
Grothendieck problems on graphs
Talk by Nitya Mani
Notes by Sanjana Das

March 22, 2024

§1 Introduction

Today, we’ll study the following problem on graphs (which we allow to have self-loops).

Definition 1.1. For a graph G = (V,E), the Grothendieck constant of G, which we denote K(G), is
defined as the infimum of all K such that for every matrix A = (Auv) we have

sup
‖fu‖=1

∑
uv∈E

Auv〈fu, fv〉 ≤ K sup
zu∈{±1}

∑
uv∈E

Auvzuzv. (1)

In words, on the right-hand side we’re trying to choose a sign zu ∈ {±1} for each vertex u in G in order
to maximize Auvzuzv over all edges of G; this is some optimization problem. And on the left-hand side
we’re considering a semidefinite relaxation of this optimization problem where instead of choosing a sign
zu ∈ {±1} for each vertex u, we’re choosing a vector fu ∈ Rd (for some arbitrary d) with norm 1. (And then
we’re replacing the product zuzv with the inner product 〈fu, fv〉.) This will increase the maximum sum we
can get, because we’ve only given ourselves more choices (we can think of the right-hand side as the special
case of the left-hand side with d = 1). And we define K(G) as the smallest constant K such that we can
say this relaxation only increases the sum by a factor of K.

Remark 1.2. We can assume that Auv = 0 for all uv 6∈ E, so that the right-hand side of (1) can be
written as zᵀAz where z = (zu); we’ll often do this for notational convenience.

The reason the optimization problem on the left-hand side is called a semidefinite optimization problem
is that it’s equivalent to trying to maximize

∑
uv∈E Auvxuv where X is a positive semidefinite matrix with

diagonal entries 1 corresponding to the Gram matrix of the vectors fu — so its entries are Xuv = 〈fu, fv〉.
For this reason, we’ll use the following notation.

Notation 1.3. Given G and A, we use SDP to denote the value of the supremum on the left-hand side
of (1), and OPT to denote the value of the supremum on the right-hand side.

Then we have SDP ≥ OPT, and proving upper bounds on K(G) (which will be our focus for today)
corresponds to proving inequalities in the reverse direction.
We’ll also define a related notion, where we replace the condition zu ∈ {±1} with zu ∈ [−1, 1] (and corre-
spondingly replace ‖fu‖ = 1 with ‖fu‖ ≤ 1).

Definition 1.4. For G = (V,E), we define K ′(G) as the infimum of all K ′ such that for every matrix A,

sup
‖fu‖≤1

∑
uv∈E

auv〈fu, fv〉 ≤ K sup
zu∈[−1,1]

∑
uv∈E

Auvzuzv.

Page 1 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

If G is simple (i.e., it has no self-loops), then K ′(G) = K(G) — the right-hand side is a multilinear form in
the variables zu, so if we want to maximize it, it’s optimal to take each zu to be an endpoint of [−1, 1].
Here’s one result regarding K(G).

Theorem 1.5 (Alon–Makarychev–Makarychev–Naor)
For any simple graph G, we have

logω(G) . K(G) . ϑ(G).

(We use ϑ to denote the Lovász theta number, which satisfies ω(G) ≤ ϑ(G) ≤ χ(G).)
Today we’re going to talk about upper bounds on K(G) — we’ll highlight the main ideas, but won’t focus
on getting the optimal constants. We’ll consider three settings — the cases where G is bipartite, where G
is a clique, and where G is a general graph.

§2 Bipartite graphs

We’ll first consider the case where G is bipartite.
The best-known upper bound in this case is the following.

Theorem 2.1 (Krivine, Braverman–Makarychev–Makarychev–Naor)
For all bipartite G, we have

K(G) ≤ π

2 arcsinh(1) − ε

(where ε > 0 is a small non-explicit constant).

One reason this is interesting is that the first term of π
2 arcsinh(1) comes out of a natural semidefinite argument

that’s believed to be optimal for some problems, but the −ε term means that it isn’t optimal here.

§2.1 A first bound

First we’re going to prove the following bound, which shows that K(G) ≤ (4
π − 1)−1.

Theorem 2.2 (Nesterov–Ye, Rielz)
We have OPT ≥ (4

π − 1)SDP.

