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§1 Introduction

Today we’re going to talk about Andrews’s theorem, which relates the number of vertices of a lattice polytope
to its volume. Throughout this talk, we’ll use P to refer to a lattice polytope in Rd — i.e., a polytope in
Rd whose vertices are all in Zd. (All polytopes are assumed to be full-dimensional and convex.)

Theorem 1.1 (Andrews 1963)
If P is a lattice polytope in Rd, then

#vert(P ) ≤ cd Vol(P )(d−1)/(d+1)

(where vert(P ) denotes the set of vertices of P , and cd is a constant only depending on d).

This bound is tight, up to the constant cd — we’ll see an example soon.

Of course, it’s important that P is a lattice polytope — otherwise we could take an arbitrary polytope with
many vertices and shrink it to be tiny (so we’d have lots of vertices but tiny volume).

Remark 1.2. However, if we wanted such a statemet for a general polytope where we’re only counting
lattice vertices (i.e., we’ve got a polytope with some vertices not on the lattice, but we’re only trying to
upper-bound the number of vertices on the lattice), we can get such a statement directly from Theorem
1.1 by taking the convex hull of the lattice vertices and applying Theorem 1.1 to that subpolytope
(whose volume can only be smaller than that of the original).
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It’s also important that we’re looking at vertices of the polytope, and not just integer points — it turns out
that we can also get a bound for the number of integer points, but it’ll be different.

Proposition 1.3
For any lattice polytope P in Rd, we have #(P ∩ Zd) ≤ c′d Vol(P ) for some constant c′d ≈ d!.

This bound is also tight, and we’ll see an example soon. Again, it’s important that P is a lattice polytope
— otherwise we could have P be extremely long and thin, so that it would contain many lattice points but
have tiny volume.

Remark 1.4. Together, Theorem 1.1 and Proposition 1.3 also give a quantitative version of the state-
ment that a large polytope P should have significantly fewer vertices than integer points (since Theorem
1.1 has a smaller exponent of Vol(P ) than Proposition 1.3), which is what you’d expect.

We’ll first sketch the proof of Proposition 1.3, which relies on the following fact.

Fact 1.5 — Any lattice simplex in Rd has volume at least 1/d!.

(This can be proven by induction on d, or by directly using the volume formula — which involves some
determinant divided by d!.)

Proof sketch of Proposition 1.3. The main idea is to show we can decompose P into at least #(P ∩Zd)− d
lattice simplices, or at least find this many disjoint lattice simplices inside P — then we’re done by Fact
1.5, which tells us that each of these simplices has volume at least 1/d!.

To get this decomposition, the idea is that if there’s more than d + 1 vertices, then we can find some vertex
we can remove while keeping P full-dimensional. Then we can remove it; this creates a new face, and we
get one lattice simplex from taking that face together with the removed vertex.
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removed vertex

new face

lattice simplex

We can do this repeatedly to chop P up into (potentially large) lattice simplices; and then we chop up each
of those lattice simplices further using their integer points.

§1.1 Constructions

As mentioned, both Theorem 1.1 and Proposition 1.3 are tight (up to the constants). First we’ll see an
example showing Proposition 1.3 is tight.

Example 1.6
The cube [0, n]d has (n + 1)d integer points and volume nd.

(Then taking n→∞ shows that Proposition 1.3 is tight.)

It’s maybe more surprising that Theorem 1.1 is tight — the exponent (d− 1)/(d + 1) looks pretty weird at
first (although exponents like this actually come up not infrequently in such problems). The idea behind
the construction is that we’re going to take a point set X on the ‘graph’ of a convex function Rd−1 → R,
and take P to be the convex hull of this point set X — this means that every point in X is a vertex of P
(by the convexity of our function), so we get good control over #vert(P ).

Specifically, the convex function we’ll use is the function x 7→ ‖x‖2 — this is convex, and if x ∈ Zd−1 then
‖x‖2 ∈ Z (which means the points we get will actually be lattice points).
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Example 1.7
Let X = {(x, ‖x‖2) | x ∈ {−n, . . . , n}d−1}, and let P = conv(X) be its convex hull.

