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§1 Introduction

§1.1 Ramsey’s theorem

We’ll start the story at the beginning, in a bit of an unusual place. The story goes back to an observation in
the 1930s by Esther Klein about points in the plane — if we take any five points (with no three collinear),
then there always exist four in convex position.

She then asked, does this hold for numbers greater than 4? For example, is there some number of points
such that we can always find 25 in convex position?

Question 1.1 (Klein). For all k ∈ N, does there exist some n(k) ∈ N such that for any set of points
X ⊆ R2 with no three points on a line and of size |X| ≥ n(k), there exist k points in X in convex
position?

She asked this question to her two friends Paul Erdős and George Szekeres, who realized that this problem
in a sense has nothing to do with geometry at all, and actually follows from a much more general principle.

Theorem 1.2 (Erdős–Szekeres 1935)
The answer is yes (i.e., for every k, there exists n(k) such that for any set of at least n(k) points with
no three on a line, there exist k in convex position).

That more general principle is something discovered just a few years earlier, by Frank Ramsey.
Before we state the theorem formally, imagine that we have a world of abstract points. And what we’re
interested in is r-sets of these points (i.e., subsets of size r). Imagine that I hand you this world of points,
and you color each of these r-sets with two colors — red and blue — in any way you want.
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· · ·

...

Then I (or rather, Ramsey) claim that for any k, I can choose the size of this world big enough such that
no matter how you color, I can find a little sub-world of size k such that in that sub-world, all the subsets
of size r are the same color.

· · ·

...

So I have a very structured small pouch inside the much bigger, completely arbitrarily colored world.
Here’s a more formal statement of the theorem.

Theorem 1.3 (Ramsey 1930)
For all k, r ≥ 1, there exists R(r)(k) ∈ N such that for every n ≥ R(r)(k) and every coloring χ:

([n]
r

)
→

{red,blue} (i.e., a coloring of the r-subsets of [n] with red and blue), there exists some X ⊆ [n] of size
k such that all r-subsets of X are the same color.

We’ll mainly be interested in the case r = 2, where we have an ordinary graph. But we’ll use this theorem
with r = 4 to answer the question of Klein.

Proof of Theorem 1.2. We’re given k, and we want to choose n(k) such that given k points, we can find k in
convex position. Assume k ≥ 5, and choose n(k) = R(4)(k) (the number coming from Ramsey’s theorem).
Now imagine we have at least n(k) points in the plane. We color the 4-tuples of points in this set depending
on whether the four points are in convex position — we color a 4-tuple red if they’re in convex position and
blue otherwise.

And now we claim we’re just done — by applying Ramsey’s theorem, we can find k points such that all the
sets among them are of the same color. But k ≥ 5, so they can’t all be blue — because there’s always a
convex quadruple among 5 points. So that means they all have to be red. But if every four points are in
convex position, then the whole set has to be in convex position, giving us k points in convex position.
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This is a really nice application of Ramsey theorem. But in this talk, we’ll focus on quantitative questions
about the Ramsey numbers.

Question 1.4. How big are the Ramsey numbers — i.e., how large does R(r)(k) need to be?

We’ll only work with graphs (i.e., the case r = 2). We’ll also define a slightly more general version, with
two parameters (instead of a single parameter k).

Definition 1.5 (Ramsey numbers). We define R(`, k) as the minimum n such that for every red/blue
colorings of the edges of Kn, there is either a blue K` or a red Kk.

This is a slightly asymmetric definition — we’re only looking for something of size ` in blue and k in red.
We’ll always assume that ` ≤ k. We let R(k) = R(k, k); we refer to these as the diagonal Ramsey numbers.

§1.2 A first upper bound

One of the first reasonable quantitative bounds comes from the same Erdős–Szekeres paper.

Theorem 1.6 (Erdős–Szekeres 1935)
We have R(k) ≤ 4k.

In fact, they do a bit better than this, but we’ll get to that later.

Proof. Suppose we have a graph with n = 4k vertices; we want to find a monochromatic Kk. Imagine the
following picture: we’ll have a ‘world’ X (which at the start is the entire graph), and as the algorithm chugs
along, we’ll hold in one fist a collection of ‘red’ vertices A, and in the other fist a collection of ‘blue’ vertices
B. We’ll insist that all edges within A and between A and X are red, and all edges within B and between
B and X are blue. Initially A and B are empty, and X contains all vertices.

A B

X

In a step of the algorithm, we’ll grab a vertex x ∈ X and pull it out. It’ll be joined to a bunch of vertices
in X with red edges, and a bunch of others with blue edges.

A B

Xx
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And there’s two scenarios — one of these two colors constitutes at least 50% of our world X. If at least
50% of the vertices in X are red neighbors of x, then we shrink X to just consist of those red neighbors,
and we put x in A. Similarly, if at least 50% are blue neighbors, then we shrink X to just consist of those
blue neighbors and put x in B.

