Pair constructions for hypergraph Ramsey numbers
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September 22, 2023

This is based on joint work with David Conlon, Ben Gunby, Jacob Fox, Dhruv Mubayi, Andrew Suk, and
Jacques Verstraete.

§1 Background

Today, we’ll talk about lower bound constructions for the Ramsey numbers of 3-uniform hypergraphs. First,
we’ll give some background — we probably already think Ramsey numbers are interesting, but we’ll now
see why 3 is interesting, and what we know about lower bounds.

§1.1 Hypergraphs

Definition 1.1. A k-graph (or k-uniform hypergraph) is a generalization of a graph where edges are
(unordered) k-tuples of vertices — in other words, a k-graph is an object H = (V, E) with E C (‘,;)

Here are some examples of hypergraphs.

Example 1.2

The complete k-uniform hypergraph on n vertices, denoted KT(Lk), is the hypergraph where we have n
vertices and an edge for every (}) k-tuple.

Example 1.3

The complete k-partite k-graph Kflk)n is the blowup of a single edge — we have k vertex sets, each

with n vertices, and all the edges consisting of one vertex from each set.
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Example 1.4

The k-uniform tight cycle on s vertices, denoted C’gk), is obtained by taking s points on a circle as our

vertices and drawing an edge for every consecutive k points.

Example 1.5

The star Sék) consists of s + 1 vertices and (kfl) edges; we have a single distinguished vertex, and we
draw an edge for all k-tuples containing that vertex.

We'll look at the Ramsey numbers of these hypergraphs — we’re most interested in Ramsey numbers of
complete k-graphs, but the others are interesting as well (and we understand some of them better).

§1.2 Ramsey numbers

Definition 1.6. Given k-graphs Hi, ..., H,, their Ramsey number r(#1, ..., H,) is the smallest n such

that any r-coloring of the edges of quk) contains a monochromatic H; in color i for some 1.

Theorem 1.7 (Ramsey's theorem)

For any collection of hypergraphs Hi, ..., H,, their Ramsey number r(H1,...,H,) is finite.

In other words, given any Hi, ..., H,, there’s some large number n that guarantees that no matter how
we color our n-vertex complete k-graph, we’ll find at least one of these monochromatic structures (in the
correct color).

Question 1.8. How big are these Ramsey numbers quantitatively?

(

We're particularly interested in r( K Sk), Kt(k)) is; we’ll denote this by r4(s,t) for convenience.
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§1.3 Known bounds for graph Ramsey numbers

We’ll now talk about the previously known bounds for hypergraph Ramsey numbers; we’ll first start with
graph Ramsey numbers (i.e., the case k = 2).

In the diagonal case — where we're interested in ry(t,t) — we now know that
V2 < oty t) < 3.999,

(The upper bound is a spectacular recent breakthrough of Campos, Griffiths, Morris, and Sahasrabudhe.)
So broadly speaking, we know that r5(¢,¢) is exponential in ¢, but we don’t know the correct base of the
exponent.

In the off-diagonal case, we fix s and take t — oco. For a long time, we were stuck at

t(erl)/Q S; 7’2(8,75) g 51

(we’re dropping log factors in these bounds). But recently this year, we essentially solved r2(4, t) — Mattheus
and Verstraete (in 2023) showed that
ro(4,t) =< 3.

§1.4 Known bounds for hypergraph Ramsey numbers

In the case of graph Ramsey numbers, we have a somewhat big gap between the upper and lower bounds
— the two bounds have different bases of their exponents. But the gap for hypergraphs is actually much
bigger. For k = 3, the best bounds we have are

22" < py(t, 1) < 227,

(The lower bound, similarly to the k = 2 case, is probabilistic — we take a random coloring.)

So starting from k = 3, we don’t even know the correct tower height — the two bounds have a gap of 1 in
tower height.

But the good news is that this gap doesn’t get any bigger as we increase the uniformity (i.e., we have a gap
of 1 in tower height of 1 for all k > 4) — for all k > 4, we know

2rk,1(5t,€t) < ’I“k(t,t) < 27“;9,1(15,15)’@—1

(for some €). So we can bound r(t,t) both above and below by something exponential in Ramsey numbers
of the previous uniformity, which means the tower height increases by 1 when we increase uniformity. (The
lower bound is due to Erdos—Hajnal — called the stepping up lemma — and the upper bound is due to
Erdés-Rado.)