Let {fu} be the optimal collection of vectors for the SDP (i.e., the optimization problem on the left-hand
side of (1)), and let X be their Gram matrix (defined by Xuv = 〈fu, fv〉 for all u and v).
At a very high level, the strategy for proving bounds of this form (where we lower-bound OPT in terms of
SDP) is that we want to use the solution {fu} to the SDP to construct a feasible solution for the original
optimization problem — i.e., a collection of ±1-values {zu}— which is almost as good. This means we want
a rounding scheme where we turn each vector fu into a sign zu.
To prove Theorem 2.2, we use the following rounding scheme — we first choose g to be a standard Gaussian
vector (so g is a random vector in Rd, where d is the dimension that the vectors fu live in). Then we define

yu = gᵀfu ∈ R and zu = sgn(yu) ∈ {−1, 1}.

(So we’re choosing a random Gaussian vector g, turning the vectors fu into real numbers yu by projecting
them onto g, and then rounding these real numbers to {±1}-values using the sgn function.)

Page 2 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

Fact 2.3 — We have E[yyᵀ] = X.

Here y denotes the (random) vector with entries yu for all u ∈ V ; this is some Gaussian vector (and in
particular, each of its entries has distribution N (0, 1)), and it’s not hard to check that its covariance matrix
is X (which is what the above fact is saying).
And now we have OPT ≥ Eg[zᵀAz] (because for any choice of g, the resulting z = (zu) is a feasible solution
to the optimization problem on the right-hand side of (1), with value zᵀAz; so OPT ≥ zᵀAz for every g).
So our goal is now to lower-bound Eg[zᵀAz] in terms of the value of the SDP.
The way we’re going to do this is by a ‘first-order approximation’ strategy — we rewrite Eg[zᵀAz] as

Eg[zᵀAz] = Eg [(γy + (z − y))ᵀA(γy + (z − y))] , (2)

where γ =
√

2/π. The reason for this choice of γ is the following calculation.

Fact 2.4 — If g1 and g2 are jointly Gaussian real numbers with mean 0 and variance 1, then

E[g1 · sgn(g2)] = γE[g1 · g2].

Proof. This holds in the case g1 = g2 (it’s a fact that if g1 ∼ N (0, 1) then E |gi| = γ) and the case where
g1 and g2 are independent (where both sides are 0). And we can deduce the general statement from these
two cases by writing g1 as a linear combination of g0 and g2, where g0 and g2 are independent Gaussians —
since this equality essentially respects taking linear combinations (for g1).

This means all the cross-terms in (1) disappear (meaning the terms Eg[yuAuv(zv − yv)]), and we’re left with

Eg[zᵀAz] = γ2Eg[yᵀAy] + Ea[(z − γy)ᵀA(z − γy)]. (3)

And the first term Eg[yᵀAy] exactly corresponds to SDP, since we saw that the covariance matrix of y is
exactly X (so E[auvyuyv] = auv〈fu, fv〉 for all u, v ∈ V).
Meanwhile, it turns out that we can construct a feasible solution to the SDP from the second term of (3)
as well! The matrix Y with entries Yuv = Ea[(zu − γyu)(zv − γyv)] is positive semidefinite (since for any a
the matrix with entries (zu− γyu)(zv − γyv) is PSD — it’s the ‘Gram matrix’ of a bunch of real numbers —
and the expectation of a bunch of PSD matrices is still PSD), and any PSD matrix with diagonal entries 1
corresponds to a feasible solution to the SDP. So we can normalize Y to get a feasible solution — we have

E[(zu − γyu)2] = 1− γ2

for every u (by a direct calculation using Fact 2.4), which means the matrix Y ′ = (1− γ2)−1Y is a feasible
solution to the SDP.
We’re trying to get a lower bound on the right-hand side of (3), which means we want to know the worst-case
value of the SDP (i.e., the minimum value of the left-hand side of (1), rather than the maximum). And
this is the only place where we use bipartiteness — because G is bipartite, we know the worst-case feasible
solution is the negative of the best (if we negate the vectors fu for all u on one side of the vertex partition
of G, this will negate each term Auv〈fu, fv〉). And so we get the bound

Ea[(z − γy)ᵀA(z − γy)] ≥ −(1− γ2)SDP.

Combining the bounds on the two terms in (3), we get

OPT ≥ Eg[zᵀAz] ≥ γ2SDP− (1− γ2)SDP =
(

1− 4
π

)
SDP,

which proves Theorem 2.2.

