Topological Methods in Combinatorics

TALK BY PABLO SOBERON

NOTES BY SANJANA DAS
September 15, 2023

Today we’ll discuss combinatorial problems that can be solved by topological methods — especially ones
where the topological methods are a bit unexpected.

§1 Colorful Radon

We'll start with the colorful Radon theorem.

Theorem 1.1 (Colorful Radon, Lovasz 1992)

Imagine that we are given d + 1 pairs of points in R?, where each pair is of a different color. Then there
is a colorful partition — a partition of the points into two sets such that each part contains one point
of each color — such that the convex hulls of the two parts intersect.

For example, if d = 2, we have three pairs of points in the plane; we want to split them into two triangles
(each consisting of one point of each color) such that the triangles intersect.

It’s possible to solve this using linear algebra, but we’ll see the topological proof that Lovasz had.

Proof. We’ll sometimes use d = 2 for illustration (so when we say ‘triangle’ we really mean ‘simplex’ in the
general case).

We start out with a set of points in R%, and the first thing we’ll do is represent them in R¥! — we create
d + 1 axes, one for each pair. We have the two blue points correspond to two opposite points on the first
axis (which are symmetric about the origin; we remember which blue point in R? corresponds to which blue
point in R%T1), the two purple points correspond to two opposite points on the second axis, and so on. (This
doesn’t depend on how our original points were arranged.) Then any colorful triangle in our configuration
in R¢ corresponds to some colorful triangle in R4+,

Page 1 of



Topological Methods in Combinatorics Talk by Pablo Soberén (September 15, 2023)

Now we can look at the set of all possible colorful triangles in R, and the corresponding set of all colorful
triangles in R4 — the latter set forms the boundary of an octahedron O, which if you squint a bit is
essentially the same as a d-dimensional sphere S%.

So this gives us a continuous function f:S? — R? (where for each point on our octahedron Q?, we take the
corresponding point inside the triangle in R?, i.e., the same linear combination of our three points in R%).
Now we can use the Borsuk—Ulam theorem.

Theorem 1.2 (Borsuk-Ulam)
If £:S? — R? is continuous, then there exists z € S? with f(z) = f(—=x).

But in this case, if we take two antipodal points  and —z in S%, they will correspond to complementary
triangles, and their f-values are points inside these triangles; so this gives us a colorful partition into
intersecting triangles. O

§2 Necklace Splitting Theorem

We'll now discuss the necklace splitting theorem, due to Golberg and West (1986).

Question 2.1. Suppose we're given an open necklace, with pearls strung together on a segment; these
pearls have various colors (e.g., blue, yellow, and green), such that there are m colors and there is an
even number of pearls of each color.

Now imagine two thieves steal such a necklace, and they want to distribute it such that each thief gets
exactly half of the pearls of every color.

What’s the minimum number of cuts necessary to do so (i.e., to evenly divide the necklace)?

R B B e S

Of course, the thieves can always divide the necklace by just cutting between all pairs of pearls, but they’d
like to be more efficient (i.e., to use fewer cuts).

KRR IX NCRY BN RRORY 3

First, what would a ‘bad’ necklace look like? One example is if we have all the blue pearls grouped together,
then all the green pearls grouped together, then all the yellow pearls, and so on; in this case, we’ll need at
least m cuts (since we need to cut somewhere inside the stretch of each color).

One ‘bad’ necklace is if we have all the blue pearls grouped together, all the green pearls grouped, and all
the yellow pearls grouped; this means we always need at least m cuts.

oo ® @0 @ OO0

Theorem 2.2 (Necklace splitting theorem)

It is always possible to find a fair partition with at most m cuts.

We'll actually prove a slightly different result, essentially a continuous version of this problem — we’ll treat
our necklace as the interval [0,1]. Instead of having m colors of pearls, we’ll have m absolutely continuous
measures on [0, 1].

Page 2 of



Talk by Pablo Soberén (September 15, 2023) Topological Methods in Combinatorics

Theorem 2.3 (Hobby, Rice 1965)

Given m absolutely continuous measures p1, ..., i, on [0,1], we can find a fair partition of [0, 1] (i.e.,
one where the two pieces have equal measure under each of p, ..., iy,) using m cuts.

