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§1 Introduction

We can consider two types of problems:
• Direct problems — given a set A, compute |A|.
• Inverse problems — given a number N , find a set A such that |A| = N .

The second statement may sound a bit silly — after all, there certainly exists a set of any size. But even
the first is underspecified (what does it mean to compute |A|, e.g., do we want an asymptotic answer or an
exact one?) — these are both meant to be general frameworks, and we’ll see a more precise definition later.

Example 1.1
• Given a polynomial, computing its Galois group is a direct problem; finding a polynomial with a

given Galois group is an inverse problem (which we do not know how to do).
• Given a polytope, computing the normal vectors and volumes of its facets is a direct problem;

determining whether there exists a polytope with given normal vectors and facet volumes is an
inverse problem.

• A convex polytope can be projected to produce a graph. Given a graph, determining whether
there exists a polytope with this graph as a projection is an inverse problem.

(As we can see in these examples, the concept of direct and inverse problems can apply to cases where we
have objects other than integers in place of N .)
The set A with |A| = N can be thought of as a combinatorial interpretation of N . Usually we’ll have a
family of numbers (rather than just one number N), and we would like a way to construct sets corresponding
to these numbers.

Example 1.2
The Catalan numbers can be defined according to the formula

Cn = 1
n+ 1

(
2n
n

)
=
(

2n
n

)
−
(

2n
n− 1

)

(where the first expression shows Cn > 0, and the second shows Cn ∈ Z). One could ask for a
combinatorial interpretation of the Catalan numbers, i.e., sets which are counted by these numbers.
There are many such combinatorial interpretations — for example, Cn is the number of triangulations
of a (convex) (n+ 2)-gon.
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Example 1.3
The binomial coefficients are unimodal — we have

(n
0
)
≤
(n

1
)
≤ · · · ≤

( n
bn/2c

)
≥ · · · ≥

(n
n

)
. This is easy

to prove by direct calculation, but does there exist a combinatorial interpretation of the difference(
n

k

)
−
(

n

k − 1

)

for k ≤ n
2 ? The answer is yes — this counts the number of grid walks from (0, 0) to (n − k, k) which

remain (weakly) below the line y = x, by the reflection principle.

§1.1 Sylvester’s Theorem

We’ll now see a harder question in this framework.

Definition 1.4. The number of partitions of k which fit into an a× b rectangle is denoted by pk(a, b).

k
a

b

Theorem 1.5 (Sylvester 1878)
For fixed a, b ≥ 1, the numbers pk(a, b) for k = 0, . . . , ab are unimodal.

(This result was a conjecture for about 25 years, and Sylvester was very happy when he proved it; he used
what we’d now call the representation theory of SL2.)

Question 1.6. Does pk(a, b)− pk−1(a, b) (for 0 ≤ k ≤ ab
2 ) have a combinatorial interpretation?

The original proof doesn’t give a combinatorial interpretation. It’s natural to try to go from partitions of
size k − 1 to partitions of size k by adding a square, but we don’t know of a way to do this.
However, there’s a description of this quantity as a Kronecker coefficient.

Definition 1.7. The Kronecker coefficient g(λ, µ, ν) is defined as 〈χλχµ, χν〉.

Here χλ denotes the character of the irreducible representation of Sn corresponding to λ. We can imagine
taking the characters χλ and χµ and multiplying them to produce a new character, and then writing this
product as a sum of irreducible characters; then g(λ, µ, ν) is the coefficient of χν in this expansion.

Theorem 1.8 (Pak–Panora 2013)
The quantity pk(a, b)− pk−1(a, b) is equal to the Kronecker coefficient g(ab, ab, (n− k, k)).

Here ab denotes the a×b rectangle, and (n−k, k) denotes a partition with parts n−k and k (where n = ab).
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Is this a combinatorial interpretation of pk(a, b)− pk−1(a, b)? The answer is no, for reasons we’ll see later.
This was used as a lemma to prove the following result.

