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§1 Introduction

§1.1 Context

This work broadly falls in the context of theorems in additive combinatorics around Szemerédi’s theorem.

Theorem 1.1 (Szemerédi 1975)

Let A ⊆ [N ] with |A| ≥ δN . If N is sufficiently large as a function of δ and k, then A contains a k-AP
— i.e., it contains x, x+ y, x+ 2y, . . . , x+ (k − 1)y where y ̸= 0.

Szemerédi’s theorem is about finding some kind of regular structure in a 1-dimensional set which is dense.
Since Szemerédi’s theorem, there’s been lots of work towards multidimensional versions of this. One of the
first was the following:

Theorem 1.2 (Ajtai–Szemerédi 1974)

Let A ⊆ [N ] with |A| ≥ δN2. If N is sufficiently large as a function of δ, then A contains three points
(x, y), (x+ d, y), and (x, y + d) with d > 0.

So if you have a dense subset of the 2-dimensional integer lattice, then it must contain a corner — three
points forming an isosceles right triangle.

(x, y) (x+ d, y)

(x, y + d)

This is a very particular 3-point configuration in 2 dimensions, but we actually know much more. Historically,
after Szemerédi’s theorem, Furstenberg proved it by ergodic methods in 1977, and soon afterwards there
was a generalization which completely generalized this result.
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Theorem 1.3 (Furstenberg–Katznelson 1977)

Let P be any fixed subset in d dimensions. Let A ⊆ [N ] with |A| ≥ δNd. If N is sufficiently large as a
function of δ, P , and d, then A contains x+ t · P with t ∈ Z.

This notation means you take your fixed configuration P , and you’re allowed to dilate it by an integer t and
to shift it by x; so you’re finding a copy of P inside your set.

The proof of this is by ergodic theory. To this day, at this level of generality we have very poor understanding
of the function N(δ, P, d) (how large N has to be for this to hold). The Furstenberg–Katznelson proof gives
no bounds because it uses ergodic theory. Now there are proofs using the hypergraph regularity lemma, but
you can’t write down good effective bounds — the current bound is maybe a tower of 2’s of height 1/δ, or
worse (e.g., for four points in a square).

But in some cases, we do have a decent understanding. In 1 dimensions, we have reasonable bounds. This
is essentially contained in the work of Gowers 1998 — he gave an alternate proof of Szemerédi’s theorem
which gave effective bounds, and that can be used to handle all 1-dimensional patterns.

There are exactly two other cases where we have effective bounds. One is corners (solving a question of
Gowers); this was handled by Shkredov 2005. The other pattern we have is four points forming an L, i.e.,
(x, y), (x+ d, y), (x, y + d), (x, y + 2d). This was handled by Peluse 2024.

(x, y) (x+ d, y)

(x, y + d)

(x, y + 2d)

§1.2 Corners

Today we’ll focus on corners. Shkredov gave a reasonable quantitative rate:

Theorem 1.4 (Shkredov 2005)

Let A ⊆ [N ]2 with |A| ≥ N2 · (log logN)−Ω(1). Then A contains a corner.

(The constant in the exponent is something explicit, like 1
73 .)

Our main theorem improves this quantitative version.

Theorem 1.5 (JLLOS 2025+)

Let A ⊆ [N ]2 with |A| ≥ N2 · e−c(logN)1/600 . Then A contains a corner.

In particular, this bound is two exponentials better in terms of the density savings.

Before diving into discussions of the proof, we’ll make a few remarks. First, the shape of this bound is
optimal — there’s a lower bound of the form N2 · quasipoly(N) (meaning there exist sets of that size with
no corners). This comes from examples of large sets which avoid 3-APs, due to Behrend. So up to changing
1

600 to maybe 1
2 , this bound is correct — at least its shape is correct.
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Remark 1.6. By a well-known projection argument, upper bounds for corners also give upper bounds
for sets avoiding 3-APs. The first people to prove quasipolynomial bounds for 3-APs were Kelley–Meka
2023. (This is not an alternate proof of their result; we use their ideas.)

