
Hypergraph Ramsey
Talk by Xiaoyu He
Notes by Sanjana Das

September 22, 2023

§1 Introduction

The fundamental question we’ll explore today is the growth rate of hypergraph Ramsey numbers.

Definition 1.1. A k-uniform hypergraph (or a k-graph) is an ordered pair H = (V,E) where E ⊆
(V
k

)
— in other words, a k-graph consists of vertices and edges such that each edge is a k-tuple of vertices.

Definition 1.2. Given k-graphs H1, . . . , Hr, their Ramsey number R(H1, . . . ,Hr) is defined as the
smallest n such that any r-coloring of the edges of a complete k-graph on n vertices contains a copy of
Hi in color i for some i.

In other words, we have a giant complete graph (with n vertices), and no matter how we color its edges,
we should be able to find one monochromatic object. (Of course we can’t expect to find more than one,
because the k-graph could be colored with just one color.)

Theorem 1.3 (Ramsey 1930)
For any hypergraphs H1, . . . , Hr, the Ramsey number R(H1, . . . ,Hr) is finite.

We can think of Ramsey’s theorem as ‘higher-order pigeonhole’ — the pigeonhole principle states that if
we have enough things and we color our things with finitely many colors, then we can find lots of things of
the same color. Ramsey’s theorem is a generalization where instead of coloring the things themselves, we
color k-wise relations between the things (and we want to find lots of things such that all k-wise relations
between them have the same color) — the pigeonhole principle is the case k = 1.

Example 1.4
Here are some examples of applications of Ramsey’s theorem:

• Any long sequence of real numbers has a monotone subsequence of length 1000. (This comes from
applying Ramsey’s theorem with uniformity 2.)

• Any large matrix over R has a 1000× 1000 submatrix where all 10× 10 ranks are the same. (This
might need a bipartite version.)

• Given any large graph, we can find 1000 linear-sized sets such that all pairs of these sets are
ε-regular and have density within ε of each other.

So far we’ve only talked about Ramsey’s theorem qualitatively, but we’re really interested in how these
Ramsey numbers grow. We’ll define a few natural hypergraphs to focus on.

Page 1 of 13

Hypergraph Ramsey Talk by Xiaoyu He (September 22, 2023)

Definition 1.5. We use K(k)
t to denote the complete k-graph on t vertices, which has all

(t
k

)
edges.

Definition 1.6. We use K(k)
t,...,t to denote the complete k-partite k-graph with t vertices in each part —

in other words, the t-blowup of a single k-edge.

Definition 1.7. We use S(3)
t to denote the star with t + 1 vertices and

(t
2
)

edges — the 3-graph with
vertices {v, w1, . . . , wt} and edges vwiwj .

We can think of S(3)
t as a cone over the complete 2-graph Kt.

v

For most of this talk, we’ll focus on uniformity 3; but several things can be generalized to higher uniformities.
There’s several generalizations of cycles to hypergraphs; the one we’ll use is tight cycles.

Definition 1.8. The tight cycle C(k)
n is defined as the k-graph we get by writing n points on a circle

and taking our edges to be all consecutive k-tuples.

Definition 1.9. A linear hypergraph is a hypergraphH such that |e1 ∩ e2| ≤ 1 for all edges e1, e2 ∈ E(H).

We’ll mostly focus on the Ramsey numbers of complete hypergraphs of uniformity 3, but we’ll also look at
some of these other hypergraphs and see how they relate.

§1.1 Some techniques

First, here’s a brief overview of some of the techniques involved in bounding Ramsey numbers.
For lower bounds, techniques involve random colorings, induced colorings (where we color an underlying
graph randomly, and then color our hypergraph in a way induced by the graph coloring), and stepping up
(which lets you lift lower uniformity hypergraphs to higher uniformity).
For upper bounds, for graphs there’s the Erdős–Szekeres greedy embedding algorithm. For hypergraphs,
there’s a few different ways to try doing a greedy embedding — for example, in uniformity 3, you can embed
by vertex (embedding one vertex at a time), by pair (embedding one element of the 2-shadow at a time), or
by triples (adding a single edge at a time). It turns out that embedding one vertex at a time is the worst,
but the other two methods both give good bounds in different regimes.