These two statements are actually equivalent — we can approximate a measure by a finite set of points, and
we can approximate a finite set of points by measures concentrated near those points.

Now we’ll prove this continuous version.

Proof. In the previous problem, we looked at the space of all possible colorful simplices, and parametrized
it as a nice space — the surface of an octahedron, which was basically a sphere. We’d like to do something
similar here — to parametrize cutting [0, 1] into m pieces. So let’s look at the lengths x1, ..., Z;m41 of these
pieces, which sum to 1. If we just looked at these lengths, then the set of such vectors (z1, ..., ;1) would
be the m-dimensional simplex A™. But we actually want to keep track of a bit more — we also want to
know which thief gets each piece. So we also give these pieces signs — we call our thieves A and B, and we
assign a piece + if A gets it and — if B does. So now we have numbers yi, ..., ym+1 (where y; = +x;), and
the space of all possible partitions can be described as

{1, yme1) €R™ | fya| 4 4 [ymaa| = 1.

This set is again an octahedron Q™ = §™.

Now we have a sphere, so we just need to make a function to use Borsuk—Ulam on. We have m measures,
so we can define

f(y) = (MI(A)v ce 7,UJm+1(A))

to keep track of how much of each measure A gets. Now Borsuk—Ulam gives that there exists a point y with
fly) = f(=y). But f(—y) = (u1(B), ..., um+1(B)), since flipping all the signs corresponds to flipping who
gets each piece. So this point y corresponds to a fair partition. O

§3 Baskets and Fruits

Question 3.1. We’re given n baskets, each of which has some amount of each of k£ kinds of fruit. We
want to choose some of these baskets, and we have two goals:

e We want to have at least half of each kind of fruit.
o We want to have as few baskets to carry as possible.
What’s the minimum number of baskets we need?

So we have a bunch of baskets with some amount of bananas, blueberries, and so on; and we want to choose
as few baskets as possible such that we get at least half of each fruit.

1 1 1 T S R |
1 1
1 1 1 1 1 1
1 1 1
1 1 1 1 1 1
1 1 1
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We'll assume that n # k (mod 2) — otherwise, when n = k (mod 2), our solution may be off by 1.

First, what would be a ‘bad’ set of baskets and fruits? We might have the first k¥ — 1 kind of fruits each
filling one basket, and the kth kind evenly distributed among the remaining n — k baskets.

Then we’d need to pick the first £ — 1 baskets and half of the remaining n — k + 1; this requires us to have

(b - 1)+ [“=5

baskets. So we’ll try to prove a similar upper bound.

Theorem 3.2
It is always possible to use at most k + [3(n — k)| baskets.

(These quantities match when n # k (mod 2); when n = k (mod 2) they’re off by 1.)

Proof. We'll consider n points in R¥ in general position (i.e., such that no hyperplane contains more than
k of these points). We’ll assign one basket to each point. Then this gives us k& measures in R¥, one for
each fruit — to obtain the measure corresponding to a certain fruit, we assign each point the number (or
fraction) of this fruit in its corresponding basket. For example, if we have one apple in the first basket and
two apples in the second, then for the apple measure we’d put a weight of 1 at the point corresponding to
the first basket, and a weight of 2 at the point corresponding to the second.

We’ll then use the ham sandwich theorem.

Theorem 3.3 (Ham sandwich)

Given k finite measures in R¥, there exists a hyperplane H such that p;(H*) > 1p;(R¥) and p;(H™) >
$1i(RF) for each measure y;, where HT and H~ are the two closed half-spaces created by H.

(By finite we mean that p(RF) < c0.)

Remark 3.4. The ham sandwich theorem is often written for measures which are absolutely continuous
with respect to the Lebesgue measure. In this case we can get exactly half — we can find ‘H such that

pi(HY) = pa(H7) = 3pa(RF).