§1.3 Number-on-forehead complexity

This has a nice application to computational complexity. In the number on forehead model, imagine you
have three people, and they’re trying to compute some function of three numbers x, y, and z. Player 1 has
x taped to their forehead, Player 2 has y, and Player 3 has z. So as the player, you can see the other two
numbers, but not your own.

Question 1.7. What’s the minimum number of bits that the players need to communicate to compute
a certain function?

The corners problem is closely related to computing the function 1[x + y + z = N ], called the Exactly-N
function. There’s a randomized protocol taking O(1) rounds of communication; but the question is, can you
get good bounds on the non-randomized setting?

By a reduction of Chandra–Furst–Lipton 1983, Theorem 1.5 implies that Exactly-N needs Ω((logN)1/600)
rounds of communication (for deterministic protocols). The trivial algorithm for computing this function
would be for Player 2 to tell Player 1 what his number is; this takes logN rounds. There’s a better algorithm
that takes (logN)c rounds for some c < 1, so this bound is optimal up to the power of log.

(By ‘rounds of communication,’ we mean the total number of bits they communicate.)

This is for 3-player number on forehead, and essentially solves it up to the power of log. You can also look at
4-player number on forehead, where you have x, y, z, w and four players. For 4-player Exactly-N , Theorem
1.5 gives a lower bound of Ω(log log log logN) rounds. Maybe this is not so interesting, but before, you
couldn’t even really write down a function that tended to ∞ (though we knew one existed). (It’s expected
the right answer should be a power of log, but we’re very far away from proving anything like that.)

§1.4 Setup

As one last thing, all the setup we’ve stated makes sense in the context of general abelian groups. So for
the rest of the talk, we’ll consider A ⊆ Fn

2 × Fn
2 instead. So N from the earlier statements becomes 2n, and

we still want to find configurations (x, y), (x, y+ d), (x+ d, y) in A. (Essentially, statements on [N ] are the
same as ones on Z/NZ, but working with finite fields instead makes many of the technical aspects easier to
think about.)

Also, we’ve been parametrizing corners as (x, y), (x, y + d), (x + d, y) so far. But for the proof, it’s useful
to parametrize corners differently — we substitute d = x + y + z, so the parametrization becomes (x, y),
(x, x+ z), (y + z, y). (We’re in characteristic 2, so for example, x+ 2y + z = x+ z.) So we get this simpler
parametrization, and we’ll be operating with it for the rest of the talk.

§2 Shkredov’s argument

To discuss the proof, it’s important to understand the work of Shkredov — it’s the starting point. We’ll
win two logs over Shkredov’s bound, so it’s important to see where you lose each log in that proof.

For concreteness, let A ⊆ Fn
2 × Fn

2 with |A| = α · 4n. For the rest of this computation, we write 1A(x, y) for
the function dictating whether (x, y) ∈ A, and fA(x, y) = 1A(x, y)− α for the balanced indicator function.

Page 3 of 8



Quasipolynomial bounds for the corners theorem Talk by Mehtaab Sawhney (April 17, 2025)

Let’s try to interpret the condition that A has no corners analytically. It’s relatively straightforward to show
this means that

|Ex,y,zfA(x, y)1A(x, x+ z)1A(y, y + z)| ≳ α3

(throughout this talk, x, y, z always range over Fn
2 ) — what’s happening is that if we expand fA(x, y) =

1A(x, y) − α, the first term 1A(x, y)1A(x, x + z)1A(y, y + z) has very small contribution because there are
no corners in A, while the second term α1A(x, x+ z)1A(y, y + z) results in the α3.

This is additive combinatorics, so we’ll do lots of Cauchy–Schwarz; our goal is to use this statement to derive
some structure on fA. First, by the triangle inequality, we can bound the left-hand side by

Ex,z |EyfA(x, y)1A(y, y + z)| .

