Grothendieck problems on graphs

TALK BY NITYA MANI

NOTES BY SANJANA DAs
March 22, 2024

§1 Introduction

Today, we’ll study the following problem on graphs (which we allow to have self-loops).

Definition 1.1. For a graph G = (V, E), the Grothendieck constant of G, which we denote K(G), is
defined as the infimum of all K such that for every matrix A = (A4,,) we have

sup Z Auv<fu,fv> <K sup Z Auvzuzv- (1)
Ilfu”:l or=y Zue{il} uveFE

In words, on the right-hand side we’re trying to choose a sign z, € {£1} for each vertex u in G in order
to maximize A,,z,2, over all edges of G; this is some optimization problem. And on the left-hand side
we’re considering a semidefinite relaxation of this optimization problem where instead of choosing a sign
2z, € {#1} for each vertex u, we're choosing a vector f, € R? (for some arbitrary d) with norm 1. (And then
we're replacing the product z,z, with the inner product (f,, fy).) This will increase the maximum sum we
can get, because we’ve only given ourselves more choices (we can think of the right-hand side as the special
case of the left-hand side with d = 1). And we define K (G) as the smallest constant K such that we can
say this relaxation only increases the sum by a factor of K.

Remark 1.2. We can assume that A,, = 0 for all wv € E, so that the right-hand side of (1) can be
written as 2T Az where z = (z,,); we'll often do this for notational convenience.

The reason the optimization problem on the left-hand side is called a semidefinite optimization problem
is that it’s equivalent to trying to maximize), cp Auv®us Where X is a positive semidefinite matrix with
diagonal entries 1 corresponding to the Gram matrix of the vectors f, — so its entries are Xy, = (fu, fo)-
For this reason, we’ll use the following notation.

Notation 1.3. Given G and A, we use SDP to denote the value of the supremum on the left-hand side
of (1), and OPT to denote the value of the supremum on the right-hand side.

Then we have SDP > OPT, and proving upper bounds on K(G) (which will be our focus for today)
corresponds to proving inequalities in the reverse direction.

We'll also define a related notion, where we replace the condition z, € {£1} with z, € [-1, 1] (and corre-
spondingly replace || f,|| = 1 with || f,]| < 1).

Definition 1.4. For G = (V, E), we define K'(G) as the infimum of all K’ such that for every matrix A,

sup Z auv<fuafv> <K sup Z Auvzuzv-
”fu”Sl wel Z"e[_171] uvel

Page 1 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

If G is simple (i.e., it has no self-loops), then K'(G) = K(G) — the right-hand side is a multilinear form in
the variables z,, so if we want to maximize it, it’s optimal to take each z, to be an endpoint of [—1,1].

Here’s one result regarding K (G).

Theorem 1.5 (Alon-Makarychev—Makarychev—Naor)
For any simple graph G, we have B
logw(G) S K(G) S I(G).

(We use 9 to denote the Lovéasz theta number, which satisfies w(G) < 9(G) < x(G).)

Today we're going to talk about upper bounds on K(G) — we’ll highlight the main ideas, but won’t focus
on getting the optimal constants. We’ll consider three settings — the cases where G is bipartite, where G
is a clique, and where G is a general graph.

§2 Bipartite graphs

We'll first consider the case where G is bipartite.

The best-known upper bound in this case is the following.

Theorem 2.1 (Krivine, Braverman—Makarychev—Makarychev—Naor)

For all bipartite G, we have
T
K € —
(@) < 2 arcsinh(1) c

(where € > 0 is a small non-explicit constant).

One reason this is interesting is that the first term of th(l) comes out of a natural semidefinite argument
that’s believed to be optimal for some problems, but the —e¢ term means that it isn’t optimal here.

§2.1 A first bound

First we’re going to prove the following bound, which shows that K(G) < (2 — 1)~

Theorem 2.2 (Nesterov—Ye, Rielz)
We have OPT > (£ — 1)SDP.

™

Let {f.} be the optimal collection of vectors for the SDP (i.e., the optimization problem on the left-hand
side of (1)), and let X be their Gram matrix (defined by Xy, = (fu, fv) for all v and v).

