥ |G|2

|πr0(G)| ≥
|G|2

n
. (2)

We’re also going to have a special slope r∞ (which we can think of as ∞). We’ll also have some constant s
(which we’ll later fix to be a generic constant, so that a certain determinant doesn’t vanish).

To capture what’s happening with cancellation along the slope −1, we’ll define a function ν that combines
information about one point along the slope r∞ and another along the slope −1.

Definition 3.6. We define the function ν:G×G→W (on an input (g, g′) ∈ G×G) as

ν(g, g′) = s · πr∞(g) + π−1(g′).

Note that πr: (g1, g2) 7→ g1 + rg2 is a map W ×W → W , so we can view it as a map G → W ; and here
we’re taking a pair of points in G and applying different functions πr to each (and combining their results).
We’ll also use the following notation for convenience (to apply different functions πr to two points).

Definition 3.7. For slopes r1 and r2, we define πr1⊗r2 :G×G→W ×W as

πr1⊗r2(g, g′) = (πr1(g), πr2(g′)).

Then the sense in which we’ll want cancellation is the following.

Lemma 3.8
For any slope r 6∈ {−1, r0, r∞}, there exists a slope r′ such that πr⊗r′ determines ν over V .

What does this mean? We originally defined ν as a function on G×G, so we can also view it as a function
on V ⊆ G×G. And this statement means that the value of πr⊗r′ on a point (g, g′) ∈ V is enough to figure
out the value of ν on this point — in other words, if we know that (g, g′) is in V and we also know πr(g)
and πr′(g′), then we can figure out ν(g, g′).

Proof. We want to choose r′ such that if we’re given πr(g) and πr′(g′), and that πr0(g) = πr0(g′), then we
can compute ν(g, g′) = sπr∞(g) + π−1(g′). And these are all linear functions of g and g′, so in order to do
this, we want to be able to find constants x, y, and z (depending on the slopes, but not g and g′) such that

sπr∞(g) + π−1(g′) = x · πr(g) + y · πr′(g′) + z · (πr0(g)− πr0(g′)). (3)
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(This is what we mean by ‘cancellation.’) We can imagine writing g = (g1, g2) and g′ = (g′1, g′2) and expanding
out the definition of πr (as πr(g1, g2) = g1 + rg2) for each term in (3); then the equation we get is

(s− x− z)g1 + (sr∞ − rx− r0z)g2 + (1− y + z)g′1 + (−1− r′y + r0z)g′2 = 0.

We want this to hold for all g1, g2, g′1, and g′2, so we want each of these coefficients to be 0 — this gives the
system of four equations

0 = s − x − z
0 = sr∞ − rx − r0z

0 = 1 − y + z

0 = −1 − r′y + r0z

(where we think of the variables as x, y, and z). This is a system of four equations in three variables, so it
has a solution if and only if the corresponding determinant vanishes — i.e.,∣∣∣∣∣∣∣∣∣

s −1 0 −1
sr∞ −r 0 −r0

1 0 −1 1
−1 0 −r′ r0

∣∣∣∣∣∣∣∣∣ = 0.

And finally, given r, this gives some linear equation for r′, which we can solve (this linear equation might
not have a solution if s is some weird value such that the coefficient of r′ is 0, but if we choose s generically
then this won’t happen, and we’ll be able to solve for r′).

Finally, we’ll use the following set of slopes.

Theorem 3.9
For any slopes r1 and r2 (which are distinct from each other, as well as r0 and r∞), if we let r′1 and r′2
be as in Lemma 3.8, then SD({r0, r1, r

′
1, r2, r

′
2, r∞}, 7/4) holds.

§3.3 Proof of Theorem 3.9

We’ll now prove the bound of α = 7/4 (with slopes defined as in Theorem 3.9). This means we’re given that

|πr(G)| ≤ n for all r ∈ {r0, r1, r
′
1, r2, r

′
2, r∞}

and that π−1 is injective on G, and we want to prove that |G| ≤ n7/4.

Claim 3.10 — If we’re given the values of ν(g, g′) and πr∞(g) for some (g, g′) ∈ V , then we can recover
the points g and g′.

(Recall that we defined V in (1) as the ‘collision set’ of G along πr0 — i.e., the set of pairs (g, g′) ∈ G×G
with πr0(g) = πr0(g′).)

Proof. First, if we know both ν(g, g′) — which is defined as sπr∞(g) + π−1(g′) — and πr∞(g), then we can
recover the value of π−1(g′). Then, since π−1 is injective on G, we can recover the value of g′.

Now since (g, g′) ∈ V , we know that πr0(g) = πr0(g′). And we know g′, so we can compute πr0(g′); this
lets us find πr0(g). Finally, this means we have both πr0(g) and πr∞(g), which means we have information
about g in two directions; this is enough to recover g.
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r0

r∞

πr0(g)

πr∞(g)
g

So we’ve recovered both g′ and g, as desired.

This is useful because it means any two pairs (g, g′) ∈ V with the same values of ν(g, g′) must have different
values of πr∞(g). And there’s at most n possible values, so we get that

|[x]ν | ≤ n for all x ∈ V . (4)

(We use [x]ν to denote the equivalence class of x in V under ν.) We’ll make use of this later.

Claim 3.11 — The functions πr1⊗r′
1

and πr2⊗r′
2

together are enough to parametrize all of G×G — i.e.,
if we’re given πr1⊗r′

1
(g, g′) and πr2⊗r′

2
(g, g′) for some (g, g′) ∈ G×G, then we can recover (g, g′).