Page 2 of 13

Talk by Xiaoyu He (September 22, 2023) Hypergraph Ramsey

§1.2 Known results

Definition 1.10. We use rk(s, t) to denote the k-uniform Ramsey number for a s-clique and a t-clique.

We’ll mostly focus on r3(t, t).

Theorem 1.11
We have 2Ω(t2) ≤ r3(t, t) ≤ 22O(t) .

The upper and lower bounds in this theorem have a gap in tower heights, which is somewhat unsettling. But
the good news is that if we figured out this gap, we’d be able to lift both bounds to all higher uniformities
as well, using the following theorem.

Theorem 1.12
For all k ≥ 4, we have

2rk−1(εt,εt) ≤ rk(t, t) ≤ 2rk−1(t,t)k
.

(The bounds here may suppress constant factors in the exponents.)
This means that starting from uniformity k = 4, when we go from uniformity k − 1 to k, both our upper
and lower bounds increase in tower height by 1. So if we could settle the tower height for k = 3, then we
could settle it for all uniformities.

§2 Upper bounds

We’ll now talk in more detail about proving upper bounds (focusing on uniformity 3).

§2.1 Embedding vertices

The first technique we can try is greedily embedding vertices. Just like in the Erdős–Szekeres proof for
k = 2, we start by picking a vertex v. In Erdős–Szekeres we looked at a monochromatic neighborhood of
v. Here we’ll look at the link of v — the ordinary graph on the remaining vertices where we color each
edge uw with the color of vuw in our original 3-graph. (This is an analog of the neighborhood for higher
uniformities.)

v

Then by graph Ramsey, if the original 3-graph had N vertices, then in this link there exists a monochromatic
clique of size at least 1

2 logN . We’ll then consider only the 3-graph formed by these vertices (and attempt

Page 3 of 13

Hypergraph Ramsey Talk by Xiaoyu He (September 22, 2023)

to find either a (3-uniform) (t− 1)-clique of the same color — to which we can add v to get a t-clique — or
a t-clique of the opposite color).
But the problem is that we lose a log at each step — we started with N vertices and ended up with logN
after embedding just one vertex, and each additional vertex we embed introduces another log. This means
we get a bound of roughly

r3(t, t) ≤ 444···
,

with a tower height of t. (We can replace 4 with 3.999 now, but this is still a pretty bad bound.)

§2.2 Embedding pairs

Instead of embedding vertices as above, we’ll embed pairs of vertices, using an auxiliary structure A (which
will be a graph). We start by pulling out two vertices v1 and v2 of our hypergraph, and we look at all edges
v1v2u containing this pair. At least half of these edges will have the same color; let’s say this majority color
is red. Then we’ll color the edge v1v2 in A red, and we’ll throw away all the vertices u for which the edge
v1v2u was blue. So by losing a factor of 2 in our candidate set of vertices, we’ve drawn one edge in A.

v1 v2χ
v1 v2χ

v1 v2A

Then we pull out a new vertex v3, and draw the edges v1v3 and v2v3 in A. For the edge v1v3, we check
whether the edges v1v3u in our hypergraph coloring χ are more commonly red or blue (over all remaining
vertices u — i.e., vertices other than v2); we color the edge in A with this majority color, and throw out
all vertices u with the less common color. And then we do the same for the edge v2v3, and so on. (We’re
essentially doing an analog of Erdős–Szekeres where instead of embedding single vertices, we’re embedding
a 2-shadow.) Every time we draw an edge in A, we’re losing a factor of 2.
Eventually, if we started out with enough vertices, then in the end our auxiliary structure A is a complete
graph colored with two colors, with the property that for all vertices u < v < w (where we move vertices
into A in order), the color of uvw in χ is the same as the color of uv in A. (This is because when we move
over v and draw the edge uv in A, we throw away all vertices w still in our candidate set for which uvw has
the wrong color, so we can’t add such a vertex to A later.)
This means a monochromatic graph clique in A gives a monochromatic hypergraph clique in χ — if we can
find t− 1 vertices v1, . . . , vt−1 such that every edge vivj between them in A is red, then we can choose any
vertex w that comes after them, and v1, . . . , vt−1, w form a red t-clique in our 3-graph.
So it’s enough to ensure that A has r2(t, t) vertices (then we can find a monochromatic t-clique in A and
win). And since we pay a factor of 2 for every edge we build in A, we end up getting a bound of

r3(t, t) ≤ 2(r2(t,t)
2).

