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§1 Introduction

(This talk is based on a paper by Ballister, Bollobás, Morris, Sahasrabudhe, Tiba from 2020.)

Definition 1.1. A polynomial is Littlewood if it is of the form ∑n
k=0 εkz

k for εk ∈ {−1, 1} — i.e., if all
its coefficients are ±1.

Note that for a Littlewood polynomial P , we have

1
2π

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣2 dθ =

n∑
k=0
|εk|2 = n+ 1.

This means (by an averaging argument) that for every Littlewood polynomial P , there exists a point z1 on
the unit circle S1 with |P (z1)| ≤

√
n+ 1, as well as a point z2 ∈ S1 with |P (z2)| ≥

√
n+ 1.

Question 1.2. For a Littlewood polynomial P , how does the value of |P (z)| vary on the unit circle?

Theorem 1.3
There exist universal constants δ, ∆ > 0 such that for every n ≥ 2, there exists a Littlewood polynomial
P of degree n such that for all z ∈ S1 we have

δ
√
n ≤ |P (z)| ≤ ∆

√
n.

Polynomials satisfying the above property (i.e., that δ
√
n ≤ |P (z)| ≤ ∆

√
n on the unit circle) are called flat.

Remark 1.4. Erdős asked whether such polynomials exist, and Littlewood conjectured that they do;
this theorem answers both questions.

Remark 1.5. The difficult part of the theorem is the lower bound — polynomials satisfying the upper
bound |P (z)| ≤ ∆

√
n have been known for a while, while polynomials satisfying the lower bound were

not previously known (even if we do not require them to also satisfy the upper bound).

Very roughly, the structure of the proof is as follows — we’ll let z = eiθ for θ ∈ R/2πZ. We’ll decompose
P into its real and imaginary part, and work with the two parts separately. To obtain the lower bound
on |P (z)|, we’ll show that the real part of P is large (in magnitude) everywhere except for when θ is in a
collection of ‘well-behaved’ exceptional intervals in [0, 2π), and the imaginary part of P is large on these
well-behaved intervals. Finally, to obtain the upper bound, we will show that both the real and imaginary
parts of P are always O(

√
n).

Now we’ll see an outline of the proof with more details.
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§1.1 Proof Outline

First, without loss of generality we may assume that n is sufficiently large — then we can adjust δ and ∆
to make the statement true for the finitely many remaining n. (For this to work, we just need to be able to
find a polynomial with no zeros on the unit circle; the polynomial 1− z− z2− · · · − zn is such a polynomial
for all n ≥ 2.)
Instead of considering polynomials P (z) of the form ∑n

k=0 εkz
n, we’ll find P (z) of the form ∑2n

k=−2n εkz
k.

Then multiplying by z2n (which doesn’t affect the magnitudes on the unit circle) gives a polynomial of the
original form. (This construction only gives Littlewood polynomials whose degree is a multiple of 4, but we
can add on a few extra terms to get any degree.)
We’ll use C to denote the subset of [2n] such that for all k ∈ C we have εk = ε−k, and for all k ∈ [2n] \ C
we have εk = −ε−k. Then we can rewrite P (eiθ) as

P (eiθ) = ε0 + 2
∑
k∈C

εk cos(kθ) + 2i
∑
k 6∈C

εk sin(θ).

We’ll define c(θ) := ∑
k∈C εk cos(kθ) and s(θ) := ∑

k 6∈C εk sin(kθ) as the first and second sums.
Our polynomial will have the property that C ⊆ 2[n] (i.e., all elements of C are even), so that [2n] \ C
contains all the odd numbers, and we can write [2n]\C = {1, 3, . . . , 2n−1}∪(2[n]\C). We’ll decompose s into
its parts coming from odd and even k — define so(θ) = ∑

k odd εk sin(kθ) and se(θ) = ∑
k∈2[n]\C εk sin(kθ).

