

# Asymptotics of $r(4, t)$

TALK BY DINGDING DONG

NOTES BY SANJANA DAS

September 29, 2023

This is based on a paper by Mattheus and Verstraete.

## §1 Introduction

**Definition 1.1.** The *Ramsey number*  $r(4, t)$  is the smallest integer  $r$  such that if we color the edges of  $K_r$  with red and blue in any way, then there is either a red  $K_4$  or a blue  $K_t$ .

The main theorem we'll prove today is the following lower bound.

### Theorem 1.2

There exists  $c > 0$  such that we have

$$r(4, t) \geq \frac{ct^3}{\log^4 t}.$$

In 1995, Shearer proved the following *upper bound* on  $r(4, t)$  — there exists  $c' > 0$  such that

$$r(4, t) \leq \frac{c't^3}{\log^2 t}.$$

Combining these two bounds, we now know that the ‘asymptotic exponent’ of  $r(4, t)$  is 3. (Before, the previous best lower bound was roughly  $t^{5/2}$ .)

**Remark 1.3.** If we just want an upper bound with an exponent of  $t^3$ , then the Erdős–Szemerédi bound

$$r(s, t) \leq \binom{s+t-2}{t-1}$$

suffices (this gives an upper bound of  $t^3$  without the log factors).

### §1.1 Proof Outline

We'll start by outlining the proof. Let  $q$  be a prime. Our goal is to find a graph  $G$  with  $|V(G)| = \Theta(q^3 \log^2 q)$  such that  $G$  does not contain  $K_4$  and  $\alpha(G) < \Theta(q \log^2 q)$ . Then  $G$  doesn't contain a clique of size 4 or an independent set of size  $t \asymp q \log^2 q$ , which gives the desired bound on  $r(4, t)$ .

We'll gradually construct  $G$ , using a few steps.

- (1) First, we'll use finite fields to construct a graph  $H$  with the following properties.

- It has  $n = q^4 - q^3 + q^2$  vertices, and is  $d$ -regular with  $d = (q+1)(q^2-1)$ . (Only the leading terms of these expressions are important for the analysis.)
- We can find a collection  $\mathcal{C}$  of  $q^3 + 1$  maximal  $q^2$ -cliques in  $H$ , such that each pair intersects at exactly one vertex. (We'll use this property to eventually build  $G$ . In fact, these maximal cliques will partition the edge-set of  $H$ , though we may not need this.)
- For each  $K_4$  contained in  $H$ , one of the maximal  $q^2$ -cliques in  $\mathcal{C}$  contains at least three of its four vertices.

(2) Let  $k = 2^{24}q^2$ . In the next step, we use these properties to deduce that for each vertex subset  $X \subseteq V(H)$  of size  $|X| = k$ , roughly speaking,  $X$  intersects many cliques only in a small number of edges. (This sort of happens because of the abundance of maximal cliques.)

(3) We then construct a random subgraph  $H^* \subseteq H$  in the following way: for each of our maximal cliques  $C \in \mathcal{C}$ , we randomly partition its vertex set  $V(C)$  into two sets  $A$  and  $B$ , and then include the complete bipartite graph  $K(A, B)$  in  $H^*$ . (In other words, we randomly partition our clique into two parts, and place all edges between these two parts in  $H^*$ .)

This ensures that there is no  $K_4$  in  $H^*$  — for every  $K_4$  in  $H$ , there is a clique  $C \in \mathcal{C}$  containing three of its vertices (which form a triangle inside this clique). But when we build  $H^*$ , no matter how we partition  $C$ , we'll destroy all its triangles; this means  $H^*$  can't contain any  $K_4$ . (We'll eventually build  $G$  out of  $H^*$ .)

