
Simulating time with square-root space

Talk by Ryan Williams

Notes by Sanjana Das

April 8, 2025

§1 Introduction

The question we’ll address in this talk is:

Question 1.1. How space-efficiently can one simulate time-efficient computations?

Specifically, suppose we have an algorithm A for some problem using t(n) time; we want an algorithm B for
the same problem using as little space as possible. Of course achieving O(t(n)) space is trivial (we can just
use the same algorithm); we want to know if we can use less.

A canonical problem to try understanding the difficulty of this is the circuit evaluation problem (CVP).

Problem 1.2 (CVP)

• Input: A description of some logical circuit with s gates (of fan-in 2) and one output gate, and
an input to evaluate it on.

• Output: Whether the circuit outputs 1 on the given input.

x1

x2

x3

x4

∧ · · ·

∨ · · ·

¬ · · ·

· · ·
?

It takes roughly s time to solve CVP (in most interesting computational models). One might think that it
requires Ω(s) space, to store the intermediate gate values — the natural solution is dynamic programming
(where you go through the circuit and label the value at each gate as you go), and along the way you could
easily pick up s

10 gates that need to be evaluated at once before you can get to the rest.

But in fact, you don’t need Ω(s) space — it follows from results of PV 1976 and Borodin 1977 that CVP
can actually be solved in O(s/log s) space. This algorithm has exponential runtime, but it saves over the
naive space bound. And more generally, HPV 1975, PR 1981, and HLMW 1986 showed that any problem
that can be solved in time t can be solved in space t/log t (the original result was for multi-tape Turing

Page 1 of 10

Simulating time with square-root space Talk by Ryan Williams (April 8, 2025)

machines, but it was later extended to basically all interesting models). So you can always shave log t off
the trivial bound.

The way these results work is a ‘pebbling’ approach (which we’ll discuss soon). We’ve known since 1979
that this approach requires t/log t space; so as far as people knew, you could shave log t, but you probably
couldn’t do better than that.

The model we’ll work with is multi-tape Turing machines (MTMs): We have a Turing machine with a finite
control and k tapes, each with its own tape-head (where k is a constant). The input arrives on tape 1. On
each step, each one of the tape-heads can read and write at its current cell, and move left, right, or stay
still. (The tape heads could be in very different places — one could be very far down its tape and one could
be at the beginning — and they can all read and write and do head-movements in one step.)

Definition 1.3. We define TIME[t] as the set of problems solvable in O(t(n)) time on a multi-tape TM.

This is an old model, but it’s very robust. For example, CVP, sorting, FFT, and all your good subcubic time
matrix algorithms — all of these can be implemented on multitape TMs with polylog overhead (in fact, they
can be implemented on 2-tape TMs — any multi-tape TM can be implemented with just two tapes, with
O(log t(n)) overhead). In fact, it’s a major open problem to find any problem solvable in RAM in O(n)
time, but not on MTMs in O(n · polylog(n)) time — so as far as we know, MTMs are as good as anything
else, up to polylog factors. Despite 60 years of research, there’s been no significant lower bounds on them
other than those obtained by the time hierarchy themselves, which makes the following theorem shocking.

Theorem 1.4

For all t : N → N with t(n) ≥ n, we have TIME[t] ⊆ SPACE[
√
t log t].

It’s hard to convey how deeply disturbing this is — Ryan would have bet on the conjecture that TIME[t] ̸⊆
SPACE[t1−ε]. This is wild because he’s a lower bound skeptic in general, but he would have believed this one
is true. And this conjecture was actually used in some prominent works in the literature — Sipser showed
that this conjecture plus some expanders (which are now known to exist) would imply P = RP. Thankfully,
though, we now know that we only need circuit lower bounds for derandomization, not space lower bounds
on time (due to NW 1994 and IW 1997).

Here are some more consequences of this.

Corollary 1.5

The circuit evaluation problem is in SPACE[
√
n · polylog(n)].

Corollary 1.6

Size-s circuits have branching programs of subexponential (specifically, 2
√
s·polylog(s)) size.

(A branching program is a decision tree which is a DAG.)

Corollary 1.7

For space-constructible s(n) ≥ n, we have SPACE[s] ̸⊆ TIME[s2/(log s)2].

This one is very unsurprising — we believe SPACE[s] ̸⊆ TIME[sk] for all k — but it follows from a very
surprising thing (Theorem 1.4, using diagonalization and hierarchy theorems).

