Hamilton transversals in tournaments

Talk by Dingding Dong
Notes by Sanjana Das

September 27, 2024

§1 Introduction

This is based on a paper by Debsoumya Chakraborti, Jachoon Kim, Hyunwoo Lee, and Jaehyeon Seo (from
2023). The theorem statement is the following.

Theorem 1.1

Let T4, ..., T,—1 be n — 1 tournaments on a vertex set V of size |V| = n, where n is sufficiently large.
Then there exists a rainbow Hamilton path — i.e., a Hamilton path such that every edge comes from
a distinct 7T;.

Definition 1.2. A tournament on V is a directed graph such that there is one directed edge between
every pair of vertices (i.e., for all v # v/, there is an edge between v and v').

This is a natural question to consider, and it’s not true if we replace n — 1 by any smaller number (as a
Hamilton path itself has n — 1 edges, so to get a rainbow Hamilton path, we certainly need at least n — 1
colors). But in the proofs, it turns out that the fact we have tournaments is very strong — every edge is
covered in one of two directions by every T;, and this gives us a lot of choices to choose from. It’s unclear
what happens if we replace tournaments by more general directed graphs (e.g., what we could replace n — 1
by), and the authors ask this question in the paper.

§1.1 A version with n colors

First, Theorem 1.1 is actually easy if we replace n — 1 by n.

Lemma 1.3

If we have n tournaments 17, ..., T},, then there is a rainbow Hamilton path.

Proof. Let vi — v9 — --+ — v, be a rainbow path of maximum length, and assume for contradiction that
r < n. Then there’s at most n — 1 vertices in the path, so we’ve used at most 2 colors; and there’s n colors
in total, so we can suppose we haven’t used the colors 1 and 2. Also, we’'ve used at most n — 1 vertices, so
there’s at least one untouched vertex; let u be such a vertex.

First, the edge woi cannot be in Ty — if it were in 7T}, then we could get a longer path by placing v — vy
at the beginning (using color 1, which doesn’t appear in the rest of the path).
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For the same reason, we cannot have woi in Ty. This means the edge must be present in the other direction
in both Ty and Ty — i.e., v1 is in Ty and Tb.

Now we’ll use induction.

Claim 1.4 — For alli =1, ..., r, the edge v;¢ is in Ty and Ts.

Proof. We already know this is true for ¢ = 1. Now assume this is not true, and consider the smallest ¢ for
which it’s not true. This means W is in T} or T5; we can assume it’s in T7.

Meanwhile, because ¢ is the smallest such index, we have v;_14 € T5. This means we can find a longer

rainbow path than the one we started with, by taking v;_1 NN v;. O
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This induction goes all the way up to i = r, and that tells us o, is in T} and T5. But this means we could
insert u at the end of our path (in either color 1 or 2).
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So this is a contradiction. O

§1.2 The proof idea

Our goal is to reduce from n colors to n — 1; the method used for this is absorption. Roughly, what happens
is that we first partition the whole vertex set into some smaller parts Vi, V5, V3, and V4, whose sizes we call
a, b, ¢, and d.

Then the rough idea is to find disjoint sets of colors A, B, C, D C [n — 1] such that A is slightly smaller than
the corresponding set of vertices, and B, C, and D are slightly larger — specifically,

Al < a—en,
|B| > b+en,
|C| > c+en,
|D| > d + en.
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Then because |B| > b, we can use Lemma 1.3 to find a Hamilton path in V5 using colors in B, and we can
do the same for V3 (using colors in C') and Vj (using colors in D).

But since |B| > b, we’ll have leftover colors; we’ll call the sets of these leftover colors B*, C*, and D*. And
we know the size of B* U C* U D*, which we call x.

Then using absorption, we’ll prove a theorem that looks something like the following: for all S C BUCUD
with |S| = x, there exists a rainbow coloring of all the remaining things using A U S.