We then use the property in (2) together with Azuma's inequality to show that with positive probability, for all vertex sets  $X$  of size  $k$ , we have

$$e(H^*[X]) \geq 2^{40}q^3.$$

As some intuition for why we might expect this, the edge density of  $H$  is on the order of  $1/q$  (so the edge density of  $H^*$  is as well), and  $X$  has size on the order of  $q^3$ , so in expectation  $H^*[X]$  should have about  $q^3$  edges. This means it suffices to prove a concentration inequality — that  $H^*[X]$  is usually not too far below its expectation. And we can do this using martingales, because of (2) — we can imagine gradually revealing what  $H^*$  is by revealing which of  $A$  and  $B$  each vertex is in for every clique. Because  $X$  intersects many cliques in a small number of edges, the information we learn at each step doesn't affect the expectation of  $H^*[X]$  too much, allowing us to use martingale concentration inequalities.

Then using an averaging argument, we can deduce that for all vertex sets  $Y$  of size  $|Y| \geq k$ , we have

$$e(H^*[Y]) \geq \frac{|Y|^2}{256q}.$$

(4) We then use a graph container lemma together with (3) (specifically, the bound on  $e(H^*[Y])$ ) to upper-bound the number of independent sets of size  $t = 2^{30}q \log^2 q$  in  $H^*$ .

(5) Finally, we sample a random subset  $W \subseteq V(H^*)$  and show that with positive probability, we have  $|W| = \Theta(q^3 \log^2 q)$  and there is no independent set of size  $t$  in  $H^*[W]$ . We then take  $G$  to be  $H^*[W]$ , and we're done.

## §2 Step (1) — Defining $H$

### §2.1 Some definitions

Before we define  $H$ , we need a few definitions.

**Definition 2.1.** The *projective geometry*  $\mathbb{P}\mathbb{G}(2, q^2)$  consists of a collection of points  $\mathcal{P}$  and lines  $\mathcal{L}$ , together with an incidence structure between points and lines, defined in the following way:

- The ‘points’ are lines through the origin in  $\mathbb{F}_{q^2}^3$  (the 3-dimensional vector space over  $\mathbb{F}_{q^2}$ ) — in other words,

$$|\mathcal{P}| = \{ \langle x \rangle \mid x \in \mathbb{F}_{q^2}^3 \setminus \{0\} \}$$

(where  $\langle x \rangle$  denotes the line in  $\mathbb{F}_{q^2}^3$  spanned by  $x$ ).

- The ‘lines’ are planes through the origin in  $\mathbb{F}_{q^2}^3$  — in other words,

$$\mathcal{L} = \{ x^\perp \mid x \in \mathcal{P} \}$$

(since each plane in  $\mathbb{F}_{q^2}^3$  is orthogonal to a unique line).

- We say a point is contained in a line if the corresponding line is contained in the corresponding plane in  $\mathbb{F}_{q^2}^3$  — in other words, for  $x, y \in \mathcal{P}$ , we say  $x \sim y^\perp$  if  $\langle x, y \rangle = 0$ .

Note that  $|\mathcal{P}| = |\mathcal{L}| = q^4 + q^2 + 1$ .

**Definition 2.2.** The *Hermitian unital*  $\mathcal{H} \subseteq \mathcal{P}$  is defined as

$$\mathcal{H} = \{ \langle (a, b, c) \rangle \in \mathcal{P} \mid a^{q+1} + b^{q+1} + c^{q+1} = 0 \}.$$

(Here each  $(a, b, c)$  is an element of  $\mathbb{F}_{q^2}^3$ , and  $\langle (a, b, c) \rangle$  is a point — i.e., a line through the origin in  $\mathbb{F}_{q^2}^3$ .) It’s important that we’re working over  $\mathbb{F}_{q^2}$  and not  $\mathbb{F}_q$  — such an object doesn’t exist for a field of prime order.

We have the following observations about  $\mathcal{H}$ .

**Fact 2.3** — We have  $|\mathcal{H}| = q^3 + 1$ , and every line in  $\mathbb{P}\mathbb{G}(2, q^2)$  intersects  $\mathcal{H}$  at either 1 or  $q + 1$  points.