For example, if d = 3, then the graph of the function x 7→ ‖x‖2 is a paraboloid. And we’re taking a square
beneath it, considering the grid formed by all the lattice points in that square, and lifting up each of those
points onto the paraboloid. And then X is the set of all the points on this paraboloid.

Then the vertices of P are precisely the points in X, so we have #vert(P ) = (2n + 1)d−1. Meanwhile, to
estimate Vol(P ), we can imagine lifting just the corner points (i.e., the points x ∈ {−n, n}d−1), and taking
the polytope formed by these points together with the origin.

This gives us a pyramid whose base has volume (2n + 1)d−1 (since it’s a lifted version of the hypercube with
vertices {−n, n}d−1) and whose height is n2(d− 1) (the value of ‖x‖ for all our corner points x). And this
pyramid is contained in P , so (using the formula for the volume of a pyramid) we get

Vol(P ) ≥ (2n + 1)d−1 · n2d

d
.

We really want an upper bound on Vol(P ) (in order to show that Theorem 1.1 is tight), but it turns out
that a matching upper bound does hold, meaning that we have Vol(P ) � nd+1 (where the hidden constants
depend on d). (Intuitively, this approximation of P by a pyramid doesn’t lose too much.)

Combining these gives #vert(P ) � Vol(P )(d−1)/(d+1) (as #vert(P ) � nd−1 and Vol(P ) � nd+1). So the
exponent in Theorem 1.1 is the best we could possibly hope for.
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Remark 1.8. Another example showing that Theorem 1.1 is tight is P = conv(Zd ∩ nBd) (where d
is fixed and n is large). This is from a paper of Bárány from the 1980s called The convex hull of the
integer points in a large ball, and it’s maybe quite surprising — Vol(P ) scales as nd, but the number of
vertices has this weird fractional exponent. (Note that the vertices are not just the intersection of the
sphere Sn−1 with the lattice — there’ll be more integer points inside as well.)

§2 The proof

There are lots of proofs of Theorem 1.1; the one we’ll go through is from a paper of Konyagin and Sevastyanov.
The main idea is to induct on d; the base case d = 1 is immediate (when d = 1, Theorem 1.1 just says
#vert(P ) is bounded by a constant (since the exponent of Vol(P ) is 0), which is true — it’s at most 2).

§2.1 A first attempt

First, why is induction on d a strategy that might make sense? Imagine that we’ve got our polytope P
in dimension d, and we’ve proven Theorem 1.1 for dimension d − 1; this in particular means it applies to
every facet (i.e., (d − 1)-dimensional face) of P . So let’s call these facets F1, . . . , Fk, and let’s suppose
they have m1, . . . , mk vertices (respectively). Then we can use the dimension d− 1 case of the theorem to
upper-bound mi in terms of Vold−1(Fi) (where we write Vold−1 to specify that we’re taking the volume of a
(d − 1)-dimensional object, rather than a d-dimensional object). But we can’t apply this directly, because
the hyperplane that Fi lives in might intersect the d-dimensional lattice Zd in a ‘shifted’ (d−1)-dimensional
lattice (rather than just Zd−1), whose fundamental parallelogram might have a different volume (compared
to 1). So now we need to normalize by this parallelogram — letting Π1, . . . , Πk be the fundamental
parallelograms corresponding to each facet, we get

mi .
(Vold−1(Fi)

Vold−1(Πi)

)(d−2)/d

(1)

for each i (we’re going to ignore constant factors depending on d — so the implicit constants in our asymptotic
notation are allowed to depend on d).
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ΠiFi

Now let m be the total number of vertices of P , so that m ≤
∑

mi (this will overcount, since a vertex may
be in multiple facets, but that’s fine). And we have upper bounds for the mi’s, so we get

m .
∑(Vold−1(Fi)

Vold−1(Πi)

)(d−2)/d

,

which is an upper bound for m (our number of vertices) in terms of the volumes of the facets Fi — which
we can think of roughly as a bound for m in terms of the surface area of P . But this is where the idea hits
a problem. We wanted a bound for m in terms of the volume. And the surface area isn’t necessarily related
to the volume in any reasonable way, at least in the direction we need — it’s true that a shape with large
volume has to have large surface area, but the reverse direction (which is what we need here) isn’t true (for
example, you can imagine taking a very long, thin parallelepiped).

