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§1 Introduction

We’ll discuss a paper of Sarah Peluse on polynomial Szemerédi in finite fields.

Question 1.1. Given a sequence of m polynomials P = (P1, . . . , Pm) ∈ (Z[x])m and a set G, what is
the largest subset of G that does not contain a nontrivial copy of P?

We often take G to be [N ] or Fp. By a copy of P, we mean a pattern {x, x+ P1(y), . . . , x+ Pm(y)}.

Definition 1.2. We use rP(G) to denote the size of the largest S ⊆ G with no nontrivial copy of P.

When the polynomials are all linear, the interesting cases correspond to Szemerédi’s theorem:

Theorem 1.3 (Szemerédi 1975)

For all k, we have
r(y,2y,...,(k−1)y)([N ])

N
= ok(1).

There are some sequences of polynomials that don’t have this property.

Example 1.4

• If we consider (y, y + 1) (corresponding to {x, x + y, x + y + 1}), we can take S to be the set of
even numbers — this is a dense set which avoids this pattern.

• If we consider (y2 + 1) (corresponding to {x, x+ y2 + 1}), then since y2 + 1 is never divisible by
3, we can take S to consist of all multiples of 3.

So there can be mod conditions in the way; but the idea is that if we don’t have such conditions, then we
expect something like Szemerédi should hold. One example of this is the following.

Theorem 1.5 (Bergelson–Leibman)

If P1(0) = · · · = Pm(0) = 0, then we have

rP([N ])

N
= oP(1).
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We generally want good bounds for these types of statements. The first good bound for Szemerédi’s theorem
is due to Gowers, and gives a bound of (log logN)−ck .

The proof of Theorem 1.5 is through ergodic theory, so it’s completely non-quantitative.

Question 1.6. Can we get a quantitative bound for Theorem 1.5 at all? Can we get a reasonable one?

Furstenberg (1977) and Sárközy (1978) proved such a result for the pattern {x, x + y2}. The bounds for
this have been improved to a growing power of log; most recently, Slijepčević (2003) showed such a result
for {x, x+ P1(y)} whenever P1 has no constant term.

§1.1 History

From now, we’ll purely focus on the case G = Fp, where we think of p as a large prime.

First, why is the problem easier over Fp? In [N ], if we have a pattern {x, x + y3, x + y4} in S, then since
S has width N , this automatically tells you that |y| ≤ N1/4. But in Fp, this doesn’t place any restrictions
on y, because the powers of y wrap around mod p. With linear patterns, the wrap-around is generally not
an issue (you can embed from Z into Z/MZ on the same scale); but with higher-degree polynomials the
wrap-around is much more of a problem. So in Fp we have extra room to work with, and this will be helpful
when dealing with certain types of sums.

Here’s what was known before, beyond having a single polynomial difference:

• Work by Bourgain and Chang (2016) got the pattern {x, x+ y, x+ y2}.

• Work by Peluse (2016) and further improved by Dong, Li, and Sawin (2017) got the pattern

{x, x+ P1(y), x+ P2(y)}

for any two polynomials P1 and P2 which are linearly independent. (Linear independence is important
because if for example you had P2 = 2P1, then not only would you need to solve Roth’s theorem in
your group to begin with, but you’d also need it to be true with a special type of difference.)

These results build off a method introduced by Bourgain and Chang regarding nonlinear convolutions. A
lot of these also use certain algebraic geometric inputs — for example, you need to constrain what varieties
show up.

§1.2 The result

Definition 1.7. We define ΛP(f0, . . . , fm) = Ex,yf0(x)f1(x+ P1(y)) · · · fm(x+ Pm(y)).

Theorem 1.8 (Peluse 2019)

If Pj(0) = 0 for all j and the polynomials Pj are linearly independent, then for all f0, . . . , fm:Fp → C
which are 1-bounded, we have

ΛP(f0, . . . , fm) =
m∏
j=0

Efj +O(p−c)

(where the constants only depend on the pattern P).

You can think of the functions fi as indicator functions of sets, but we allow this more general setting where
they can be arbitrary C-valued functions. For example, if the functions fi are indicator functions of a set
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with density α, then the right-hand side is the number of copies of the pattern that we’d expect in a random
set with density α — Theorem 1.8 says we see the same number of copies in any set of that density.

