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This is based on a paper by Mattheus and Verstraete.

§1 Introduction

Definition 1.1. The Ramsey number r(4, t) is the smallest integer r such that if we color the edges of
Kr with red and blue in any way, then there is either a red K4 or a blue Kt.

The main theorem we’ll prove today is the following lower bound.

Theorem 1.2
There exists c > 0 such that we have

r(4, t) ≥ ct3

log4 t
.

In 1995, Shearer proved the following upper bound on r(4, t) — there exists c′ > 0 such that

r(4, t) ≤ c′t3

log2 t
.

Combining these two bounds, we now know that the ‘asymptotic exponent’ of r(4, t) is 3. (Before, the
previous best lower bound was roughly t5/2.)

Remark 1.3. If we just want an upper bound with an exponent of t3, then the Erdős–Szekerés bound

r(s, t) ≤
(
s+ t− 2
t− 1

)

suffices (this gives an upper bound of t3 without the log factors).

§1.1 Proof Outline

We’ll start by outlining the proof. Let q be a prime. Our goal is to find a graph G with |V (G)| = Θ(q3 log2 q)
such that G does not contain K4 and α(G) < Θ(q log2 q). Then G doesn’t contain a clique of size 4 or an
independent set of size t � q log2 q, which gives the desired bound on r(4, t).
We’ll gradually construct G, using a few steps.

(1) First, we’ll use finite fields to construct a graph H with the following properties.
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• It has n = q4− q3 + q2 vertices, and is d-regular with d = (q+ 1)(q2−1). (Only the leading terms
of these expressions are important for the analysis.)

• We can find a collection C of q3 + 1 maximal q2-cliques in H, such that each pair intersects at
exactly one vertex. (We’ll use this property to eventually build G. In fact, these maximal cliques
will partition the edge-set of H, though we may not need this.)

• For each K4 contained in H, one of the maximal q2-cliques in C contains at least three of its four
vertices.

(2) Let k = 224q2. In the next step, we use these properties to deduce that for each vertex subset
X ⊆ V (H) of size |X| = k, roughly speaking, X intersects many cliques only in a small number of
edges. (This sort of happens because of the abundance of maximal cliques.)

(3) We then construct a random subgraph H∗ ⊆ H in the following way: for each of our maximal cliques
C ∈ C, we randomly partition its vertex set V (C) into two sets A and B, and then include the complete
bipartite graph K(A,B) in H∗. (In other words, we randomly partition our clique into two parts, and
place all edges between these two parts in H∗.)
This ensures that there is no K4 in H∗ — for every K4 in H, there is a clique C ∈ C containing three
of its vertices (which form a triangle inside this clique). But when we build H∗, no matter how we
partition C, we’ll destroy all its triangles; this means H∗ can’t contain any K4. (We’ll eventually build
G out of H∗.)
We then use the property in (2) together with Azuma’s inequality to show that with positive proba-
bility, for all vertex sets X of size k, we have

e(H∗[X]) ≥ 240q3.

As some intuition for why we might expect this, the edge density of H is on the order of 1/q (so the
edge density of H∗ is as well), and X has size on the order of q3, so in expectation H∗[X] should
have about q3 edges. This means it suffices to prove a concentration inequality — that H∗[X] is
usually not too far below its expectation. And we can do this using martingales, because of (2) — we
can imagine gradually revealing what H∗ is by revealing which of A and B each vertex is in for every
clique. Because X intersects many cliques in a small number of edges, the information we learn at each
step doesn’t affect the expectation of H∗[X] too much, allowing us to use martingale concentration
inequalities.
Then using an averaging argument, we can deduce that for all vertex sets Y of size |Y | ≥ k, we have

e(H∗[Y ]) ≥ |Y |
2

256q .

(4) We then use a graph container lemma together with (3) (specifically, the bound on e(H∗[Y ])) to
upper-bound the number of independent sets of size t = 230q log2 q in H∗.