Theorem 1.9
For all a, b ≥ 8, we have g(ab, ab, (n− k, k)) ≥ 1.

§2 The Complexity Class #P

We’ll now see a way to formalize what it means to be a combinatorial interpretation — we’ll say a function
is a combinatorial interpretation if it’s a member of the complexity class #P.

Definition 2.1. The complexity class NP consists of decision problems for which a good object can be
verified in polynomial time.

Example 2.2
Some examples of problems in NP:

• Deciding whether a graph G has a Hamiltonian cycle — this is because given a subset of edges,
checking whether it forms a Hamiltonian cycle takes polynomial time.

• Deciding whether a graph G has a proper 3-coloring — this is because given a coloring, checking
whether it is proper takes polynomial time.

Definition 2.3. The complexity class #P consists of problems where we count the number of good
objects, for which deciding whether a given object is good takes polynomial time.

Example 2.4
The problems in #P corresponding to the above problems in NP:

• Counting the number of Hamiltonian cycles in a graph G.
• Counting the number of proper 3-colorings of a graph G.

In this definition, the first two examples we saw — the Catalan numbers as the number of triangulations of
a (n + 2)-gon, and

(n
k

)
−
( n
k−1
)

as the number of grid walks below the diagonal — are both combinatorial
interpretations.
There’s actually an easy combinatorial interpretation of pk(a, b) − pk−1(a, b) under this definition — there
exists a polynomial-time algorithm to compute pk(a, b). So we can take the combinatorial interpretation to
be the set of numbers {1, 2, . . . , pk(a, b)− pk−1(a, b)}— given any number, we can verify whether it’s in this
interval in polynomial time by simply computing pk(a, b)− pk−1(a, b).
However, the following question is open.

Question 2.5 (Open Problem). Does g(λ, µ, ν) have a combinatorial interpretation?

Unlike the above case, this Kronecker coefficient can’t be computed in polynomial time. Note that it’s
defined as

g(λ, µ, ν) = 1
n!

∑
σ∈Sn

χλ(σ)χµ(σ)χν(σ),
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and just looking at this sum, it’s not obvious whether it’s even an integer or nonnegative (both are true,
because of representation theory); if we can’t even see that, how can we prove it’s counting something? (The
second point is more interesting than the first — if we could prove even that n! g(λ, µ, ν) had a combinatorial
interpretation, this would be a big deal.)

Conjecture 2.6 — {g(λ, µ, ν)} 6∈ #P.

(The goal is to prove this under assumptions similar to P 6= NP.)

§3 Some Examples

§3.1 Matchings

Let G = (V,E) be a (simple) graph, and let mk be the number of k-matchings — k-tuples of edges in E
where no two share a vertex.

Theorem 3.1 (Heilmann–Lieb 1972)
For all k, mk(G)2 −mk+1(G)mk−1(G) ≥ 0.

In other words, the numbers mk(G) have log-concavity.

Question 3.2. Is the difference mk(G)2 −mk+1(G)mk−1(G) (considered as a function φ from (G, k) to
a nonnegative integer) in #P?

We can’t perform the same trick as with pk where we simply compute all the quantities in polynomial time
— computing mk(G) is #P-complete.
The original proof was by linear algebra; this isn’t easy to convert into a combinatorial interpretation
(because dealing with eigenvalues is generally not combinatorial). But the answer is yes.

Theorem 3.3 (Krattenhaler 1991)
We have mk(G)2 −mk+1(G)mk−1(G) ∈ #P.

What this means is that Krattenhaler gave a proof of the theorem which can be converted into a combina-
torial interpretation.