Now we’ll apply the ham sandwich theorem to our k measures. Since we chose our points to be in general
position, H itself contains at most k points. This means one of the closed half-spaces H™ and H~ has at
most k + L%(n — k)| points, and by the result of the ham sandwich theorem, the baskets in this half-space
have at least half of every type of fruit. O

Remark 3.5. This problem also has non-topological solutions (which are nice for k¥ = 2), and has
appeared in math olympiads.
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§4 The ham sandwich theorem

Next, we’ll discuss the ham sandwich theorem. We’ll prove the version for absolutely continuous measures
(for our proof, it’s actually enough just that every hyperplane has measure 0).

Theorem 4.1 (Ham sandwich, 1938)

Let g1, ..., px be measures in RF which are finite and absolutely continuous (with respect to the
Lebesgue measure). Then there exists a ‘halving hyperplane’ for each of these measures — i.e., a
hyperplane H such that yu;(H*) = pi(H™) = 2p;(R¥) for each 1 <4 < k.

Remark 4.2. The author imagined splitting a leg of ham between two people such that they got the
same amount of meat, bone, and so on; this is where the name evolved from.

Proof. As before, we’ll want to parametrize the space of objects we're dealing with (here, ‘candidate hyper-
planes’) in some way; this parametrization is again going to be a sphere.

We'll think of py, as ‘special”] Now consider S¥~1 C R*. Given any direction v € S¥~!, we can consider a
hyperplane perpendicular to v, and we can imagine sliding it along the direction of v until the moment it
splits g into two. (It’s possible there’s an entire range for which the hyperplane splits py in two, if py has
no weight on some slice. In that case, we choose the hyperplane in the middle of the range.) We call this
hyperplane H, — so H, is a halving hyperplane for p; which is orthogonal to v. We let A be the half-space
on the side of H corresponding to v, and B the half-space on the side corresponding to —v. All hyperplanes
which split ug in half can be parametrized in this way.

Now we want to construct a function f:S*~! — R¥~1: we define this function as

f) = (pi(A) = a(B), ..., px—1(A) — pr—1(B)).

This function is odd (i.e., f(—v) = —f(v) for all v, since negating v keeps H the same but swaps A and B).
By Borsuk-Ulam there must exist v such that f(v) = f(—wv), which then means f(v) = 0. (This is actually
the usual presentation of Borsuk-Ulam — that if we have an odd function f:S? — R?, then it must have a
zero.) Here this means #, is a halving hyperplane for each of pi, ..., purp_1, and by construction it’s also a
halving hyperplane for our special measure py. O
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8§56 The test map scheme

These examples showcase a general method we often follow when using topological methods in combinatorics.
(The name ‘test map scheme’ usually refers to problems about splitting measures, but similar ideas are used
more generally.) When we’re presented with a problem like the ones we’ve seen here, we can do the following:

(1) First try to find a space X that parametrizes the objects in the problem.

(2) Then try to find a space Y that gives us information about X. (If we're trying to split many measures,
then Y might tell us whether we’re giving more of a measure to A or B, or how much of the measure
we're giving to A. In our proof of colorful Radon, it told us where in our configuration a point on the
octahedron was mapped to.) This induces a natural function f: X — Y.

(3) We then try to study the maps f: X — Y as a topological problem, and see if we can say something
interesting about them. There’s some usual things we’re looking for. Maybe X and Y have some
symmetry — for example, we can flip half-spaces (in the ham sandwich theorem), and if we have
two thieves then we can flip who gets which piece (in the necklace splitting problem). If we have a
group G acting on both X and Y, then often we can say things about G-equivariant maps (maps
f: X — Y such that applying the G-action before vs. after applying f give the same result). (In all of
our examples, G was {£1}, but there’s many situations in which we’ll have more complicated groups
— for example, the necklace-splitting problem with n thieves. In those cases, the topological result
analogous to Borsuk—Ulam will be more complicated.)

The next step from Borsuk—Ulam is the following theorem.

Definition 5.1. For a nontrivial group G, we say a topological space X is a G-space if G has a nontrivial
free action on X — i.e., an action such that gx # x for all x € X and g € G\ {e} — such that the map
x +— gz is continuous for each g € G.

Theorem 5.2 (Dold 1985)

Let G be a nontrivial group, and suppose that X and Y are G-spaces which are both paracompact, and
such that Y is at most n-dimensional and X is n-connected. Then there is no continuous G-equivariant
map f: X =Y.