Dong, Li, and Sawin improved the error term O(p−c); for us, we’ll have so many iterations that we won’t be
able to say much about this error term. (In Peluse’s result, c depends on the pattern; in theirs it doesn’t.)

In particular, Theorem 1.8 immediately implies a Szemerédi-type result regarding rP(Fp) — if we have a
set S, then even if it has some polynomial density p−α, we can plug it into Theorem 1.8 and get that the
normalized count of patterns is

p−α(m+1) +O(p−c).

As long as α is small enough that the error term doesn’t matter, this tells us exactly how many patterns
are in our set, and we can subtract out the trivial ones and still be left with patterns. So this actually gives
a power-saving bound for rP(Fp).

§2 Some motivation

First, why can something like Theorem 1.8 even possibly be true? To see this, we need a notion of complexity
of patterns.

Example 2.1

For Roth’s theorem (where our pattern is a 3-AP, i.e., {x, x+ y, x+ 2y}), we consider

ΛRoth(f0, f1, f2) = Ex,yf0(x)f1(x+ y)f2(x+ 2y).

The key idea in the proof of Roth’s theorem is that if we have a set A with density α, there’s a randomness
vs. structure dichotomy. In the random case, we have

ΛRoth(1A,1A,1A) ≈ α3,

and then there’s lots of 3-APs in A. If not, then we have lots of structure. Specifically, some U2 norm will
be large, and then we’ll have some large correlation — 1A − α will be correlated with a function eiθx. And
in that case, we can pass to a subprogression.

One way to see why these functions eiθx show up is to imagine plugging in f0 = eiθx, f1 = ei(−2θ)x, and
f2 = eiθx. If θ is pretty nonzero, then each fi should roughly average out to 0 in the long term; but we have

f0(x)f1(x+ y)f2(x+ 2y) = 1

(both the x’s and the y’s cancel out). So in some sense, these Fourier phases allow us to construct sets with
strange 3-AP densities.

It’s not just linear phases that come up:

Example 2.2

For the pattern {x, x+ y, x+ 2y, x+ 3y}, you can take e−iθx
2
, ei(3θ)x

2
, e−i(3θ)x

2
, and eiθx

2
.

Morally, every pattern has this collection of possible obstructions that you can get; and those should provide
the key things to look for in the structure vs. randomness dichotomy. (This leads to things like higher
uniformity norms and higher-order Fourier analysis.)

But for us (in the setting of Theorem 1.8), let’s look at what happens with linear phases (higher-order stuff
won’t happen here) — let’s consider

ΛP = Ex,yf0(x)f1(x+ P1(y)) · · · fm(x+ Pm(y)),
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and look at what happens if each fi is some exponential. For convenience, let ep(t) = e2πit/p (these are the
Fourier characters over Fp). If we suppose that

fj(x) = ep(αjx)

for all j and plug this into our counting operator, then we get

ΛP = Ex,yep

 m∑
j=0

αjx+
m∑
j=1

αjPj(y)


(adding together the exponents, and combining the x-terms into one sum and the y-terms into another).

Let’s assume that (α0, . . . , αm) is nonzero (if it were the zero vector, then we’d just be plugging in a bunch of
constant functions, which isn’t interesting). For the statement in Theorem 1.8 to be true (which essentially
says that the random case holds), we want the right-hand side to be small. It suffices to consider the
case where

∑m
j=0 αj = 0, since otherwise averaging over x already cancels out everything. Then the above

expression becomes

ΛP = Eyep

 m∑
j=1

αjPj(y)

 .

Now this is where the property that the polynomials are linearly independent comes in — it’s essentially to
avoid Roth-like configurations. Specifically, linear independence means that

∑m
j=1 αjPj(y) is some nonzero

polynomial Q(y). (We don’t know anything about its coefficients, but we do know it’s some nonzero
polynomial mod p.)

So now we’ve reduced the question of evaluating our operator in this example to evaluating an exponential
sum of some polynomial Q. For example, if Q(y) = y2, then this becomes the traditional Gauss sum; and
the Gauss sum is p1/2, so the corresponding average is p−1/2, which goes into the error term in Theorem
1.8. In general, each sum like this will be uniformly small. (Trying to encode this is where the algebraic
geometry comes in — for example, Peluse uses the Weil bound for curves to show that there’s cancellation.)

So the point is that since we have linear independence, there are no obstructions at all — there’s no
‘structure’ case. Now the question is, how do we make this formal? This argument worked well for pure
phases, but how do we show every function is represented by this behavior?