*Proof sketch.* The proof is a combination of direct computation and the fact that in  $\mathbb{F}_{q^2}$  there are exactly  $q + 1$  solutions to  $x^{q+1} = 1$ , and the fact that the map  $x \mapsto x^{q+1}$  is a norm function in  $\mathbb{F}_{q^2}$ . We then use the symmetry of  $\mathcal{H}$  under  $\mathbb{P}\mathbb{G}\mathbb{U}(3, q^2)$  — because  $\mathcal{H}$  is symmetric under this object, to check the second statement it suffices to check whether the point  $x \in \mathcal{P}$  used to define our line (as  $x^\perp$ ) lies in  $\mathcal{H}$  or not; this allows us to do direct computation by choosing two different points.  $\square$

**Remark 2.4.** In general, a *norm map* is a map of the form  $\mathcal{N}(a) = a\bar{a}$ . If we were working over  $\mathbb{C}$ , then  $\bar{a}$  would represent the complex conjugate of  $a$ ; over  $\mathbb{F}_{q^2}$  it represents the *Galois conjugate*  $a^q$ . This means we can think of the equation for  $\mathcal{H}$  as

$$a\bar{a} + b\bar{b} + c\bar{c} = 1,$$

so  $\mathcal{H}$  is a finite-field analog of a sphere over  $\mathbb{C}$ . (This is why we call it *Hermitian*, and it lets you derive the symmetry of  $\mathcal{H}$  under  $\mathbb{P}\mathbb{G}\mathbb{U}$ .)

The connection may make this seem less like completely magical algebra; it’s still magical that it translates to finite fields, but you may at least be more willing to believe it.

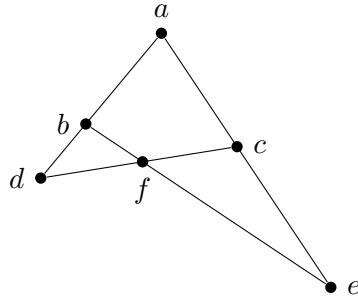
**Definition 2.5.** We define a *secant* to be a line that intersects  $\mathcal{H}$  at  $q + 1$  points.

(We will come back to this definition later.)

**Proposition 2.6**

There do not exist six distinct points  $a, b, c, d, e, f \in \mathcal{H}$  such that each of the triples  $abd$ ,  $ace$ ,  $bef$ , and  $cdf$  is collinear, and no other triples are.

In other words,  $\mathcal{H}$  doesn't contain the following structure.



**Remark 2.7.** This statement might also have an analog over  $\mathbb{C}$ .

*Proof.* Recall that  $\mathcal{H}$  is the set of points  $\langle x \rangle$  for which  $x \cdot \bar{x} = 0$ , i.e.,

$$\mathcal{H} = \{\langle x \rangle \mid x \cdot \bar{x} = 0\}$$

(as stated in Remark 2.4). Now assume for contradiction that  $\mathcal{H}$  does contain the above structure. Then the collinearities mean that we can find scalars  $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q^2}$  such that

$$\begin{cases} d = a + \alpha b \\ e = a + \beta c \\ d = f + \gamma c \\ e = f + \delta b. \end{cases}$$

(The reason we don't need scalars in front of the first terms — e.g.,  $d = \alpha_1 a + \alpha_2 b$  — is that we're in projective space, so we don't care about scaling and can just scale so that  $\alpha_1 = 1$ .) This gives

$$\begin{cases} a + \alpha b = f + \gamma c \\ a + \beta c = f + \delta b, \end{cases}$$

which we can rearrange to

$$(\alpha + \delta)b = (\beta + \gamma)c.$$

But  $b$  and  $c$  are distinct points in the projective plane, so they cannot be scalar multiples of each other; this means we can conclude  $\alpha + \delta = \beta + \gamma = 0$ . Then by scaling all our points appropriately, we can assume without loss of generality that  $\alpha = \beta = 1$  and  $\delta = \gamma = -1$ .