This means k = 3 is in some sense the critical case — if we can understand the tower height for £ = 3, then
we can step up to any higher uniformity. We’ll focus on lower bounds because for a long time, people have
believed that the upper bound for r3(t,¢) should be the truth (i.e., r3(¢,¢) should be double-exponential).
One reason to think this is that when we have four colors, then we do get something double-exponential —
we know that

ra(t,t,t,t) = 22"
(this is due to Hajnal). So we don’t know what happens for 2 colors, but we do know that we get double-
exponential behavior for 4, and we might expect that the number of colors shouldn’t affect the tower height.
In fact, proving that r3(¢,t) is double-exponential was one of Erdés’s problems.

Question 1.9 (Erdés $500). Prove that r3(t,t) = 920

Today, we’ll talk about some ideas for improving lower bounds for 3-uniform Ramsey numbers.
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§2 Pair constructions

The bound rs(t,t) > 20(t%) g proven using a random coloring. But there’s another style of coloring that’s
often quite useful; we’ll first see this construction for the off-diagonal case, but it turns out to actually also
be useful for the diagonal case.

§2.1 The off-diagonal case

Theorem 2.1 (Conlon—Fox-Sudakov)
We have r3(4,t) > 2%(tlost),

This improves previous work of Erdés—Hajnal that showed r3(4,t) > 222(t) ' We'll start by proving this result,
to get some idea of how these proofs work.

Theorem 2.2 (Erdés—Hajnal)
We have r3(4,t) > 2%,

Proof. We start with a random tournament T on n = 2 vertices (for some c) — i.e., a random orientation
of the complete graph. We then use this graph structure to define a hypergraph coloring x of ([g]). For
each triple uvw, we look at uvw in our tournament, and there’s two possibilities — it forms either a cyclic
triangle or a transitive triangle. If it’s a cyclic triangle then we color uvw red, and if it’s a transitive triangle
then we color it blue.

u U u

LS

The beautiful property of this hypergraph coloring is that it can’t have a red 4-clique, because we can’t
have too many cyclic triangles among four vertices — every vertex has either in-degree or out-degree 2, and
if u has out-edges to both v and w, then wvw is not a cyclic triangle. This means we’ve deterministically
guaranteed that there is no red 4-clique.

The randomness comes in to show that there’s no big blue clique. A blue clique on t vertices in xy would
correspond to a set of ¢ vertices in our tournament for which all triples are transitive, meaning that the entire
set of ¢ vertices has to be transitive. This is very unlikely — for a given set of ¢ vertices, the probability it

is transitive is |
t!

2(2)

Plvy, ..., v transitive] =
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(we first choose an order of the vertices, and then we must orient all edges according to it). The term of
t! is tiny (compared to the denominator), so we end up with the same computation as in the probabilistic
proof for the graph lower bound. So with positive probability there’s no blue t-clique in y, and therefore we
get r3(t,t) > n. O

§2.2 Pair constructions and pair complexity

The idea of Conlon-Fox-Sudakov to get 2°(t108%) is that there’s actually a whole family of constructions you
can build that look like this. We won’t describe exactly what their construction is, but we’ll give a general
definition of the family we consider.

Definition 2.3. A 3-uniform pair construction is a coloring : ([g”]) — {red, blue} such that x factors
through two functions f: ([’;]) — [p] and g: [p]* — {red,blue} — i.e., for all u < v < w we have

X(u, v,w) = g(f (wo), f(vw), f(wu)).

In other words, a pair construction is a coloring that we can induce from a 2-uniform coloring — we color a
graph with finitely many colors (corresponding to f: ([Z]) — [p] — here p is the number of colors), and then
use some deterministic rule to lift this to a hypergraph coloring (corresponding to g: [p]> — {red, blue}).

We'll use x4 to denote the pair construction corresponding to f and g.

Remark 2.4. This definition generalizes naturally to higher uniformities as well.

Example 2.5

The Erdés—Hajnal construction is a pair construction with p = 2 (we can represent a tournament as an
edge-coloring of K,,, where we color an edge based on whether it’s directed from the smaller to bigger
or bigger to smaller vertex).

The construction by Conlon—-Fox—Sudakov is also a pair construction, where p is logarithmic in n rather
than constant.

