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§1 Introduction

This is based on the paper Proof of the contiguity conjecture and lognormal limit for the symmetric perceptron
by Emmanuel Abbe, Shuangping Li, and Allan Sly. The problem is motivated by statistical physics, but
we’ll look at it combinatorially; the proof uses the second moment method, but modified in a way that has
interesting applications.

§1.1 The symmetric perceptron

Fix some κ > 0. For each j ≥ 1, we sample a Gaussian row Gj ∼ N (0, 1)⊗n (i.e., a vector of n independent
Gaussians), and consider the set

Sj = {x ∈ {±1}n | |〈Gj , x〉| ≤ κ
√
n}.

In words, Sj is the part of the unit cube whose dot product with our chosen Gaussian row is small. This
(i.e., defining ‘small’ by comparison to

√
n) is the right parameter regime because Gj is Gaussian and the

entries of x are ±1, so 〈Gj , x〉 ∼
√
n · N (0, 1).

Gj

We then define Sm(G) =
⋂m
j=1 Sj(G); this is the symmetric perceptron.

Remark 1.1. The fact that the entries of Gj are Gaussian is not very important — you could also use
Unif({±1}). But Gaussians are nice because they’re continuous.

§1.2 Capacity

Definition 1.2. The capacity of the symmetric perceptron is

m∗κ(n) = max{m ≥ 1 | Sm(G) 6= ∅}.

In words, the capacity is the last time at which there’s a point on the hypercube that survives. Every step
is likely going to kill some point, so with high probability the capacity is finite; we won’t worry about the
case where it’s infinite (meaning the process goes on forever).
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Conjecture 1.3 — For some explicit constant α∗κ, we have

m∗κ(n)

n
→ α∗κ

in distribution as n→∞.

This makes intuitive sense — if κ > 0, then at every step, we’d expect a positive fraction of points to get
killed. We have 2n points to start with, so if we do this Θ(n) times, then all points should die.

First, we can get a nice combinatorial bound using this; in some asymmetric physics problems this naive
bound doesn’t give the correct prediction, but it turns out that in this case it does. Let’s fix some vector
x ∈ {±1}n and consider the probability that some Gaussian row Gj keeps x, meaning that |〈Gj , x〉| ≤ κ

√
n.

When we compute 〈Gj , x〉, we’re just adding a bunch of standard Gaussians (with signs given by x), so

〈Gj , x〉 ∼
√
n · N (0, 1).

Definition 1.4. We define pκ = PZ∼N (0,1)[|Z| ≤ κ].

Then we have P[|〈Gj , x〉| ≤ κ
√
n] = pκ for each j. And if we consider the perceptron after m steps, we need

this to occur for m independent rows Gj , so we have

P[x ∈ Sm(G)] = pmκ .

By linearity of expectation, this means

E[|Sm(G)|] = 2mpmκ .

So if we define

αc(κ) =
log 2

log(1/pκ)
,

then we have E[|Sm(G)|] = o(1) for all m ≥ (αc(κ) + ε)n, which by Markov means that P[capacity ≥ m] =
o(1). So this shows that α∗κ ≤ αc(κ) (if the limit exists).

For any problem like this, you can take an expectation and it’ll give you some information (e.g., an expec-
tation threshold); the hard part is the reverse direction. And this paper shows that the reverse direction
holds as well (so Conjecture 1.3 is true with α∗κ = αc(κ)).

For this, we fix 0 < α < αc(κ), and let m = αn and Z(G) = |Sm(G)|. Our goal is to show that for any such
α, we have Z(G) > 0 with high probability. (This would mean Sm(G) is nonempty, so the capacity is at
least m.)

Remark 1.5. The capacity m∗κ is a random variable defined based on the entire matrix G, But here
we’re only looking at a specific time m slightly before the critical one, and seeing whether it’s good
enough; so we don’t really need to deal with the precise definition of capacity.