Page 2 of 10

Talk by Ryan Williams (April 8, 2025) Simulating time with square-root space

Remark 1.8. If we could improve the square root and get that TIME[t] ⊆ SPACE[tε] for all ε, then the
exponent on the right-hand side would keep going up, and you’d get P ̸= PSPACE. This would be the
weirdest way ever to separate P from PSPACE, but maybe the world is weird.

§2 A computation graph

Some conceptual tools we use come directly from prior work, so we’ll start by discussing that work; here we
want to show TIME[t] ⊆ SPACE[t/log t].

Suppose we’re given a MTM M and an input x of length n. First, we partition the k tapes of M into blocks
of b cells each. (Throughout the talk, you should think of b as

√
t. For simplicity we’ll assume t(n) ≥ n2,

so that the input x fits in one block b. If this isn’t true you could split the input into blocks; it’s just a bit
more technical.)

b

Then we define a computation graph GM,x. This will be a DAG with nodes named 0, 1, . . . , t/b, where each
node represents a time-interval of b steps of time — node 0 represents the initial configuration, 1 represents
the first b time-steps, 2 represents the next b time-steps, and so on.

Edges in this graph are basically supposed to record how the information computed in different time-intervals
relates — intuitively, for intervals i < j, we want to put in an edge i → j if the information computed in
interval i is needed to compute information in interval j. To be more precise:

• For all i, we draw an edge (i − 1) → i. The reason for this is that we need to know the last state of
interval i− 1 to know the starting state for interval i.

• For i < j, we draw an edge i → j if there’s some tape block which is visited in interval i and again
visited in interval j, but wasn’t visited in intervals i+ 1, . . . , j − 1. So you were in this tape block in
interval i; then you went away and were off doing something else in other tape-blocks; and when you
got to interval j, you finally entered this tape block again. The point is that we’ll potentially need
what we computed on this tape-block in interval i in order to compute in interval j (now that we’ve
come back, we need to know what was in this tape-block).

Fact 2.1 — During each time-interval, each tape has at most 2 accessed blocks.

Proof. Each tape-head moves a distance of at most b (a time-interval consists of b steps), and a line of length
b intersects at most 2 blocks.

This means every node in GM,x has constant in-degree:

Page 3 of 10

Simulating time with square-root space Talk by Ryan Williams (April 8, 2025)

Claim 2.2 — We have indeg(i) ≤ 2k + 1 for all i.

Proof. There’s k tapes, and each accesses at most 2 blocks (and the +1 is from i− 1).

Now we’re going to define strings that tell us what’s the information computed in each interval. First, we
define content(0) as the initial configuration of M on x, which is O(n) bits (we think of t(n) as large enough
that

√
t(n) ≥ O(n)). Then for all i > 0, we define content(i) as the ‘information computed in interval i’ —

more specifically, we include the state, the head-positions of all k tape-heads at the end of the interval, and
all the contents of the tape blocks we accessed during this interval. This takes O(b) bits to encode.

Claim 2.3 — Suppose that for some j, I give you content(i) for all i with an edge i → j. Then you can
compute content(j) in O(b) time.

Proof. This is because I’m telling you all the information you need to compute interval j — I’m telling you
the state to start in and all the contents of the tape blocks you’ll try to access. So you can simulate the
machine directly for b steps, which will take O(b) time.

So we have this graph GM,x where every node can be evaluated in O(b) time given all its predecessor nodes,
and we want to determine the content of the last node — this has the state at the end (accept or reject). So
the whole game now is to try to evaluate this computation graph.

§3 The pebbling approach

The result TIME[t] ⊆ SPACE[t/log t] uses a similar setup . (They think of b as 3
√
t, but this isn’t super

important — you just need log b to be a constant times log t, and you need it to be significantly smaller
than t. For various reasons, they apply Savitch at some point, so they need the cube root. But that’s not
super important for this discussion; the point is just that b should be small but not too small.)

Now we have a problem about DAGs:

Problem 3.1 (Pebble game)

You’re given a v-node DAG (and its topological ordering). You can put a pebble on the source; and if
you have pebbles on all i which have an edge to j, then you can pebble j. You can also remove pebbles
at any time.

How many pebbles are needed to put a pebble on the last node?