Proof. Take a (k − 1)-matching M and a (k + 1)-matching M ′, and overlay them in separate colors (here
the (k − 1)-matching is shown in purple and the (k + 1)-matching in blue).
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We want to construct an injection from such configurations to overlays of a purple and blue k-matching.
This configuration will consist of some cycles with an equal number of blue and purple edges (possibly of
length 2, corresponding to an edge in both matchings); some paths with an even number of edges, which
have an equal number of blue and purple edges; and some paths with an odd number of edges, which have
one excess blue or purple edge; suppose we have ` excess-blue and ` − 2 excess-purple paths. We’re not
going to touch the cycles or even paths; meanwhile, we want to flip the colors of some of the odd paths so
that we end up with `− 1 excess-blue and `− 1 excess-purple paths instead.
The main point is that

(2`−2
`

)
≤
(2`−2
`−1

)
— if we imagine fixing all the edges involved in the picture and the

colors of the cycles and even paths, then the configurations we start with correspond to size-` subsets of
the 2`− 2 odd paths (representing the set that are colored to be excess-blue), and the configurations we’re
trying to end with correspond to size-(`− 1) subsets of these paths.
This proves the inequality, and

(2`−2
`−1

)
−
(2`−2

`

)
does have a combinatorial interpretation (for example, the

one from the reflection principle). This combinatorial interpretation tells us which paths to flip in order to
produce ` − 1 excess-blue and ` − 1 excess-purple paths (the ones which correspond to elements we flip in
our injection from size-` subsets to size-(`− 1) subsets based on the reflection principle).
So this gives a combinatorial interpretation of mk(G)2−mk−1(G)mk+1(G), as desired. (Explicitly, if we use
the reflection principle as our injection, then this quantity counts the number of blue-purple configurations
as above which have `− 1 excess-blue and `− 1 excess-purple paths for some `, and for which the subset of
odd paths which are excess-blue corresponds to a walk remaining below the diagonal.)

Remark 3.4. There do exist things we might intuitively think of as ‘combinatorial interpretations’
that aren’t captured by this definition of #P — for example, 22n is the number of Boolean functions
on n Boolean variables. These more complicated combinatorial objects would correspond to another
complexity class in place of #P (just as there are other complexity classes than P or NP in decision
problems), such as #Exp.
Something like ‘the number of Boolean functions on n Boolean variables’ is simple to state in English, so
it seems like something we’d want to consider a combinatorial interpretation; on the other hand, being
able to describe something in words isn’t necessarily the same as being able to compute it, and can lead
to issues like the ‘smallest uninteresting number.’ And there exist such things in decision problems as
well — for example, by having the decision problem be about all the subgraphs of a graph.
The advantage of the definition in terms of #P is that it makes the problem precise in terms of counting
complexity, so that we can prove things about it.
As a story, about 300 years ago Gauss proved two theorems in one paper — that a 17-gon can be
constructed with a ruler and compass, and that a 7-gon cannot. The 17-gon became extremely popular,
while the 7-gon didn’t — because people generally wanted a construction (or combinatorial interpreta-
tion) more than to know it’s not possible. But later people changed their mind — proving that a 7-gon
can’t be constructed is useful.
In order to prove these results, Gauss formalized what we mean by a geometric construction. If you
then use an object called a trisector (which it is possible to build as a physical instrument), then it is
possible to construct a 7-gon (and you can solve which polygons can or can’t be constructed with a
trisector).
The point of this story is that you can always enlarge the set of tools you have, which leads to more
theorems about possibility and impossibility — but you have to start somewhere (with some way of
formalizing the idea that lets you potentially prove impossibility).
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§3.2 Sperner’s Lemma

Consider a triangle which has been split into smaller triangles, and imagine that we color the vertices with
three colors (1, 2, and 3, here shown in blue, purple, and green) such that the three vertices of the original
triangle have different colors.

Lemma 3.5 (Sperner’s Lemma)
Suppose a triangle is split into smaller triangles, and each vertex is colored with one of the colors 1,
2, and 3, such that the three vertices of the triangle are colored 1, 2, and 3 respectively, and on each
outer edge, every vertex has the same color as one of the endpoints. Then there exists a triangle with
all three colors.

For a coloring χ, let t(χ) denote the number of triangles with vertices of all three colors.

Question 3.6. Is t(χ)− 1 in #P?