§2 The second moment method

Let µ = E[Z(G)]; as calculated earlier, we have µ = 2npαnκ = ω(1) (in fact, µ is exponentially large). So
in expectation, we have lots of solutions (i.e., elements of Sm(G), which we think of as solutions to our
system of inequalities). But this doesn’t imply what we want, namely that there exists a solution with high
probability — for example, there could be 0 solutions almost all of the time but 2n with probability 2−n/2,
and we’d still have exponentially many solutions in expectation.
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One standard way to prove such a statement is with the second moment method. We’d like to show that

E[Z(G)2] = (1 + o(1))µ2

(for comparison, we always have E[|Z(G)|2] ≥ µ2 by Cauchy–Schwarz). If we could show this, we’d have

E[(Z(G)− µ)2] = o(µ2),

and then by Markov we would have Z(G) = µ+ o(µ) with high probability.

§2.1 A simpler example

Before we try to do this, we’ll see a simpler second moment argument in order to highlight a perspective
that’ll help us understand heuristically what’s happening.

Example 2.1

Let H be a random graph H ∼ G(n, p) with p = ω(1/n), and let T (H) be the number of triangles in
H. Then T (H) > 0 with high probability.

We’ll do this moment computation in detail (we won’t for the others).

Proof. First, we have µ = E[T (H)] = p3
(
n
3

)
. Meanwhile, E[T (H)2] counts pairs of triangles — so we consider

pairs of triangles in Kn, and for each pair, we consider the probability it’s in our random graph. There are
only so many ways that two triangles can exist, so we can classify all the cases and compute the expectation
contributed by each case.

• If the two triangles overlap completely, then we get a contribution of p3
(
n
3

)
.

• If the triangles partially overlap (so they share one edge), then we have 5 edges and 4 vertices; so we
get a contribution of p5 · 12

(
n
4

)
.

• If the triangles share one vertex, then we get p6 · 30
(
n
5

)
; if they don’t share any, we get p6 · 20

(
n
6

)
.

When we add these together, we get

E[T (H)2] = (1 + o(1))

(
p3n3

6

)2

= (1 + o(1))µ2,
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which is what we wanted. Here the final case is the main term and contributes roughly µ2, and all the
remaining terms are small.

(Sometimes this is phrased in terms of covariance; if we compute Var[T (H)] using bilinearity of covariance,
then the p6 terms — where the triangles aren’t correlated at all — will cancel out, and the remaining terms
will be small.)

With this in mind, we’ll now see a slightly different approach to this computation for E[T (H)2], using a
planted model. We’re again trying to count pairs of triangles; but all triangles are symmetric, so let’s fix a
specific triangle T . There are

(
n
3

)
choices for this specific triangle, and each appears with probability p3.

Then to compute E[T (H)2], we want the expected number of further triangles which are H, given that this
specific triangle T is in H — we have

E[T (H)2] = p3

(
n

3

)∑
T ′

P[T ′ ∈ H | T ∈ H] = µ · E[T (H) | T ⊆ H].

And our goal is to show that E[T (H) | T ⊆ H] = (1 + o(1))µ.

In this new expectation, we’ve essentially planted the triangle T . Then T (H) will follow a different distri-
bution than the original one — for one thing, it’ll always be counting T . But what we’re claiming is that
above the threshold (i.e., for p = ω(1/n)), the mean of this distribution is basically the same as that of the
original. (In fact, here we can even say that the distributions are basically the same.)

Here, this is pretty easy to see. In the new distribution, when we’re counting triangles, we have a 1 for free
coming from our planted triangle T .

T

We could also have a triangle which shares one edge with T ; then there are roughly ways to choose the
new vertex, and such a triangle appears with probability p2 (corresponding to the two new edges — we’re
thinking about what is further needed for the new triangle, given that we already have T ).

T

Finally, we have all the triangles which are independent of T ; there are
(
n
3

)
− O(n2) of them, and each

appears with probability p3.

From here it’s easy to see that all the overlapping correlated terms are small, so we do get

E[T (H) | T ⊆ H] = (1 + o(1))µ.

§3 A first attempt at second moments

Now let’s try calculating the second moment of Z(G). This isn’t going to work — instead of getting that
E[Z(G)2] is (1 + o(1))µ2, we’ll get that it’s a constant multiple of µ2. (So in this case, planting one solution
is enough to distort the expectation by a little bit; we’ll maybe see why.) Then we’ll see how to fix it (this
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technique only works when the second moment is a constant factor off; if it’s exponentially off then you
need to bring in other things).