§2.2 A fix — the reverse isoperimetric inequality

This idea is good, but we’ve hit a problem here. But it turns out that we can fix this problem and make
the idea work using the reverse isoperimetric inequality.

Theorem 2.1 (Reverse isoperimetric inequality)
For any convex body K in Rd, there is a volume-preserving affine map A such that

Vold−1(∂A ·K)d . Vold(A ·K)d−1.

We use A ·K to refer to the image of K under the affine map A, and ∂A ·K to refer to its surface.

Remark 2.2. By volume-preserving we mean that A preserves d-dimensional volume; this does not
mean that A preserves (d− 1)-dimensional volume (so Vold(A ·K) = Vold(K), but Vold−1(∂A ·K) does
not necessarily equal Vold−1(∂K) — if it did, then A wouldn’t be doing anything useful).

The (normal) isoperimetric inequality states that Vold−1(∂K)d & Vold(K)d−1. (More precisely, for a given
surface area, the body with maximum volume is a ball, and Vold−1(∂K)d � Vold(K)d−1 if K is a ball.)
The reverse inequality isn’t true if we just take K with no transformation (as mentioned above). But the
intuition is that we can use our affine transformation A to sort of round K out and make it look more like
a ball, so that the reverse inequality does hold for this transformed body.
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So this inequality gives us some hope — maybe we can transform our polytope first and then try to run this
argument (where we use the (d−1)-dimensional case of the theorem to bound the number of vertices on each
face by its (d− 1)-dimensional volume). Then we’ll eventually get to a point where we have a bound on the
number of vertices in terms of the surface area, and we’ll hopefully be able to use the reverse isoperimetric
inequality to turn this into a bound in terms of volume.

§2.3 Proof outline

We’re again going to start by using the inductive hypothesis on each facet Fi, as in (1). Our affine trans-
formation A isn’t necessarily going to preserve the surface measures of Fi or Πi, but because it’s affine, it
will preserve their ratio — so we’ll get

mi .
(Vold−1(Fi)

Vold−1(Πi)

)(d−2)/d

=
(Vold−1(A · Fi)

Vold−1(A ·Πi)

)(d−2)/d

. (2)

ΠiFi A ·Πi
A · Fi

 

So the proof has two steps:
(1) First, we’ll try to get a lower bound on Vold−1(A ·Πi) for each i; this will give us an upper bound on

each mi (and therefore on m) in terms of the facet volumes of our transformed polytope A · P .
(2) Then we’ll use some general inequality techniques to turn this into a bound on m in terms of the

surface area of A · P , and we’ll use the reverse isoperimetric inequality to finish.

§2.4 A simpler version of (1) — bounding the volumes of the Πi

As mentioned above, the first step of the proof is getting a lower bound on Vold−1(A ·Πi). For now, though,
we’re going to ignore the affine transformation A and just try to get a bound on Vold−1(Πi). This isn’t
exactly what goes into the proof, but it’ll illustrate several of the ideas, and we’ll see later how to fix it in
order to get a bound on Vold−1(A ·Πi). (This is because if we tried to bound the volume of A ·Πi from the
start, there’d be extra technical details that would obscure things.)
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Question 2.3. How do we get a lower bound on Vold−1(Πi)?