Page 3 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

Remark 2.5. One way to view this proof is that we want to start with Eg[zᵀAz] and make the SDP
appear. We could do this if the zu’s were a linear function of the fu’s. Unfortunately sgn (which our
rounding scheme uses) is not linear, so we instead try to approximate it by something linear — we take
the first-order coefficient of the Hermite expansion and pull it out (this corresponds to the first term in
(3)), and hope that the error (corresponding to the second term in (3)) is not too big.

§2.2 A second bound

Now we’ll see another method, due to Krivine, that gets the following bound. (Our description will be
somewhat different from how Krivine wrote it, which involved infinite-dimensional Hilbert spaces.)

Theorem 2.6
We have OPT ≥ 2

π arcsinh(1) · SDP.

We’re again going to start with the optimal SDP solution X and try to use it to produce signs zu ∈ {±1}.
But this time, the main idea is that we’re going to try to first transform X so that when we apply the sgn
function, we really will get something linear.
Let J be the all-1’s matrix, and let J ′ be the block matrix

J ′ =

 +1 −1

−1 +1


(with blocks corresponding to the vertex partition of G), which is PSD. Now we’re going to define

X̃ = 1
2J ◦ (sinh(βX) + sin(βX)) + 1

2J
′ ◦ (sinh(βX)− sin(βX)),

where ◦ denotes the Hadamard (entrywise) product of two matrices, β is a real number we’ll pick soon, and
sin(βX) is the matrix obtained by applying sin entrywise to βX.

Claim 2.7 — The matrix X̃ is PSD.

This is because if X and Y are PSD then X + Y is too, and so is X ◦ Y by the Schur product theorem.

Remark 2.8. The choice of sin is motivated for reasons we’ll see soon, and then the term sinh appears
because it’s the smallest thing we could add that ensures sinh(βX)±sin(βX) are both PSD (the reason
this is true is because sinh(βx)± sin(βx) only has nonnegative Taylor coefficients).

We want X̃ to be a feasible solution to the SDP, so we want its diagonals to be 1. And since X has diagonal
entries 1, the diagonal entries of X̃ are all

X̃uu = 1
2(sinh(β) + sin(β)) + 1

2(sinh(β) + sin(β)) = sinh(β),

so we take β = arcsinh(1) to make this 1. (This is where the arcsinh(1) in the bound comes from.)
Now X̃ corresponds to a feasible solution to the SDP (as it’s a PSD matrix with diagonal entries 1); we’ll
let hu denote the corresponding vector for each vertex u on the left and h′v the corresponding vector for
each vertex v on the right, so that the value of the SDP at X̃ is

∑
uv Auv〈hu, h′v〉.

And now we can apply a similar rounding scheme as before, but to these vectors hu and h′v — we choose a
random vector g which is uniform on the unit sphere, and we define zu = sgn(gᵀhu) and zv = sgn(gᵀh′v) for

Page 4 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

each vertex u on the left and v on the right. This gives us some feasible solution to the original optimization
problem (i.e., with {±1}-values), so

OPT ≥
∑
uv

AuvEg[sgn(gᵀhu) sgn(gᵀh′v)]. (4)

And if we let θuv be the angle between hu and h′v, then

Pg[sgn(gᵀhu) 6= sgn(gᵀh′v)] = θuv
π
.

This can be seen geometrically — we can consider the plane through hu and h′v, and imagine drawing
the perpendiculars to the two vectors. Then sgn(gᵀhu) and sgn(gᵀh′v) depend on which sides of these
perpendiculars g lies on, and we get two sectors with angles θuv on which the two signs are different.

hu

h′v

+−

+−

+
−

+
−

This means we have

Eg[sgn(gᵀhu) sgn(gᵀh′v)] = 1 ·
(

1− θuv
π

)
+ (−1) · θuv

π
= 1− 2

π
θuv.

And we can write this in terms of X̃uv — by definition X̃uv = 〈hu, h′v〉, so θuv = arccos(X̃uv), which means

Eg[sgn(gᵀhu) sgn(gᵀh′v)] = 2
π

arcsin(X̃uv),

and plugging this into (4) gives
OPT ≥ 2

π

∑
uv

Auv arcsin(X̃uv).

And now we can see why we defined X̃uv to have a sin — we have X̃uv = sin(βXuv), so we get

OPT ≥ 2
π
β
∑
uv

AuvXuv = 2
π
β · SDP.