This is kind of the idea of what will happen, though not precisely. But we can see that first proving a
statement like Lemma 1.3 is important in this proof — we first assign abstract colors to our substructures
using a weaker lemma, and then we have leftovers that we want to absorb into the remaining part.

§2 Proof of Theorem 1.1

Now we’ll discuss the details of the proof.
Definition 2.1. For a set of tournaments T = {T1,...,T},} and some « € (0,1), we define

T® = {u | ud lies in at least an a-fraction of T, ..., T),}.

Fact 2.2 — For all u # v and all o < %, either wd or vt lies in T.

In other words, this means there is a tournament T° C T<.

§2.1 H(¢,v)-partitions

In the proof, we’ll be partitioning our tournament into smaller pieces; we’ll now define the actual form of
partitions we’ll use.

Definition 2.3. For v € [0,1] and ¢ € N, a H(¢, v)-partition is a tuple (W1,..., W, w1,...,w,_1) where
each W; is a set of vertices and each w; an individual vertex, such that:

o All edges from W; to w; are present, and all edges from w; to W1, are present.

e V=W U---UW,U{wi} U---U{w,}, and these sets and vertices are disjoint.

e We have v/ < |[W;| < ¢ for all i.

The first lemma states that we can always find such a partition, for certain parameter settings.
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Lemma 2.4

Forall 0 <~ < % and 3 < £ < n, every tournament has a H(¢, v)-partition.

Proof. The proof is again by induction and contradiction. We induct backwards from ¢ = n; this case is
easy, as we can simply take W; = V.

Now suppose this statement doesn’t hold for ¢, but it does hold for £+ 1; this means any H(¢+ 1, v)-partition
has a set W; of size ezactly £+ 1 (or else it would also be a H(, v)-partition).

Choose a H(¢ + 1,~)-partition that minimizes the number of sets W; of size £ + 1, and consider one such
set W;. The idea is that we’re going to partition W, into two smaller subparts such that we still have a
H(¢ + 1, ~)-partition, but with fewer parts of size £ 4+ 1 (violating the minimality of the original partition).

For this, we’ll use the following claim.

Claim 2.5 — For every tournament, we have

#{v | indeg(v) < d} < 2d + 1.

Proof. Suppose we order the vertices greedily such that at each step, we choose the vertex with maximum
in-degree to the remaining vertices. In other words, we pick vertices v,, v,_1, ...such that we choose v;
to maximize the number of edges from {v; | j < i} (the set of remaining vertices) to v;. Then v; will have
in-degree at least % (since the average in-degree among the ¢ remaining vertices at this step is %) So all
vertices vy, ..., Vaq+2 Will have in-degree greater than d, which means we’re left with at most 2d+ 1 vertices
whose in-degree is at most d. O

We can do the same for out-degree — i.e., we have
#{v | outdeg(v) < d} < 2d+ 1.
Now taking d = %, we get that there must exist some v € W, that has both big in-degree and big out-degree
inside W;, specifically
l
indegy. (v), outdegyy. (v) > 8 + 1

Then we can partition W; into two smaller parts — the vertices with edges into v, and the vertices with
edges out from v.

So we get a new partition where we keep all sets other than W; the same, but split W; into these two
sets (with v as the vertex between them). Both sets have size at least % + 1 and strictly less than ¢ 4 1,
contradicting the minimality of our partition (i.e., that it had the smallest number of sets of size £+ 1). [
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§2.2 The absorption lemma

Now we’ll state the actual absorption lemma that we’ll use. We’ll first state a lemma that applies to a more
general setting with bipartite graphs, which we’ll deduce our lemma from.

Lemma 2.6 (General absorption)
Let a € (0,1), and let H be a bipartite graph on vertex set A U B such that:

(1) We have o? |B| > 8|A].
(2) For all a € A, we have deg(a) > «|B|.
Also let £ < 107% - a7 |A|. Then we can find two disjoint sets By, By C B with

|Bo| = |A|— ¢ and |B;|>107°a" |B]

such that for every S C By with |S| =/, there is a perfect matching between A and By U S.