(5) Finally, we sample a random subset W ⊆ V (H∗) and show that with positive probability, we have
|W | = Θ(q3 log2 q) and there is no independent set of size t in H∗[W ]. We then take G to be H∗[W ],
and we’re done.

§2 Step (1) — Defining H

§2.1 Some definitions

Before we define H, we need a few definitions.
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Definition 2.1. The projective geometry PG(2, q2) consists of a collection of points P and lines L,
together with an incidence structure between points and lines, defined in the following way:

• The ‘points’ are lines through the origin in F3
q2 (the 3-dimensional vector space over Fq2) — in

other words,
|P| = {〈x〉 | x ∈ F3

q2 \ {0}}

(where 〈x〉 denotes the line in F3
q2 spanned by x).

• The ‘lines’ are planes through the origin in F3
q2 — in other words,

L = {x⊥ | x ∈ P}

(since each plane in F3
q2 is orthogonal to a unique line).

• We say a point is contained in a line if the corresponding line is contained in the corresponding
plane in F3

q2 — in other words, for x, y ∈ P, we say x ∼ y⊥ if 〈x, y〉 = 0.

Note that |P| = |L| = q4 + q2 + 1.

Definition 2.2. The Hermitian unital H ⊆ P is defined as

H = {〈(a, b, c)〉 ∈ P | aq+1 + bq+1 + cq+1 = 0}.

(Here each (a, b, c) is an element of F3
q2 , and 〈(a, b, c)〉 is a point — i.e., a line through the origin in F3

q2 .) It’s
important that we’re working over Fq2 and not Fq — such an object doesn’t exist for a field of prime order.
We have the following observations about H.

Fact 2.3 — We have |H| = q3 + 1, and every line in PG(2, q2) intersects H at either 1 or q + 1 points.

Proof sketch. The proof is a combination of direct computation and the fact that in Fq2 there are exactly
q + 1 solutions to xq+1 = 1, and the fact that the map x 7→ xq+1 is a norm function in Fq2 . We then use
the symmetry of H under PGU(3, q2) — because H is symmetric under this object, to check the second
statement it suffices to check whether the point x ∈ P used to define our line (as x⊥) lies in H or not; this
allows us to do direct computation by choosing two different points.

Remark 2.4. In general, a norm map is a map of the form N (a) = aa. If we were working over C,
then a would represent the complex conjugate of a; over Fq2 it represents the Galois conjugate aq. This
means we can think of the equation for H as

aa+ bb+ cc = 1,

so H is a finite-field analog of a sphere over C. (This is why we call it Hermitian, and it lets you derive
the symmetry of H under PGU.)
The connection may make this seem less like completely magical algebra; it’s still magical that it
translates to finite fields, but you may at least be more willing to believe it.

Definition 2.5. We define a secant to be a line that intersects H at q + 1 points.

(We will come back to this definition later.)
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Proposition 2.6
There do not exist six distinct points a, b, c, d, e, f ∈ H such that each of the triples abd, ace, bef , and
cdf is collinear, and no other triples are.

In other words, H doesn’t contain the following structure.

a

b
c

fd

e

Remark 2.7. This statement might also have an analog over C.

Proof. Recall that H is the set of points 〈x〉 for which x · x = 0, i.e.,

H = {〈x〉 | x · x = 0}

(as stated in Remark 2.4). Now assume for contradiction that H does contain the above structure. Then
the collinearities mean that we can find scalars α, β, γ, δ ∈ Fq2 such that

d = a+ αb

e = a+ βc

d = f + γc

e = f + δb.

(The reason we don’t need scalars in front of the first terms — e.g., d = α1a + α2b — is that we’re in
projective space, so we don’t care about scaling and can just scale so that α1 = 1.) This gives{

a+ αb = f + γc

a+ βc = f + δb,

which we can rearrange to
(α+ δ)b = (β + γ)c.