(We defined X to be the optimal solution to the SDP, so
∑
uv AuvXuv is SDP by definition.)

Remark 2.9. The way we use bipartiteness here is that when we define X̃ by transforming X, only the
entries on the ‘off-diagonal blocks’ will affect the value of the solution to the {±1}-optimization problem
we get from rounding X̃. So we want the values on these off-diagonal blocks to be ‘nice’ (specifically,
we want them to be sin functions, so that the above computation works out), but we don’t actually
care what happens on the diagonal blocks, and this allows us to put the sinh function in the diagonal
blocks (using J ′) to make X̃ PSD.

Page 5 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

§3 Complete graphs

Now we’ll consider complete graphs. This means we’ve got a generic quadratic form on a graph, and we
want to see how far the semidefinite relaxation is from the original problem.

Theorem 3.1 (Nemiraski, Charikar–Wirth, AMMN)
We have K(Kn) = Θ(logn).

(There may be more papers that also contemporaneously proved this.)

Remark 3.2. We’re only going to consider simple graphs (i.e., graphs without self-loops). (For graphs
with loops, K(G) can become arbitrarily bad.) This means we can use the formulation of K ′(G) instead
of K(G) (since they’re equal for graphs without self-loops); so when we try to use a rounding scheme
to produce zu’s from the optimal SDP solution X, we only need to ensure zu ∈ [−1, 1] rather than
zu ∈ {±1}.

§3.1 A proof

To prove Theorem 3.1 (or at least the upper bound), we’ll start with a lemma.

Lemma 3.3
We have OPT ≥ 1

n

∑
uv |Auv|.

Proof. We’ll prove this using a probabilistic argument — imagine we construct a random matching of Kn

by selecting an edge uniformly at random and deleting it, then selecting another edge uniformly at random
and deleting it, and so on.

And imagine we assign each edge uv a weight of |Auv|; then the expected total weight of the matching is
either 1

n

∑
uv |Auv| or 1

n−1
∑
uv |Auv| depending on whether n is even or odd (since it either contains n−1

2 or
n
2 edges, and each edge is equally likely to be present); either way, it’s at least 1

n

∑
uv |Auv|, so we can find

some matching M with total weight at least this quantity.

Now we want to use M to produce ±1’s (in order to get a feasible solution to the optimization problem).
To do so, for each edge uv ∈M , we first choose xu ∈ {±1} randomly, and then let xv = xu sgn(Auv). (If n
is odd, so there’s an umatched vertex, then we choose its sign randomly as well.)

Then each uv ∈ M contributes exactly |Auv| to the value of the optimization problem, while each uv 6∈ M
contributes an expected value of 0 (since the signs of the two vertices are chosen independently). So in
expectation the value of the optimization problem we get is the weight of M , which by construction is at
least 1

n

∑
uv |Auv|.

Page 6 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

Now we’re going to use this to get a rounding scheme — let X be the matrix corresponding to the optimal
SDP solution, and factor it as Xuv = 〈fu, fv〉 (so the fu’s are the vectors corresponding to the optimal SDP
solution). We’re again going to sample a standard Gaussian vector g, and define yu = gᵀfu for each vertex
u. This is some real number, but it’s not necessarily in [−1, 1], so we need to fix this, and the way we’ll do
so is by setting

zu = yu
maxv |yv|

for each u (so that zu ∈ [−1, 1]).

How much do we lose by doing this? The point is that if we’ve got n standard Gaussians, their maximum is
expected to be at most on the order of

√
logn. And Gaussians have nice tails, so we get a bound something

like the following.

Fact 3.4 — We have P[maxv |gᵀfv| ≥ 4
√

2 log 2n+ t] ≤ 2 exp(−t2/2).

(It should be possible to prove this by considering the probability that gᵀfv — which is a Gaussian of
variance at most 1, since ‖fv‖ ≤ 1 — is at least this large for each v separately, and then union-bounding
over all v.)

And now we have
OPT ≥

∑
uv

AuvEu[zuzv] =
∑
uv

AuvEg
[(gᵀfu)(gᵀfv)

maxw(gᵀfw)2

]
.