Definition 2.6. Given a coloring x: ([g]) — {red, blue}, the pair complexity of x is the smallest p such
that x can be written as x4 for some f: ([g}) — [p] and g: [p]® — {red, blue}.

Note that every coloring y is a pair construction for sufficiently large p — if p is large, then we can choose f
such that from (f(uv), f(vw), f(wu)) we can read off the original triple (u,v,w), which allows us to define
g. So we are really interested in what we can do with small pair complexity.

It turns out that most 3-uniform Ramsey constructions that we know of have constant or logarithmic pair
complexity; in contrast, a random construction would have linear pair complexity.

Question 2.7. Can all 3-uniform Ramsey bounds be proven with a construction with ‘small’ pair
complexity, or do we ever need a construction with e.g. linear pair complexity?

If we take ‘small’ to mean constant, then there’s an easy answer — we can’t do very much with constant
pair complexity. The reason for this is that if we have a constant number of colors in the f-layer (i.e.,
our graph coloring), then we can use multicolor Ramsey to find monochromatic cliques there, which will
produce monochromatic cliques in x as well; this means the best constructions we can get this way will be
exponential in ¢t. (The Erdés—Hajnal construction used constant pair complexity and got an exponential
bound; and here we’ve seen this is the best we can do.)
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But with logarithmic pair complexity (where by ‘logarithmic’ we mean logarithmic in the number of vertices
— i.e., p<logn), this doesn’t happen; we might be able to get any bound we could want.

Remark 2.8. For comparison (to see what sorts of bounds we would like to prove), the best-known
upper bound for r3(4,t) is
ra(4,t) < 20@ 1og?),

So we still have a gap between the upper and lower bounds; in particular, the possible range we have
for r3(4,t) overlaps with the one for r3(t,t).

Remark 2.9. The construction by Conlon—Fox—Sudakov nicely interpolates between the off-diagonal
and diagonal case as well — it shows that for any s and ¢, we have

Tg(s,t) > QQ(stlog(t/s)).

In some sense, this means the lower bound of 20*) in the diagonal case should be on the same level
of ‘difficulty’ as the bound of 22(1°g) in the off-diagonal case (in the sense that both come from the
same construction). So if we improve the bound in the off-diagonal case, we might be able to improve
it in the diagonal case as well.

§2.3 Stepping up constructions

Another example of a construction with logarithmic complexity is the stepping up construction.

Suppose that x is any stepping-up coloring, as defined in the morning — this means we have a (k — 1)-
uniform coloring of [m] and want to define a k-uniform coloring of {0,1}". To do so, for u,v € {0,1}™
we define 6(u,v) as the first bit at which binary strings u and v differ. Then for each v; < --- < v, we
define x(v1,...,vx) based on the pattern formed by §(v1,v2), 6(va, v3), ..., §(vg_1,vk) and the color of this
(k — 1)-tuple in the original coloring. This can be used to prove, for example, the lower bound

rs(t,t,t,1) > 22"

(the four-color double-exponential lower bound mentioned earlier).

Such constructions can be viewed as pair constructions, with f(uv) = d(u, v); this means we have logarithmic
pair complexity (since if there’s n = 2™ vertices, there’s m = logn possible labels).

§2.4 Some results

One result in this direction (previous work with Jacob Fox) is a proof of the Conlon-Fox—Sudakov bound
for sparser hypergraphs.

Theorem 2.10 (Fox—He)

For any s > 3, we have
T‘(S(g),Kt(g)) > 2Q(stlog(t/s))‘

S

Recall that S§3) is obtained by taking a single vertex and only putting in edges that contain this vertex, as
opposed to putting in all edges — this means it has only quadratically many edges, rather than cubically

)
is much sparser. We might intuitively expect that the Ramsey number for K 8(3) should be bigger in order

many. Still, we get the same lower bound as for K §3 in the Conlon—Fox—Sudakov result, even though S£3)

Page 6 of 9



Talk by Xiaoyu He (September 22, 2023) Pair constructions for hypergraph Ramsey numbers

than the one for Ss(g) (since K§3) is much denser, so it should be easier to avoid); so this is another reason
to think that the Ramsey numbers for complete hypergraphs should be bigger than the current best lower
bound.