(We won’t worry about the meaning of paracompact; all our sets will satisfy it. By n-connected we mean
that the first n reduced homology groups cancel; there’s an equivalent definition requiring that whenever
you map to a lower-dimensional sphere, there is no homotopy.)

When G = Zo, X = S"! and Y = S”, this is exactly the Borsuk-Ulam theorem. Dold’s theorem is one
of the nicer generalizations of Borsuk—Ulam — we only need to check that X and Y have these properties,
and that the action of G is free (it’s actually enough to check that it’s free on X).

§5.1 Necklace splitting for multiple thieves

We’ll now use this to solve the necklace splitting problem with more than two thieves. First, if we have k
thieves, what do we expect the answer to be? Again, if all the pearls of the same type are clumped together,
then we’ll need (k — 1)m cuts (since for each type of pearl, we need k — 1 cuts to split this type into k
pieces). So we need at least (k — 1)m cuts; and it turns out that this is enough.
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Theorem 5.3 (Necklace splitting for multiple thieves)

Suppose that we have m continuous measures pi, ..., im on [0,1] (which we think of as a continuous
version of pearls of m colors on an open necklace), which we want to split evenly among k thieves. It
is always possible to find such a fair partition using at most (k — 1)m cuts.

First we’ll see another solution for two thieves, because it’s nice.

Proof for k = 2 thieves. We'll map [0,1] — R™ using the moment curve — we map A — (A, A2, ..., \™).
So now we have m measures in R™, and we can apply the ham sandwich theorem. This gives a hyperplane
H such that p;(HT) = w;(H~) for each measure p;. (Here we’re using the version of ham sandwich
for absolutely continuous measures; our measures aren’t actually absolutely continuous, because they’re
concentrated on a curve, but they satisfy the property that the measure of any hyperplane is 0; this is
enough for the ham sandwich theorem to apply.)

Now the cool thing about the moment curve is that a hyperplane can only intersect it in m places. So we
make the m cuts in these places, and we give every segment in H™ to A and every segment in H~ to B;
this gives a fair partition. O

Next, we’ll consider the case where we have p thieves, where p is prime. (We’ll discuss what happens in the
non-prime case later.)

Proof for k = p thieves. We first need to parametrize the space of partitions. Before, when we had two
thieves, we parametrized our partitions by considering a cut and an assignment of +1 to each piece. Here,
we’ll instead label each piece with 1, ..., p (again corresponding to which thief gets it).

We'll use the topological join operation. Intuitively, given two spaces X and Y, we define their join X %Y
by embedding both in very high-dimensional space in general position, and then taking their ‘convex hull’
(more precisely, the set of points (1 — t)x + ty).

(In this illustration, think of X and Y as being in two separate planes.) Formally, the topological join is
defined as follows.

Definition 5.4. For two topological spaces X and Y, we define X Y as the quotient of X x Y x [0, 1]
by the relation (z,y,0) ~ (z,9',0) and (z,y,1) ~ (2/,y,1) for all z,2’ € X and y,y' € Y.

(In the ‘convex hull’ interpretation, (x,y,t) corresponds to the point (1 —¢)x +ty — when t = 0 (i.e., we're
on the side of X) we don’t care what y is, and when ¢t =1 (i.e., we're on the side of V) we don’t care what
x is, but there’s no other overlap.)

Example 5.5

The space Zs consists of two points; then Zs *x Zs is a quadrilateral; then Zo x Zo * Zo is an octahedron.
More generally, (Zg)*" ! = S" for any n.
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ZQ * ZQ * ZQ
Claim 5.6 — The space of partitions can be parametrized as (Zp)*(c+1), where c is our number of cuts.