Now consider the two matrices

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \text{ and } B = \begin{bmatrix} \bar{a}_1 & \bar{b}_1 & \bar{c}_1 \\ \bar{a}_2 & \bar{b}_2 & \bar{c}_2 \\ \bar{a}_3 & \bar{b}_3 & \bar{c}_3 \end{bmatrix}$$

(where  $a$  has coordinates  $(a_1, a_2, a_3)$ , and so on). Because  $a$ ,  $b$ , and  $c$  are not collinear, both  $A$  and  $B$  are nonsingular (as their columns are linearly independent). But we can compute

$$AB = \begin{bmatrix} 0 & a \cdot \bar{b} & a \cdot \bar{c} \\ b \cdot \bar{a} & 0 & b \cdot \bar{c} \\ c \cdot \bar{a} & c \cdot \bar{b} & 0 \end{bmatrix}$$

(using the fact that  $a \in \mathcal{H}$ , so  $a \cdot \bar{a} = 0$ , and the same is true for  $b$  and  $c$ ), which means

$$\det(AB) = (a \cdot \bar{b})(b \cdot \bar{c})(c \cdot \bar{a}) + (a \cdot \bar{c})(b \cdot \bar{a})(c \cdot \bar{b})$$

(we can consider all the ‘diagonals’ of the matrix, and these are the only ones that don’t contain a 0).

But we know  $d = a + b$  and  $d \cdot \bar{d} = 0$ , which implies that

$$a \cdot \bar{b} + b \cdot \bar{a} = 0.$$

Similarly  $e = a + c$  and  $e \cdot \bar{e} = 0$ , which gives that

$$a \cdot \bar{c} + c \cdot \bar{a} = 0.$$

Finally, we have  $f = c + d = a + b + c$  and  $f \cdot \bar{f} = 0$ , and by combining these equations we eventually get

$$b \cdot \bar{c} + c \cdot \bar{b} = 0.$$

This means the factors in the second term of  $\det(AB)$  are all negations of the factors in the first term, and therefore we have

$$\det(AB) = 0,$$

which contradicts the fact that  $A$  and  $B$  are nonsingular.  $\square$

## §2.2 The construction of $H$

We now construct our graph  $H$  in the following way.

**Definition 2.8.** Let  $H$  be the graph whose vertices are the secants in  $\mathbb{PG}(2, q)$ , with an edge between every pair of secants whose intersection is in  $\mathcal{H}$  — in other words,

$$\begin{aligned} V(H) &= \{x^\perp \mid |x^\perp \cap \mathcal{H}| = q + 1\}, \\ E(H) &= \{(x^\perp, y^\perp) \mid x^\perp \cap y^\perp \in \mathcal{H}\}. \end{aligned}$$

We need to check that  $H$  satisfies all the properties described in (1).

First, we’ll check that  $H$  has the correct number of vertices — let  $n = |V(H)|$  be the number of secants. Every point in  $\mathbb{PG}(2, q)$  is contained in exactly  $q^2 + 1$  lines, so by a double-counting argument — counting pairs consisting of a point in  $\mathcal{H}$  and a line containing our point, i.e.,  $\#\{(x, y^\perp) \mid x \in \mathcal{H}, x \in y^\perp\}$  — we get

$$(q^3 + 1)(q^2 + 1) = n(q + 1) + (q^4 + q^2 + 1 - n) \cdot 1.$$

(The left-hand side counts by first choosing  $x$ , which can be done in  $|\mathcal{H}| = q^3 + 1$  ways, and then choosing  $y^\perp$ , which can be done in  $q^2 + 1$  ways (as every point is contained in exactly  $q^2 + 1$  lines). The right-hand side counts by first choosing  $y^\perp$ ; if it’s a secant then there’s  $q + 1$  choices for  $x$ , and if it’s not a secant then there’s 1 choice.) This rearranges to

$$n = q^4 - q^3 + q^2,$$

as desired.

Next, we'll check that our graph is  $d$ -regular with  $d = (q+1)(q^2-1)$ . To see this, we first know that every point in  $\mathcal{H}$  is contained in exactly

$$\frac{n(q+1)}{q^3+1} = q^2$$

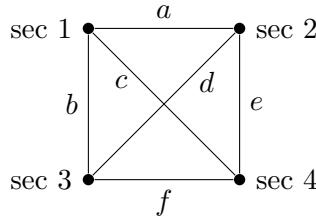
secants. (The numerator is the total number of point-secant pairs — we have  $n$  secants and each contains  $q+1$  points in  $\mathcal{H}$  — and the denominator is the total number of points in  $\mathcal{H}$ .) So for each secant  $y^\perp$  and each of the  $q+1$  points  $x \in y^\perp \cap \mathcal{H}$ , there are exactly  $q^2-1$  other secants through  $x$ ; these secants are precisely the neighbors of  $y^\perp$  in our graph, so we get that  $\deg(y^\perp) = (q+1)(q^2-1)$ .