Then by Cauchy–Schwarz, this is at most(
Ex,z (EyfA(x, y)1A(y, y + z))2

)1/2
.

If we expand the square by creating two copies y1 and y2 and switch the order of summation, this becomes

(Ey1,y2 (ExfA(x, y1)fA(x, y2)) (Ez1A(y1, y1 + z)1A(y2, y2 + z)))1/2 .

All of these things are 1-bounded, so we can use the triangle inequality and drop the second term; so this
is at most

(Ey1,y2 |ExfA(x, y1)fA(x, y2)|)1/2 .
Now we do Cauchy–Schwarz again to bound this by

(Ex1,x2,y1,y2fA(x1, y1)fA(x1, y2)fA(x2, y1)fA(x2, y2))
1/4 . (2.1)

Now let’s examine what we’ve proven. We can think of the above expression as some sort of 4-cycle count:
We can imagine a bipartite graph with Fn

2 on each side, and with edges fA(x, y) = 1A(x, y)−α. (If we didn’t
have the −α, then this would be precisely a graphical representation of A; the −α makes it a weighted graph
with mean 0.) Then this expression is the density of 4-cycles in this weighted graph.

Fn
2 Fn

2

x1

x2

y1

y2

Due to Chung–Graham–Wilson, if this 4-cycle count is large (what we’ve shown is that it’s bigger than
α12), this implies there is a subset of this graph which has higher density than you expect. (This is by some
further applications of Cauchy–Schwarz.) So this implies there exist sets X and Y such that

E1X(x)1Y (y)1A(x, y) ≥ (α+ αO(1))E1X(x)1Y (y).

In words, what this says is that on the rectangle X × Y , the density of A went up by αO(1) — its original
density was α, but its density on X × Y is α+αO(1). Right now this is not so interesting because X and Y
could just be singletons, but actually we can also ensure that E1X ≥ αO(1) and E1Y ≥ αO(1).

What have we accomplished? We originally had some set, and we passed to an arbitrary subset X in one
dimension and Y in the other such that on the subgrid X × Y , we’ve increased the density.
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X

Y

Fn
2

Fn
2

That seems promising, and the idea of the density increment strategy is to sort of iterate this.

The first log loss already comes from here — when we do a density increment, we go

α 7→ α+ αO(1).

We won’t work out the density increment calculation, but if you do, it leads to logarithmic-type bounds. So
that’s at least one log lost.

For where the second log loss comes from, we’ve sort of cheated here — after we apply this result, A no
longer lives on Fn

2 ×Fn
2 , but instead on some arbitrary product space X ×Y . We want to run this argument

again to get another density increment, but we can’t, because we’re no longer in Fn
2 × Fn

2 . (This part was
Shkredov’s main innovation — it was known before that you could get to a density increment on some
X × Y , but it wasn’t clear what to do with this.)

What Shkredov does is show that one can pseudorandomize X and Y to have no large Fourier coefficients.
Roughly, you take your sets X and Y , and if either of them has a large Fourier coefficient, then this means
you have a density increment along some subspace, so you can split your sets along that subspace. And you
can run an iterative argument to find X and Y which live on some smaller subspace and are pseudorandom
on that subspace. It turns out that if they’re pseudorandom, then you can run an argument like this (and
we’ll use that in the proof).

But there’s some argument that uses Fourier coefficients here, and this loses an additional log.

So each of these costs you one log, and we need to remove both to get quasipolynomial bounds. To preserve
everyone’s sanity, we won’t discuss the second (the pseudorandomization step); it’s complicated, and the
solution to the first (the density increment step) informs the solution to the second. We’ll really discuss
what you replace the first step with (the log loss from the density increment) and how; that’ll be the focus
of the rest of the talk.

§3 A better density increment

The idea (which comes from work of Kelley–Meka and Kelley–Lovett–Meka) is to replace the density incre-
ment by something better. We’d like to get a density increment of the form α 7→ α(1 + O(1)) instead of
α 7→ α + αO(1) — instead of going up by a power of α, you want to replace α with α · 1.01. If you can get
this, it’ll save you one log.

