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§1 Introduction

Today we’ll talk about the maximum density of a unit distance-avoiding subset of the plane. There has
been a fairly recent breakthrough on this. Today, we’ll mostly discuss the methods and results of a slightly
simpler paper that comes earlier; this gets a slightly worse bound, but highlights the main ideas.

Question 1.1. How dense can a subset of R? be given that it doesn’t have any pair of points that are
a distance (exactly) 1 apart?

A related question — which we won’t spend too much time discussing (but which is also important) — is
the Nelson-Hadinger problem about the chromatic number of R

Question 1.2. What is yx(R?), the chromatic number of the unit distance graph on R? (the infinite
graph with vertex set R?, where we connect points a unit distance apart)?

These are two motivating questions of this area of work.

We'll first make the notion of a unit distance graph more precise.

Definition 1.3. A graph G = (V, E) is a unit distance graph if V. C R? and two points are adjacent if
and only if they are a unit distance apart — i.e., E = {(z,y) € V2| ||z —y| = 1}.

The unit distance graphs we’ll see will usually be finite (i.e., we take a finite set of points and connect all
pairs a unit distance apart) — for example, an equilateral triangle is a unit distance graph.

Definition 1.4. A set A C R? is unit distance-free (or 1-avoiding) if there do not exist any two points
x,y € A with ||z —y| = 1.

We always work with the L2-distance. We’ll assume that notions of density for A are well-defined — in
particular, we’ll assume A is measurable and periodic with respect to some lattice £. We can do this without
loss of generality — this is different from the chromatic number problem, where assuming measurability
changes the answer.

We can now formulate our question more precisely.
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Question 1.5. Let mi(R?) = supy §(A) over all unit distance-free A C R? (where J(A) denotes the
density of A). What can we say about m; (R?)?

We'll mostly focus on trying to obtain the best upper bound on mi(R?) that we can.

§2 Lower bounds

Before we talk about upper bounds, we’ll first give a lower bound on m;(R?) — this means we want to
construct a reasonably dense unit distance-avoiding set A.

One construction is to tile the plane using an equilateral triangle lattice with side length 2, and place an
open ball of radius % at each vertex.

Then two points in the same ball have distance less than 1, and two points in different balls have distance
greater than 1, so this gives a valid set; and the density of this set is

5(A) = " ~0.227.

8V3

We can actually improve this a bit. The best-known lower bound is the Croft tortoise construction (the
name is because it looks a bit like a tortoise). The premise is similar — we again take a triangular lattice
— but instead of having the distance between points on the lattice be 2, we have it be 1 + x for some z
slightly less than 1. Then at each vertex, we put the intersection of a circle of radius % and a hexagon of

height = (where the height refers to the distance between opposite sides).

The density is maximized when z &~ 0.965, in which case we get density §(A) ~ 0.229.

§3 An idea for upper bounds

We’ll now turn to upper bounds.

We’ll first make a simple observation — fix a specific unit vector u, and suppose that A is a unit distance-
avoiding set (throughout this talk, we’ll always use A to denote a unit distance-avoiding set). Then we must
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have AN (A+u) = () — if there were some point x in both A and A + u, then there would be a point y € A
at a distance 1 from z (namely,  — u). This is a key observation that goes into most of the upper bounds
— if we shift A by any unit distance, the resulting set won’t intersect with A.

This immediately gives an upper bound of m;(R?) < % (by considering one specific u).

We can do better than this — suppose now that we have two unit vectors v and v forming an equilateral
triangle (i.e., two unit vectors 60° apart). Then the sets A, A+ u, and A+ v must all be disjoint; this gives
a better upper bound of m;(R?) < 1.

