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§1 Definitions

We’ll begin by restating the definitions from yesterday’s talk.

• X is a finite set, and 2X the set of subsets of X.
• µp is the p-biased product probability measure on 2X — for each subset A ⊆ X, we have µp(A) =
p|A|(1− p)|X\A|.

• Xp ∼ µp (meaning that Xp is the random variable with distribution given by µp) — so Xp is a p-random
subset of X, meaning that we choose every element of X with probability p independently.

• F ⊆ 2X is an increasing property — whenever A ∈ F , its up-set 〈A〉 := {B ⊆ X | B ⊇ A} must also
be contained in F .

∅

X

A

• We define µp(F) := ∑
A∈F µp(A).

• If F is not ∅ or 2X , then as p increases from 0 to 1, so does µp(F). So there exists a unique pc(F)
where µp(F) = 1/2; this is called the threshold for F .

Theorem 1.1 (Kahn–Kalai Conjecture)
There exists a constant K such that for all X and for all F ⊃ 2X ,

pc(F) ≤ K · q(F) · log `(F),

where q(F) is the expectation threshold and `(F) the size of the largest minimal element of F .

We’ll now review the definition of the expectation threshold. In what follows, assume that A,S ⊆ X and
F ,G ⊆ 2X .
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Definition 1.2. We say that S covers A if S ⊆ A.

In other words, S covers A if A is contained in the up-set 〈S〉.

∅

X

A

S

Definition 1.3. We say G covers F if for all A ∈ F , there exists S ∈ G such that S covers A.

∅

X

G

F

In other words, G covers F if 〈G〉 ⊇ F (where 〈G〉 is the union of the up-sets 〈A〉 over all A ∈ G).
Yesterday, we saw the observation that pc(F) ≥ q if there exists G that covers F such that

∑
S∈G

q|S| ≤ 1
2 . (∗)

If some G satisfies (∗), then we say G is q-cheap.

Definition 1.4. The expectation threshold q(F) is defined as the maximal q for which there exists a
q-cheap cover G.

§2 Overview of the Proof

The theorem we’ll actually prove is the following standard reformulation of the Kahn–Kalai conjecture:

Theorem 2.1 (Reformulation of the Kahn–Kalai Conjecture)
There exists L > 0 such that for all `-bounded H, if p > q(〈H〉), then if we let m = Lp log ` · |X|,

P(Xm contains a member of H) = 1− o(1) as `→∞.
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To say H is `-bounded means that for all A ∈ H we have |A| ≤ `. Here Xm means a random subset of X
with m elements.
For some intuition on why this implies the Kahn–Kalai conjecture, think of H as the collection of minimal
elements of F , so that 〈H〉 = F . Then we’re considering random subsets Xm with Lp log ` · |X| elements;
this is similar to choosing random subsets where we choose each element with probability around Lp log `.
Now if Xm is very likely to contain a member of H, it’s also very likely to contain a member of F (since the
members of H are all members of F). So this provides an upper bound pc(F) . Lp log ` as well. (In the
statement ` is fixed, but L is an absolute constant, so we can take ` to be the size of the largest minimal
element of F .)
To visualize this, we can think of X as a universe, and H as a collection of subsets of X.

H
X

We then sprinkle in m random elements, and the statement says that typically these m elements contain
some member of H.

H
X

First, here is an overview of the proof.
(1) We’ll use W to denote Xm. We choose W little by little — at each step we choose a Wi with
|Wi| = Lp |X| at random (such that the Wi are disjoint), and we set W = W1 tW2 t · · ·. We can
choose as many as log ` of these intermediate sets Wi.

(2) As we choose W little by little, H will evolve as well — we’ll have H = H0 → H1 → H2 → · · ·.
(3) In the end, we want to have W ⊇ S for some S ∈ H with high probability.
(4) We’ll apply a randomized algorithm (where the randomness comes from the choice of Wi) — we

iteratively produce a partial cover U(W ) of H, by building a partial cover Ui(Wi) at each step of the
algorithm and taking U(W ) = ⋃

Ui(Wi). (A cover G of F would mean that every subset in F contains
some subset in G; a partial cover means that we only cover some part of F , not necessarily all of it.)

(5) The main point of the proof is that our partial cover U(W ) will be p-cheap with high probability.
(6) When the algorithm terminates (we’ll see the termination condition later), either:

(1) U entirely covers H, or
(2) W contains an element S ∈ H.
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If we believe this, then we’re done with the proof — consider the sample space for the choice of W . Then
by (5), most of the time U is p-cheap; it’s very unlikely that U is expensive.

U is p-cheap

U is p-expensive

But now we can apply our assumption that p > q(〈H〉) — we know that q(〈H〉) is the largest q that admits
a q-cheap cover of H. So if p > q(〈H〉), then there does not exist a p-cheap cover of 〈H〉. This means if U
covers H, then it must be expensive!
But it is unlikely that U is expensive. So when the algorithm terminates, (1) must be unlikely, which means
(2) occurs with high probability. But (2) is exactly what we’re looking for.

§3 Constructing Ui(Wi)

First we’ll describe how to construct Ui(Wi) in a given step; we’ll then iterate this construction at most log `
times.
In this step, our host hypergraph is Hi−1; suppose Hi−1 is s-bounded for some s (initially H is `-bounded,
but s will change as H changes).
Suppose we’ve chosen Wi (this is done at random). Then we examine all S ∈ Hi−1 and decide whether we
want to cover them or not. First, for each S, we look at all elements of Hi−1 that sit inside Wi ∪ S.