Proof. Let’s first think about Z, * Z, — this means we have elements \; € Z, and Ay € Z,, and some
a € [0,1]. We can think of this as the partition [« | 1 — «], where the first piece (of length «) goes to person
A1, and the second to person \y. If a = 0, then we don’t care who receives the first piece (since it has length
0), and if o = 1, then we similarly don’t care who receives the second piece. So Zj, * Z,, describes the space
of one-cut partitions, and similarly (Zp)*(c+1) describes the space of c-cut partitions. O]

We want to make (p—1)m cuts, so we consider (Z,)*((P~D™+1) This space is ((p—1)m — 1)-connected — Z,
is disconnected (i.e., (—1)-connected), and every time we join another Z,, the connectedness increases by 1.
(For example, with Zy we started off with a disconnected set, then got a connected set, then a 1-connected
set, and so on.)

Now we need to create a space Y and a test map that tell us whether our partition is good. To do so, given
a partition, we’ll let A; be the part that person 1 gets, Ay the part that person 2 gets, and so on. We also
have an action of Z, on (Z,)*(*Y) (for any c), and this action is free — this is the only reason why we
needed p to be prime.

Now for our construction, we can first imagine taking a partition Q € (Zp)*((p_l)m+1), and tracking how
much of each measure each person is getting — so we can define the m X p matrix

M1(j1) Ml(ﬁz) e #ﬂjp)
£(Q) = Mz(‘ 1) /~L2(. 2) /~L2(: ») |
pm (A1) pm(A2) -~ Nm(Ap)

which we can view as an element of RP™. We also have an action of Z, on the space of such matrices,
which exchanges the columns; and this action is equivariant (whether we act before or after applying f, it
corresponds to just relabelling who gets each piece).

However, the dimension of this space is too big, so we need to make it smaller. To do so, we’ll shift each
row to have sum 0 — given a row [f1,..., 3,], we let k = >, f; be the sum of the row, and we then replace
the row with [B; — %, By = IE)] Now since each row sums to 0, it can be viewed as an element of RP~!
(embedded into R? as the set of vectors with sum of coordinates 0), so our space of matrices can now be
viewed as RP=1™. So now we have a new function g: (Z,)*P~Dm+1 5 RP=1m,

And a fair partition is precisely a zero of g, so we want to show there exists a zero. Assume not, and define

_ 99
lg(Q)

(this is defined for every partition Q, since we assumed g(Q) is never 0). Then h is a map (Z,)*P~Dm+1
Stp-1)m—1 (which is continuous and Zy,-equivariant), so we can apply Dold’s theorem to get a contradiction,
and we're done. O

h(Q)
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Finally, we’ve solved the problem when k is prime; what happens when it’s not prime? There are lots of
problems that use similar methods, and often they get solved first for 2, then primes, then prime poewrs,
and the general case is much more difficult. However, this problem is an exception — we actually don’t need
any more topology than what we’ve already seen for the general case, thanks to the following reduction.

Claim 5.7 — If we can solve the problem for a thieves (i.e., find a fair partition of any necklace using
(a — 1)m cuts) and for b thieves, then we can solve it for ab thieves.

Proof. Clump our thieves into b groups of a thieves each. We first take our original necklace [0, 1], and split
it fairly among the b groups of thieves — this takes (b — 1)m cuts.

Then each group takes the intervals assigned to them, puts these intervals back to back to form a new
(smaller) necklace, and makes cuts to split it fairly among the a thieves in the group — this takes (a — 1)m
cuts per group.

So in total, we need (b — 1)m + b(a — 1)m = (ab — 1)m cuts. O

Remark 5.8. Interestingly, the proof of necklace splitting we saw here is different from Alon’s proof
from 1987. He did use topological methods, but instead of using results that guarantee no equivariant
maps (like we did), he used results (with different parameters) that guarantee that there are equivariant
maps, and he used one of those to obtain the fair partition.

§5.2 Method complexity

There’s several topological results used in combinatorics, with varying degrees of complexity. The starting
point is the Borsuk—Ulam theorem; then there’s Dold’s theorem, and some degree arguments (about maps
of spheres). Then we start getting into fancier things, like characteristic classes, index theories, spectral
sequences, and other things. What we’ve seen here is much closer to the beginning. There’s a nice book on
the methods on the ‘left’ side of this line; it’s often nice to be on this side because for lots of these problems,
in computational geometry we want algorithms, and it’s easier to get algorithms out of the Borsuk—Ulam
proofs than the more fancy ones.