We can generalize this a bit more — let G’ be any unit distance graph on vertices u1, ..., uy, and let a(G)
denote its independence number. Then we look at the translates A+wuq1, A+wuo, ..., A4+wu,. Consider some
(arbitrary) point @ € R?; then z can fall into at most a(G) of these translates — otherwise there would
have to be some (u;,u;) € E(G) for which x is in both A 4+ u; and A + u;, and since u; ~ u; we'd get two
points in A a unit distance apart (namely z — u; and & — u;). This tells us

a(G)

mE) =)

for any unit-distance graph, which gives us a new way of getting upper bounds. For example, one unit-
distance graph with a small value of a(G)/v(G) is the Moser spindle, which has a(G)/v(G) = 2/7; this
gives m1(R?) < 2/7.

In fact, we can do a bit better than this.

Definition 3.1. The fractional chromatic number of a graph G, denoted x¢(G), is the minimum value
of > rez(eywr — where Z(G) denotes the set of all independent sets of G — over all vectors w such
that for all vertices v we have } ;5 wr > 1.

Then using a similar argument, we can get m1(R?) < 1/x/(G).
Remark 3.2. As a sidenote, we’ll briefly talk about the chromatic number of the plane — we know that
4 < x(R?) <.

The lower bound comes from the Moser spindle, and the upper bound from a periodic coloring of R2.
But if we require the color classes to be Lebesgue measurable, then the problem changes — we define
Xm(R?) as the minimum number of colors needed in this case (so that x.,(R?) > x(R?)), and in fact,
we know that x,,(R?) > 5. We know that m(R?)x,,(R?) > 1, but we don’t know if this is tight.

For a while this was where things were; then over the last 10-15 years there’s been a really fruitful line of

work that uses these ideas as ingredients in linear programming-based methods to get upper bounds (which
we’ll now discuss).

§4 Proof of upper bounds

§4.1 The autocorrelation function
We’ll work with an object called the autocorrelation function.
Definition 4.1. Given a unit distance-avoiding set A, the autocorrelation function f:R? — R (defined

with respect to A) is defined as
f(z) =0(AN(A—x)).
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First, there’s a few simple properties of f.
o We have f(0) =d(A).
o If |z|| =1, then f(z) = 0.
Importantly, f is a positive definite kernel (PDK). There’s a few different ways to define a PDK — for

example, as a positive function with positive Fourier coefficients — but we’ll use a different definition.

Definition 4.2. A function K(z,y) is a positive definite kernel (PDK) if for all z1, ..., x,, we have
(K(mi,xj)),-7je[n] =0 (ie., Y cicjK(x;,xzj) > 0 for all nonnegative ci, ..., ¢y).
Here f only takes one input, but we define K (x,y) = f(x — y); this function K is a PDK.

We’ll show that such an autocorrelation function f must satisfy certain properties; we’ll then turn them
into constraints for a linear program.

§4.2 Summary of results

First, we’ll discuss the results obtained using these methods. Before, the best upper bound (due to Székely
1984) was m1(R?) < 12/43 ~ 0.2791, using the fractional chromatic number method. Then recently, there’s
been a series of improvements using the linear programming approach.

« OV 2010 proved that m;(R?) < 0.2684.
« KMOR 2016 proved that mq(R?) < 0.2588.
o AM 2022 proved that m;(R?) < 0.2544.

Conjecture 4.3 (Erdés) — m1(R?) < 1/4.

Remark 4.4. The quantity i doesn’t come from thin air — it’s because if we use different norms, where
the unit balls are not round (e.g., L' or L™ instead of L?), then i is often the right answer. For L? we
don’t know the exact answer, and Erdés conjectured that it’s strictly lower than in these cases.

Remark 4.5. This conjecture would give a different proof of the fact that y,,(R?) > 5.

Recent work resolved this conjecture.

Theorem 4.6 (ACMVG 2022)
We have m; (R?) < 0.247.

All these papers use a linear programming approach centered around the autocorrelation function.

§4.3 Properties of the autocorrelation function

First, we’ll write down several properties of our autocorrelation function f(x) = §(AN(A—=x)). (We'll prove
these properties later.)