At a very high level, the strategy for proving bounds of this form (where we lower-bound OPT in terms of
SDP) is that we want to use the solution {f,} to the SDP to construct a feasible solution for the original
optimization problem — i.e., a collection of +1-values {z,} — which is almost as good. This means we want
a rounding scheme where we turn each vector f, into a sign z,.

To prove Theorem 2.2, we use the following rounding scheme — we first choose g to be a standard Gaussian
vector (so g is a random vector in R, where d is the dimension that the vectors f, live in). Then we define

Yu = ngu € Rand z, = Sgn(yu) € {_17 1}'

(So we’re choosing a random Gaussian vector g, turning the vectors f,, into real numbers y,, by projecting
them onto g, and then rounding these real numbers to {£1}-values using the sgn function.)

Page 2 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

Fact 2.3 — We have E[yyT] = X.

Here y denotes the (random) vector with entries y, for all u € V; this is some Gaussian vector (and in
particular, each of its entries has distribution A/(0, 1)), and it’s not hard to check that its covariance matrix
is X (which is what the above fact is saying).

And now we have OPT > E/[2TAz] (because for any choice of g, the resulting z = (z,) is a feasible solution
to the optimization problem on the right-hand side of (1), with value 2TAz; so OPT > 2TAz for every g).
So our goal is now to lower-bound E4[2TAz] in terms of the value of the SDP.

The way we’re going to do this is by a ‘first-order approximation’ strategy — we rewrite E4[2TAz] as
Eg[2TAz] = Eg [(vy + (2 —)T A(yy + (2 — 9))], (2)

where 7 = /2/m. The reason for this choice of « is the following calculation.
Fact 2.4 — If g; and go are jointly Gaussian real numbers with mean 0 and variance 1, then

E[g1 - sgn(g2)] = 7E[g1 - g2]-

Proof. This holds in the case g1 = go (it’s a fact that if g1 ~ N(0,1) then E |g;| =) and the case where
g1 and go are independent (where both sides are 0). And we can deduce the general statement from these
two cases by writing g; as a linear combination of gy and go, where gg and gy are independent Gaussians —
since this equality essentially respects taking linear combinations (for g;). O

This means all the cross-terms in (1) disappear (meaning the terms Eg [y, Auy (20 — y0)]), and we're left with
Ey[zTAz] = v*Eqg[y" Ay] + Eal(z — 79)TA(z = vy)]. (3)

And the first term E4[yT Ay] exactly corresponds to SDP, since we saw that the covariance matrix of y is
exactly X (so ElauwYutv] = auv{fu, fv) for all u,v € V).

Meanwhile, it turns out that we can construct a feasible solution to the SDP from the second term of (3)
as welll The matrix Y with entries Yy, = Eq[(2y — YYu) (20 — 7YYo)] is positive semidefinite (since for any a
the matrix with entries (z, — Yyu)(2y — YY») is PSD — it’s the ‘Gram matrix’ of a bunch of real numbers —
and the expectation of a bunch of PSD matrices is still PSD), and any PSD matrix with diagonal entries 1
corresponds to a feasible solution to the SDP. So we can normalize Y to get a feasible solution — we have

El(zu —yyu)?] =1 -7"
for every u (by a direct calculation using Fact 2.4), which means the matrix Y’ = (1 — 42)~!Y is a feasible
solution to the SDP.

We're trying to get a lower bound on the right-hand side of (3), which means we want to know the worst-case
value of the SDP (i.e., the minimum value of the left-hand side of (1), rather than the maximum). And
this is the only place where we use bipartiteness — because G is bipartite, we know the worst-case feasible
solution is the negative of the best (if we negate the vectors f, for all u on one side of the vertex partition
of G, this will negate each term Ay, (fu, fv)). And so we get the bound

Eal(z —7y)TA(z — yy)] = —(1 — ¥*)SDP.

Combining the bounds on the two terms in (3), we get

OPT > E,[2TAz] > 4*SDP — (1 — 4*)SDP = <1 - 4) SDP,
™

which proves Theorem 2.2.