We’ll split this into two cases, depending on whether maxw(gᵀfw)2 is much larger than what we’d expect it
to be or not — we’ll think of the ‘good case’ as the event that maxw(gᵀfw)2 ≤ 100 logn, and the ‘bad case’
as the event that maxw(gᵀfw)2 > 100 logn. Let p be the probability of the bad case, so that p ≤ 2n−4.

In the good case, noting that Eg[(gᵀfu)(gᵀfv)] = 〈fu, fv〉, we get a total contribution of at least

1− p
100 logn

∑
uv

AuvXuv ≥
1− 2n−4

100 logn · SDP.

Meanwhile, for the contribution of the bad case (this contribution could potentially be negative, and we’re
trying to show it can’t be too negative), we can upper-bound |gᵀfu| and |gᵀfv| by 1 and lower-bound
maxw(gᵀfw)2 by 100 logn, so the bad case contributes at least

−p ·
∑
uv

|Auv| ·
1

100 logn ≥ −
1

50n4 logn
∑
uv

|Auv| .

And the expression we have here is exactly the one in Lemma 3.3, so plugging in that bound gives that this
is at least

− 1
50n3 logn · OPT.

Putting these together, we get that

OPT ≥ 1− 2n−4

100 logn · SDP− 1
50n3 logn · OPT,

and moving things around gives SDP ≤ 120 logn ·OPT (which proves the upper bound of Theorem 3.1; the
constant 120 is not important).

Remark 3.5. Here, the place we lose the factor of logn is in taking the maximum of n Gaussians. And
this loss is necessary — there are constructions showing that we need the logn.

Page 7 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

§3.2 A different perspective

Here’s a different perspective on the same rounding scheme which involves a somewhat simpler argument
(one that doesn’t require something like Lemma 3.3).
Let X be the PSD matrix which is the optimal solution to the SDP, and imagine that we choose a Gaussian
vector h ∼ N (0, X) — i.e., instead of choosing a standard Gaussian, we choose one with covariance matrix
X — and define z(h) ∈ [−1, 1]n as the vector

z(h) = 1
‖h‖∞

· h.

Then its entries z(h)u form a solution to the [−1, 1]-optimization problem (for any choice of h).

Remark 3.6. This is actually the same solution to the [−1, 1]-optimization problem as the one we
constructed in Subsection 3.1, just phrased differently — in that proof, the vector y = (yu) is distributed
according to N (0, X).

Now we have
SDP =

∑
uv

AuvXuv =
∑
uv

AuvEh∼N (0,X)[huhv]

(since we defined h to have covariance matrix X). And we can rewrite this as

SDP =
∑
uv

AuvEh[z(h)uz(h)v ‖h‖2∞].

And now if we pull out ‖h‖2∞, what we’re left with is the value of the [−1, 1]-optimization problem at z. The
difference with the argument in Subsection 3.1 is that instead of bounding the expectation of this quantity
by OPT (which is essentially what we did in Subsection 3.1), we can even bound its maximum by OPT —
so we get that

SDP ≤ sup
h

∑
uv

Auvz(h)uz(h)vEh∼N (0,X) ‖h‖2∞ ≤ OPT · Eh∼N (0,X) ‖h‖2∞ .

And similarly to Fact 3.4, we can show E ‖h‖2∞ ≤ C logn for some constant C, giving K(Kn) ≤ C logn.

Remark 3.7. This bound is true for all graphs without self-loops.

§4 General graphs

Finally, we’ll consider the case of general graphs. Things are more technical here, so we’ll focus on the main
ideas but not go into the nitty-gritty details.

Theorem 4.1 (AMMN)
For any G, we have K(G) = O(log ϑ(G)).

Here ϑ denotes the Lovász theta number, which we will define later (when it comes up).
(We work with graphs without self-loops, so we can again consider K ′(G) instead.)
In all the proofs we’ve seen so far, we took our optimal PSD matrix X, a random vector g, and a rounding
scheme (so we factored X as Xuv = 〈fu, fv〉, defined the real numbers yu = gᵀfu, and used the rounding
scheme to turn these numbers into zu ∈ [−1, 1]).

Page 8 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

Here, our random vector g is again going to be a standard Gaussian. And our rounding scheme will be a
mixture of sgn and the rounding function we used for complete graphs (which was essentially maxu |yu|).
The sgn function looks like −1 until we reach 0 and becomes 1 after. So instead, we’re going to take a linear
interpolation between −1 and 1 — we’ll let m be a parameter we’ll decide on later, and we define

zu =
{
yu/m if |yu| ≤ m
sgn(yu) otherwise

(where yu = gᵀfu, as before).

sgn new scheme

Remark 4.2. We could think of the rounding scheme we used for complete graphs as being of this form
with m = max |yu| (so that we’re always in the first case); but here we’re generally going to take m to
be smaller than this.