(D) We have f(0) =d(A).
(CO) For all ||z|| = 1, we have f(z) = 0.
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(C1) For any finite unit distance graph G, we have

Y fla) <a(G)f(0).

zeV(G)

(C1R) For any finite graph G, we have

Yo fla) = Y fle—y) <a(@)f(0).

z€V(G) Ty€E(G)
(C2) For any finite set of points C' C R? we have

> flz—y) = |C| f(0) -
(@)e(3)

(T) For any finite unit distance graph G = (V, E) with a(G) < 3, if we define
Zg(G) = Z (A—l'l)ﬂ(A—SL'Q)ﬂ(A—ZL'g),
(ml,zg,mg)e(‘g)

then we have

> fz) —2f(0) < 3.

eV
(T2) Under the same setup, we have
Sl o@fO)+ 3 fla—y),
(@w)e(3)
For example, (C1) is the observation we saw earlier, rephrased in terms of f, and (C1R) is a generalization
of (C1).

These properties are used in the intermediate papers; the final paper uses these constraints along with a
few other similar ones, and also makes slightly different choices for what C' and G to use. We’ll talk about
where these properties come from later; first we’ll talk about how we use them to get upper bounds.

§4.4 The Fourier transform

First, how do we get to linear programming? We assumed A is periodic with respect to some lattice £. So
we can think of f as a function R?> — C, and we can define an inner product on such functions where we
average fg over bigger and bigger boxes — we define

(f,9) = (x) dx.

1
P @172 /[—T7T12 e
Now let £* be the dual lattice
L*={ucR?| (u,v) €Zforallve L}
For all u € 2wL*, we define the character
Xula) = 0,
These characters form an orthonormal system for L?(IR?/L), which means we have a Fourier transform

Flu) = (f,xu)

which satisfies the usual Fourier inversion formula

ue2mwL* €2
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Remark 4.7. When we said earlier that PDKs have nonnegative Fourier coefficients, these are the
Fourier coefficients we meant.

We can rewrite our definition of f as
f(x) = <1A7 1A—x>-

By definition, we have

Then using Parseval, we can obtain that

fl@)= > [Ta(u)Pe ™,

ue2mwL*

which means these squares are the Fourier coefficients of f — i.e., f(u) = [T (u)[%

Next, we’ll do some symmetrization. If we have some graph (on a set of points in R?), we can imagine
rotating it; we don’t want to write down a separate constraint for each rotation, so we average over all
rotations — we define a function f, as

1
fola) = 5 [ SClal)

2m
(so fo only depends on ||z| — essentially, we're averaging over all rotations). Then we can write
= > @ Jo(lful [l]),
u€e2mL*

where Jj is a Bessel function. Since Jo(||ul| ||z||) only depends on |lu|| (and not other information about w),
we can group together all u with the same magnitude to write

folx) =3~ () Jo(t |l[l), where x(t) = Y~ f(u)

>0 [ul|=t

(The sum over ¢ makes sense because the values ¢ of the form ||u|| for some u € 2rL* are discrete.)

The important thing here is that f(0) = f,(0) is a linear combination of these x(t)’s. We had a bunch of
constraints that f was supposed to satisfy, and we can rewrite them as constraints on x(t) that hopefully
look like a linear program.

§4.5 An infinite linear program

We'll first consider an infinite linear program in the variables x(t) (for all ¢ > 0) and 0(A), where we want
to find max d(A). We'll have the following conditions.

(B) k(0) = 0(A)2 — this is because £(0) = f(0) = [14(0)|> = 6(A)%

(CP) k(t) > 0 for all ¢ — this is because k(t) is a sum of squares (since f(u) =|Ta(u)?).
(CS) 0(A) = X0 £(t) — this is because 6(A) = fo(0) = Xueons- £(t)Jo(0).
(CO) > k(t)Jo(t) = 0 — this corresponds to the condition that A is unit distance-free (since the left-hand

side is precisely fo(1)), which now corresponds to just one constraint rather than infinitely many.