Remark 2.3. These patterns might be called as having true complexity 0; 3-APs (as in Roth’s theorem)
have true complexity 1; and 4-APs have true complexity 2. This has to do with the degree of the
polynomials involved — the definition of true complexity is sort of as the smallest k such that the
operator will be small if all the Gowers Uk norms of your functions are. But there are also many other
definitions of complexity.

§3 Outline

We won’t look at all the steps of the proof in detail; we’ll talk mostly about a key step called the degree-
lowering phase. We’ll also focus on the explicit pattern {x, x+ y, x+ y2}. (The result for this pattern was
already known, but we’ll prove it using the degree-lowering method rather than the original proof.) In this
case, we have

Λ(f0, f1, f2) = Ex,yf0(x)f1(x+ y)f2(x+ y2).

(We’ll always assume our functions are 1-bounded, and we won’t worry about complex conjugates unless we
need to.)
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The classic thing to do in order to evaluate the right-hand side is to write each function as a combination
of its mean value and a mean-0 portion (i.e., f = Ef + (f −Ef)) and expand out the multilinear form, and
show that everything except the dominant contribution (the one coming from the three means) is small. So
the key proposition we’ll prove is the following.

Proposition 3.1

If f0, f1, and f2 are 1-bounded and |Λ(f0, f1, f2)| ≥ δ, then

min
j∈{0,1,2}

|Efj | & δC .

(Here and in most lemmas, we need p ≥ δ−Ω(1), i.e., p needs to be polynomially large in δ.)

So this states that if |Λ| is large, then each of the expectations has to be large.

We can’t prove this immediately. Instead, we first show something weaker — that all the Gowers Uk norms
are large for some k.

Lemma 3.2 (PET induction)

If |Λ(f0, f1, f2)| ≥ δ, then
min
j
‖fj‖2

s

Us & δC ,

where s is some explicit constant depending on P.

For the specific pattern we’re considering, s is 3 or 4; but it blows up very quickly. But the point is that
once you prove Lemma 3.2, it’s some fixed number (e.g., something like 109).

To prove Lemma 3.2, you do something similar to the proof of Roth’s theorem, with iterated Gowers–
Cauchy–Schwarz. It’s a bit more complicated because we have polynomials involved, which causes multilinear
products of differences and basepoints to show up. But it turns out that over Fp, since multiplication is an
isomorphism over the group, we can get away with doing the things we want enough times. Over the integers,
this causes significant problems, and there’s a concatenation step in papers that involve this situation (which
we won’t talk about).

First, here’s the definition of the Gowers norms.

Definition 3.3. For a function f :Fp → C and some difference h ∈ Fp, we define

∆hf(x) = f(x)f(x+ h).

We also define ∆h1,...,hk as the composition ∆h1 · · ·∆hk .

If f is the exponential of a polynomial, then ∆h takes the discrete derivative of the exponent with respect
to h — so this reduces the degree of the polynomial in the exponent. This means the way to detect whether
some function is a phase of a kth power is that if we take a bunch of derivatives of this form, we should end
up with the 1 function.

To turn this into a norm, we look at what happens on average.

Definition 3.4. The Gowers Uk norm is defined as

‖f‖2
k

Uk = Ex,h1,...,hk∆h1,...,hkf(x).

This is well-defined and is actually a norm — if k ≥ 1, this quantity will always be a nonnegative real. A
key property is that we can extract out a couple of differences and put them somewhere else:
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Fact 3.5 — For any t, we have ‖f‖2
k

Uk = Eh1,...,ht ‖∆h1,...,htf‖
2k−t

Uk−t .

Note that when k = 1, we get
‖f‖2U1 = Ex,hf(x)f(x+ h) = |Ef |2 .

(This one is a seminorm, but all the others are genuinely norms.)

So the point is that Lemma 3.2 gives a statement for some large constant s, e.g., s = 109; and what we want
is the same statement for s = 1. So the key idea is to somehow go from s = 109 to s = 1. This is what the
degree-lowering step does, which we’ll talk about for the rest of the time.

§4 Degree lowering

First, here’s the naive hope of degree lowering. To start with, we know that ‖fj‖2
s

Us is large. The dream

would be to somehow show that then ‖fj‖2
s−1

Us−1 is also large, and then iterate to s− 2, and so on.