Next, what is the collection  $\mathcal{C}$  of cliques? For each  $x \in \mathcal{H}$ , we define  $K_x$  as the set of secants through  $x$  (which form a clique, as every pair of such secants intersects at  $x$ ); and we let

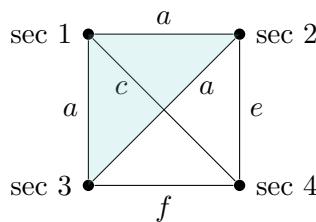
$$\mathcal{C} = \{K_x \mid x \in \mathcal{H}\}$$

be the collection of these cliques over all  $x \in \mathcal{H}$ . Because every point  $x \in \mathcal{H}$  is contained in exactly  $q^2$  secants, we know all these cliques have size  $q^2$ ; and because  $|\mathcal{H}| = q^3+1$ , we have  $q^3+1$  cliques in  $\mathcal{C}$ . Finally, for any two of these cliques  $K_x$  and  $K_y$ , there's only one secant through both  $x$  and  $y$ , so the two cliques only intersect at one vertex.

Finally, we'll check that the fourth property holds. Consider some  $K_4$  contained in  $H$ , and let the six points corresponding to its six edges be  $a, b, c, d, e, f \in \mathcal{H}$ . (Recall that an edge in  $H$  between two secants corresponds to a point in  $\mathcal{H}$  that those two secants intersect at.)



If these six labels  $a, \dots, f$  are all distinct, then this corresponds to the structure forbidden by Proposition 2.6. So either we must have a triangle all consisting of the same label, or *all* the edges must have the same label; this implies the last property (as if we have a triangle with label  $a$ , then its three vertices are in  $K_a$ ).



### §3 Step (2) — the clique structure of $H$

The rest of the proof doesn't use any properties of  $H$  other than the ones stated in Step (1) — from here, there's nothing more involving finite fields.

Given a vertex set  $X \subseteq V(H)$ , in order to prove (2) for  $X$ , we'll consider the intersections of  $X$  with each of our cliques in  $\mathcal{C}$ ; we'll ignore intersections of size 1, and partition the remaining intersections into 'small' intersections, 'medium' intersections, and 'large' intersections in the following way.

**Definition 3.1.** Given a set  $X \subseteq V(H)$  of size  $|X| = k$ , we partition the intersections  $X \cap C$  (over all cliques  $C \in \mathcal{C}$ ) of size at least 1 into three sets — *small*, *medium*, and *large* intersections — in the following way:

- $\mathcal{S} = \{X \cap C \mid 2 \leq |X \cap C| \leq \sqrt{2k}/\log n\}$ .
- $\mathcal{M} = \{X \cap C \mid \sqrt{2k}/\log n \leq |X \cap C| \leq \sqrt{2k}\}$ .
- $\mathcal{L} = \{X \cap C \mid |X \cap C| \geq \sqrt{2k}\}$ .

In other words, we have a bunch of cliques  $C \in \mathcal{C}$ , and we intersect all of them with  $X$ . We ignore the intersections of size 1, and classify the remaining intersections into  $\mathcal{S}$ ,  $\mathcal{M}$ , and  $\mathcal{L}$  depending on their size.

**Definition 3.2.** For each  $\mathcal{U} \in \{\mathcal{S}, \mathcal{M}, \mathcal{L}\}$ , we define  $v(\mathcal{U}) = \sum_{T \in \mathcal{U}} |T|$  and  $e(\mathcal{U}) = \sum_{T \in \mathcal{U}} \binom{|T|}{2}$ .

Intuitively,  $v(\mathcal{S})$  sort of counts the number of vertices in  $X$  that are in cliques with ‘small’ intersections — though we may count a vertex multiple times, if it’s in multiple such cliques — and  $e(\mathcal{S})$  counts the number of *edges* within  $X$  in such cliques.