This is the same method used to prove the general upper bound of rk(t, t) ≤ 2rk−1(t,t)k (the exponent may be
k−1 in place of k) — we do the same proof using the (k−1)-shadow (so A is a (k−1)-uniform hypergraph).
This proof gives us r3(t, t) ≤ 216t ; in fact, the constant 16 has been improved.

Page 4 of 13

Talk by Xiaoyu He (September 22, 2023) Hypergraph Ramsey

Theorem 2.1 (Conlon–Fox–Sudakov)
We have r3(t, t) ≤ 24t .

(We may be dropping lower-order terms in this statement.)
The idea for the improvement is that we don’t actually have to build every edge in our auxiliary graph A
— instead we can choose only certain edges to build, making our choices adaptively based on what colors
we’ve seen so far. This turns into the vertex online Ramsey game — a game where we build edges one at a
time and an adversary colors each red or blue, and we want to find a monochromatic clique. Here we have
essentially the same situation, except that order matters — when we introduce a new vertex v we can only
build edges in A out of that vertex, and once we leave this vertex and add a new one, we can never come
back and fill in the edges at v that we left out. So we have less adaptiveness here than in the vertex online
Ramsey game, but as far as we know, the behavior is the same — so in some sense, we’ve reduced upper
bounds for 3-uniform hypergraphs to bounds on a certain kind of graph Ramsey number.
Here’s a formulation of how we run this algorithm (i.e., choose which edges to look at).

Algorithm 2.2 — Every time we introduce a new vertex into A, we label it with a string, in the following
way. We start off by labelling v1 with ∅. When we introduce the ith vertex vi:

• First, label vi with ∅.
• If the label of vi collides with the label of one of the previous vertices (i.e., a vertex vj with

1 ≤ j ≤ i− 1), then we build the edge vivj and ask the adversary its color; we append this color
to the current label of vi.

• We repeat the above step until the label of vi doesn’t collide with any of the previous labels.

(For our purposes, asking the ‘adversary’ for the color of vivj corresponds to considering the majority color
of vivju over the remaining candidate vertices u, as above.)
So we start by introducing v1 with label ∅.

v1: ∅

Then when we introduce v2, we initialize its label to ∅ as well. However, this creates a collision, so we build
the edge v1v2; if this edge is red, then we update the label of v2 to r.

v1: ∅ v2: ∅ v1: ∅ v2: r

Then when we introduce v3, we first label it ∅ as well. This again creates a collision with v1, so we build
the edge v1v3 and check its color; if this color is red, then we change the label of v3 to r. Now this collides
with v2, so we build the edge v2v3; if its color is blue, then v3 now gets the label rb.

v1: ∅ v2: r

v3: ∅

v1: ∅ v2: r

v3: r

v1: ∅ v2: r

v3: rb

Page 5 of 13

Hypergraph Ramsey Talk by Xiaoyu He (September 22, 2023)

Now when we add v4, we first label it with ∅. We then build the edge v1v4; if this is red, then we change
the label to r and build the edge v2v4; if this is red as well, then we change the label to rr.

v1: ∅ v2: r

v3: rbv4: ∅

v1: ∅ v2: r

v3: rbv4: r

v1: ∅ v2: r

v3: rbv4: rr

This process ensures that every vertex gets a different string, so once we’ve built 4t vertices, some vertex
will have to have a string of length 2t, and such a string will have at least t reds or at least t blues. We can
use this to obtain our monochromatic t-clique — for example, if we have a vertex v with label rrbr, then its
last neighbor in our graph has label rrb, the neighbor before it has label rr, the one before that has label r,
and the first has label ∅. Furthermore, we know the colors of the edges between all of these vertices (since
each would have collided with all of the previous ones at some point), and we can read off our clique from
the locations of the r’s (here, it’ll be the vertices labelled rrbr, rrb, r, and ∅).