We refer to elements of Sm(G) (which Z(G) is counting) as solutions (since they’re points x ∈ {±1}n which
satisfy our inequality system). Earlier, we saw that

µ = E[Z(G)] = 2npαnκ ,

since there are 2n possible solutions and each occurs with probability pκ.

Using the planted perspective on second moments, all values of x are symmetric, so we can just imagine
planting v = (1, 1, . . . , 1); then we get

E[Z(G)2] = µ · E[Z(G) | v ∈ Sm(G)].

The hope would be that planting v doesn’t affect things at all, but unfortunately this turns out to be false.

Let’s quantify what happens when we condition on v being a solution. If we write out our matrix, we have
m rows Gi = (Gi1, . . . , Gin); and this condition tells us that

|Gi1 + · · ·+Gin| ≤ κ
√
n

for each i. And the distribution of Gi = (Gi1, . . . , Gin) once we reveal the sum Gi1 + · · · + Gin is still nice
— it’s a tuple of Gaussians correlated in some way.

Now when we’re considering the probability that each x ∈ {±1}n is a solution, they’re no longer all sym-
metric. But we can consider splitting them up by how many 1’s and −1’s there are — all vectors with the
same number of 1’s and −1’s are symmetric. So if we let vt be a vector with n+t

2 and n−t
2 1’s and −1’s,

respectively (for each t ≡ n (mod 2)), then we get

E[Z(G) | v ∈ Sm(G)] =
∑
t

(
t

(n+ t)/2

)
P[vt ∈ Sm(G) | v ∈ Sm(G)].

And the rows Gi are still independent, so we can write this as

E[Z(G) | v ∈ Sm(G)] =
∑
t

(
t

(n+ t)/2

)
P[vt ∈ S1(G) | v ∈ S1(G)]m. (3.1)

Now we need to find this probability. As seen earlier, the thing we’re conditioning on is that

|G11 + · · ·+G1n| ≤ κ
√
n,

which we can equivalently think of as ∣∣∣∣〈 v√
n
,G1

〉∣∣∣∣ ≤ κ.
(This dot product is some unit-variance Gaussian.) And we want to find the conditional probability that∣∣∣∣〈 vt√

n
,G1

〉∣∣∣∣ ≤ κ,
i.e., that some other unit-variance Gaussian is also at most κ (in magnitude).

If t = 0, then we have 〈v, v0〉 = 0, which means that these two projected Gaussians〈
v√
n
,G1

〉
and

〈
v0√
n
,G1

〉
are actually independent. So the probability remains the same as the unconditional one (i.e., pκ).
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When t is large (e.g., a constant fraction of n), 〈v, vt〉 will be very large, and the probability will change by
a constant factor. But this doesn’t affect (3.1) much, because the binomial coefficients in this case are very
small.

The issue is when t is roughly
√
n (where the binomial coefficients are still reasonable). Here, v and vt are

still approximately orthogonal, but they’re a bit off, and this is enough to cause a nonnegligible contribution.
If t = b

√
n, then we’ll have

P[vt ∈ S1(G) | v ∈ S1(G)] ≈ pκ ·
(

1 +
f(b)

n

)
,

where f(b) is some function only depending on b. To see why, this is really a two-dimensional problem —
〈v,G1〉 and 〈vt, G1〉 are jointly Gaussian, so their relationship only depends on their covariance, which is a
function of the angle between v and vt. If v and vt were orthogonal, then these two Gaussians would be
independent, and we’d have a probability of pκ. Now we’re shifting the angle by 1√

n
; and if you think about

areas, you can convince yourself that the probability changes quadratically based on this angle (so we get a
deviation on the scale of 1

n ; and f(b) should be quadratic in b).

v

vt

v

vt

So now our sum (3.1) basically becomes

E[Z(G) | v ∈ Sm(G)] ≈
∑
t

(
n

(n+ t)/2

)
pmκ

(
1 +

f(b)

n

)αn
,

which can be approximated as ∑
t

2ne−b
2/2

√
2πn

· pmκ eαf(b).

So we get back the original heuristic for µ = E[Z(G)] (which was 2n · pmκ ), but it’s modified by something
— there’s an extra factor of roughly ∫

b

e−b
2/2

√
2π
· eαf(b) db.

It turns out that this integral always converges, so it’ll come out to some constant C (depending on κ and
α), and we’ll get

E[Z(G)2] ≈ Cµ2.