Obviously this won’t work for general functions. Why not? Well, if fj is the exponential of a degree-(s− 1)

polynomial, then ‖fj‖2
s

Us is large but ‖fj‖2
s−1

Us−1 is small. And the functions fj we’re given in Proposition 3.1
could be completely general; so this isn’t going to work.

The key idea is that instead of naively applying this dream, we use an intermediate concept of dual functions.
In this paper by Peluse over finite fields, she uses hyperplane separation to look at a decomposition of
functions into one part that’s large and another part that’s large in the dual norm. We won’t do this;
instead we’ll see something more concrete based on more recent papers.

§4.1 Dual functions

The idea is to use dual functions, and there’s a nice way to package these insights through stashing.

First, we know that
δ ≤ |Λ(f0, f1, f2)| =

∣∣Exf0(x)Eyf1(x+ y)f2(x+ y2)
∣∣

(pulling out the term f0(x) that only contains x). The second function Eyf1(x + y)f2(x + y2) is another
function of x; we write it as D0(f1, f2)(x), and call it the dual function to f0 — it’s a dual function in the
sense that we have

Λ(f0, f1, f2) = 〈f0, D0(f1, f2)〉. (4.1)

Now we have a dot product of two functions, so we can use Cauchy–Schwarz; this gives

|〈f0, D0(f1, f2)〉| ≤ ‖f0‖2 ‖D0(f1, f2)‖2 ≤ ‖D0(f1, f2)‖2

(since f0 is 1-bounded). And since the left-hand side was at least δ, this means

δ2 ≤ ‖D0(f1, f2)‖22 = 〈D0(f1, f2), D0(f1, f2)〉.

And recall that the dual function D0(f1, f2) had the property (4.1) that if we take any function f0 and dot
it with this dual, we get the corresponding 3-fold operator Λ(f0, f1, f2). And ‘any function’ includes itself,
so we get

δ2 ≤ Λ(D0(f1, f2), f1, f2).

So what we’ve done is that one application of Cauchy–Schwarz replaces (f0, f1, f2) with (D0(f1, f2), f1, f2).
(This — i.e., replacing f0 with a copy of D0(f1, f2) — is called stashing.)
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Now here’s the hope: We said before that we couldn’t have our dream (of going directly from the U s norm
being large to the U s−1 norm being large) because f0, f1, and f2 could be completely generic. But the dual
functions that come from these operators aren’t completely generic — they should be more regular than the
original functions. So the hope is that you can somehow do something like the dream, but starting with the
dual function instead.

So instead of applying Lemma 3.2 to our original operator Λ(f0, f1, f2) (which we were given is large), we
apply Lemma 3.2 to this new operator Λ(D0(f1, f2), f1, f2) (which we just showed is also large by Cauchy–
Schwarz). Then Lemma 3.2 tells us that

‖D0(f1, f2)‖Us

is also large. And this function D0(f1, f2) has some structure we can potentially work with; so our goal is
to show that this implies ‖f1‖Us−1 and ‖f2‖Us−1 are large.

Remark 4.1. Note that we don’t apply Lemma 3.2 to the functions fj directly — we don’t start with
the hypothesis that ‖fj‖Us is large. Instead, we use the fact that Lemma 3.2 works for any triple of
functions. Lemma 3.2 gives U s control, and our goal is to prove U s−1 control. And the idea is that to
prove this new lemma with U s−1 control, we start with the given assumption δ ≤ |Λ(f0, f1, f2)| and use
the dual function and stashing trick to conclude that Λ(D0(f1, f2), f1, f2) is large as well, and we then
apply Lemma 3.2 to these functions.

If we can do this, then we’ll have gone from Lemma 3.2 with s to the same statement with s − 1. (This
argument only got that the norms of f1 and f2 were large, but you can do the same argument replacing one
of the other functions to show that the norm of f0 is also large.) Then we can do the same thing to go from
s− 1 to s− 2, and so on (this would give us a way to go from U s control to U s−1 control for any s ≥ 2).

So our goal is now to prove the statement

‖D0(f1, f2)‖Us is large =⇒ ‖f1‖Us−1 and ‖f2‖Us−1 are large. (∗)

(If we can prove this for all s, then that’s enough.)