Page 3 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

Remark 2.5. One way to view this proof is that we want to start with E,[2TAz] and make the SDP
appear. We could do this if the z,’s were a linear function of the f,’s. Unfortunately sgn (which our
rounding scheme uses) is not linear, so we instead try to approximate it by something linear — we take
the first-order coefficient of the Hermite expansion and pull it out (this corresponds to the first term in
(3)), and hope that the error (corresponding to the second term in (3)) is not too big.

§2.2 A second bound

Now we’ll see another method, due to Krivine, that gets the following bound. (Our description will be
somewhat different from how Krivine wrote it, which involved infinite-dimensional Hilbert spaces.)

Theorem 2.6
We have OPT > 2 arcsinh(1) - SDP.

We're again going to start with the optimal SDP solution X and try to use it to produce signs z, € {£+1}.
But this time, the main idea is that we’re going to try to first transform X so that when we apply the sgn
function, we really will get something linear.

Let J be the all-1’s matrix, and let J’ be the block matrix

+1 -1
J =
—1 +1

(with blocks corresponding to the vertex partition of G), which is PSD. Now we're going to define
~ 1 1
X = 5] o (sinh(8X) +sin(8X)) + §J' o (sinh(8X) —sin(8X)),

where o denotes the Hadamard (entrywise) product of two matrices, 3 is a real number we’ll pick soon, and
sin($X) is the matrix obtained by applying sin entrywise to 5X.

Claim 2.7 — The matrix X is PSD.

This is because if X and Y are PSD then X + Y is too, and so is X oY by the Schur product theorem.

Remark 2.8. The choice of sin is motivated for reasons we’ll see soon, and then the term sinh appears
because it’s the smallest thing we could add that ensures sinh(5X) £sin(5X) are both PSD (the reason
this is true is because sinh(fx) £ sin(Sz) only has nonnegative Taylor coefficients).

We want X to be a feasible solution to the SDP, so we want its diagonals to be 1. And since X has diagonal
entries 1, the diagonal entries of X are all

Ko = 3 (sinh(B) +sin(B)) + g (sinh(3) + sin(3)) = sinh(5),

so we take § = arcsinh(1) to make this 1. (This is where the arcsinh(1) in the bound comes from.)

Now X corresponds to a feasible solution to the SDP (as it’s a PSD matrix with diagonal entries 1); we’ll
let h, denote the corresponding vector for each vertex w on the left and R, the corresponding vector for
each vertex v on the right, so that the value of the SDP at X is Y, Auy(hu, hl).

And now we can apply a similar rounding scheme as before, but to these vectors h,, and h! — we choose a
random vector g which is uniform on the unit sphere, and we define z,, = sgn(gTh,,) and z, = sgn(gTh))) for

Page 4 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

each vertex u on the left and v on the right. This gives us some feasible solution to the original optimization
problem (i.e., with {£1}-values), so

OPT > 3~ Ay Bylsen(ghy) sgn(gTh))]. (4)

And if we let 6,, be the angle between h, and h!, then

euv
Pylsgn(gThy) # sgu(gTh,)] = —

This can be seen geometrically — we can consider the plane through h, and h), and imagine drawing
the perpendiculars to the two vectors. Then sgn(gTh,) and sgn(gThl) depend on which sides of these
perpendiculars g lies on, and we get two sectors with angles 0,, on which the two signs are different.

h! e
\ N
) S
+ .

o hy,

-

This means we have

Eq[sgn(gThy) sgn(gTh,)] =1- (1 — 6“”) +(=1)- buw _ gﬁw-
v

s

And we can write this in terms of X, — by definition Xuw = (hay W), SO Oyyy = arccos()N(uv), which means

2
Eq[sgn(gThy) sgn(gTh!)] = - arcsin(Xy,),

and plugging this into (4) gives
2 P
OPT > - E Ayyp arcsin(Xy,).

uv

And now we can see why we defined X, to have a sin — we have X, = sin(SXyv), so we get

2 2
OPT > =8 AyyXuy = =f3 - SDP.
T T
(We defined X to be the optimal solution to the SDP, so >_,,, AuyXuv is SDP by definition.)