Then we have decomposed P as

P (eiθ) = ε0 + 2c(θ) + 2isO(θ) + 2ise(θ).

Note that these three parts are unrelated — once we have chosen the set C, each of c(θ), so(θ), and se(θ)
is determined by a disjoint set of coefficients. So we can choose these three parts separately. We’ll choose
them so that the following properties hold:

(0) Each of |c(θ)|, |so(θ)|, and |se(θ)| is O(
√
n) for all θ (and therefore the upper bound holds).

(1) We have |c(θ)| ≥ δ
√
n for all θ ∈ [0, 2π) except for a ‘nice’ collection of intervals.

(2) On the nice collection of intervals we have |so(θ)| ≥ δbig
√
n (where δbig is a reasonably large constant).

(3) We have that |se(θ)| is small for all θ (where ‘small’ means on the order of
√
n, with a constant less

than δbig).
The two most difficult parts of the proof are (1) and (2). We’ll do (1) by constructing c(θ) explicitly, and
(2) by using discrepancy to prove the existence of such a so(θ).

§1.2 Nice Intervals

Steps (1) and (2) both involve a ‘nice’ collection of intervals; we’ll now make explicit what this means.

Definition 1.6. We say that a collection of intervals I = {I1, . . . , Ir} (with Ii ⊆ R/2πZ for all i) is nice
if it satisfies the following conditions:

(a) The endpoints of each interval are integer multiples of π/n (i.e., the intervals are ‘rational’).
(b) For all i 6= j, we have d(Ii, Ij) ≥ π/n (i.e., the intervals are ‘separated’).
(c) For all i, we have |Ii| ≤ 6π/n (i.e., the intervals are ‘small’).
(d) We have I = π − I = π + I (i.e., the intervals are ‘symmetric’).
(e) All our intervals are far away from integer multiples of π/2 — for all i and all m ∈ Z we have

Ii ∩
[
πm

2 − 100π
n

,
πm

2 + 100π
n

]
= ∅.
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We’ll seek a nice collection of intervals such that outside these intervals c(θ) is large, and inside these
intervals so(θ) is large.

§2 Step (1) — Constructing c(θ)

We’ll first do Step (1). In this part, we’ll also see why the upper bound has been known for a long time
(i.e., that there exist Littlewood polynomials with |P (z)| ≤ ∆

√
n on the unit circle) — we’ll see an explicit

family of polynomials which satisfy the upper bound.

Definition 2.1. The Rudin–Shapiro polynomials are defined inductively in the following way: define
P0 = Q0 = 1, and inductively define

Pt+1(z) = Pt(z) + z2t
Qt(z)

Qt+1(z) = Pt(z)− z2t
Qt(z).

One can check (using induction) that Pt and Qt are both Littlewood polynomials of degree 2t − 1, and
Pt(z)Pt(1/z) +Qt(z)Qt(1/z) = 2t+1.

This latter property is useful because it means that for z ∈ S1, we have
|Pt(z)|2 + |Qt(z)|2 = 2t+1.

This in particuar means that |Pt(z)| , |Qt(z)| ≤
√

2t+1 for all z ∈ S1, and therefore the polynomials Pt and
Qt themselves satisfy the upper bound in the theorem (i.e., their magnitude is bounded by roughly the
square root of their degree). (These polynomials, and the fact that they satisfy the upper bound, have been
known before this work.)
We’ll now use the polynomials Pt and Qt to define c(θ) (in fact, later we’ll use them to define se(θ) as well).

Definition 2.2. Let z = e2iθ and T = 2t+10. We then define

c(θ) = Re(zTPt(z) + z2TQt(z)).