Of course if you’re given the coloring explicitly, then you can simply compute t(χ) in polynomial time. But
instead suppose that the coloring is given by some kind of function — imagine that we have a giant graph
where the vertices are binary sequences of length n, and we are given some circuit which computes the color
of every vertex. (This means we can still check a given triangle quickly, but the number of triangles is no
longer polynomial in the input size, so we can’t go through and count all of them in polynomial time.)
The answer to this question is yes. To see why, we can write t(χ) = t+(χ) + t−(χ), where t+(χ) denoes the
number of triangles with 1, 2, 3 in counterclockwise order, and t−(χ) the number of triangles with 1, 2, 3 in
clockwise order. Then t+(χ)− t−(χ) = 1 — this follows by induction (removing a vertex). So

t(χ)− 1 = 2t−(χ),

which does have a combinatorial interpretation (since for every triangle, we can check whether it has colors
1, 2, 3 in clockwise order).

§3.3 Parity

Fact 3.7 — In any graph, the number of odd-degree vertices is even.

Question 3.8. Is 1
2#{odd-degree vertices} in #P?

If the graph is given explicitly to you, then again you can simply count the number of odd-degree vertices.
But suppose it’s instead a massive graph given by some function (where the vertices correspond to binary

Page 6 of 9



Talk by Igor Pak (March 17, 2023) Combinatorial Interpretations

sequences and the edges are given by an algorithm or Turing machine which computes the neighbors of a
given vertex in polynomial time — assume that the graph has polynomial degree), so that you can’t.
To see a situation in which this problem naturally arises, consider the following problem.

Theorem 3.9
In a 3-regular graph, for any given edge e, the number of Hamiltonian cycles containing e is even.

Question 3.10. Is 1
2#{Hamiltonian cycles containing e} in #P?

Here we’re given the graph explicitly.
This is actually a special case of the above problem — you can construct a graph whose vertices are all the
Hamiltonian cycles.

Conjecture 3.11 — The answer is no — i.e,. 1
2#{Hamiltonian cycles containing e} 6∈ #P.

It’s known that the answer to the previous question — asking for 1
2 of the number of odd-degree vertices —

is no, conditional on an assumption similar to P 6= NP. On the other hand, the answer to this one — with
Hamiltonian cycles — is not known. (We know it’s a subproblem of the previous question, but not whether
it’s a complete subproblem.) There’s another conjecture that states that this is PPA-complete; if it is, then
it would also be possible to prove that this is not in #P.

§3.4 Correlation Inequalities

Theorem 3.12 (Kleitman 1966)
If A is the set of planar subgraphs of Kn and B is the set of triangle-free subgraphs of Kn, then

|A| · |B| ≤ 2(n
2) |A ∩ B| .

In other words, this states that if we choose a subgraph H of Kn uniformly at random, then

P(H is planar | H is triangle-free) ≥ P(H is planar).

This applies more generally to any downwards-closed properties (if you remove an edge from a planar or
triangle-free graph, it remains planar or triangle-free).

Question 3.13. Is the difference |A|+ |B| − 2(n
2) |A ∩ B| in #P?

The answer is yes — this is not obvious, but Kleitman’s original proof shows that it is.
On the other hand, it’s been proved that the FKG and AD inequalities (which generalize Kleitman–Harris)
are not in #P, under the assumption that PH 6= Σ2.

§3.5 Posets

Definition 3.14. For a finite poset P = (X,≺), a linear extension of P is a bijective function f :X → [n]
(where n = |X|) such that whenever x ≺ y we have f(x) < f(y). The number of linear extensions of P
is denoted by e(P ).
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Fact 3.15 — e(P )− 1 is in #P.

Proof. Given a poset P , we can compute the lexicographically minimal linear extension in polynomial time.
So we can say e(P )− 1 counts the number of linear extensions which are not the lexicographically minimal
one (since given an extension, we can check that it’s not lexicographically minimal).

Given a poset, for each element x, we define b(x) as #{y ∈ X | y � x}.