This in particular tells us that the distribution of Z(G) is not concentrated at µ — in fact, we’re going to
see that when we divide by µ, the distribution will be lognormal.
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§4 Small graph conditioning

The method we’ll use is called small graph conditioning. One reference paper is Robinson–Wormald (1994),
on random regular graphs having Hamilton cycles — they were in a similar situation where if you try to do
a second moment computation, you get a constant C that you need to get rid of (i.e., you need to explain
away the extra variance). A follow-up paper by Janson (1995) then introduced a more general framework
for thinking about these things.

The phenomenon they discovered is that Z(G)/µ is going to converge to some distribution whose square
mean is C instead of 1; and in fact, not only can we say what this distribution is, but we can come up with a
simple statistic whose distribution it is. In this case, that statistic will be exp(Y ) for some random variable
Y , and we’re going to see that

Z(G)

µ exp(Y )
→ 1

in distribution, which will show that Z(G) = (1 ± o(1)) · µ exp(Y ) with high probability. Then in order to
understand the distribution of Z(G), it’s enough to understand the distribution of Y ; and Y will turn out
to be Gaussian, so Z(G) will have a lognormal distribution.

Remark 4.1. A lognormal distribution is a distribution whose logarithm is normal, not the logarithm
of a normal distribution.

And the idea is that you’d expect Y to be related to small graph statistics. In our setting, we want to look
at certain cross-correlations in our matrix G, and this amounts to looking at cycles inside the matrix — so
for each k, we define

C∗k =
∑
i1,...,ik

∑
j1,...,jk

k∏
`=1

Gj`i`Gj`i`+1
.

For example, when k = 1 we have C∗1 =
∑

i,j G
2
ij =

∑
j |Gj |

2.

Then we define Ck as a normalized version of C∗k — specifically, we define

Ck =
C∗k − E[C∗k ]

(mn)k/2

(since the standard deviation is on the order of (mn)k/2; the term E[C∗k ] only matters when k = 1, because
otherwise C∗k has mean 0). These variables Ck are expected to be of constant order. In fact, each Ck is
a polynomial of independent Gaussians, so there is some machinery to deal with them — it can be shown
that in the limit, their distribution is that of independent Gaussians.
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Remark 4.2. What motivates the definition of C∗k? One way to get to this is that if you try computing
things more explicitly in the first attempt, then you get some partition function, expand it as a series,
and look at what terms you need to care about; and you start getting things like this.

Now we consider some real parameters γ0, γ1, γ2, . . . , and we let

Y = γ0 +
∑
k≥1

γkCk.

(In practice, you don’t want to use the actual infinite sum, so you cap it at some slowly growing function
such as log log log n.) The best way to deal with these parameters is to keep them as variables for now, and
set them later.

Remark 4.3. It maybe seems weird that you’ll be able to force the values of γk to be unique. But to see
why you can expect this, you can think of these random variables Y and Ck as vectors, and covariances
as dot products. Then these coefficients γk should correspond to what happens if we project Y onto
each Ck (since the Ck are independent in the limit). And we want Y to be a specific thing — we want
it to be roughly log(Z(G)/µ) — so this should give you unique values for γk.

Now instead of doing second moments on Z(G) directly, we’ll do second moments on the random variable
Z(G)e−Y (which we’re trying to show is concentrated at µ — i.e., that dividing out by eY explains away
our extra variance).

The goal is to convince us that there’s a reasonable way to do second moments on this random variable; but
there are a lot of computational details we won’t go into.

§4.1 An overview

First, let’s try to compute the first moment of Z(G)e−Y , since even that isn’t obvious. It’s still true that
all the solutions x ∈ {±1}n are symmetric, so it’s enough to look at v = (1, 1, . . . , 1), and we have

E[Z(G)e−Y ] = 2n · E[1v∈Sm(G)e
−Y ].

Motivated by the planted model, we can write this as

E[Z(G)e−Y ] = 2npmκ · E[e−Y | v ∈ Sm(G)]. (4.1)

First, if we didn’t plant anything at all and just wanted to find E[e−Y ], we could do so — the constituents
of Y are basically independent Gaussians (in the limit), so we’d just be working in an independent Gaussian
model. In order to compute (3.1) (where we have planted something), it’s enough to prove a distributional
statement about Y — given that v ∈ Sm(G), what’s the distribution of Y ?