The multiplication by zT and z2T shifts the exponents we obtain from Pt and Qt so that they are disjoint
(this is why we want T to be around 2t, and the extra 10 will be useful when we use discrepancy), and
therefore this expression will be of the form we want (i.e., a sum of terms of the form ± cos(2kθ), where k
ranges over the exponents of z appearing in zTPt(z) and z2TQt(z)) — the set C (of indices where c(θ) has
nonzero coefficient) will be 2C ′ where C ′ = {T, . . . , T + 2t − 1} ∪ {2T, . . . , 2T + 2t − 1}. (We will eventually
take n to be approximately 2t, with some adjustments..)
We want to show that we have |c(θ)| ≥ δ

√
n everywhere (for some δ) except for a nice collection of intervals.

In other words, we want to prove the following statement:

Lemma 2.3
Partition [0, 2π) = I1 ∪ · · · ∪ I2n into 2n equal intervals (i.e., Ii = [2π(i− 1)/n, 2πi/n) for each i). Then

I = {Ii | there exists θ ∈ Ii with |c(θ)| < δ
√
n}

is a nice collection of intervals.

Page 3 of 6



Flat Littlewood Polynomials Exist Talk by Dingding Dong (May 5, 2023)

Some of the conditions we need to check are clear from the definition — (a) is clearly true; (b) will be
satisfied if we combine adjacent unions; (d) is true because c(θ) is a function of cos(2θ), which has the
symmetry properties described in (d); and (e) can be verified by direct calculation (since when θ is close to
an integer multiple of π/2, we know z is close to ±1 or ±i, and in these cases we can compute the relevant
quantities and check that the statement holds).
So we only need to verify (c). In order to do this, we will show that |c(θ)| is frequently large on an interval
of reasonable length. To do so, we will rewrite c as

c(θ) = 2(t+1)/2 Re(H(2Tθ))

for a certain function H (depending on Pt and Qt) — explicitly, we define

H(x) = eixα(x) + e2ixβ(x),

where α(x) = 2−(t+1)/2Pt(eix/T ) and β(x) = 2−(t+1)/2Qt(eix/T ). The lemma we’ll use to obtain (c) is the
following.

Lemma 2.4
Let 0 < η < 2−11. Then for every interval I of length 7η, there exists a subinterval J ⊆ I of length η
such that |Re(H(x))| ≥ η3/27 for all x ∈ J .

Once we know this lemma, we can show that we must have intervals Ii where |c(θ)| isn’t too small once in
a while, which will give (c).

Proof Sketch. One can first show that for every x, at least one of
∣∣∣Re(H(k)(x))

∣∣∣ is large for k = 0, 1, 2, 3
(i.e., we consider the function H itself and its first three derivatives, and at every point at least one of these
four terms must be large). This will in particular imply that H cannot be small and remain small for a very
long time.
Then we split I evenly into seven pieces I = I0 ∪ · · · ∪ I6 and assume for contradiction that there exist
x0 ∈ I0, . . . , x6 ∈ I6 such that |Re(H(xi))| is small for each i. This will eventually contradict Bernstein’s
inequality.

Assuming the lemma (which we won’t go into more detail over for the sake of time), we’re done with (1) —
we’ve successfully constructed c(θ) and shown that it’s large everywhere except a nice collection of intervals.

§3 Step (2) — Constructing s0(θ)

Now fix I to be the collection of nice intervals obtained from (1). We want to show that there exists so such
that |so(θ)| ≥ δbig

√
n on all of I.

We’ll do this by choosing so such that |so(θ)| is close to the indicator function ∑I∈I 1I ·
√
n, or possibly

a scaled multiple of it (where 1I is the indicator function of the interval I). Note that this condition still
leaves us free to choose the signs of the values of sθ. So we’ll get to choose two things:

• First we’ll try to find an assignment of signs to each interval — which we’ll view as a map α: I → {±1}.
We’ll choose α to be symmetric in the sense that α(I) = α(π − I) = −α(π + I).

• Given an assignment α, we’ll try to find an assignment of coefficients ε1, ε3, . . . , ε2n−1 ∈ {−1, 1}
such that the associated polynomial so(θ) corresponding to these coefficients is close to the function∑
I∈I α(I)1I

√
n (or a scaled multiple of it).