Theorem 3.16
For any poset P , we have

e(P ) ≥ n!∏
x∈X b(x) .

(This is in some sense a statement about correlation — any x must be assigned the smallest number among
all y with y � x, which occurs with probability 1

b(x) ; so this sort of means that there’s a positive correlation
between this being true for x and some other element y.)

Fact 3.17 — e(p) ·∏x∈X b(x)− n! is in #P.

This is because the original proof actually gives an injection (this isn’t obvious).
As another problem about posets, fix x ∈ X, and for k ∈ [n] define

N(k) = #{linear extensions of P with f(x) ≥ k}.

Theorem 3.18 (Stanley’s inequality)
For all k, N(k)2 ≥ N(k − 1)N(k + 1).

Question 3.19. Is N(k)2 −N(k − 1)N(k + 1) in #P?

This is an open problem; Prof. Pak conjectures that the answer is no.
Stanley’s proof uses standard inequalities applied to polytopes, but these standard inequalities aren’t com-
binatorial (so the original proof doesn’t give a combinatorial interpretation).

§3.6 Spanning Forests

For a graph G = (V,E) and positive integer k, let fk(G) denote the number of spanning forests in G with
k edges.

Theorem 3.20 (AHK 2018)
For all k, fk(G)2 ≥ fk−1(G)fk+1(G).

The proof of this is difficult (it was a conjecture for 40 or 50 years).

Conjecture 3.21 — The difference fk(G)2 − fk−1(G)fk+1(G) is not in #P.
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§4 An Impossibility Result

Now we’ll see something that we can prove.

Theorem 4.1 (IPP 2023)
We have (χλ(µ))2 6∈ #P (under the assumption PH 6= Σ2).

The Murnaghan–Nakayama rule says that χλ(µ) is the difference of two counts (both of tableaux with
certain properties). It may be positive or negative, so we might want to have a combinatorial interpretation
of its square (which is nonnegative); however, they proved one doesn’t exist.
The idea of their proof is to first write χλ(µ) as a difference f − g, where f is the number of 3–sat solutions
to some formula ϕ, and g is the number of 3–sat solutions to another formula ψ.
Now suppose that χλ(µ)2 = (f − g)2 is in #P. Then f 6= g has a weakness — there is an object which we
can check in polynomial time which would tell us that f 6= g. This is weird because it would mean that
looking at ϕ and ψ, there’s a polynomial-time weakness that would tell us they have different numbers of
3–sat solutions, and this shouldn’t be possible. (This is how the PH 6= Σ2 assumption comes up.)

Remark 4.2. Regarding a different open problem (about posets), they found a proof which makes
a strong inductive assumption on properties of some explicit matrices you can construct from the
poset; then the proof is conceptually easy. (This is how many results are proved — the Kleitman–
Harris inequality, and AD and FKG, are proven by making the result stronger and then proving it by
induction.)
They did this in order to prove that the quantity considered is in #P. This almost worked — nearly
everything in the proof is combinatorial, but for one technical point where you have to take a limit.
(This is because there’s an issue where an eigenvalue can be 0, and you need a strict inequality for
the induction to work; so you prove the statement for a slightly deformed statement and then take the
limit.) This seems like a trivial step, but it prevents the proof from showing that it’s in #P.

Remark 4.3. There are two related numbers

a(λ) =
∑
µ`n

χλ(µ) and b(λ) =
∑
µ`n

χµ(λ).

It is known that b(λ) ∈ #P, because it counts something — the number of σ ∈ Sn such that the cycle
type of σ2 is λ. On the other hand, it’s an open problem to determine whether a(λ) ∈ #P. (Stanley
formulated the question, in 2000, as whether these numbers have a combinatorial interpretation.)
(This is a natural question — one expression is a sum over rows of the character table, and the other is a
sum over columns. Both quantities are nonnegative integers, as they’re multiplicities of the irreducible
characters in a conjugate representation.)

Prof. Pak wrote a 60-page survey of this topic called What is a combinatorial interpretation?
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