We’re going to order the facets so that Vold−1(Π1) ≤ · · · ≤ Vold−1(Πk). And now the tricky bit of the proof
is that we’re going to define vectors hi ⊥ Πi (equivalently hi ⊥ Fi) such that |hi| = Vold−1(Πi). We’ll also
say that they’re pointing outwards from the polytope (this makes them uniquely defined).

ΠiFi

hi

And these vectors hi have a funny property — they turn out to have integer coordinates.

Lemma 2.4
We have hi ∈ Zd (for each i).

Written in this way, this fact might seem sort of crazy. But there are a few ways to see this; we’ll see one
by direct computation.

Proof. We’re going to give an explicit formula for hi (defining each of its coordinates); it’ll be clear that the
vector defined by this formula has integer coordinates, and we’ll check that it satisfies all the properties hi

is supposed to (which means it’s really equal to hi).

Let v1, . . . , vd−1 be the integer vectors that generate the fundamental parallelotope Πi, and let

M =

 | · · · |
v1 · · · vd−1
| · · · |


be the matrix they form (so M has d rows and d− 1 columns).

Πi

v1

v2

For each 1 ≤ j ≤ d, let Mj be the (d−1)× (d−1) matrix obtained by deleting the jth row of M , and define
the jth coordinate of hi as (hi)j = det Mj . Then it’s clear that hi has integer entries (since each Mj is an
integer matrix).

To check that hi ⊥ Πi, consider any vector v in the hyperplane of Πi (so v ∈ Span{v1, . . . , vd−1}). Then we
have 〈hi, v〉 = ±det(M | v) (where (M | v) is the d× d matrix formed by M with an additional column of
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v) by the cofactor formula for the determinant. But since v is in the span of the first d− 1 columns of M ,
this determinant is 0, and therefore hi ⊥ v.
Meanwhile, to check that |hi| = Vold−1(Πi), we’ll consider the parallelepiped with base Πi and height hi.

Πi

v1

v2

hi

On one hand, the volume of this parallelepiped is Vold−1(Πi) · |hi| (since in general, the volume of a prism
is the volume of its base times its height). On the other hand, we know all the vectors that define it —
namely, v1, . . . , vd−1, and hi — so we can calculate its volume as the determinant∣∣∣∣∣∣∣

| · · · | |
v1 · · · vd−1 hi

| · · · | |

∣∣∣∣∣∣∣ ,
which can be shown to be Vold−1(Πi)2. So we get |hi| = Vold−1(Πi), as desired.
So the vector hi that we’ve defined (using this explicit formula) satisfies both properties in our original
definition of hi — we have hi ⊥ Πi and |hi| = Vold−1(Πi) — which means it really is the correct vector (as
in the original definition). And since it has integer entries (we defined its entries as determinants of integer
matrices), we’re done.

Remark 2.5. In 3 dimensions, this formula for hi is just the cross product v1 × v2. So we can think of
this sort of as a higher-dimensional generalization of the cross product.

Now the authors do something quite surprising. We ordered the facets such that Vold−1(Π1) ≤ · · · ≤
Vold−1(Πk), which means that

|h1| ≤ · · · ≤ |hk| .

And now if we’re trying to bound Vold−1(Πr) = |hr|, we’ll consider conv(h1, . . . , hr) — the convex hull of
the first r of these vectors. On one hand, all of h1, . . . , hr have length at most |hr|, which means they’re all
contained in the ball of radius |hr|, and so their convex hull is as well; this means

Vold(conv(h1, . . . , hr)) ≤ |hr|d Vold(Bd) . |hr|d

(where Bd is the unit ball in d dimensions; its volume only depends on d, which we think of as a constant).
On the other hand, this convex hull has at least r integer points (namely, h1, . . . , hr themselves), so the
argument from our proof of Proposition 1.3 gives that

Vold(conv(h1, . . . , hr)) ≥ r − d

d!
(we can decompose the polytope into at least r − d lattice simplices and use Fact 1.5 to say that each has
volume at least 1/d!). Combining these gives that

Vold−1(Πr) = |hr| &
(

r − d

d!