Here, the vertices of the DAG correspond to our time-intervals 0, . . . , t/b (in that order). Putting a pebble
on the source corresponds to computing the initial configuration, which we can do whenever we want. The
second rule tracks the observation that given content(i) for all i with i → j, you can compute content(j).
And we want to remove pebbles because we want a space-efficient simulation, so we don’t want there to be
too many pebbles.

This question has been very rigorously studied; and for DAGs of constant in-degree, the answer is v/log v.
(There are graphs on which you can’t do any better.)

But the point is, suppose we have such an upper bound, and suppose the strategy for pebbling can be
computed efficiently (in small space). Then we have this computation graph with O(t/b) nodes, and we
only have to store (t/b)/log(t/b) content-strings at any time; each of these strings is O(b) bits, so this takes
O(t/log(t/b)) bits. So as long as b is roughly tε (for some constant ε), this will be O(t/log t).

Page 4 of 10

Talk by Ryan Williams (April 8, 2025) Simulating time with square-root space

So that’s the super high-level idea of the prior work (though we’re not going to go into how you win the
pebble game, which is quite complicated).

§4 The tree evaluation problem

To discuss how we get a low-space algorithm, we’ll introduce the tree evaluation problem (TreeEval), which
was defined by BCMSW 2009.

Problem 4.1 (TreeEval)

Fix parameters d, b, h > 0 (which are integers).

• Input: a d-ary tree of height h, where every node is named by a string over {1, . . . , d} of length at
most h− 1. Each leaf ℓ is labelled by a b-bit string aℓ ∈ {0, 1}b, and each inner node u is labelled
by a function fu : {0, 1}db → {0, 1}b.

• Goal: Suppose that for each node u (with children u1, . . . , ud), we define au = fu(au1, . . . , aud).
Find the value of the root.

So as a picture, we start with a function fε at the root (where ε denotes the empty string); then below it
we have f1, . . . , fd; and at the bottom we have leaves labelled a111...1, . . . , addd...d. (You can imagine these
functions are given as tables of length 2db.)

fε

f1 f2 f3

a11 a12 a13 a21 a22 a23 a31 a32 a33

And each node v takes a b-bit string from each of its d children, computes fv on those db bits, and sends
this value up to its parent.

(If d = 1, then this is just Boolean formula evaluation.)

Question 4.2. How much space is needed to solve TreeEval?

There’s a simple algorithm that the authors studied, and they wanted to know if it’s optimal:

Algorithm 4.3

Suppose we want to compute av for some node v.

• If v is a leaf, just return its value.

• If not, then recursively compute the values of all its children (i.e., av1, . . . , avd), compute av =
f(av1, . . . , avd), and then erase the values of these children.

You can imagine doing this in a depth-first way, where you recurse as soon as possible when you need to.
This takes O(hdb) space — you have a recursion stack of height h, and you’re storing db bits on each level
(you could be storing d− 1 b-bit values, for all the children except the one you’re currently recursing on).

Page 5 of 10

Simulating time with square-root space Talk by Ryan Williams (April 8, 2025)

ε a1 a2 a3

4 a1

24 a1 a2

...
...

This takes (logn)2 bits for an input of length n.

BCMSW showed lots of interesting lower bounds in restricted settings, and they conjectured TreeEval wasn’t
in LOGSPACE. You can solve it in P (just by storing everything that you compute), but they conjectured
that it’s not in LOGSPACE; so studying TreeEval was a way of possibly separating LOGSPACE from P.

It was a big surprise last year when Cook and Mertz showed that you can actually do much better — there’s
a surprisingly space-efficient algorithm for TreeEval.

Theorem 4.4 (Cook–Mertz 2024)

We can solve TreeEval in O(h log db+ db) space.

So instead of a stack of height h with db bits on each level, you just need a stack of height h with log db
bits on each level. And you also have d b-bit registers, and somehow you reuse these over and over at every
level. Before, you had an enormous number of registers (you had h sets of d b-bit registers); but here you
somehow replace them with one set that you keep overriding and overriding.

At a high level, they produce an algorithm that XORs the value of any node u into existing space (i.e., one
of these b-bit registers), assuming an oracle that can XOR the value of any child of u into existing space.
So if you have an oracle that XORs the value of any child into the registers, I’ll give you a way of XORing
the function evaluated on all those children.

As a bit of intuition for what’s happening in these log db bits, consider the low-degree extension f̃u of fu
(you can even imagine the multilinear extension; this won’t give you exactly the right bound, but it’ll get
close). This multilinear extension agrees with the actual function on {0, 1}-valued points; so we want to
XOR the value of f̃u (on the children of u) into existing space.