But the Cauchy–Schwarz argument will always lose a power of α — at some point we’re replacing functions
like 1A with the fact that they’re 1-bounded, and it turns out that will always lose things like this. So the
idea is some kind of Höldering magic which gets around this issue; it’s sort of a surprising thing that this is
possible.
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§3.1 Setup

For some setup, when we pass to smaller rectangles, A is going to live in some container set. So for the rest
of the talk, we’ll have three sets X,Y,D ⊆ Fn

2 ; we’ll write E1X(x) = δX , E1Y (y) = δY , and E1D(z) = δD
for their densities. We’ll always have

1A(x, y) ≤ 1X(x)1Y (y)1D(x+ y)

(in words, this says that for all (x, y) ∈ A, you need x ∈ X, y ∈ Y , and x+ y ∈ D). We’ll additionally have
that X, Y , and D are ‘pseudorandom.’

Also, previously we used α to measure the density of A relative to the entire space, but now it’s better to
measure it relative to the container sets; so we’ll have

EA1A(x, y) = αδXδY δZ .

We’ll also have a parameter k ≍ log(1/α). Finally, we also need an analog of the function fA from before;
here that’ll be

fA(x, y) = 1A(x, y)− αδXδY δD.

§3.2 Computations

First, by a quick computation (similarly to before), the fact that A is corner-free means

cα3δ2Xδ2Y δ
2
D ≤ |Ex,y,z1A(x, y)1A(x, x+ z)fA(y + z, y)|

(where c is some absolute constant that may change line to line). There will be lots of factors of δX and so
on floating around, so here’s the way to think about them: First, A is an α-fraction of the container; there
are three A’s on the right-hand side, so we get an α3. If we look at factors of δX , the first term is telling
us that x ∈ X, which contributes one factor of δX ; the second term doesn’t give any additional constraint
involving X; and the third term contributes another δX . So that’s why you get two factors of δX ; the other
normalizations work out similarly.

Then by Hölder’s inequality, we get

(cα3)k(δ2Xδ2Y δ
2
D)

k ≤ (Ex,y1A(x, y))
k−1

(
Ex,y1A(x, y) (Ez1A(x, x+ z)fA(y + z, y))k

)
.

(Recall that k is quite large — it’s a power of log(1/α).) We know what the first term on the right-hand
side is — we have Ex,y1A(x, y) = αδXδY δD — so this becomes

(cα)2k(δXδY δD)
k+1 ≤ Ex,y1A(x, y) (Ez1A(x, x+ z)fA(y + z, y))k .

Now we’ll do something that at first seems extremely lossy — we’ll take the term 1A(x, y) and replace it by
the simpler function 1X(x)1Y (y)1D(x+ y). This seems like we’ve made a huge loss — we’ve replaced A by
this upper bound coming from the container, which seems like it should lose a factor of α. But the point
is that we’ve chosen k to be so large that this just corresponds to changing the constant c to some slightly
smaller constant. So as long as we don’t need to track this constant carefully, this loss isn’t too bad.

Now we’ve gotten that

(cα)2k(δXδY δD)
k+1 ≤ Ex,y1X(x)1Y (y)1D(x+ y) (Ez1A(x, x+ z)fA(y + z, y))k .

The second point is that we don’t actually need to keep around the 1X and 1Y terms — if the second factor
Ez(· · ·) is nonzero, then we automatically know x ∈ X and y ∈ Y . So we can erase those terms and get

(cα)2k(δXδY δD)
k+1 ≤ Ex,y1D(x+ y) (Ez1A(x, x+ z)fA(y + z, y))k .
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Next, since we’re only trying to win one log factor right now (this becomes a key difficulty when trying to
win the second), we can assume D is Fourier-pseudorandom. If one is careful, this means we can replace 1D
by its average; so we essentially get

(cα)2k(δXδY δD)
k+1 ≤ Ex,yδD (Ez1A(x, x+ z)fA(y + z, y))k .