Proof. By definition πr⊗r′(g, g′) = (πr(g), πr′(g′)), so we’re given πr1(g) and πr2(g), and information about
g in two directions is enough to recover g; and similarly we’re given πr′

1
(g′) and πr′

2
(g′), which is enough to

recover g′.

Now we’ll take V and refine it based on first πr1⊗r′
1

(to get a set V ′ ⊆ V ) and then πr2⊗r′
2

(to get a set
V ′′ ⊆ V ′) — so the equivalence class of every x ∈ V ′′ under πr2⊗r′

2
in V ′ is large, and the equivalence class

of every y ∈ V ′ under πr1⊗r′
1

in V is large. Then Lemma 3.5 guarantees that |V ′′| ≥ 1
2 |V

′| ≥ 1
4 |V |.

Now we consider some x ∈ V ′′ and look at the set

Tx = {(y, z) ∈ V × V | πr2⊗r′
2
(x) = πr2⊗r′

2
(y), πr1⊗r′

1
(y) = πr1⊗r′

1
(z)}.

So in other words, we’re considering pairs where y is in the same equivalence class as x under πr2⊗r′
2
, and z

is in the same equivalence class as y under πr1⊗r′
1
.

Claim 3.12 — We have |Tx| & |V |2 /n4.

Proof. Imagine that we restrict y to be in V ′ (rather than just V — of course this can only shrink Tx). Then
the number of choices we have for y is the size of the equivalence class of x in V ′ under πr2⊗r′

2
, which we

guaranteed to be large by taking x from V ′′ (which was defined as the refinement of V ′ under this function).
Specifically, the number of possible values of πr2⊗r′

2
is at most n2 (since πr2⊗r′

2
(g, g′) = (πr2(g), πr′

2
(g′)), and

there’s at most n possibilities for each coordinate), so we get

#{y ∈ V ′ | πr2⊗r′
2
(x) = πr2⊗r′

2
(y)} ≥ |V

′|
2n2 ≥

|V |
4n2 .
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Then for each such y, the number of choices for z is the size of the equivalence class of y in V under πr1⊗r′
1
,

which we guaranteed to be large by taking y from V ′ (which is the refinement of V under this function) —
again the range of πr1⊗r′

1
has size at most n2, so we have

#{z ∈ V | πr1⊗r′
1
(y) = πr1⊗r′

1
(z)} ≥ |V |2n2 .

Multiplying these two bounds gives the desired result.

On the other hand, we can also get an upper bound on |Tx|.

Claim 3.13 — We have |[x]ν | ≥ |Tx|.

Proof. First we’ll show that if (y, z) ∈ Tx, then y and z are both in [x]ν (i.e., ν(x) = ν(y) = ν(z)). For y,
we know that x and y have the same values of πr1⊗r′

1
, and we defined r′1 such that πr1⊗r′

1
determines ν on V

(as in Lemma 3.8), so then x and y must also have the same values of ν. Similarly, y and z have the same
values of πr2⊗r′

2
, and since πr2⊗r′

2
determines ν on V , they must also have the same values of ν.

Now we’ll show that each choice of z corresponds to at most one choice of y, which will give the desired
bound (since we have to choose z ∈ [x]ν , and then there’s only one way to choose y). The point is that
once we’ve fixed z, we know the values of both πr1⊗r′

1
and πr2⊗r′

2
on y (the first matches that of z, and the

second matches that of x). But by Claim 3.11, this is enough information to determine y.

And now we’re essentially done — combining (4) with Claims 3.12 and 3.13 gives

n ≥ |[x]ν | ≥ |Tx| ≥
|V |2

n4 ,

which means |V | ≤ n5/2. And on the other hand, we saw in (2) that

|V | ≥ |G|
2

n

(this came from Cauchy–Schwarz), so we get |G| ≤ n7/4.

§3.4 Ideas behind better bounds

We’ll now briefly discuss how we improve this argument to get the better bound of α = 1 + 1/
√

2. In the
argument here, we had six slopes — the special slopes r0 and r∞, and two arbitrary slopes r1 and r2 and
their ‘duals’ r′1 and r′2. And what was important about having two slopes r1 and r2 was in some sense
that πr1 and πr2 together parametrize W ×W (which gave Claim 3.11); we can roughly think of this as
corresponding to the statement SD({r1, r2}, 2).
And so we can imagine iterating this argument — suppose we know that SD(R, β) holds (for some set of
slopes R and some β). Then we can choose new values of r0, r∞, and s and define R′ as the dual of R
with respect to these new values, and show that then SD({r0, r∞, R,R

′}, (4β − 1)/2β) holds (by a similar
argument to the one we had here). We can keep doing this repeatedly; this gives us some recursion whose
fixed point is 1 + 1/

√
2.

To improve the bound to α ≈ 1.67, we do something similar, but with a bigger ‘graph.’ What does this
mean? In our argument, we looked at finitely many slopes and tried to get some statement where if we have
two things sharing values along all these slopes, then we can get a collision with −1. This can be interpreted
as a constant-sized graph; and the proof of α ≈ 1.67 uses a bigger graph.
But arguments of this form can’t get all the way to α = 1 — Katz showed that they can’t beat α = 1.5.
More specifically, there exist configurations that avoid all these constant-sized graphs, but have n1.5 points.
So in order to get past α = 1.5, at some point we’ll need to look at more than finitely many points at a time
when looking for collisions.
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