This is a general absorption statement, and was actually proved in an earlier paper about colorful spanning
trees (‘Transversal factors and spanning trees’ by Montgomery—Miiyesser—Pehova). We’ll prove this at the
end if we have time, but for now we’ll talk about how to use it. If we apply this to our setting, it immediately
translates to the following lemma (there are a bunch of parameters that will make sense later on).

Lemma 2.7
Let 0 < % K7L pKa< %, and let T be a collection of tournaments with |T| = m > an on a vertex

set V of size |V| =n. Let H C T be such that
~
< < — | n.
pn<e(H) < (B+7)n

Then there exist two disjoint sets of colors A,C C [m] such that |A| = e(H) — ym and |C| > 108m,
such that for all ¢’ C C with |C’| = ym, there is a rainbow coloring of H using colors in AU C’.

(The notation v < 3 here means that ~ is sufficiently small with respect to £.)

Proof. We create a bipartite graph J with vertex sets E(H) (the set of edges in H) on the left, and the set
of colors [m] on the right; in particular, these two sets have sizes e(H) and m, respectively. We draw an
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edge between an edge w0 on the left and a color i on the right if w6 € T;. Then we can verify the conditions
of Lemma 2.6:

(1) Every edge wt € E(H) is incident to at least an a-fraction of our colors by the fact that H C T, so
deg ; (@) > am for all ud.

(2) The fact that a?m > 8e(H) just follows from the way we set the parameters — we prescribed that 3
is sufficiently small compared to «, and m and n differ by a factor of at most a.

(3) Finally, we have £ = ym, so we need to check that this is at most 10~°a”e(H). This is again true
because 7 is sufficiently small compared to « and (.

So we can directly apply Lemma 2.6, which gives this result. O

§2.3 Hamilton paths with prescribed colors

The last lemma we’ll need is the following, which states that if we have enough tournaments, then we can
find a rainbow Hamilton path that uses a prescribed color.

Lemma 2.8

Let T be a collection of tournaments on n > 4 vertices, with |T| > 2n. Then for every T; € T, there
exists a rainbow Hamilton path that uses an edge from 7;.

Proof. The proof is again some sort of induction and contradiction. First, we can assume without loss of
generality that |T| = 2n. Imagine that we check the small cases n = 4,5,6,7 by hand. (The paper doesn’t
actually do this — they start the induction at n = 3 and have an exceptional case where T is a collection of
‘generalized triangles,” but this is somewhat more annoying to state.)

Consider a counterexample (T,4) with the smallest value of n, and fix some subtournament 7 C T'/2.

We first pick some v with outdeg(v) > 4 (where outdeg(v) refers to its degree in T'), and consider the sets
of vertices with edges into v and the set of vertices with edges out from wv.

Then for the vertices on the left, we can find a Hamilton path using color ¢ by the induction hypothesis.
Meanwhile, for the vertices on the right, we can use Lemma 1.3 to find a rainbow Hamilton path (not using
any of the colors that we used on the left).

<+

< e

Then we’ve only used n — 2 colors so far. But every edge in 7" appears in at least n colors (since 1" C T/ 3,
so we can find some unused colors to link the path on the left to v and v to the path on the right.
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This gives a Hamilton path using color i, as desired. O

Corollary 2.9

Let T be a collection of tournaments of size |T| = m > 4n on a vertex set V of size n. Let B C [m] be
a subset of colors of size |[B| < g¢. Let u and v be two vertices such that for all w # u, v, both u and
w0 are in the tournaments corresponding to at least two colors in B. Then there is a rainbow Hamilton
path from u to v that uses all colors in B.