This construction again has logarithmic pair complexity — there’s some delicate way of coloring pairs that
guarantees you never have a red star.

The authors have been trying to generalize this kind of construction as much as possible and see what we
can do with it — what’s the best possible bound we can prove? The following result is in some sense the
most general lower bound we can expect to prove with this method:

Theorem 2.11
If H satisfies the property that every pair homomorphic image of H contains a Berge cycle, then

T’(H, Kt(g)) > 2Q(tlogt)'

(The authors believe that this is exactly the property of H that characterizes when you can prove lower
bounds of this type using a random pair construction — one where we choose f uniformly at random, and
p is logarithmic.)

First, let’s talk about what this property means.

Definition 2.12. A pair homomorphism f: H — G (for two 3-uniform hypergraphs H and G) is a
function f: (”(f)) — v(@) such that if uvw is an edge of H, then f(uv)f(vw)f(wu) is an edge of G.

(This is a new concept that’s tailored towards understanding pair constructions. We're lying a bit in this
definition — we actually need to order H and orient G. We’ll sweep this under the rug; but some things
will look trivial without it, and they don’t look trivial when you take it into account.)

Example 2.13

There is a pair homomorphism from the star on 4 vertices to the ‘loose triangle’ on six vertices.

v VU2
(] o
VU3 e e VU
uU3 o o UlU2
Uy e o U3
(] [
U uju3

Pair homomorphisms generally take something tight and turn it into something loose.

Definition 2.14. A Berge cycle is a cycle which allows both tight and loose moves — in other words,
you put points on a circle and you get to choose edges by taking certain consecutive triples, as long as
every two adjacent edges overlap.
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The idea behind Theorem 2.11 is that if every pair-homomorphic image of H contains a cycle, we can find
a pair construction y where g avoids all cycles of length at most v(H) in red, and this will mean we won’t

have a red H (deterministically). Then showing that we don’t have a blue Kt(g) is a probabilistic argument.

§3 Linear hypergraphs
Question 3.1. If H doesn’t satisfy the property in Theorem 2.11, do we expect that the bound is false?

The authors thought that this might be the case, and then immediately disproved it — even though Theorem
2.11 is the limit of one kind of construction, we can still use other methods to get bounds for hypergraphs
that don’t satisfy this condition at all.

Definition 3.2. A hypergraph is linear if every two edges intersect in at most one vertex.

Theorem 3.3
For all ¢ > 1, there exists a hypergraph H which is linear and such that r(H, Kt(3)) > 2(logn)

This doesn’t quite answer Question 3.1. But the point is that we have a system for proving lower bounds
using random pair constructions, and this system does nothing for linear hypergraphs — you can map a
linear hypergraph to whatever you want under a pair homomorphism, even a single edge. So you can’t hope
to avoid a linear hypergraph using this kind of machinery; and yet we can still prove lower bounds better
than the easy polynomial ones.

Remark 3.4. The construction for Theorem 3.3 is also a pair construction with logarithmic pair com-
plexity (based on stepping up), but here f is very deterministic (unlike the random pair constructions
from earlier).

§3.1 Some further questions

Question 3.5. Is Theorem 3.3 true for almost all linear hypergraphs H?

(More precisely, by ‘almost all’ we mean that you fix ¢ and a number of vertices n > ¢, and sample from all
linear hypergraphs with this number of vertices.)

The proof of Theorem 3.3 does involve sampling H randomly, but there we sample from the Erdés—Rényi
graph GG (n, %) and then delete some edges. The authors believe that if actually sampling H uniformly at
random would also work; but proving this is a bit tricky.

Here’s another question, which is probably harder:
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Question 3.6. Is Theorem 3.3 true for the Fano plane?

We still don’t know superpolynomial lower bounds for the Fano plane — any lower bound r(F, Kt(g) ) > )

would be interesting.

Finally, here’s one final question; if we knew the answer, it’d probably tell us whether we should keep going
with pair constructions or try something else altogether.

Question 3.7. We know that t2(1) < r(C8¥) \ e, K1) < 20(t1og?) Which is correct?

This is the only 5-vertex hypergraph for which we don’t know whether the answer is polynomial or exponen-
tial. It looks exactly like a tight path, except that you identify the last two vertices; and pair homomorphisms
don’t se that. So somehow we need a different way of distinguishing the two.
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