)1/d

& r1/d.
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Remark 2.6. Alternatively, we could just say that the ball of radius |hr| has at most |hr|d integer points
(up to constant factors), since (for example) it’s contained in the cube [− |hr| , |hr|]d, and h1, . . . , hr

are all integer points inside this ball; this also gives |hr|d & r.

Remark 2.7. There’s a detail we’re brushing under the rug — we need conv(h1, . . . , hr) to be full-
dimensional for this argument to work — but this isn’t too important.

§2.5 Step (2) — concluding

We’ve now proven the bound of Vold−1(Πr) & r1/d for all r. What we really wanted was to bound Vold−1(A ·
Πr) (for the affine transformation A given by the reverse isoperimetric inequality applied to P ); it turns out
that we can get the same bound of Vold−1(A · Πr) & r1/d, using the same proof as above with a few small
modifications. We’ll see how to do this later, but for now we’ll assume this and see how to finish the proof.
Recall that we defined m as the total number of vertices of P and mi as the number of vertices on Fi, so
that m ≤

∑
mi. We’ll let m̂ =

∑
mi, and we’ll actually try to bound m̂.

First, the inductive hypothesis gave us the bound (2) on mi in terms of the volumes of A · Fi and A · Πi,
and plugging in our bound Vold−1(A ·Πi) & i1/d gives

m
d/(d−2)
i .

(Vold−1(A · Fi)
Vold−1(A ·Πi)

)
. Vold−1(A · Fi) · i−1/d,

and we can move the i−1/d to the other side to get

m
d/(d−2)
i · i1/d . Vold−1(A · Fi). (3)

Now if we sum the right-hand side over all facets Fi, what we get is precisely the surface area of A · P . So
we’d like to bound m̂ =

∑
mi in terms of the left-hand side, and we’ll do this using Hölder’s inequality. In

(3) we’ve got an exponent of d/(d − 2) (for mi), and we want to choose exponents for Hölder so that this
exponent becomes a 1; so the inequality we want to use is

m̂ =
∑

mi ≤
(∑

m
d/(d−2)
i i1/d

)(d−2)/d (∑
i−(d−2)/2d

)2/d
. (4)

And the first term in (4) is precisely what we had in (3), so we can bound it by∑
m

d/(d−2)
i i1/d .

∑
Vold−1(A · Fi) = Vold−1(∂A · P ).

And now we can use the reverse isoperimetric inequality (Theorem 2.1) to go from surface area to volume
— so we get ∑

m
d/(d−2)
i i1/d . Vold−1(∂A · P ) . Vold(A · P )(d−1)/d = Vold(P )(d−1)/d

(here we can remove A because it preserves d-dimensional volume).
Meanwhile, to bound the second term in (4), it’s just a sum over i (which ranges from 1 to k, the number
of facets), so we can bound it by an integral — we have

k∑
i=1

i−(d−2)/2d .
∫ k

1
x−(d−2)/2d dx � k(d+2)/2d.

We need to get rid of k, and we’ll do so using the crude bound k ≤
∑

mi = m̂ (since there’s k terms in the
sum, and each is at least 1). Then plugging these bounds into (4) gives

m̂ ≤ Vold(P )(d−1)(d−2)/d2 · m̂(d+2)/d2
.
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And finally, we can move m̂ over to the other side to get that

m̂ ≤ Vold(P )(d−1)/(d+1),

which finishes the proof of Theorem 1.1 (as m ≤ m̂).

Remark 2.8. This argument may look pretty lossy at first, so it’s maybe surprising that it’s tight
for the construction in Example 1.7. But it turns out that the loss in these bounds is only a constant
depending on the dimension for that example — in the bound m ≤ m̂ the loss comes from vertices being
in multiple facets (and therefore being overcounted in m̂ =

∑
mi), and each vertex is in a constant

number of facets (depending on d), so we only lose a constant factor here. Similarly, when we bound
k ≤ m̂, the loss comes from facets having more than one vertex, and this again corresponds to a loss of
a dimension-dependent constant (since each facet has a constant number of vertices).