Similarly, for the second moment, we’ll have

E[Z(G)2e−2Y ] = 2n
∑
t

(
n

(n+ t)/2

)
E[1v∈Sm(G)1vt∈Sm(G)e

−2Y ],

and if we define pκ(t) = P[vt ∈ S1(G) | v ∈ S1(G)] and

Ỹ (t) = E[e−2Y | v, vt ∈ Sm(G)],

then we can rewrite this as

E[Z(G)2e−2Y ] = 2npmκ
∑
t

(
n

(n+ t)/2

)
pκ(t)m · Ỹ (t).
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So the point is that for the second moment, we can sort of do the same thing, but we pull out two conditionals
(instead of one). Then we get the first term of 2npmκ (as before), and a slightly modified probability pκ(t)m

and a correction term Ỹ (t). The goal is essentially to make these two things kill each other, so that the
second moment ends up being within 1 + o(1) of the first moment squared.

Computing Ỹ (t) is again a distributional statement about Y , except that now we’re conditioning on two
planted things instead of one (and these two planted things might be correlated). If we didn’t plant any-
thing, then we’d still have an independent Gaussian model, and we could compute E[e−2Y ] using standard
machinery. And we’ve reduced our problem to just taking two plants and then trying to compute the same
statistic; so at this point, it seems quite plausible that you can do this.

Now we’ll see some bonus calculations regarding what Y looks like when we plant things.

§4.2 Cycle counts in the planted models

First, we’ll write down what Y looks like in the non-planted model. Let

V =

(
C1√

2
,
C2√

4
, . . . ,

C`√
2`

)
.

Proposition 4.4

In the non-planted model (where the rows Gj are independent Gaussians), we have V → N (0, 1)⊗`.

So in the non-planted model, the cycle counts Ck behave as independent Gaussians, as mentioned earlier;
what’s actually interesting is the planted models.

Now we’ll look at the 1-planted model, where we’ve planted one solution v. To get this distribution, we
sample the rows Gj independently and then take our one vector v = (1, 1, . . . , 1) and enforce that all the
dot products with v are small, i.e., |〈Gj , v〉| ≤ κ

√
n. In particular, the rows Gj are still independent.

Let Hj = 〈Gj , v〉 = Gj1 + · · · + Gjn. Then the distribution of Hj/
√
n is that of a standard Gaussian

Z ∼ N (0, 1) conditioned on |Z| ≤ κ.

Meanwhile, if we take our row Gj and subtract Hj/n (which is its average) from each entry, then the
resulting entries are independent of Hj and are jointly Gaussian.

Proposition 4.5

In the 1-planted model, we have V − µ→ N (0, 1)⊗`, for some explicit vector µ.

So the means of our cycle counts shift, but once we subtract out these new means, we still get independent
Gaussians — and the conditioning also doesn’t really affect the variances. In fact, there is some constant β
(which can be written in terms of α and κ) such that

µk =
(2β)k√

2k

for all k.

Now we’ll consider the 2-planted model, where we’re planting both v0 and vt. If t ≈ n, then this is the
same as the 1-planted model. But large values of t don’t really matter (because the corresponding binomial
coefficients will be tiny) — we only really need to consider t up to roughly

√
n, or more precisely

√
n · log n.

In this regime, the value of t doesn’t matter too much, so we can just pretend that t = 0; and in this case,
the solutions we’re planting are independent, so the mean shift happens twice.
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Proposition 4.6

In the 2-planted model with t = 0, we have V − 2µ→ N (0, 1)⊗`.

So these distributions all have the same variances, and it’s possible to understand what their means are.

§4.3 The moment calculations

Now let’s return to our first moment calculation. First, we saw in (4.1) that

E[Z(G)e−Y ] = µ · E[e−Y | v ∈ Sm(G)].

From Proposition 4.5 we know what the cycle counts Ck look like distributionally in the 1-planted model,
which tells us what Y looks like — so if we let Z1, . . . , Z` be the independent Gaussians in Proposition 4.5,
then we get

Y = γ0 +
∑
k

γkCk ≈ γ0 +
∑
k

γk ·
√

2k · (µk + Zk),

which means we have
E[Z(G)e−Y ] ≈ µ · EZk∼N (0,1)[e

−γ0−
∑

k γk
√

2k(µk+Zk)].