But b and c are distinct points in the projective plane, so they cannot be scalar multiples of each other; this
means we can conclude α + δ = β + γ = 0. Then by scaling all our points appropriately, we can assume
without loss of generality that α = β = 1 and δ = γ = −1.
Now consider the two matrices

A =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 and B =

a1 b1 c1
a2 b2 c2
a3 b3 c3


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(where a has coordinates (a1, a2, a3), and so on). Because a, b, and c are not collinear, both A and B are
nonsingular (as their columns are linearly independent). But we can compute

AB =

 0 a · b a · c
b · a 0 b · c
c · a c · b 0


(using the fact that a ∈ H, so a · a = 0, and the same is true for b and c), which means

det(AB) = (a · b)(b · c)(c · a) + (a · c)(b · a)(c · b)

(we can consider all the ‘diagonals’ of the matrix, and these are the only ones that don’t contain a 0).
But we know d = a+ b and d · d = 0, which implies that

a · b+ b · a = 0.

Similarly e = a+ c and e · e = 0, which gives that

a · c+ c · a = 0.

Finally, we have f = c+ d = a+ b+ c and f · f = 0, and by combining these equations we eventually get

b · c+ c · b = 0.

This means the factors in the second term of det(AB) are all negations of the factors in the first term, and
therefore we have

det(AB) = 0,

which contradicts the fact that A and B are nonsingular.

§2.2 The construction of H

We now construct our graph H in the following way.

Definition 2.8. Let H be the graph whose vertices are the secants in PG(2, q), with an edge between
every pair of secants whose intersection is in H — in other words,

V (H) = {x⊥ | |x⊥ ∩H| = q + 1},
E(H) = {(x⊥, y⊥) | x⊥ ∩ y⊥ ∈ H}.

We need to check that H satisfies all the properties described in (1).
First, we’ll check that H has the correct number of vertices — let n = |V (H)| be the number of secants.
Every point in PG(2, q) is contained in exactly q2 + 1 lines, so by a double-counting argument — counting
pairs consisting of a point in H and a line containing our point, i.e., #{(x, y⊥) | x ∈ H, x ∈ y⊥} — we get

(q3 + 1)(q2 + 1) = n(q + 1) + (q4 + q2 + 1− n) · 1.

(The left-hand side counts by first choosing x, which can be done in |H| = q3 + 1 ways, and then choosing
y⊥, which can be done in q2 + 1 ways (as every point is contained in exactly q2 + 1 lines). The right-hand
side counts by first choosing y⊥; if it’s a secant then there’s q+ 1 choices for x, and if it’s not a secant then
there’s 1 choice.) This rearranges to

n = q4 − q3 + q2,

as desired.
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Next, we’ll check that our graph is d-regular with d = (q + 1)(q2 − 1). To see this, we first know that every
point in H is contained in exactly

n(q + 1)
q3 + 1 = q2

secants. (The numerator is the total number of point-secant pairs — we have n secants and each contains
q + 1 points in H — and the denominator is the total number of points in H.) So for each secant y⊥ and
each of the q + 1 points x ∈ y⊥ ∩ H, there are exactly q2 − 1 other secants through x; these secants are
precisely the neighbors of y⊥ in our graph, so we get that deg(y⊥) = (q + 1)(q2 − 1).
Next, what is the collection C of cliques? For each x ∈ H, we define Kx as the set of secants through x
(which form a clique, as every pair of such secants intersects at x); and we let

C = {Kx | x ∈ H}

be the collection of these cliques over all x ∈ H. Because every point x ∈ H is contained in exactly q2

secants, we know all these cliques have size q2; and because |H| = q3 +1, we have q3 +1 cliques in C. Finally,
for any two of these cliques Kx and Ky, there’s only one secant through both x and y, so the two cliques
only intersect at one vertex.
Finally, we’ll check that the fourth property holds. Consider some K4 contained in H, and let the six
points corresponding to its six edges be a, b, c, d, e, f ∈ H. (Recall that an edge in H between two secants
corresponds to a point in H that those two secants intersect at.)