### Theorem 3.3

If  $k = 2^{24}q^2$ , then we have either

$$e(\mathcal{S}) \geq \frac{k^2}{64q} \text{ or } e(\mathcal{M}) \geq \frac{qk^{3/2}}{16 \log^2 n}.$$

In other words, either lots of edges in  $X$  are in cliques with small intersections with  $X$ , or lots of edges in  $X$  are in cliques with medium intersections (for different meanings of ‘lots’).

*Proof sketch.* First, we can show that  $v(\mathcal{S}) + v(\mathcal{M}) + v(\mathcal{L})$  is large by showing that  $X$  shouldn’t intersect many cliques at just one vertex (so it’ll intersect most cliques in at least two vertices) — more precisely, we should have

$$v(\mathcal{S}) + v(\mathcal{M}) + v(\mathcal{L}) \geq (q+1)k - q^3 - 1.$$

Then we can upper-bound the number of vertices involved in cliques with large intersections — we can show

$$v(\mathcal{L}) \leq 2k$$

by using a double-counting argument.

Now we consider two cases — when  $v(\mathcal{S}) \geq v(\mathcal{M})$  we’ll prove the first bound, and when  $v(\mathcal{M}) \geq v(\mathcal{S})$  we’ll prove the second. We’ll only explain the proof in the first case; the proof is again a double-counting argument. First, by convexity, we have

$$e(\mathcal{S}) = \sum_{T \in \mathcal{S}} \binom{|T|}{2} \geq |\mathcal{S}| \cdot \binom{v(\mathcal{S})/|\mathcal{S}|}{2} \geq \frac{v(\mathcal{S})^2}{4|\mathcal{S}|}.$$

But  $|\mathcal{S}| \leq q^3 + 1$  (since there are  $q^3 + 1$  *total* cliques), so we end up getting

$$e(\mathcal{S}) \geq \frac{v(\mathcal{S})^2}{4(q^3 + 1)} \geq \frac{k^3}{64q}.$$

□

### §3.1 Step (3) — the random partitions

We'll now perform Step (3) — where we randomly partition each clique  $C$  into  $A$  and  $B$  in order to obtain  $H^*$ , and use martingale concentration inequalities to show that with positive probability, every  $m$ -vertex set  $X$  has lots of edges in  $H^*$ .

Fix some set  $X$  with  $|X| = m$ . The idea is that we lower-bound the number of edges in  $H^*[X]$  by considering the intersections of  $X$  with either small cliques or medium cliques, depending on which one has lots of edges (as in the previous step); here we'll focus on the case  $e(\mathcal{S}) \geq k^2/64q$ .

In this case, we let  $\{v_1, \dots, v_\ell\} \subseteq X$  be all the vertices in  $X$  contained in some clique in  $\mathcal{S}$  (where we count vertices multiple times if they're contained in multiple such cliques, so  $\ell = v(\mathcal{S})$ ). Now we define a martingale as follows. We define the random variable

$$Z = \sum_{T \in \mathcal{S}} e[H(A_T, B_T)],$$

where  $A_T$  and  $B_T$  are the sets that  $T$  gets partitioned into when we partition its clique into two sets  $A$  and  $B$  — so  $Z$  represents the number of edges of  $X$  in *small* intersections that end up in  $H^*$ . Now for each  $i$ , let

$$Z_i = \mathbb{E}[Z \mid \text{knowledge of which parts } v_1, \dots, v_i \text{ belong to}].$$

In other words, we imagine going through the vertices  $v_1, \dots, v_\ell$  in order, where at  $v_i$ , if  $T \in \mathcal{S}$  is the clique that  $v_i$  is contained in, then we reveal which side  $v_i$  belongs to in the random partition of  $T$ ; and we define  $Z_i$  as the expected number of edges given the information that's been revealed so far. (This is why we count a vertex multiple times if it's contained in multiple cliques; in one step we only consider one clique.)