Proof. Let T C T/2 be a tournament (so every edge in T is still incident with 2n colors), and let V' =
V' \ {u,v}. Then we can restrict our tournaments to V/ and construct a partition as in Lemma 2.4, with u
and v on the two ends.

ce
S

More precisely, we take a H(24, ¢)-partition of 7" (restricted to V'), which we know exists by Lemma 2.4.
Then each set has constant size, so there’s linearly many sets. This means we can assign one color in B to
each of these sets — if B = {1,...,r}, then we use Lemma 2.8 to find a rainbow Hamilton path in W using
color 1, one in Wy using color 2, and so on.

[ { ] o { (]
u v
And we started with 4n colors, so after finding these paths in Wy, ..., W, and using up B, we still have

3n colors left. And every edge in T is incident to at least 2n colors, so we can greedily pick colors for the
remaining edges needed to link up these paths.

S ;

(Where did we use the condition about u and wo being in at least two colors in B? This might have been
used for being able to put v and v at the ends of the partition.) O
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§2.4 Proof outline of Theorem 1.1

Finally, we’ll sketch the proof of Theorem 1.1. We’ll actually prove the following lemma.

Lemma 2.10
Let 0 < 1 < <7< a<1. Let T be a collection of tournaments with |T| = n — 1, and let 7 C T*
be a subtournament. Let wp and w, be two vertices, and suppose that (Wy,... , Wy w,...,wy—1) is

a H(un,y)-partition of 7" restricted to the remaining vertices, such that wot, € T for all u € Wy and
v—wr> € T for all v € W,.. Then there exists a rainbow Hamilton path from wgy to w;.

So we're again imagining a setup where we have a partition and two vertices wg and w, at its ends (here
the partition is given to us), and we find a Hamilton path in this setup.

[ J { J { ] e ( { ] { ]
wo w1 w2 Wyr—2 Wr—1 Wy
This almost implies Theorem 1.1 — to prove Theorem 1.1, we take a slightly larger partition (without

vertices on the two ends; we know such a partition exists by Lemma 2.4), then take Hamilton paths in the
first and last components (greedily) and apply this lemma on the remainder.

Proof. We’ll eventually partition our graph into four sets of edges. For some 1 <t < 7 < r, we’ll define:
o F 4 as the set of edges in Wy, ..., Wi,
e Ep as the set of edges in Wiyq, ..., We—q, Wegq, ..., Wi
o FE as the set of edges in W-..
e Ep as the set of edges between w;_1 and W;, and W; and w;1.

We’ll also partition our colors into sets A, B, C, and D that roughly correspond to these edge sets. First,
for D, note that since £ is linear in n, the number r of components is constant. And D is the colors we’ll be
using for edges between adjacent components, so we can choose D such that:

e D is very small, specifically |D| < u?n.
e Every edge in Ep is incident to at least 4r colors in D.
(This is possible because 7 is a constant, so we can do this by randomly choosing D or something similar.)

We want some absorption to happen, and this will happen between A and C. So we’ll use Lemma 2.7 to
take A and C such that
|A| = |Eal —yn and |C| > 106n,

and such that for all ¢’ C C with |C’| = yn, there is a rainbow coloring of E4 using AU C".

Our goal is to color everything so that in the end, we're left with some C’ C C that we can absorb into
A. But we also have to color the edges in B. We’ll eventually do this using Lemma 1.3, but that means B
can’t have the exact same size as Ep — we’ll have to have a few more colors (specifically, an extra color
for each component) so that we have one extra color and can use Lemma 1.3. But then the problem is that
we’ll also be left with some colors in B, and B does not have the nice property of being absorbed by A. So
to deal with this, we’ll need C to absorb B first, and then we’ll have some leftovers in C' that get absorbed
by A.
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How do we do this? This is what will happen in the area around our special set W,.. We’ll have some colors
B* and D* left over from B and D, and then we’ll use Lemma 2.8 to rainbow-color W, (and maybe its
boundary edges) with colors in B* U C' U D*, such that all the colors in B* U D* get used.

And after this step, we’ve used all the colors in B and D, so we're left with some C’ C C. And then we can
use the outcome of Lemma 2.7 to color F4 with AU C'. [l
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