(C1R) For all finite graphs G, we have

>kt (Z Jotlzl) - > Jo(tlla:—y||))ga(a)5(A).

t>0 zeV(Q) zyeE(G)

(This corresponds to our condition (C1R) on f from earlier.)
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(--+) We can translate the remaining conditions from earlier similarly.

So we now have an infinitely large linear program, and if we could solve it, then we’d get an upper bound on
m1(R?) — because any actual function f must satisfy all these constraints. (If we solve the linear program,
we'll get some £(t)’s, but there’s no guarantee that they’ll actually correspond to some autocorrelation
function; but we can get an upper bound this way.)

Remark 4.8. Some of these constraints correspond to the fact that A is unit distance-avoiding. But
some don’t — some of these constraints are things that have to be true of any autocorrelation function.
(In some sense, they’re trying to regularize the solution to the linear program to look more like an
autocorrelation function.) Adding these extra constraints is one of the things that made improvements
possible.

Remark 4.9. We're kind of cheating here because the first constraint has §(A)?, which is quadratic.
But this can be dealt with by dividing by §(A) in the appropriate places.

§4.6 Discretizing the linear program

Unfortunately, this is an infinitely large linear program, so we can’t solve it. But instead, we can try to
discretize — rather than looking at the infinitely many possible values of t, we’ll look at ¢ which vary by
¢ and go up to some big value, such as e~!. However, now we have the problem that the solution to the
linear program might not actually be an upper bound — we might get something too small (since now our
LP is over some discretized set of variables instead — this means we’re forcing all the x(t)’s where ¢ isn’t a

multiple of € to be zero, which doesn’t have to be true of the actual f).

So how do we get something that’s genuinely an upper bound? The LP we’re trying to solve is a maximization
problem, so we're guaranteed that this maximum is actually an upper bound on the true solution, but we
no longer have this guarantee when we discretize. So we’ll instead consider the dual of our LP (which is a
minimization problem). Then any feasible solution to the dual is an upper bound on the original. So we
can discretize the dual and solve this (finite) LP, and that’ll give us an upper bound for the (undiscretized)
original.

Remark 4.10. These ideas have been known several years before the final paper; this paper comes up
with the G and C using a combination of computer search and cleverness. They use a finite list of such
G and C'; the KMOR paper uses a 30-point set and 5 fairly small graphs.

How do people come up with such point sets and graphs? One way is by a grid search where we iterate
over a bunch of possibilities, plug them in, and look at the solutions we get. Then we consider a whole
host of other graphs and see which of them our candidate solution violates the worst, and then we add
that graph in and try again; and we iterate.

For the 3-point bounds (T1) and (T2), the graphs used are simple but surprising. The paper engineers
two different graphs G; and G5 with the same Y3, and then plug one of these graphs into (T1) and the
other into (T2); the argument is very clever.

§4.7 The constraints

We'll now explain why the constraints (the properties of f described in Subsection 1.3) are true.

First, (D) and (CO) are clear. Next, (C1) essentially follows from what we discussed earlier.
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Proof of (C1). If G is a unit distance graph, then for any a € A we have z + a € A for at most a(G) values
of z € V(G) (since these points x must form an independent set). This means

Y. fl@)= Y §AN(A-1)) <a(G)f(0) = a(G)i(A). .

zeV(G) z€V(G)
We'll now look at (C1R), the generalization of (C1) where G isn’t necessarily a unit distance graph.

Proof of (C1R). Let G = (V, E). For each a € A, define
gla)=#{reV]jacA—z} —#{zyec E|lac (A—z)Nn(A—y)}.