rrbr

rrb
rr

r

∅

Remark 2.3. You can think of this process as essentially Erdős–Szekeres done in a weird reverse order.
Another way to think of it is that we have a sort of type tree going on — every time we add a new
vertex, we ask which half of Erdős–Szekeres we would have been in on the first step, the second, and so
on (where we embed vertices in numerical order) in order to eventually get to the current vertex; and
we only build the edges in the path up the tree at each vertex.

v1

v2

v3 v4

red
neighborhood

blue
neighborhood

red
neighborhood

blue
neighborhood

§2.2.1 The off-diagonal case

We’ll now consider the off-diagonal case — specifically, we’ll look at r3(4, t).

Page 6 of 13

Talk by Xiaoyu He (September 22, 2023) Hypergraph Ramsey

Theorem 2.4
We have 2Ω(t log t) ≤ r3(4, t) ≤ 2O(t2 log t).

Remarkably, this interval overlaps with our interval for r3(t, t) — so we don’t even know that the growth
rate in the diagonal case is bigger than the growth rate in the off-diagonal case.
In order to prove an upper bound, we can again try to run the Erdős–Rado online argument (where we build
edges in an auxiliary graph A). We want our graph A to have either a red triangle or a blue Kt−1 — if A
has a red triangle then our hypergraph has a red 4-clique, and if A has a blue Kt−1 then our hypergraph
has a blue t-clique. So getting a bound on r3(4, t) corrresponds to putting in the right off-diagonal graph
bound, where we again pay a factor of 2 for each edge — this gives

r3(4, t) ≤ 2(r2(3,t)
2) ≤ 2t4−o(1)

.

Remark 2.5. This is the bound we get from the Erdős–Rado argument without playing the game (i.e.,
making the choices of which edges to build adaptively). People haven’t really thought about what
would happen if you optimized the game in this argument, because there’s another improvement we’ll
see soon (and so people optimize that improvement and the game simultaneously). But just optimizing
the game here might improve t4 to t3.

However, this is quite inefficient, and Conlon–Fox–Sudakov found an improvement. The idea is that we
don’t want to treat red and blue edges equally — we want to weight so that we pay a much heavier cost for
building red edges than blue edges. (This makes sense because we win if we build a red triangle or a blue
Kt−1, so we would expect to build much fewer red edges than blue edges.) This means we color the edge
vivj in A red if at least p of the edges vivju in our hypergraph are red (over all candidate vertices u), and
blue otherwise (for some weight p — in the diagonal case we used p = 1

2).
So there’s three ideas we’ve seen here — greedy embedding by pairs, making our choices adaptively, and
weighting by p in the off-diagonal case (it turns out the optimal value of p is around 1

t). Roughly speaking,
this is the most common way to get upper bounds for off-diagonal Ramsey numbers; but there’s another
way that works for very sparse hypergraphs, which we’ll see next.

§2.3 Bounds for sparse hypergraphs

We’ll now consider off-diagonal Ramsey numbers r(H,K(3)
t), where H is a fixed 3-graph and we’re interested

in the growth rate as t→∞. When H is ‘sparse’ or ‘blowup-like’ in some sense, then there’s a third kind of
greedy embedding argument we can use — where we add a single edge at a time, using supersaturation. For
example, one specific H we’ll look at is K(3)

s,s,s — this is the simplest possible blowup (it’s just the blowup of
a single edge).

Definition 2.6. Given 3-graphs H and G, we define H(v,G) to be the blowup of H where we replace
the vertex v ∈ V (H) with a copy of G.

In other words, we take a single vertex v in H, clone it (so that its clones have the same adjacency relations
with the rest of H), and put a copy of G in these clones.