In order to analyze this, we’re going to use a slightly similar approach to the first proof in the bipartite
setting — where we ‘approximate’ our rounding scheme by a linear function (which corresponds directly to
the value of the SDP) and try to control the error. Here, we’ll define xu = yu/m, so that xu is often but
not always equal to zu. Then we have

OPT ≥
∑
uv∈E

AuvEg[zuzv] =
∑
uv∈E

AuvEg[xuxv]−
∑
uv∈E

AuvEg[xuxv − zuzv] (5)

(the first term is the linear term we pull out, and the second is the ‘error’). For the first term, we have

xuxv = 1
m2 yuyv = 1

m2 〈fu, fv〉,

which means the first term is precisely 1
m2 · SDP.

Now we’ll try to deal with the error term. In the first proof in the bipartite setting, the way we did so
was by saying that the error terms (over all pairs (u, v)) formed a PSD matrix whose diagonal entries were
not too large, and so we could scale this matrix to get another feasible solution to the SDP (allowing us to
upper-bound the subtraction in terms of SDP).

We want to do something similar here — we want to construct vectors hu such that 〈hu, hv〉 = xuxv − zuzv
for all uv ∈ E. And our goal is to do so in such a way that ‖hu‖ is ‘small’ for all u — this is because then
we can scale them down by maxv ‖hv‖ in order to get a feasible solution to the SDP. In other words, we
take the Gram matrix of the hu’s and scale it down so its diagonal entries are at most 1, and this gives a
feasible solution to the SDP; and the bound we get for the error term will be the amount we scaled down
by times SDP, which will be better if all the original diagonal entries are small (so that we don’t have to
scale down by too much).

So we’re trying to construct vectors hu such that the diagonal of their Gram matrix is as small as possible,
given some constraints on the off-diagonal entries (each corresponding to an edge). Intuitively, this is where
the Lovász theta number comes in — if we’ve got lots of blank space (i.e., not many constraints) or more

Page 9 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

control on the structure of where these constraints are, then we might expect it to be easier to construct
this Gram matrix.

Here’s one way to define the Lovász theta number (this is sort of the dual formulation of the usual one, but
it’s more helpful here).

Definition 4.3. We define ϑ(G) as the minimum value of κ such that there is a PSD matrix W with
diagonal entries 1 and with Wuv = −1/(κ− 1) for all uv ∈ E.

Intuitively, it makes sense that this quantity comes into play, because this is very similar to the setup we’ve
got here (where we’re trying to minimize the diagonal given constraints on the entries corresponding to
edges). But we have to do some hijinks to get things to exactly line up. We first rewrite

xuxv − zuzv = 1
2(xu + zu)(xv + zv)−

1
2(xu − zu)(xv + zv).

And xu = 1
m · g

ᵀfu while zu is just the version of xu capped at ±1, so we can compute

xu − zu = 1|gᵀfu|>m · g
ᵀfu

(1
m
− 1
|gᵀfu|

)
,

and similarly
xu + zu = gᵀfu ·

(2
m

+ 1|gᵀfu|>m

(1
|gᵀfu|

− 1
m

))
.

Now let W be a solution to the SDP defined by the Lovász θ function (as in Definition 4.3), and factor it
as the Gram matrix of vectors wu. Then using W and this representation of xuxv − zuzv, it’s possible to
get some vectors hu with 〈hu, hv〉 = xuxv − zuzv for all uv ∈ E and with ‖hu‖ ≤ (1

2 + ϑ(G))(xu− zu)2. And
we can get bounds on (zu − yu)2 using the above expression for it and Gaussian tail bounds (as gᵀfu is a
Gaussian).

Then we can rearrange this to a bound on the error term in (5), which ends up giving OPT ≥ Cm · SDP
where Cm is some function depending on m; and optimizing over m gives a bound of log ϑ(G) (where the
log comes from Gaussian tail bounds).

Page 10 of 10

	Introduction
	Bipartite graphs
	A first bound
	A second bound

	Complete graphs
	A proof
	A different perspective

	General graphs