This essentially counts the number of times our point a is covered by the translate of a vertex z, minus the
number of times it’s covered by a translate corresponding to an edge. It suffices to show that g(a) < a(QG)
for all a; then averaging over all a gives the desired result. To do so, let

Vi={zeV]acA—z}and E'={zye E|ac (A—z)N(A—-vy)},

and consider the induced subgraph G’ = G[V’] (which has edge set E’). First, G’ must have at most a(G)
connected components (or else we could find an independent set in G’, and therefore G, of size greater than
a(@)); call these components G1, ..., Gy, with £ < a(G). This then directly gives us a bound on |E’| — if
G; has v; vertices and e; > v; — 1 edges, then

|E'l=elG)=e1+ - +e>vi—1)+-+ (-1 =|V|—-L>|V|-a(G),
which gives g(a) < a(Q), as desired. O

Remark 4.11. Note that we never used the fact that A is a unit distance-avoiding set here — this is
just a property of the autocorrelation function of any set.

We'll now verify (C2), the property of point sets C'. This follows from PIE, and is again a general property
of autocorrelation functions that has nothing to do with unit distance avoidance. (Finding good point sets
was done by grid search in most papers.)

Proof of (C2). By inclusion-exclusion, we have 1 > 6(U,ec(A = 7)) = Fpecd(A—2) = 32, 0e(S) S((A—
) 2
)N (A—y))=1|C|éA) — X 0e() f(z —vy), which is exactly what we wanted. O
’ 2

We can use a similar strategy to prove (T1).

Proof of (T1). Again by inclusion-exclusion, we have 1 > §(U,ey (A — 7)) = >0, 0(A —2) — >0, 6((A -
)N (A—-9y)+3,,.0(A-2)N(A—y)N(A-2)) — note that this time we have an equality, since
we can’t have any intersections of four or more sets A — x due to the fact that a(G) < 3 (if we did have
(A—w)N(A—2)N(A—y)N(A—=z)#0, then since a(G) < 3 there must be an edge among w, x, y, and
z, and this would give us a unit distance in A). This gives the desired bound. O

Proof of (T2). First, we have
S3(G) > Y S(AN(A—z1) N (A—32) N (A—m3))
x1,22,T3

(we've just thrown in an extra intersection with A here, compared to the definition of ¥3). Let A, =
AN (A—z). Now since a(G) < 3, we have that each a € A can show up in at most three sets A,. Some
will be in exactly three, and the rest will be in at most two, and we can use this to count — we have

S fa) = 3 0(A) <26(A)+ S S(AN(A—21) N (A—22) N (A —a3)). O

zeV zeV T1,72,23

Page 8 of



Talk by Nitya Mani (September 8, 2023) The density of unit distance-avoiding sets

§4.8 The graphs for (T1) and (T2)

As mentioned earlier, (T1) and (T2) are applied cleverly using two different graphs G and G2 with the
same Y3 (allowing us combine the bounds). We'll get a bound of

Yo fl@)<1-5f0)+ > flz—uy).

z€V(G2) z,yeV(G1)

To construct this graph, we consider the following 8-point configuration (with edges denoting unit distances):

V2 U6
V] &&———m— — vs
U5 V4
U3 v7

We then take G; and G2 to both be graphs on 7 of these 8 vertices — G consists of all the vertices except
vg, and G all except vs.

V2 Ve V2 V6
U1 — U1 Ug
Us V4 V4
V3 (%4 V3 (%

Then both graphs have the same X3 (we can use the fact that A is unit distance-avoiding to cancel some of
the terms), and have independence number 3.

§4.9 A final remark

There’s an interesting phenomenon that most of our good constructions (e.g., the Croft construction) are
kind of clumpy — we have some blobs in a bunch of places, and we might have a lot of distance-2 pairs. So
we can imagine plotting a graph of fo(x) (as a function of ||z||); we’ll have a peak at © = 0 (where this value
is 0(A)), a trough of 0 at x = 1 (since A is unit distance-avoiding), a smaller peak at 2, a smaller trough at
3, and so on.

N

When we solve the LP, we can consider what the function f, we get out of it looks like. This function won’t
have all the properties that the actual function should have, but one way the authors get better bounds is
by plotting this function, asking what ‘looks wrong’ about it, and trying to write some more constraints to
fix these things.
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