Wi

S

Now of these subsets in Hi−1 inside Wi∪S, we let S′ be the subset with minimal |S′ \Wi| (if there’s multiple,
we choose arbitrarily).

Definition 3.1. Given S and Wi, we define T = S′ \Wi as the minimal (S,Wi)-fragment.

This minimal fragment will be the key gadget of the proof. There are a few key observations:
(1) There must exist some Ŝ ∈ Hi−1 with Ŝ ⊆ Wi ∪ T (by definition — since T is the piece of some S′

that lies outside Wi).
(2) For every Ŝ ⊆ W ∪ T , we must have T ⊆ Ŝ — otherwise, this would violate the minimality of T , as

Ŝ \W would be a smaller fragment:

Page 4 of 7



Talk by Jinyoung Park (September 16, 2022) A proof of the Kahn–Kalai conjecture

Wi

T

Ŝ

So we have the following picture:

Wi

T

Ŝ

This will be the core of what makes our partial cover cheap.
Now we say that S is good if T is large — if |T | ≥ 0.9s. In this case, we put T in Ui. Otherwise, if T is
small then it’s not affordable, so we don’t place it in Ui, and instead we place T in our next hypergraph Hi.
So in this step, for each S ∈ Hi−1 we either add its minimal fragment to Ui(Wi) — which covers S — or
we replace it with a subset whose bound is smaller by a factor of at least 0.9. In particular, this is why our
algorithm will perform at most log ` steps — at the start H is `-bounded, after one step it’s 0.9`-bounded,
after two steps it’s 0.92`-bounded, and so on.

§4 Termination Conditions

Now that we’ve described how to construct our partial cover, we’ll describe when the algorithm terminates.
We terminate the algorithm as soon as some set has minimal fragment T = ∅. If this occurs, then we must
have some Ŝ ∈ Hi−1 sitting entirely in Wi.

Wi

Ŝ

Then we claim we’ve reached our second goal of (2) — that W = W1 tW2 t · · · contains some element of
H. To see this, note that since Ŝ was in Hi−1, it must have been the minimal fragment of some set in Hi−2
(since we only ever insert minimal fragments into Hi−1). This means we had a set in Hi−2, and then Wi−1
“ate” a piece of it and left us with Ŝ.
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Wi−1 Wi

Ŝ

But this set is in Hi−2, so it’s the minimal fragment of some set in Hi−3. We can keep extending backwards
to get a set S ∈ H from the beginning of the process:

Wi−1 Wi· · ·· · ·W1

S

So then we started off with S ∈ H, and some part of it got eaten by W1, then W2, and so on; and its final
part got eaten by Wi. This means W = W1 tW2 t · · · covers S.
On the other hand, suppose this never happens. Then we keep running the process until there’s nothing left
in H. But in every step, we look at all S in Hi−1, and either we add their minimal fragment T to Ui(Wi)
— which covers S — or we add T to Hi (and if we later cover T , that set covers S as well). So if H ends
up empty, then U(W ) = U1(W1) ∪ U2(W2) ∪ · · · covers all sets S originally in H. So we’ve reached our first
goal of (1).

§5 p-Cheapness of U(W )

Now there’s one remaining piece of the proof — that our partial cover U(W ) is cheap with high probability.
The key point is the following:

Lemma 5.1
Let |X| = n, w = Lpn, and suppose H is s-bounded. Then

∑
Wi∈(X

w)

∑
U∈Ui(Wi)

p|U | <

(
n

w

)
L−0.8s.

This implies that the average cost of Ui(Wi) (over all possibilities for Wi) is less than L−0.8s. This can be
used to show that the average cost of U(W ) is small as well, and then Markov’s inequality shows that U(W )
is usually p-cheap.

Proof. We use double-counting. Recall that if U ∈ Ui(Wi), then we must have |U | ≥ 0.9s (since this is our
condition for adding T to our partial cover). For simplicity assume |U | = 0.9s (the calculations are messier
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in the general case). Then the left-hand side becomes

p0.9s
∑

Wi∈(X
w)

∑
U∈Ui(Wi)

1.

But the double summation simply counts pairs (Wi, U) where U is the minimal fragment of somebody
(satisfying the size condition) — so we just want to count pairs (Wi, T (S,Wi)) where Wi ∈

(X
w

)
and S ∈ H,

and |T (S,Wi)| = 0.9s. But this means

p0.9s
∑

Wi∈(X
w)

∑
U∈Ui(Wi)

1 ≤ p0.9s ·
(

n

w + 0.9s

)
· 2s.

To see this, there are
( n

w+0.9s

)
ways to choose W ∪T . Once we’ve chosen W ∪T , we can use our observations

about minimal fragments — for T to be somebody’s minimal fragment, we must have some Ŝ ∈ H with
Ŝ ⊆W ∪ T , and then T must sit inside Ŝ. There’s at most 2s subsets of Ŝ, so at most 2s possible T .
Now this sum is at most

p0.9s ·
(
n

w

)
· (Lp)−0.9s · 2s =

(
n

w

)
· L−0.9s · 2s <

(
n

w

)
L−0.8s.

So we are done.
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