Remark 2.9. The way we use bipartiteness here is that when we define X by transforming X, only the
entries on the ‘off-diagonal blocks’ will affect the value of the solution to the {+1}-optimization problem
we get from rounding X. So we want the values on these off-diagonal blocks to be ‘nice’ (specifically,
we want them to be sin functions, so that the above computation works out), but we don’t actually
care what happens on the diagonal blocks, and this allows us to put the sinh function in the diagonal
blocks (using J’) to make X PSD.

Page 5 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

§3 Complete graphs

Now we’ll consider complete graphs. This means we’ve got a generic quadratic form on a graph, and we
want to see how far the semidefinite relaxation is from the original problem.

Theorem 3.1 (Nemiraski, Charikar—Wirth, AMMN)
We have K(K,) = O(logn).

(There may be more papers that also contemporaneously proved this.)

Remark 3.2. We're only going to consider simple graphs (i.e., graphs without self-loops). (For graphs
with loops, K (G) can become arbitrarily bad.) This means we can use the formulation of K'(G) instead
of K(G) (since they’re equal for graphs without self-loops); so when we try to use a rounding scheme
to produce z,’s from the optimal SDP solution X, we only need to ensure z, € [—1,1] rather than
zy € {£1}.

§3.1 A proof

To prove Theorem 3.1 (or at least the upper bound), we’ll start with a lemma.

Lemma 3.3
We have OPT > 1 37 '[A4,,|.

Proof. We’ll prove this using a probabilistic argument — imagine we construct a random matching of K,
by selecting an edge uniformly at random and deleting it, then selecting another edge uniformly at random

and deleting it, and so on.

And imagine we assign each edge uv a weight of |A,,|; then the expected total weight of the matching is
either 2 3" [Ayy| or =25 3, [Auy| depending on whether n is even or odd (since it either contains %31 or

5 edges, and each edge is equally likely to be present); either way, it’s at least %Zm} | Auv|, SO we can find

some matching M with total weight at least this quantity.

Now we want to use M to produce +1’s (in order to get a feasible solution to the optimization problem).
To do so, for each edge uv € M, we first choose z,, € {1} randomly, and then let x, = z, sgn(Ay,). (If n
is odd, so there’s an umatched vertex, then we choose its sign randomly as well.)

Then each uv € M contributes exactly |Ay,| to the value of the optimization problem, while each uv ¢ M
contributes an expected value of 0 (since the signs of the two vertices are chosen independently). So in
expectation the value of the optimization problem we get is the weight of M, which by construction is at
least 23, [Auol- O

Page 6 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

Now we’re going to use this to get a rounding scheme — let X be the matrix corresponding to the optimal
SDP solution, and factor it as X, = (fu, fu) (so the f,’s are the vectors corresponding to the optimal SDP
solution). We're again going to sample a standard Gaussian vector g, and define y,, = g7 f,, for each vertex
u. This is some real number, but it’s not necessarily in [—1, 1], so we need to fix this, and the way we’ll do

so is by setting
Yu

2y = ————
maxy |yy|

for each u (so that z, € [-1,1]).

How much do we lose by doing this? The point is that if we’ve got n standard Gaussians, their maximum is
expected to be at most on the order of v/logn. And Gaussians have nice tails, so we get a bound something
like the following.

Fact 3.4 — We have P[max, |g7 f,| > 41/2log2n + t] < 2exp(—t%/2).

(It should be possible to prove this by considering the probability that g7 f, — which is a Gaussian of
variance at most 1, since ||f,|| < 1 — is at least this large for each v separately, and then union-bounding
over all v.)

And now we have

(g7 fu) (g7 fo)] .

> =
OPT > %Aquu ES ; ApE, {maxw(ngw)Q

We'll split this into two cases, depending on whether max,, (g7 f,,)? is much larger than what we’d expect it
to be or not — we’ll think of the ‘good case’ as the event that max,, (g7 f,)? < 100logn, and the ‘bad case’
as the event that max, (g7 f,)? > 100logn. Let p be the probability of the bad case, so that p < 2n~%.