Roughly, what happens is that we evaluate it over poly(db) values, each of which involves the values of your
children combined with the content previously stored in the registers. And you somehow use polynomial
interpolation to cancel out the old content and get just what you want, by summing over these poly(db)
values. (The height-h stack of log db bits is used to store which of these poly(db) things you’re currently on.)

§5 From the computation graph to tree evaluation

First we’ll outline how to show that TIME[t] ⊆ SPACE[
√
t · log t] (with the log t outside rather than inside

the square root), which is still shocking.

The idea is that given a time-t TM M and input x, we want to reduce to an exponential-sized TreeEval
instance. We’re not going to hold this TreeEval instance in memory (it’s too big); we’ll just access pieces of
it in small space as we go (we’ll access nodes and edges in some implicit way).

We’ll start by assuming that we know GM,x (either that it’s stored in memory, or that we can compute its
edges efficiently — that we can compute whether i → j is an edge in small space, so that given a node j,
we can always recover its predecessors). (We’ll discuss how to fix this assumption later.)

Page 6 of 10

Talk by Ryan Williams (April 8, 2025) Simulating time with square-root space

We’ll set d (the fan-in of the tree) to 2k + 1, and h (the height of the tree) to t/b + 1. And we’ll define b
so that all the content-strings in our computation graph are of length at most b. (This is slightly different
from the b we used for block length when defining the computation graph; but they differ by just a constant
factor.) (Recall that b is the number of bits in the value at each node; and we want to fit our content-strings
in the computation graph into these b-bit values.)

We have to extend Cook–Mertz to work for trees where each node has at most d children and the tree has
height at most h; this is easy (their algorithm is recursive, and you can just stop if you reach a leaf early).

And then there’s a folklore result that a Boolean circuit of depth h can be transformed into a Boolean
formula of depth h. The idea is that given a circuit, you can create a formula by starting from the output
and working backwards. This will give you a tree-like circuit of the same depth, where each gate here
represents a path in the original circuit from some gate to the output.

f

g

h

x

y

f

g h

x y g y

x y

⇝

This was proved for Boolean circuits and formulas, but it works just as well for circuits and formulas with
b-bit values on the wires, which is exactly what we’re looking at in the computation graph and in TreeEval:
Computing the content of a node in GM,x is just evaluating a circuit over b-bit values (GM,x is a DAG, so
we can think of it as a circuit). And TreeEval can be thought of as evaluating a formula with depth h and
fan-in d over b-bit values.

So if we know GM,x (e.g., if we somehow have it in memory), then we can simply run the Cook–Mertz
algorithm — our goal was to evaluate the last node in the computation graph. And if we know the graph,
then we can unroll it into this tree and use Cook–Mertz to evaluate the content of the last node.

Cook–Mertz takes space db + h log db. We set h = t/b (and d is constant), so this is O(b + (t log b)/b). We
set b =

√
t log t to minimize this, and we get O(

√
t log t) space.

However, we haven’t actually proved this bound because we don’t yet know what the computation graph
GM,x is — all this assumes we can get our hands on it.

§6 Approach 1: Olivious TMs

Here’s the easiest fix, which gets space usage
√
t · log t. The idea is that we want to program M so that

we can calculate all the head positions quickly — if I know where all the head positions are at any point in
time, then I can tell you if there should be an edge i → j (there’s an edge if we’re in some block at i, we go
away, and we come back at j; and we can just calculate this). So if we can calculate all the head positions
quickly in advance, then we’re happy. (We really only need to be able to calculate the head positions in low
space, but it turns out we can do it in low time as well.)

For this, we use the notion of oblivious TMs:

Page 7 of 10

Simulating time with square-root space Talk by Ryan Williams (April 8, 2025)

Definition 6.1. A TM M is oblivious if for all n and all inputs x of length n, the head movements of
M on x only depend on n (and don’t depend further on x).

Theorem 6.2

For any TM M running in t(n) time, there is an equivalent two-tape oblivious TM M′ running in
O(t(n) log t(n)) time. Furthermore, given n and i in binary, you can compute the head positions of M′

on step i in polylog(t(n)) time.

So I can tell you at any point in time what the head positions are, which means I can quickly figure out
which tape blocks are accessed when, and then I can just compute GM′,x. But we lose a little, because time
blew up by a log factor; this results in the slightly worse space bound of

√
t · log t.