Example 2.7
If H and G are both a single edge, then H(v,G) is the 5-vertex graph with vertices u, w, v1, v2, v3 and
edges uwv1, uwv2, uwv3, and v1v2v3.

Page 7 of 13

Hypergraph Ramsey Talk by Xiaoyu He (September 22, 2023)

u

v

w

H

1

2 3
G

u w

v1

v3 v2

H(v,G)

For this operation, we can prove bounds such as the following.

Theorem 2.8
For any 3-graphs H and G, we have

r(H(v,G),K(3)
t) ≤ r(H,K(3)

t)v(H) · r(G,K(3)
t).

Corollary 2.9
If H is any iterated blowup of a single edge, then we have r(H,K(3)

t) ≤ tOH(1).

We’ll consider iterated blowups, the 3-graphs we can form by using this operation repeatedly (so we’re
allowed to blow up vertices, and we’re allowed to put other 3-graphs (which we can build in this way) in
those blowups of our vertex).

Example 2.10
One example of an iterated blowup is the graph formed by taking a complete tripartite graph, then
putting a complete tripartite graph in each of its parts, then putting a complete tripartite graph in each
of these smaller parts, and so on.

Proof of theorem. Let n = r(H,K(3)
t) and m = r(H,K(3)

t)v(H) · r(G,K(3)
t), and suppose that χ is a red-blue

coloring of our giant graph K
(3)
m with no red H(v,G) or blue K(3)

t . Then every size-n subset of vertices has
a red copy of H. The idea is that we’ll count the number of red copies of H in our big coloring, and since
we can imagine building a copy of H by first choosing H \ v and then adding in v, we’ll get a lower bound
on the average number of extensions of a red H \ v into H in our coloring; we’ll then take a red H \ v with
lots of extensions and use it to find a red H(v,G).
First, we can bound the number of red copies of H in our coloring by

#copies of H ≥
(m
n

)(m−v(H)
n−v(H)

) ≥ (m
n

)v(H)

(since each of the
(m
n

)
n-vertex subsets has a copy of H, and each copy of H is overcounted

(m−v(H)
n−v(H)

)
times

— the number of ways to extend it to a n-vertex subset). Meanwhile, the number of copies of H \ v is at
most mv(H)−1, and we have (

m

n

)v(H)
≥ mv(H)−1 · r(G,K(3)

t)

by the way we defined m (this is true for all large enough m).

This means there exists a red H \ v which can be extended to a red H in at least r(G,K(3)
t) ways — this

means there are at least this many potential vertices v we could use. Then we can find a red copy of G

Page 8 of 13

Talk by Xiaoyu He (September 22, 2023) Hypergraph Ramsey

among these potential vertices v (since they don’t have a blue K(3)
t), and adding them to our red H\v gives

a red H(v,G).

So when H is an iterated blowup of an edge, r(H,K(3)
t) is polynomial in t. A similar statement holds when

H is linear, though with the clique replaced with a complete tri-partite 3-graph.

Theorem 2.11
If H is linear, then r(H,K(3)

t,t,t) ≤ tOH(1).

Remark 2.12. It matters that we have complete tri-partite 3-graphs here instead of cliques — this
isn’t true for cliques (there exist quasipolynomial lower bounds for the Ramsey numbers of some linear
hypergraphs H against K(3)

t).

Proof. We induct on the number of edges of H. Suppose that this statement is true for H \ e (where e is
some edge of H), i.e., that there exists a constant c such that

r(H \ e,K(3)
t,t,t) ≤ tc

for all t. Now let e = uvw, so that all other edges in H contain at most one of u, v, and w (because H is
linear). The main idea is to again use supersaturation — given a copy of H \ {u, v, w}, then the choices of
which vertices we use for u, v, and w to extend it to a copy of H\ e are essentially independent (they don’t
interact with each other). So using supersaturation, we can show that if m is sufficiently large, then we can
find a copy of H \ {u, v, w} which extends to at least m3−ε copies of H \ e. Since the choices of u, v, and w
are independent, this means the number of choices for each has to be at least m1−ε (and all combinations
of these choices give us a copy of H \ e).
So if we have a single red edge among the candidates for u, v, and w, then we’re done — this gives us a red
copy of H (choosing those candidates). Otherwise, all edges between them are blue, so we get a complete
tripartite 3-graph in blue.