sec 1 sec 2

sec 3 sec 4

a

b

f

e
ddc

If these six labels a, . . . , f are all distinct, then this corresponds to the structure forbidden by Proposition
2.6. So either we must have a triangle all consisting of the same label, or all the edges must have the same
label; this implies the last property (as if we have a triangle with label a, then its three vertices are in Ka).

sec 1 sec 2

sec 3 sec 4

a

a

f

e
dc da

§3 Step (2) — the clique structure of H

The rest of the proof doesn’t use any properties of H other than the ones stated in Step (1) — from here,
there’s nothing more involving finite fields.
Given a vertex set X ⊆ V (H), in order to prove (2) for X, we’ll consider the intersections of X with each
of our cliques in C; we’ll ignore intersections of size 1, and partition the remaining intersections into ‘small’
intersections, ‘medium’ intersections, and ‘large’ intersections in the following way.
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Definition 3.1. Given a set X ⊆ V (H) of size |X| = k, we partition the intersections X ∩ C (over
all cliques C ∈ C) of size at least 1 into three sets — small, medium, and large intersections — in the
following way:

• S = {X ∩ C | 2 ≤ |X ∩ C| ≤
√

2k/logn}.
• M = {X ∩ C |

√
2k/logn ≤ |X ∩ C| ≤

√
2k}.

• L = {X ∩ C | |X ∩ C| ≥
√

2k}.

In other words, we have a bunch of cliques C ∈ C, and we intersect all of them with X. We ignore the
intersections of size 1, and classify the remaining intersections into S, M, and L depending on their size.

Definition 3.2. For each U ∈ {S,M,L}, we define v(U) = ∑
T∈U |T | and e(U) = ∑

T∈U
(|T |

2
)
.

Intuitively, v(S) sort of counts the number of vertices in X that are in cliques with ‘small’ intersections —
though we may count a vertex multiple times, if it’s in multiple such cliques — and e(S) counts the number
of edges within X in such cliques.

Theorem 3.3
If k = 224q2, then we have either

e(S) ≥ k2

64q or e(M) ≥ qk3/2

16 log2 n
.

In other words, either lots of edges in X are in cliques with small intersections with X, or lots of edges in
X are in cliques with medium intersections (for different meanings of ‘lots’).

Proof sketch. First, we can show that v(S) + v(M) + v(L) is large by showing that X shouldn’t intersect
many cliques at just one vertex (so it’ll intersect most cliques in at least two vertices) — more precisely, we
should have

v(S) + v(M) + v(L) ≥ (q + 1)k − q3 − 1.

Then we can upper-bound the number of vertices involved in cliques with large intersections — we can show

v(L) ≤ 2k

by using a double-counting argument.
Now we consider two cases — when v(S) ≥ v(M) we’ll prove the first bound, and when v(M) ≥ v(S)
we’ll prove the second. We’ll only explain the proof in the first case; the proof is again a double-counting
argument. First, by convexity, we have

e(S) =
∑
T∈S

(
|T |
2

)
≥ |S| ·

(
v(S)/|S|

2

)
≥ v(S)2

4 |S| .

But |S| ≤ q3 + 1 (since there are q3 + 1 total cliques), so we end up getting

e(S) ≥ v(S)2

4(q3 + 1) ≥
k3

64q .
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§3.1 Step (3) — the random partitions

We’ll now perform Step (3) — where we randomly partition each clique C into A and B in order to obtain
H∗, and use martingale concentration inequalities to show that with positive probability, every m-vertex set
X has lots of edges in H∗.
Fix some set X with |X| = m. The idea is that we lower-bound the number of edges in H∗[X] by considering
the intersections of X with either small cliques or medium cliques, depending on which one has lots of edges
(as in the previous step); here we’ll focus on the case e(S) ≥ k2/64q.
In this case, we let {v1, . . . , v`} ⊆ X be all the vertices in X contained in some clique in S (where we
count vertices multiple times if they’re contained in multiple such cliques, so ` = v(S)). Now we define a
martingale as follows. We define the random variable

Z =
∑
T∈S

e[H(AT , BT )],

where AT and BT are the sets that T gets partitioned into when we partition its clique into two sets A and
B — so Z represents the number of edges of X in small intersections that end up in H∗. Now for each i, let

Zi = E[Z | knowledge of which parts v1, . . . , vi belong to].