But also, this is a black box; and we’d like a proof without black boxes. There’s actually another way to do
this which is more direct and gets the slightly better bound of

√
t · log t; and it has the nice property that

if TreeEval is actually in LOGSPACE, then we’d get TIME[t] ⊆ SPACE[
√
t].

§7 Approach 2: Guessing the computation graph

The whole game now is to get our hands on the computation graph GM,x — if we can do this, then we can
compute its tree and run Cook–Mertz. The idea is to guess the computation graph and check that it’s valid!
(This is the ‘nondeterminism paradigm.’)

We can definitely do this in low space (by trying all possible computation graphs one at a time). But there
are a few concerns. First, what if there’s too many possible guesses? (We need some way of encoding where
the edges go to describe possible guesses.) And we also have to be careful how we check the graph is valid.
The Cook–Mertz procedure is really weird and you might not know the values of intermediate nodes, so you
have to be careful.

But it turns out you can encode the computation graph very efficiently, in just O(t/b) bits (where t/b is the
number of nodes — so we’re just using O(1) bits per node). For each tape and each time-interval i, if we’re
starting at a certain tape block, I tell you which tape blocks adjacent to this one are accessed in interval i,
with 0, −1, and +1 (corresponding to this tape block, the one to its left, and the one to its right). So we
can have {−1, 0} (if this block and the one to its left are accessed), {0}, or {0, 1}. And I can also tell you
where the head ends up — how the tape block containing the head changes from this interval to the next
— with another 0, −1, or 1.

And then we can check whether there’s an edge i → j by keeping counters that store the tape block indices
for every tape. These counters just take O(log t) space. To determine edges, we just want to know, if we’re
currently in some tape block, when do we leave it and when do we come back? So if we have counters that
keep track of the tape block indices over all intervals, that’s enough.

So this graph can be encoded in a very succinct way.

The next thing we need to do is figure out how to check:

Goal 7.1. Given a graph G, check whether G = GM,x.

We need to be careful here — we’re using TreeEval in a black-box way, and the Cook–Mertz algorithm reuses
space so much that the only thing we might actually know in the end is the value at the root.

There are several ways to try implementing this, but here’s one: We’re going to bake the checking into the
functions in our TreeEval instance. The encoding of G asserts exactly which tape blocks are accessed during
each interval i. And we’ll define our TreeEval function for the node i so that its behavior depends on G. The

Page 8 of 10

Talk by Ryan Williams (April 8, 2025) Simulating time with square-root space

idea is that if I’m simulating M on the interval i, if a tape head ever tries accessing a block that G says it
doesn’t, or it doesn’t access all the tape blocks that G says it does, then I just say FAIL (as the function
output for that node). We also propagate FAIL’s up the tree — if a node receives any input of FAIL from its
children, then that node also outputs FAIL. So if there’s any issue with G, then the tree will output FAIL at
the root. This means the resulting instance doesn’t output FAIL at the root if and only if you got the right
graph G.
So we just go over all these possible graphs (i.e., all possible t/b-bit strings encoding some graph) and run
TreeEval on each, until we get an Accept or Reject state (rather than FAIL) at the root; and that’s the answer.

§8 Open problems

To finish, here’s some open problems.

Question 8.1. Can we extend this to RAM models, i.e., show TIMERAM[t] ⊆ SPACE[t1−ε]?

Question 8.2. Can we extend to parallel machines, i.e., show TIME[t] ⊆ ATIME[t1−ε]?

If we could do this, it would imply superlinear time lower bounds for even more natural problems like QBF.

Question 8.3. Can we improve the exponent from 1
2 to 1

2 − ε, i.e., show TIME[t] ⊆ SPACE[t1/2−ε]?

This would actually resolve Questions 8.1 and 8.2 — the simulations needed to go between these models
have a quadratic overhead, so if we can improve over 1

2 for space, we’d get 1− ε for those.

Question 8.4. If P = PSPACE, could you get a better simulation (e.g., TIME[t] ⊆ SPACE[tε])?

Question 8.5. Are there barriers?

Remark 8.6. Ryan thinks he’s very lucky that he didn’t think about TreeEval until after Cook–Mertz
— if he had found this argument first, he would have thought it was a barrier to TreeEval (that you
can’t solve TreeEval in low space, because if you could then you’d improve the 50-year-old simulation
of TIME[t] in SPACE[t/log t]). So this is kind of disturbing.