§2.6 Finishing step (1) — the affine transformation

Now we’ll explain how to modify the argument in Subsection 2.4 to get the same bound on Vold−1(A · Πi)
(instead of just Vold−1(Πi)). (Note that we can’t just apply the result of Subsection 2.4 as a black box to
A · P , because A · P may not be a lattice polytope anymore.)
We’re still going to define the vectors hi in the same way (such that hi ⊥ Πi and |hi| = Vold−1(Πi)). Then
if we consider the vectors A−ᵀhi (where A−ᵀ is the inverse transpose of A), we’ll have A−ᵀhi ⊥ A · Πi and
|A−ᵀhi| = Vold−1(A ·Πi).
So now we’ll do essentially the same trick as in Subsection 2.4, but we’ll order the facets such that |A−ᵀh1| ≤
· · · ≤ |A−ᵀhk| (instead of just |h1| ≤ · · · ≤ |hk|). And then in order to bound Vold−1(A · Πr) = |A−ᵀhr|
for some r, we’ll consider conv(A−ᵀh1, . . . , A−ᵀhr). On one hand, this convex hull contained in the ball of
radius |A−ᵀhr| (since all its vertices are contained in this ball), so we have

Vold(conv(A−ᵀh1, . . . , A−ᵀhr)) ≤ |A−ᵀhr|d Vold(Bd) . |A−ᵀhr|d.

On the other hand, since A is volume-preserving, so is A−ᵀ; this means

Vold(conv(A−ᵀh1, . . . , A−ᵀhr)) = Vold(A−ᵀ · conv(h1, . . . , hr)) = Vold(conv(h1, . . . , hr)).

And the same argument from Subsection 2.4 still gives Vold(conv(h1, . . . , hr)) ≥ (r − d)/d! (this polytope
has at least r integer points, namely h1, . . . , hr). So we get

Vold−1(A ·Πr) = |A−ᵀhr | & r1/d,

which is exactly what we wanted.

§3 An extension

This completes the proof of Theorem 1.1; to finish, we’ll say one more comment about how we can extend
the proof to get a stronger result.

Definition 3.1. A tower (or flag) of a polytope P is a sequence of nested faces f0 ⊆ f1 ⊆ · · · ⊆ fd−1 ⊆ P
where dim(fi) = i for each i.

This means we’re starting with a single vertex f0, and then taking an edge f1 that contains it, and then a
face f2 containing this edge, and so on. The reason for the name is that these first three things (a vertex in
an edge in a face) together look sort of like a flag.
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f0

f2f1

Definition 3.2. For a polytope P , we define T (P ) as the number of towers of P .

There’s a simple recurrence for T (P ) — if P has facets F1, . . . , Fk, then we have T (P ) =
∑

T (Fi) (by
separating the towers based on which facet fd−1 is). This looks a lot like the bound m ≤

∑
mi that we

used in the proof of Theorem 1.1. And indeed we can go through the entire proof replacing the number of
vertices with the number of towers, and nearly everything will work in the same way. So we can get the
same bound as Theorem 1.1 for the number of towers.

Theorem 3.3
We have T (P ) . Vol(P )(d−1)/(d+1).

And this has a nice corollary — for any s, the number of s-dimensional faces of P is at most the number of
towers (since each face can be extended in both directions to get at least one tower), giving the following
bound.

Corollary 3.4
For each s, the number of s-dimensional faces of P is at most Vol(P )(d−1)/(d+1) (up to constant factors).

The case s = 0 corresponds to counting the number of vertices (as in Theorem 1.1), but we can also use it
to bound the number of edges or two-dimensional faces or facets or so on.

Remark 3.5. This bound should again be tight for the integer hull of a ball, as described in Remark
1.8 — the same paper by Bárány mentioned there might actually show that it’s tight for all s.
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