§2.4 Another upper bound

We’ve seen several methods that give upper bounds; the most naive way of generalizing Erdős–Szekeres is
the worst, but the other methods give good bounds in different cases. Finally, here’s one more upper bound
that doesn’t fit into the above methods.

Theorem 2.13
We have r(K(3)

t,t,t,K
(3)
t,t,t) = 2Θ(t2).

The proof of the upper bound is Kővári–Sós–Turán for hypergraphs — we pick the more dense color, and if
n is large enough we can find a complete tripartite graph in this color; up to the constant in the exponent,
this matches the Ramsey lower bound.

Remark 2.14. In general, when we take Ramsey problems for cliques and replace the cliques by
tripartite graphs, then we’re going halfway to Turán problems — we can start doing things like looking
only at the denser color, which we can’t do for cliques.

Remark 2.15. This proof works for higher uniformities too, and should give a bound of 2tk−1 .

Page 9 of 13

Hypergraph Ramsey Talk by Xiaoyu He (September 22, 2023)

§3 Lower bounds

Next, we’ll talk about the three techniques for lower bounds.

§3.1 Random colorings

First, we’ll get a lower bound on r3(t, t) using a purely random coloring — suppose that we have n vertices,
and we color each edge red or blue with probability 1

2 . Then we have

E[#red cliques] =
(
n

t

)
· 2−(t

3) ≈ nt · 2−t3

(ignoring constant factors in the exponent). So if n ≈ 2t2 then this number is less than 1
2 , which means we

win (there exists a coloring with no red or blue t-clique).

This method also gives the lower bound for r(K(3)
t,t,t,K

(3)
t,t,t) in the earlier theorem.

So far, this is similar to the graph case. But what happens if we want to do the same for r3(4, t)? In order
for our random coloring to avoid having a red 4-clique, we need to choose our red probability p to be quite
small; and it turns out that we can only get polynomial lower bounds in this way (using purely random
models). This means in order to get good bounds, we need completely different kinds of ideas.

Remark 3.1. For the diagonal case, the bound of r3(t, t) > 2Ω(t2) from this argument is the best bound
we have — we don’t even have a better constant in the exponent. (We have some induced colorings
which give the same bound but with a worse constant in the exponent, and we don’t have anything
better.)

§3.2 Induced colorings

There’s two magical ideas in this area, due to Erdős and Hajnal — induced colorings and stepping up. We’ll
talk about induced colorings first.

Theorem 3.2 (Erdős–Hajnal)
We have r3(4, t) ≥ 2Ω(t).

Proof. First, we start with a random tournament T (on our vertex set with n = 2Ω(t) vertices) — we take
a complete graph and orient its edges uniformly at random. We then obtain an induced coloring from this
random tournament as follows: for each triple of vertices u, v, and w, we color the edge uvw red if u, v, and
w form a cyclic triangle in the tournament, and blue if they form a transitive triangle.

u

v w

u

v w

u

v w

u

v w

(In general, by an induced coloring we mean that we take a 2-uniform structure, and lift it to a 3-uniform
structure by looking at its induced subgraphs.)

Page 10 of 13

Talk by Xiaoyu He (September 22, 2023) Hypergraph Ramsey

The magic is that we can’t have a red 4-clique in our induced coloring — if we have 4 vertices in our
tournament then each has in-degree or out-degree at least 2, and a vertex and its two out-neighbors (or two
in-neighbors) will not form a cyclic triangle.

On the other hand, if we have a blue t-clique in our graph, then all triples among these t vertices are
transitive, so the entire subtournament on these t vertices must be transitive. This is essentially as unlikely
as a monochromatic clique in a randomly 2-colored graph — the probability of a tournament on t given
vertices being transitive is t! · 2−(t

2), and the t! is a lower-order term, so the first moment calculation works
out just as in the graph case (i.e., the lower bound for r2(t, t) via a random construction). Explicitly, if
n = 2ct (for some c), then with positive probability the hypergraph coloring has no blue t-clique.