§9 More about Cook–Mertz

Finally, here’s a bit more detail on the Cook–Mertz TreeEval algorithm. (Note: This part is from a separate
talk Ryan gave at the Graph Simplification Reading Group on May 9, 2025.)

In our case d is a constant; then you can without loss of generality assume d = 2. Let’s pick a big field F,
with |F| = 2q ≥ 2b2. Recall that we defined

au = fu(au1, au2),

where fu takes in 2b bits and outputs b. We can break fu up into b functions fu,j that output the jth bit
(for each 1 ≤ j ≤ b).

We’ll discuss an easier version of Cook–Mertz where we look at the multilinear extension of fu,j , defined by

f̃u,j(x1, x2) =
∑

a1,a2∈{0,1}b
χa1,a2(x1, x2)fu,j(a1, a2),

Page 9 of 10

Simulating time with square-root space Talk by Ryan Williams (April 8, 2025)

where x1 and x2 are length-b vectors over F, and χa1,a2 is the function that outputs 1 on (a1, a2) and 0
everywhere else (so it’s multilinear of degree 2b). So now we’re allowing {0, 1}-valued inputs, but also inputs
over this big field F. This algorithm will actually get (h+ b) log b space usage, where the extra b log b comes
from this multilinear extension (if you use low-degree extensions correctly, you can get rid of it).

Here’s the key lemma behind the whole thing.

Lemma 9.1

Let ω be a generator of F× (i.e., a primitive mth root of unity, where m = 2q−1). Let y1, y2, z1, z2 ∈ Fb.
Then for all polynomials P of degree less than m, we have

P (z1, z2) = −
m∑
i=1

P (ωiy1 + z1, ω
iy2 + z2).

The way to think about this is to consider any monomial xk1x
ℓ
2 in P and imagine expanding it; we’ll get

zk1z
ℓ
2 + ωkiyk1z

ℓ
2 + ωℓizk1y

ℓ
2 + ω(k+ℓ)iyk1y

ℓ
2

(where the first term is the one we want, and the rest are extras). When we sum over i, the extra terms are
going to have overall coefficients that look like

∑
i ω

i (or
∑

i ω
ki for some 0 < k < m); and this is 0. So all

the extra terms cancel out, and we’re left with just the things we want.

Why is this useful for us? We said that Cook–Mertz reuses space over and over by XORing the current
value into the existing space. Here we think of y1 and y2 as the existing space, which we can’t control (it’s
the content of our register when we come in — worst-case space chosen for us). And we think of z1 and z2
as values that we can add into the registers.

We’ll have d + 1 registers (here d = 2, so we’ll have three). We assume inductively that we can add the
values au1 and au2 into any register we want; and we want to be able to do the same for au. So let’s imagine
we want to add au into the third register. Suppose that the registers started with y1, y2, and c, where these
are some values not under our control (we want to end with them having y1, y2, and au + c).

y1 y2 c

We want to compute au = P (au1, au2); we’ll do this by computing the right-hand side of Lemma 9.1. So
we’ll range over all i = 1, . . . , m. We have y1 and y2 in the first two registers. We first multiply these by ωi;
and then we inductively add in au1 into the first register and au2 into the second (so now we have ωiy1+au1
and ωiy2 + au2 in those two registers). Then we evaluate P on these two values, and add it to a running
sum we’re keeping in the third register. Then we uncompute in the first two registers (subtracting out au1
and au2 and dividing out ωi, so that they go back to having y1 and y2).

In the end, we’ll have added P (ωiy1 + au1, ω
iy2 + au2) to the third register for each i, so that register now

has P (au1, au2) + c = au + c by Lemma 9.1, which is what we wanted.

(The only thing we need to record on our height-h recursion stack is which index i we’re currently on; since
m = poly(b), this takes log b bits.)

Remark 9.2. In this algorithm, you’ve never actually computed the values of the internal nodes —
everything is XORed and smashed together. This is why we had to do the propagate-FAIL thing — if
we run Cook–Mertz we can’t look at intermediate node values to figure out whether our guessed graph
G has issues (because it doesn’t compute those values), so we have to make sure these issues show up
at the root.

Page 10 of 10

	Introduction
	A computation graph
	The pebbling approach
	The tree evaluation problem
	From the computation graph to tree evaluation
	Approach 1: Olivious TMs
	Approach 2: Guessing the computation graph
	Open problems
	More about Cook–Mertz