Page 4 of 6



Talk by Dingding Dong (May 5, 2023) Flat Littlewood Polynomials Exist

We will do this using discrepancy — we’ll use discrepancy twice, first to select α and then to select the εi.
In order to make this argument work, we’ll first define a few objects that are sort of ‘approximate’ versions
of the ones we’ll eventually construct.

Definition 3.1. For every symmetric α: I → {±1}, we define approximate coefficients for all odd k as

ε̂k = 27√n ·
∫ π

−π

∑
I∈I

(α(I)1I(θ)) sin(kθ) dθ.

(We’ll eventually want these to be close to our actual coefficients ε̂k.)

Definition 3.2. For every symmetric α, we define ŝα(θ) = ∑
k odd ε̂k sin(kθ).

Roughly, the idea is that we expect ŝα(θ) to be close to π · 27√n
∑
I∈I α(I)1I(θ) (this has to do with the

fact that the terms ε̂k are sort of defined as the Fourier coefficients of this function), and we’ll try to choose
the εk to be close to the ε̂k, so that then so(θ) is close to this function as well.
Let gα(θ) = ∑

I∈I α(I)1I(θ) for each α. The argument consists of three steps:

(1) First, we will show that there exists some α such that all the associated ε̂k are in [−1, 1].
(2) Then we will show that we can find actual coefficients εk ∈ {±1} such that ŝα and so are close

everywhere — i.e., such that |ŝα(θ)− so(θ)| is small everywhere.
(3) Finally, we will show that for any α we have |ŝα(θ)| ≥ δbig

√
n on all of I.

Both (1) and (2) are applications of discrepancy. (We won’t see the details for the sake of time.)

Remark 3.3. It might be surprising at first that we construct so using discrepancy, since discrepancy
is generally about making things small — e.g., the original problem involved starting with a collection
of {0, 1}-vectors and finding a {±1}-vector with small inner product to all of them — and here we’re
trying to make so large, not small. But the above outline shows how we’ve reduced the problem to
making things small — we want the ε̂k to be small and so to be close to ŝα — so it now sounds a lot
more like something that can be done using discrepancy.

Meanwhile, (3) is where we use the niceness of I. (It doesn’t depend on the specific α we chose, and should
hold for all α.) The point is roughly that in our definition of ε̂k we have a sin(kθ) term, and then in the
definition of ŝα(θ) we’re multiplying by another sin(kθ); so we sort of have a sin2 term, which we’d expect
to have a reasonably large contribution to ŝα(θ). (The argument involves using a trigonometric identity to
estimate

∫
θ

∑
j sin((2j + 1)θ0) sin((2j + 1)θ) or a similar expression.)

§4 Step (3) — Constructing se(θ)

Finally, for part (3), we’ll define se explicitly in the following way — let z = e2iθ, and define

se(θ) = Im(P<n+1(z)− zTPt(z)− z2TPt(z)),

where P<n+1 denotes the degree n polynomial that agrees with Pn+1 on the first n + 1 terms (i.e., the
polynomial obtained from Pn+1 by only considering the terms of degree at most n; note that the polynomials
Pt all share the same initial segments). The subtraction of zTPt and z2TPt is to ensure that the terms which
appear in se(θ) are precisely those which do not appear in c(θ).
We define n by taking 2−43 < γ < 2−40 and letting n be such that γn = 2t+11 + 2t − 1. This means n is
quite a bit bigger than T — it’s around 2t+11/γ ≈ 2t+50.
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We want to show that |se(θ)| is always small — we just need it to be small compared to our bound on |so(θ)|
on I, so that it doesn’t cancel out the contribution from so. We can just do this naively (using the

√
n

bound on Pt we saw when constructing c(θ) earlier) — this gives us a
√
n upper bound on |se(θ)| where the

constant is on the order of 1, while our construction of so gave a
√
n lower bound on |so(θ)| with a much

bigger constant (on the order of 27).
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