Then the  $Z_i$ 's form a martingale, and if  $T \in \mathcal{S}$  is the clique that  $v_i$  belongs to, then we have

$$|Z_i - Z_{i-1}| \leq |T| - 1$$

(since moving  $v_i$  to the opposite side of the partition of  $T$  can change the number of edges in  $T$  that we keep by at most  $|T| - 1$ , and doesn't change anything else). Let  $c_i$  be this quantity  $|T| - 1$ .

Finally, in order to apply concentration inequalities we need to bound  $\sum c_i^2$ . To do so, we have

$$\sum_{T \in \mathcal{S}} c_i^2 \leq \sum_{T \in \mathcal{S}} (|T| - 1)^2 |T|$$

(since for every clique  $T$ , there are at most  $|T|$  vertices in the clique, and each contributes  $(|T| - 1)^2$ ), and we have an upper bound on  $|T|$  from the definition of  $\mathcal{S}$ . Then we can apply concentration bounds such as Azuma's inequality to show that  $Z$  is very unlikely to be much smaller than  $\frac{1}{4}e(\mathcal{S}) \geq 2^{40}q^3$  (its expectation is  $\mathbb{E}[Z] = \frac{1}{2}e(\mathcal{S})$ ), as desired.

**Remark 3.4.** It's critical that the bounds we have on  $e(\mathcal{S})$  and  $e(\mathcal{M})$  in the two cases are different — we have  $k \asymp q^2$ , so our bounds are  $e(\mathcal{S}) \gtrsim q^3$  and  $e(\mathcal{M}) \gtrsim q^4/\log^2 n$ .

The bound on  $e(\mathcal{S})$  corresponds to the true density of our graph (the graph has edge density  $1/q$ , and  $X$  has  $k \asymp q^2$  vertices), and the factor of  $\log n$  in our definition of  $\mathcal{S}$  (where we have  $|T| \leq \sqrt{2k}/\log n$ ) is what allows us to do a union bound (over all  $X$ ).

Meanwhile, in the bound for  $e(\mathcal{M})$ , we have a lot more edges — we essentially win a factor of  $q$  in the density. This extra factor of  $q$  is why we don't need the log factor in  $|T|$  anymore (here we just have  $|T| \leq \sqrt{2k}$ ) — if we didn't have this, then we wouldn't get good enough control without the log factor and the union bound wouldn't go through.

### §3.2 Steps (4) and (5) — the container theorem and finish

Finally, here's the graph container theorem we'll use.

#### Theorem 3.5

Let  $G$  be a graph with the following two properties (for some  $R$ ,  $r$ ,  $\alpha$ , and  $t$ ).

- For all vertex subsets  $X$  of size  $|X| \geq R$ , we have  $2e(G[X]) \geq \alpha |X|^2$ .
- We have  $e^{-\alpha r} n \leq R$  and  $t \geq r$ .

Then the number of independent sets of size  $t$  in  $G$  is at most  $\binom{n}{r} \binom{R+r}{t-r}$ .

In our situation (where we're applying this theorem to  $H^*$ ), we have  $n \approx q^4$ , and we know that for every  $|Y| \geq k = 2^{24}q^2$  we have

$$e(H^*[Y]) \geq \frac{|Y|^2}{256q}.$$

Now we take  $R = 2^{24}q^2$ ,  $r = 2^{10}q \log q$ ,  $\alpha = 2^{-8}q^{-1}$ , and  $t = 2^{30}q \log^2 q$ . Then the conditions in the theorem apply, and we conclude that

$$i_t(H^*) \leq \binom{n}{r} \binom{R+r}{t-r} \leq \left(\frac{q}{\log^2 q}\right)^t$$

(where  $i_t(H^*)$  denotes the number of independent sets of size  $t$ ).

Finally, we take a random subset  $W \subseteq V(H^*)$  where each vertex is included with probability  $q^{-1} \log^2 q$ ; we can check (using expected value) that with positive probability, we have

$$|W| \geq \frac{q^3 \log^2 q}{2} \text{ and } \alpha(W) < t = 2^{30}q \log^2 q,$$

and we're done (we take our Ramsey construction to be  $H^*[W]$  for this choice of  $W$ ).