We can pull out the constant terms to rewrite this as

E[Z(G)e−Y ] ≈ µ · e−γ0−
∑

k γk
√

2kµkEZk∼N (0,1)[e
−

∑
k γk
√

2kZk ].

And a sum of independent Gaussians is still a Gaussian, so if we let ∆2 =
∑

k γ
2
k · 2k, then we have

EZk∼N (0,1)[e
−

∑
k γk
√

2kZk ] = EZ∼N (0,1)[e
−∆Z ].

This thing is the moment generating function of a standard Gaussian, so it’s equal to e−∆2/2. So we get

E[Z(G)e−Y ] ≈ µ · e−γ0−
∑

k γk
√

2kµk+
∑

k kγ
2
k .

This concludes the first moment computation. For the secomd moment, we need to basically do the same
thing, but there’s an extra t parameter floating around, and we have

E[Z(G)2e−2Y ] = µ2 ·
∑
t

(
n

(n+ t)/2

)
2−n ·

(
pκ(t)

pκ

)m
· Ỹ (t).

We’ve already studied the ratio pκ(t)/pκ before — it corresponds to the term with f(b) from earlier (our
first attempt at second moments). So the only new thing we need to study is Ỹ (t), which is our doubly
planted expectation. And as mentioned earlier, it suffices to consider |t| ≤

√
n log n — when t is much larger

than
√
n, the binomial coefficient is tiny, so such terms don’t matter.

And we saw earlier that in this regime Ỹ (t) doesn’t really depend on t, and we get two mean shifts instead
of one; so again letting Z1, . . . , Z` be the independent normals in Proposition 4.6, we get

Ỹ (t) ≈ EZk∼N (0,1)[e
−2γ0−2

∑
k≥1 γk

√
2k(2µk+Zk)].

And by the same computation as before, this ends up giving

Ỹ (t) ≈ e−2γ0−
∑

k≥1 4γk
√

2kµk+
∑

k≥1 4kγ2k .

Now, why do we expect something nice to happen? The intuition is that the terms γkCk are supposed to
explain all the variance in Z(G). In our original second moment computation, we got that E[Z(G)2] ≈ Cµ2;
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the idea is that these terms γkCk are sort of a proxy for C, and if we condition on them then the value of
C will drop.

This maybe looks a bit like nonsense, but it’ll become clear what’s happening if we try dividing the moments
— suppose we consider

E[Z(G)2e−2Y ]

E[Z(G)e−Y ]2
.

Then the terms with γ0 will cancel, but the other ones won’t (it’s important that they don’t cancel — if
they did, then they’d be unrelated to what we care about), and we’ll end up with a factor of

exp

(
−
∑
k

2γk
√

2kµk +
∑
k

2kγ2
k

)
= exp

(
−
∑
k

2γk(2β)k +
∑
k

2kγ2
k

)
.

We’ll also have a factor coming from the ratios pκ(t)/pκ — this will end up being a simple integral, similarly
to in our original second moment computation (where this integral corresponded to the extra variance that
we needed to explain away). If all the γk were zero, then this would correspond to C; but the idea is that
as we add in more of these terms (by setting γk appropriately), we can get corrections that account for this.

To see how to set the γk, we can complete the square to rewrite the corresponding factor as

exp

(
2k

(
γk −

(2β)k

2k

)2

− (2β)2k

2k

)
.

The square is minimized when γk = (2β)k/2k, so that’s how we should set γk; and then the total amount of
variance we get to subtract off is a factor of

exp

−∑
k≥1

(2β)2k

2k

 = exp

(
−1

2
log(1− 4β2)

)
=

1√
1− 4β2

.

And this ends up fully accounting for the extra variance, so that we end up with

E[Z(G)2e−2Y ]

E[Z(G)e−Y ]2
= 1 + o(1),

and we’re done.

Page 11 of 11


	Introduction
	The symmetric perceptron
	Capacity

	The second moment method
	A simpler example

	A first attempt at second moments
	Small graph conditioning
	An overview
	Cycle counts in the planted models
	The moment calculations