Remark 3.1. That’s why taking this high power k and Höldering is so useful — it means you can afford
to lose some powers of α in this way. The tradeoff is that we are going to eventually lose something in
k — we’re going to get a multiplicative density increment, but it’ll be on a rectangle of size 2−poly(k).
It turns out that the density increment argument can tolerate really bad losses in the size if you can
get a multiplicative density increment, so this works out to be better.

Then if you do Cauchy–Schwarz (and a trick called ‘spectral positivity’ that we won’t go into), at the end
of time you get that

Ex1,x2,z1,...,zk

∏
i∈[2]

∏
j∈[k]

1A(xi, xi + zj) ≥ ((1 + c)α)2kδ2Xδ2kY δkD. (3.1)

(In some sense, this is analogous to saying that if the Lp norm of a vector is large, e.g., twice the L2 norm,
then there should be a set of size 2−p on which it’s double what you’d expect. Here fA is not purely positive;
what spectral positivity does is let you derive a purely positive conclusion, replacing fA with 1A.)

§3.3 Graph counting

In Shkredov’s argument, the expression (2.1) we got corresponded to cycles of length 4, or copies of K2,2.
In (3.1), we have something more complicated. Let’s try to interpret this as a graph; the rest of the talk
will be about graphs and graph counting lemmas.

We have a set X on the left and Z on the right. In (3.1), there are 2 vertices on the left and k on the right,
and the graph G is given by 1A(x, x+ z). So this quantity is computing the number of copies of K2,k. And
we also have an additional property: Recll that 1A(x, x + z) ≤ 1Y (x + z). So we can think of G as living
inside some bigger graph given by Y — there’s a big graph with edges given by 1Y (x + z), and our graph
is an α-subset of this big graph.

1Y (x+ z)X Z

x1

x2

z1

z2

...

zk−1

zk

1A(x, x+ z)

So we have a graph with many copies of K2,k in it, and we want to derive some conclusion from this. (You
can think of δ2X and the other factors as normalizations.) In Shkredov’s argument, we did this by quoting
a quasirandomness result; but now we’re in a slightly different setting.

There’s an important condition that Y is Fourier-pseudorandom. That implies the big underlying graph
(defined by Y ) is quasirandom — so we have a dense subset of a very quasirandom set.
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Theorem 3.2

In this setup, there exist 1-bounded nonnegative functions g1 and g2 with E[g1] ≥ e− log(1/α)O(1)kO(1)
δX

and E[g2] ≥ e− log(1/α)O(1)kO(1)
δD, such that

E[g1(x)g2(z)1A(x, x+ z)] ≥ (1 + c)αE[g1]E[g2].

This conclusion takes a second to parse, but what it means is that we’ve taken A and found a multiplicative
density increment (on g1 and g2). The size of the rectangles are now E[g1] and E[g2], and that’s important
to track. Originally the left side was supported on X, whose density was δX ; so the amount the density
went down is the e− log(1/α)O(1)kO(1)

factor.

It’s important that this depends only on α and k, not the δ’s. If you naively tried proving a statement like
this, you’d pick up dependences on δY , because our graph G is sparse (as a graph between X and Y ). But
the quasirandomness of Y means that this doesn’t happen — this is some kind of ‘dense model’ statement.

To say a bit about the proof: Proving this statement is already quite hard. But the main idea is to use an
idea called densification due to Conlon–Fox–Zhao. Very roughly, this is a technique saying that if you’re
trying to prove these kinds of quasirandomness statements in the setting of a ‘pseudorandom majorant’
(here that’s 1Y (x+z)), as long as it’s sufficiently pseudorandom you can ‘pretend it doesn’t exist’ (and here
this means the densities of g1 and g2 don’t depend on δY ). The point is that because Y is so pseudorandom,
you can hope to win back this factor of Y .

So this gives the multiplicative density increment; and once you have this, you can run an argument which
at least saves one log.
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