§4.2 Degree lowering from s = 2 to s = 1

First let’s consider the final step of degree lowering, where we go from U2 to U1 (i.e., we’re considering (∗)
for s = 2). Here we start with the assumption that

‖D0(f1, f2)‖4U2 & δC ,

and we want to say something about the U1 norms (i.e., means) of f1 and f2. First, recall that

‖g‖4U2 = Ex,a,bg(x)g(x+ a)g(x+ b)g(x+ a+ b).

The key property is that if we apply Fourier inversion to this, we can rewrite it as

‖g‖4U2 =
∑
α∈Fp

|ĝ(α)|4.

This is used in the proof of Roth’s theorem. There, the key step is bounding this by

‖g‖4U2 ≤ ‖g‖2∞ · ‖g‖
2
2 ≤ ‖g‖

2
∞

(we have ‖g‖2 ≤ 1 because g is 1-bounded). This means that if the U2 norm of our function is large, then
its Fourier transform has large L∞ norm, which means the function has a large correlation with ep(αx) for
some α (corresponding to the ‘structure’ case from the proof of Roth’s theorem).

Here, we’ll use the same fact:
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Theorem 4.2 (U2 inverse theorem)

If ‖D0(f1, f2)‖4U2 & δC , then there exists α ∈ Fp such that

|ExD0(f1, f2)(x)ep(αx)| & δC .

And now we’re again in the situation where we have some function dotted against a dual function; so we
can rewrite the left-hand side as

Ex,yep(αx)f1(x+ y)f2(x+ y2). (4.2)

So at the beginning of the argument we had a completely generic function f0; then we used stashing to
replace it with the dual function D0(f1, f2); and then we used the U2 inverse theorem to say that this dual
function correlates with a linear phase. So somehow we’ve magically replaced the original arbitrary function
f0 with a linear phase.

This should stand out because if we knew that all the functions were linear phases, then we could run the
argument we gave at the very beginning (in Section 2). We’ve only replaced one with a linear phase, and
we’re deep inside some iteration of proving some lemma, so we can’t just simply do this again to replace
another. But still, you can see why this is useful — we no longer have the complaint from earlier about our
functions fj being completely generic.

In this case, we’re going to make an argument that only works if the pattern has 3 terms; we’ll later explain
how you might modify it to deal with larger patterns.

In (4.2), ep(αx) is just a linear phase; so we just have the dot product of two functions with some weights,
and it’s natural to apply Fourier inversion. So let’s write f1 and f2 as their Fourier series, expand out, and
see what happens: this gives∑

θ1,θ2∈Fp

f̂1(θ1)f̂2(θ2)Ex,yep(αx+ θ1(x+ y) + θ2(x+ y2)).

(Here we’re using θ1 for the Fourier expansion of f1 and θ2 for f2.)

Again, if α + θ1 + θ2 6= 0, then just averaging over x will completely kill this — i.e., the inner expectation
will vanish (even if we just take an expectation over x). So we only need to consider terms where (θ1, θ2) =
(θ,−α− θ). Then we can remove the expectation over x, and we’re left with∑

θ∈Fp

f̂1(θ)f̂2(−α− θ)Eyep(θy − (α+ θ)y2).

Now we’re in potentially good shape. Why? If we consider the inner exponential sum

Eyep(θy − (α+ θ)y2),

the argument we gave at the beginning (in Section 2) applies — unless both the coefficients θ and −(α+ θ)
are 0, this inner expectation is uniformly bounded by something like p−1/2. (In this case it’s actually a
Gauss sum, so it’s genuinely p−1/2; but we really just need some cancellation.)

Case 1 (α 6= 0). Then for any θ, one of θ or −(α + θ) is 0, which means we get this cancellation; so then
the above expression is at most

p−1/2
∑
θ

|f̂1(θ)||f̂2(−α− θ)|.

And we assumed it was at least δC , so we get that

δC . p−1/2
∑
θ

|f̂1(θ)||f̂2(−α− θ)|.
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Now since we have only two functions here, we can use Cauchy–Schwarz (this is why the argument only
works if we start with 3-term patterns); this gives

δC . p−1/2
(∑

|f̂1(θ)|2
)1/2 (∑

|f̂2(θ)|2
)1/2

= p−1/2 ‖f1‖2 ‖f2‖2 .

But ‖f1‖2 and ‖f2‖2 are both at most 1, so this is a contradiction.