Remark 3.3. There are a bunch of generalizations of this argument, which we will discuss in the
afternoon seminar.

§3.3 Stepping up

We’ll now look at the final kind of lower-bound colorings, namely stepping up. The most important example
of stepping up is the recursive bound for rk(t, t) for uniformities k ≥ 4.

Theorem 3.4
For all k ≥ 4, we have rk(t, t) ≥ 2rk−1(εt,εt) (for some ε > 0).

So once we reach uniformity 3, everything afterwards grows in tower height. For k = 3, this doesn’t quite
work, but it almost does — we can use stepping-up to get a similar statement, but it requires more colors.

Theorem 3.5
We have r3(t, t, t, t) ≥ 22Ω(t) .

For two colors, the best lower bound we know is single-exponential in t2; but we can get double-exponential
bounds with four colors. This means we know the exact tower heights for four colors or more for all
uniformities (we can get a matching upper bound by generalizing our earlier proof of the 2-color upper
bound), but we don’t for 2 or 3 colors.
The idea is as follows — suppose we have a (k− 1)-uniform good Ramsey coloring χ of [n]. We want to lift
it to a k-uniform Ramsey coloring ϕ of {0, 1}n (which is exponentially large in n).
To do this, we first need a natural way of going from k-tuples of binary strings (these are the things we’re
trying to color in ϕ) to (k− 1)-tuples of indices in those strings (these are the things that are colored in χ).

Definition 3.6. Given two (distinct) binary strings a, b ∈ {0, 1}n, we define δ(a, b) to be the leftmost
bit at which a and b differ.

In other words, given two strings, we consider the leftmost bit at which one is 0 and the other is 1.

Page 11 of 13

Hypergraph Ramsey Talk by Xiaoyu He (September 22, 2023)

Fact 3.7 — If v1 < · · · < vk are length-n binary strings, then there are at most k − 1 distinct values
among δ(vi, vj) over all i 6= j.

Example 3.8
For the strings 0000, 0001, 0100, 0110, and 0111, we have:

• δ(0000, 0001) = 4;
• δ(0000, 0100) = δ(0000, 0110) = δ(0000, 0111) = 2; the same holds if we replace 0000 with 0001;
• δ(0100, 0110) = δ(0100, 0111) = 3;
• δ(0110, 0111) = 4.

In fact, we can write down explicitly what the k − 1 possible values are — they’re precisely

{δ(v1, v2), δ(v2, v3), . . . , δ(vk−1, vk)}

(it can be shown that all other δ-values are equal to one of these). This is a cute fact that lets us take
k-tuples of strings and pass to (k − 1)-tuples of indices.

Remark 3.9. One way of interpreting this fact is as the statement that a binary tree with k leaves has
k − 1 internal vertices (i.e., non-leaves) — here we think of our k strings as leaves of the tree, and the
levels at which the common ancestors (i.e., the internal vertices) are as the values of δ. (There are k−1
internal vertices, so they occupy at most k − 1 levels.)

0000 0001 0100 0110 0111

000 011

01

0

The idea of stepping up is basically (with one important modification) that we’ll obtain ϕ by taking our
k-tuple of vertices {v1, . . . , vk}, applying δ to get a (k − 1)-tuple, and then applying χ to this (k − 1)-tuple
to get a color (i.e., red or blue). In other words, given any k-tuple of vertices, we get a (k − 1)-tuple using
δ, and then read off our color from the (k − 1)-uniform Ramsey coloring.
But this doesn’t actually work — let’s see why not and how to fix it. For concreteness, let’s take k = 4,
and suppose that χ is a Ramsey coloring of [n] for r3(t, t). Now to find χ(v1v2v3v4) (for vi ∈ {0, 1}n, sorted
so that v1 < v2 < v3 < v4), we want to compute δ1 = δ(v1, v2), δ2 = δ(v2, v3), and δ3 = δ(v3, v4), and then
look at χ(δ1δ2δ3). But this doesn’t actually work — for one thing, δ1, δ2, and δ3 might not all be distinct
(in which case this color is not even defined). So we’ll sometimes use χ to color, and sometimes just use the
pattern formed by the δi — we define

ϕ(v1v2v3v4) =


χ(δ1δ2δ3) if δ1, δ2, δ3 is monotone
red if δ1 < δ2 > δ3

blue if δ1 > δ2 < δ3.