One of the standard proofs of Borsuk—Ulam uses degree, so why did we put degree further down on this
list? Here’s an example of what we mean by degree.

In the ham sandwich theorem, we have d measures in R%, and we want a halving hyperplane. What if
instead of d measures, we had d+ 17 Usually with d + 1 measures, we can’t find a halving hyperplane — for
example, if d = 2, we could have three measures concentrated at separate vertices of a triangle. However, it
is true that we can find a halving disk.
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The idea of the proof is to add on a coordinate — for example, we map (z,y) — (z,v,2> + 3?). Now we
have d 4+ 1 measures in R*!, and we can apply Ham Sandwich there and project back.

But what if instead of a disk, we want a regular hypercube? For example, when d = 2, we have 3 measures
and we want to find a square containing exactly half of each.

This is still true, but applying standard Borsuk—Ulam tricks doesn’t work; the proof is more tricky (even
though the topological methods involved may not be more complicated). We’ll prove it for d = 2 (i.e., for
squares); the general case is harder.

Theorem 5.9

Let pu1, p2, and ps3 be finite, absolutely continuous measures in R2. Then we can find a square that
contains exactly half of each measure.

Proof. We'll parametrize the set of candidate squares by S' x [0, 1] in the following way — suppose we're
given a direction v € S and some « € [0, 1]. Then we start by scaling v to the point 1o v. We take a square
centered at this point oriented perpendicular to v, and we blow it up until it contains exactly half of us.

(In particular, we're only considering squares oriented towards the origin.)

By scaling, we can assume our measures are probability measures (i.e., pu;(R) =1 for each ). Then for any
candidate square C, we define

£©) = (m(©) = 5om2(0) - 3)

(So f checks whether our square has half of 1 and p9.) It suffices to show that f has a zero; assume not,
and as before, define g: S' x [0,1] — S! as
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Now we’ll consider what happens when our element of [0,1] is 0 or 1. At 0 we have g(v,0) = g(—v,0) — at
0 we're taking the square centered at the origin and oriented perpendicular to v, and flipping the direction
of v doesn’t affect this square.

Meanwhile, at 1 we have g(v,1) = —g(—wv,1). To see this, as a — 1 the center of our square grows further
and further away, and our square keeps growing and growing; this means we’re approaching the halving
hyperplane for us perpendicular to v. And if we do this with —v instead, then we’ll approach the same
halving hyperplane, but the interior of our square will be on the other side. So if we call the two sides of
this hyperplane A and B, then we have p;(A) + p;(B) = 1, and therefore y;(A) — 3 = —(u(B) — 3) (for
i =1 and 2). This means f(v,1) = —f(—v,1), so the same is true of g.

But then g(-,0) is a function S' — S! satisfying g(v,0) = g(—wv,0), so it must have even degree; and
g(+,1) satisfies g(v,1) = —g(—wv,1), so it must have odd degree. This means g is a homotopy between an
even-degree and an odd-degree function; this cannot happen. O

In general, it’s not that degree methods are more advanced, but proofs using degree are often trickier.

§6 A linear algebra proof of colorful Radon

Finally, we’ll see a solution to the first problem without topology. To restate the problem:

Theorem 6.1 (Colorful Radon, Lovasz 1992)

Imagine that we are given d + 1 pairs of points in R¢, where each pair is of a different color. Then there
is a colorful partition — a partition of the points into two sets such that each part contains one point
of each color — such that the convex hulls of the two parts intersect.

Proof. Let the pairs of points be (z1,y1), - .-, (Td+1, Yd+1). Consider the vectors z; —y; for all 1 <i < d+1.
This gives us d + 1 vectors in R?, so they must be linearly dependent — so there exist o, ..., agp1 (not all

zero) such that
> iz —yi) = 0.

Now, the trick in the proof is that we can assume without loss of generality the «; are all nonnegative — if
some «; is negative, then we can just swap the names of z; and y; (and flip the sign of «;). And then since
they’re nonnegative and not all zero, we can also assume that > a; = 1 (by scaling). Then by rearranging

our equality we get
Z QT = Z Qi lYi,

which gives a point in the convex hull of both the z;’s and the y;’s. O
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