In other words, we imagine going through the vertices v1, . . . , v` in order, where at vi, if T ∈ S is the clique
that vi is contained in, then we reveal which side vi belongs to in the random partition of T ; and we define
Zi as the expected number of edges given the information that’s been revealed so far. (This is why we count
a vertex multiple times if it’s contained in multiple cliques; in one step we only consider one clique.)
Then the Zi’s form a martingale, and if T ∈ S is the clique that vi belongs to, then we have

|Zi − Zi−1| ≤ |T | − 1

(since moving vi to the opposite side of the partition of T can change the number of edges in T that we
keep by at most |T | − 1, and doesn’t change anything else). Let ci be this quantity |T | − 1.
Finally, in order to apply concentration inequalities we need to bound ∑ c2

i . To do so, we have∑
c2
i ≤

∑
T∈S

(|T | − 1)2 |T |

(since for every clique T , there are at most |T | vertices in the clique, and each contributes (|T | − 1)2), and
we have an upper bound on |T | from the definition of S. Then we can apply concentration bounds such as
Azuma’s inequality to show that Z is very unlikely to be much smaller than 1

4e(S) ≥ 240q3 (its expectation
is E[Z] = 1

2e(S)), as desired.

Remark 3.4. It’s critical that the bounds we have on e(S) and e(M) in the two cases are different —
we have k � q2, so our bounds are e(S) & q3 and e(M) & q4/log2 n.
The bound on e(S) corresponds to the true density of our graph (the graph has edge density 1/q, and
X has k � q2 vertices), and the factor of logn in our definition of S (where we have |T | ≤

√
2k/logn)

is what allows us to do a union bound (over all X).
Meanwhile, in the bound for e(M), we have a lot more edges — we essentially win a factor of q in the
density. This extra factor of q is why we don’t need the log factor in |T | anymore (here we just have
|T | ≤

√
2k) — if we didn’t have this, then we wouldn’t get good enough control without the log factor

and the union bound wouldn’t go through.

Page 8 of 9



Talk by Dingding Dong (September 29, 2023) Asymptotics of r(4, t)

§3.2 Steps (4) and (5) — the container theorem and finish

Finally, here’s the graph container theorem we’ll use.

Theorem 3.5
Let G be a graph with the following two properties (for some R, r, α, and t).

• For all vertex subsets X of size |X| ≥ R, we have 2e(G[X]) ≥ α |X|2.
• We have e−αrn ≤ R and t ≥ r.

Then the number of independent sets of size t in G is at most
(n
r

)(R+r
t−r
)
.

In our situation (where we’re applying this theorem to H∗), we have n ≈ q4, and we know that for every
|Y | ≥ k = 224q2 we have

e(H∗[Y ]) ≥ |Y |
2

256q .

Now we take R = 224q2, r = 210q log q, α = 2−8q−1, and t = 230q log2 q. Then the conditions in the theorem
apply, and we conclude that

it(H∗) ≤
(
n

r

)(
R+ r

t− r

)
≤
(

q

log2 q

)t
(where it(H∗) denotes the number of independent sets of size t).
Finally, we take a random subset W ⊆ V (H∗) where each vertex is included with probability q−1 log2 q; we
can check (using expected value) that with positive probability, we have

|W | ≥ q3 log2 q

2 and α(W ) < t = 230q log2 q,

and we’re done (we take our Ramsey construction to be H∗[W ] for this choice of W ).
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