Case 2 (α = 0). In this case, plugging α = 0 into (4.2) gives that

|ExD0(f1, f2)(x)| =
∣∣Ex,yf1(x+ y)f2(x+ y2)

∣∣ & δC .

And we can rewrite this as
Ex,yf1(x)f2(x+ y2 − y).

This is a simpler pattern, so we can use induction — citing the final result for this simpler pattern — to
get what we want. (For this special case, we could also just cite Sárközy.)

So that concludes the degree-lowering phase from s = 2 to s = 1. The key idea is that we use stashing to
reduce to dealing with two functions, and use the U2 inverse theorem to replace the most complicated thing
with a single phase. Then in the end, it reduces to the fact that the exponential sum we checked at the
beginning works out.

Remark 4.3. What differs for a larger pattern (with more than 3 terms)? Roughly, once we get to
something of the form

Ex,yep(αx)f1(x+ y)f2(x+ y2),

we treat this as a mixture of functions and explicitly given phases. And we prove the proposition
in greater generality for such objects, doing an extra outer induction on how many functions we’ve
replaced with phases. So we have an extra induction with mixed function-phase types of things, but
we still do replacement one at a time.

§4.3 Larger values of s

So far, we’ve only proved the degree-lowering step (∗) for s = 2; it remains to show it for larger s. (That,
along with Lemma 3.2, completely finishes the proof.) We’ll now give a flavor of how this works.

The final step is ‘lifting via dual-difference exchange.’ The vague idea is as follows: We’re starting with U s

control, which means we’re taking s derivatives of our dual function. We want to somehow remove s− 2 of
those derivatives and place them onto the functions, so that we can almost work with the U2 situation as
a black box (averaged over the choices of differences). So we want to take some of the difference operators
that come with the U s norm and exchange them with our operator.

Here’s the key lemma for this, which is somewhat general:

Lemma 4.4

Let g:F2
p → C be 1-bounded. Let

A = Ex,h1,...,hk∆
(x)
h1,...,hk

[Eyg(x, y)],

B = EhkEx,h1,...,hk−1
∆

(x)
h1,...,hk−1

[Ey∆
(x)
hk
g(x, y)].

Then we have |A|2 ≤ B.
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(The (x) denotes that we’re taking discrete derivatives with respect to x.)

In our situation, what does this do? Recall that we’re starting with

‖D0(f1, f2)‖2
s

Us = Ex,h1,...,hs∆h1,...,hsD0(f1, f2).

And by definition, we have
D0(f1, f2)(x) = Eyf1(x+ y)f2(x+ y2).

This inner part is what we’re calling g — i.e., g(x, y) = f1(x+ y)f2(x+ y2).

So with ‖D0(f1, f2)‖2sUs , we have an inner average over some dual function variable y, and then we’re taking
a s-fold Gowers norm; this means we have an expression of the form A. And Lemma 4.4 says that if A is
large, then B is also large.

And what is B? You can think of

Ex,h1,...,hk−1
∆

(x)
h1,...,hk−1

[Ey∆
(x)
hk
g(x, y)]

as a (k − 1)-fold Gowers norm where we’ve put the last difference on the inside; then in B we’re averaging
over this last difference. So this allows us to push some of the partials inside.

Remark 4.5. In terms of how to prove Lemma 4.4, you expand both things out and do Cauchy–Schwarz
once (cleverly) on hk. Note that when you expand out, you’ll have 2k different copies of a y variable
corresponding to each thing, so this takes some work.

With that in mind, how do we reduce from the situation with general s to the specific situation with 2?
We’re starting with the assumption that

‖D0(f1, f2)‖2
s

Us & δC .

If we apply one copy of dual-difference exchange, it tells us that

Ehs ‖D0(∆hsf1,∆hsf2)‖2
s−1

Us−1 & δ2C .

We do this another s− 3 times, to eventually get that

Eh3,...,hs ‖D0(∆h3,...,hsf1,∆h3,...,hsf2)‖4U2 & δ2s−2C .

Then we can apply Markov to say that ‖D0(∆h3,...,hsf1,∆h3,...,hsf2)‖4U2 is large for a positive fraction of h3,
. . . , hs; then we can apply the U2 case; and then we can re-average to conclude.

Page 10 of 10


	Introduction
	History
	The result

	Some motivation
	Outline
	Degree lowering
	Dual functions
	Degree lowering from 2 to 1
	Larger values of s