(Note that if v1 < v2 < v3 then δ(v1, v2) 6= δ(v2, v3) — this means that adjacent δi’s are always distinct.
Non-adjacent δi’s don’t have to be distinct, but in the monotone case they are.)

Page 12 of 13

Talk by Xiaoyu He (September 22, 2023) Hypergraph Ramsey

In other words, if our δi’s are monotone (either increasing or decreasing) then we color based on χ; otherwise,
we color based on which non-monotone pattern they form.

Claim 3.10 — This coloring ϕ has no monochromatic K(4)
2t .

Proof. Assume for contradiction that it has a red K(4)
2t ; this means we have 2t vertices v1, . . . , v2t such that

for every four of them — for example, v1 < v2 < v3 < v4 — the edge consisting of these four vertices is red.
There’s two possible reasons this edge could be red — either (δ1, δ2, δ3) is monotone and red in χ, or it’s
increasing and then decreasing. In particular, it can’t be decreasing and then increasing.
Now define δi = δ(vi, vi+1). Then when we scan through v1, . . . , v2t in order, looking at 4 consecutive
vertices at a time, we find that δ1, . . . , δ2t−1 must be monotone increasing up to some point and then
monotone decreasing past that point (since it doesn’t have any decreasing-increasing adjacent pattern). So
either at least half is monotone increasing, or at least half is monotone decreasing.
Consider the larger half, which has at least t vertices. Then in ϕ, all the edges between these vertices must
have been colored according to χ; this means these t vertices form a monochromatic t-clique in χ, which is
a contradiction.

In general, what stepping up (for any uniformity and number of colors) looks like is that we look at the
patterns of the δi’s; for the monotone patterns we color using χ, and we do some combinatorics to find a
way to divide the non-monotone patterns into red and blue such that a monochromatic clique ensures a long
monotone stretch. This works for all uniformities k ≥ 4, with more complicated rules for how to divvy up
the non-monotone patterns.
Why does this break when we’re trying to step up from uniformity 2 to 3, and why do we need to double
the number of colors? Suppose we tried to run this scheme to step up to uniformity 3 — this means we
start with a 2-uniform Ramsey coloring χ of [n] (where n = 2t/2), and we define

ϕ(v1v2v3) = χ(δ1δ2)

for all edges v1v2v3 (since there are no non-monotone patterns of length 2). Then we can’t guarantee
anything about monotone stretches in the δi’s, so this doesn’t work.
So we can’t step up to uniformity 3 with just two colors. But with four colors we can — we define

ϕ(v1v2v3) = (χ(δ1δ2),1δ1<δ2)

(here our colors are (red, 0), (red, 1), (blue, 0), and (blue, 1)). Now a monochromatic clique in ϕ does need
to have monotone δi’s. This means any monochromatic clique in the 3-uniform coloring descends to one in
the 2-uniform coloring, and we win.
So this gives the bound r3(t, t, t, t) ≥ 22Ω(t) , but we don’t know any bound like this for 2 colors. For 3 colors,
we have an ‘in-between’ bound — we have a bound of

r3(t, t, t) ≥ 22(log t)c

for some c (using some kind of lopsided stepping-up). But we still don’t know for 2 or 3 colors exactly what
the growth rate should be.

Page 13 of 13

	Introduction
	Some techniques
	Known results

	Upper bounds
	Embedding vertices
	Embedding pairs
	The off-diagonal case

	Bounds for sparse hypergraphs
	Another upper bound

	Lower bounds
	Random colorings
	Induced colorings
	Stepping up