In the good case, noting that Eq[(g7 fu)(97 fv)] = (fu, fu), we get a total contribution of at least

_ _ o9, —4
177)214%)(% > ﬂ .SDP.
1001logn < 1001logn

Meanwhile, for the contribution of the bad case (this contribution could potentially be negative, and we're
trying to show it can’t be too negative), we can upper-bound |¢g7f,| and |g7f,| by 1 and lower-bound
max, (g7 f)? by 100logn, so the bad case contributes at least

1 1
>
logn — 50n*logn

S | Aul -

uv

—P- Z |Auv’ ’ 100

And the expression we have here is exactly the one in Lemma 3.3, so plugging in that bound gives that this

is at least

1
.~ . OPT.
50n3 log n 0

Putting these together, we get that

1—2n* 1

oOPT>-—" .spp—— - .
— 100logn 50n3 logn

OPT

)

and moving things around gives SDP < 120logn - OPT (which proves the upper bound of Theorem 3.1; the
constant 120 is not important).

Remark 3.5. Here, the place we lose the factor of logn is in taking the maximum of n Gaussians. And
this loss is necessary — there are constructions showing that we need the logn.

Page 7 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

§3.2 A different perspective

Here’s a different perspective on the same rounding scheme which involves a somewhat simpler argument
(one that doesn’t require something like Lemma 3.3).

Let X be the PSD matrix which is the optimal solution to the SDP, and imagine that we choose a Gaussian
vector h ~ N(0, X) — i.e., instead of choosing a standard Gaussian, we choose one with covariance matrix
X — and define z(h) € [—1,1]™ as the vector

1

z(h) = m-h.

Then its entries z(h),, form a solution to the [—1, 1]-optimization problem (for any choice of h).

Remark 3.6. This is actually the same solution to the [—1, 1]-optimization problem as the one we
constructed in Subsection 3.1, just phrased differently — in that proof, the vector y = (y,,) is distributed
according to N(0, X).

Now we have
SDP =" AuuXuw = Y AuEnono,x) [lruho]

(since we defined h to have covariance matrix X). And we can rewrite this as

SDP = >~ AuulEn[2(h)uz(h)y [[h]12].

uv

And now if we pull out ||2]|%,, what we’re left with is the value of the [—1, 1]-optimization problem at z. The
difference with the argument in Subsection 3.1 is that instead of bounding the ezpectation of this quantity
by OPT (which is essentially what we did in Subsection 3.1), we can even bound its mazimum by OPT —
so we get that

SDP < sup > Auwz(h)uz(h)oEppo.x) |12 < OPT - Eponro.x) 12112 -

h uv

And similarly to Fact 3.4, we can show E HhHiO < C'logn for some constant C, giving K (K,) < C'logn.

Remark 3.7. This bound is true for all graphs without self-loops.

8§84 General graphs

Finally, we’ll consider the case of general graphs. Things are more technical here, so we’ll focus on the main
ideas but not go into the nitty-gritty details.

Theorem 4.1 (AMMN)
For any G, we have K(G) = O(log 9(G)).

Here ¥ denotes the Lovész theta number, which we will define later (when it comes up).
(We work with graphs without self-loops, so we can again consider K'(G) instead.)

In all the proofs we’ve seen so far, we took our optimal PSD matrix X, a random vector g, and a rounding
scheme (so we factored X as Xy, = (fu, fv), defined the real numbers y,, = ¢7f,, and used the rounding
scheme to turn these numbers into z, € [—1,1]).

Page 8 of 10

Talk by Nitya Mani (March 22, 2024) Grothendieck problems on graphs

Here, our random vector g is again going to be a standard Gaussian. And our rounding scheme will be a
mixture of sgn and the rounding function we used for complete graphs (which was essentially max,, |yy|).
The sgn function looks like —1 until we reach 0 and becomes 1 after. So instead, we’re going to take a linear
interpolation between —1 and 1 — we’ll let m be a parameter we’ll decide on later, and we define

o Yu/ M if [yu| <m
sgn(y,) otherwise

(where y,, = g7 fu, as before).

sgn new scheme

Remark 4.2. We could think of the rounding scheme we used for complete graphs as being of this form
with m = max |y,| (so that we’re always in the first case); but here we’re generally going to take m to
be smaller than this.

In order to analyze this, we’re going to use a slightly similar approach to the first proof in the bipartite
setting — where we ‘approximate’ our rounding scheme by a linear function (which corresponds directly to
the value of the SDP) and try to control the error. Here, we’ll define x,, = y,,/m, so that x, is often but
not always equal to z,. Then we have

OPT > Z AyEglzy2y] = Z ApEg[zyzy) — Z ApEg[zyzy — 2420] (5)

wweFE wek wek

(the first term is the linear term we pull out, and the second is the ‘error’). For the first term, we have

1
W<fu;fv>7

LTuly = —SYulv =
m

which means the first term is precisely # - SDP.

Now we’ll try to deal with the error term. In the first proof in the bipartite setting, the way we did so
was by saying that the error terms (over all pairs (u,v)) formed a PSD matrix whose diagonal entries were
not too large, and so we could scale this matrix to get another feasible solution to the SDP (allowing us to
upper-bound the subtraction in terms of SDP).

We want to do something similar here — we want to construct vectors h,, such that (hy, hy) = T4Ty — 2420
for all uv € E. And our goal is to do so in such a way that ||h,|| is ‘small’ for all uw — this is because then
we can scale them down by max, ||h,|| in order to get a feasible solution to the SDP. In other words, we
take the Gram matrix of the h,’s and scale it down so its diagonal entries are at most 1, and this gives a
feasible solution to the SDP; and the bound we get for the error term will be the amount we scaled down
by times SDP, which will be better if all the original diagonal entries are small (so that we don’t have to
scale down by too much).

So we’re trying to construct vectors h, such that the diagonal of their Gram matrix is as small as possible,
given some constraints on the off-diagonal entries (each corresponding to an edge). Intuitively, this is where
the Lovasz theta number comes in — if we’ve got lots of blank space (i.e., not many constraints) or more

Page 9 of 10

Grothendieck problems on graphs Talk by Nitya Mani (March 22, 2024)

control on the structure of where these constraints are, then we might expect it to be easier to construct
this Gram matrix.

Here’s one way to define the Lovész theta number (this is sort of the dual formulation of the usual one, but
it’s more helpful here).
Definition 4.3. We define ¥(G) as the minimum value of x such that there is a PSD matrix W with
diagonal entries 1 and with W, = —1/(k — 1) for all uv € E.

Intuitively, it makes sense that this quantity comes into play, because this is very similar to the setup we’ve
got here (where we're trying to minimize the diagonal given constraints on the entries corresponding to
edges). But we have to do some hijinks to get things to exactly line up. We first rewrite

1 1
Tuly — Zule = i(xu + zu)(xy + 20) — §($u — zu)(Ty + 2v).

And z, = % - g7 fy, while z, is just the version of x, capped at +1, so we can compute
1 1
Tu = 2u = Lgrf,om - 9" fu <m - |9Tfu|>)

and similarly
1 1

T 2
Ty+2u =9 fu- E+1‘9Tfu|>m M—E :

Now let W be a solution to the SDP defined by the Lovész 6 function (as in Definition 4.3), and factor it
as the Gram matrix of vectors w,. Then using W and this representation of x,x, — 2,2y, it’s possible to
get some vectors hy, with (hy, hy) = Tuy — 2u2, for all wo € E and with ||y < (5 +9(G))(zy — 24)*. And
we can get bounds on (z, — y,)? using the above expression for it and Gaussian tail bounds (as ¢7f, is a
Gaussian).

Then we can rearrange this to a bound on the error term in (5), which ends up giving OPT > C,, - SDP

where C), is some function depending on m; and optimizing over m gives a bound of log ¥(G) (where the
log comes from Gaussian tail bounds).

Page 10 of 10

	Introduction
	Bipartite graphs
	A first bound
	A second bound

	Complete graphs
	A proof
	A different perspective

	General graphs