A B

x

X

At each step, our world shrinks by a factor of 1
2 (at worst). And if we take k red steps then we’re done

(we’ve found a red Kk), so we can take at most k− 1 red steps; and in total, the red steps shrink our world
by at most (1

2)k. Similarly, if we take k blue steps then we’re done; so the blue steps shrink our world by
at most (1

2)k. This means if we’re not done, then we’ll have at least (1
2)k · (1

2)k · n vertices remaining in the
world. And if n ≥ 4k then this is at least 1, so we can keep going with the algorithm — and this means
eventually we’re going to succeed (i.e., to fill up one of the two fists with k vertices).

This is a very simple algorithm, but we’ll see soon that it’s rather hard to improve.

§1.3 A lower bound

For now, we’ve got an upper bound of 4k; is it a good bound? To get some feel for this, let’s try to prove a
lower bound.

Here’s the first lower bound you might get:

Claim 1.7 — We have R(k) > (k − 1)2.

Proof. We need to find a graph on (k−1)2 vertices with no monochromatic clique on k vertices. To get such
a graph, we take k − 1 blobs of size k − 1; inside each of these blobs we color everything red; and between
these blobs we color everything blue.

Then there’s no monochromatic Kk — you can’t stick k vertices inside a red blob to get a red clique, and
you don’t have enough blobs to get a blue clique.

For some time, it wasn’t understood whether the Ramsey numbers even grow exponentially or polynomially.
So it came as somewhat of a shock when Erdős proved an exponential lower bound.
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Theorem 1.8 (Erdős 1947)
We have R(k) ≥ 2k/2.

This means the exponential upper bound is closer to the truth. The proof of this was revolutionary, and
one of the first uses of the probabilistic method in combinatorics. The idea is very different from the above
construction — instead of giving an explicit coloring, we just color the edges of our graph randomly, and we
show that among the whole universe of graph colorings that we could have made, there exists one with the
property we want.

Proof. Let n = 2k/2, and color each edge randomly and independently (e.g., by flipping a fair coin). We
want to bound the probability that there is a monochromatic k-clique. And we can do this by a big union
bound — we go to each clique of size k in our universe, and ask, is it monochromatic? There’s

(n
k

)
of these

k-cliques. And once we fix k points, what’s the probability that they’re monochromatic? We have
(k

2
)

edges
and either all need to be red or all need to be blue, which means

P[a given k-clique is monochromatic] = 2−(k
2)+1.

Then the union bound gives

P[exists a monochromatic k-clique] ≤
(
n

k

)
2−(k

2)+1 ≤
(
en

k
· 2− k−1

2 + 1
k

)k
.

For large k, since n = 2k/2 the expression inside the parentheses is less than 1, so this whole probability is
less than 1; this means there exists a graph with no monochromatic k-clique.

If we’re a bit more careful with the bounding, there’s actually an extra k in the denominator of the above
expression, and we can use this to improve the bound to

R(k) ≥ 2k/2 · k√
2e

(1 + o(1)).

This bound is from 1947, but all that’s been done in the years since is that we’ve moved the
√

2 from the
denominator to the numerator — the best bound we know is

R(k) ≥ 2k/2 ·
√

2k
e

(1 + o(1)).

This is quite far from 4k, but even improving this bound by a factor of 1 + ε seems to be a serious problem.

§1.4 Off-diagonal Ramsey numbers

Before we continue discussing the diagonal Ramsey numbers, we’ll take a detour and talk about off-diagonal
Ramsey numbers — first because they’re one of our successes in this area, and second because there’s a
huge number of smart ideas that go into proving these bounds.
For ` = 3, we understand R(3, k) quite well. In fact, we know it up to a factor of 4 — we have(1

4 + o(1)
)

k2

log k ≤ R(3, k) ≤ (1 + o(1)) k2

log k .

The history of this result touches on a lot of major contributions to probabilistic combinatorics. The upper
bound (without the right constant) comes from a very important paper of Ajtai–Komlos–Szemerédi (1980).
The right constant is due to Shearer (1980). It comes from the analysis of a random greedy process —
after some initial reductions, we find our red clique by randomly selecting a vertex, removing all its blue
neighbors and throwing it out of our graph, then randomly selecting the next vertex and doing the same
there, and so on. And this actually works incredibly well.
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Remark 1.9. As a plug for Julian’s talk tomorrow, this circle of ideas was the major influence in
his recent improvement — together with Campos, Jenssen, and Michelen — on sphere-packing lower
bounds.

The lower bounds began with important ideas of Erdős from the 1960s and 1980s; then the lower bound was
solved up to constants by Kim in the 1990s. The sharp constant comes from analyzing a random triangle-free
process. The idea is that we can’t just take a completely random graph — it’d have too many triangles.
Instead, we start with an empty graph and then throw in edges randomly, one at a time, conditioning on
not having any triangles. This condition starts steering the process quite hard, but you can actually control
it; this was done by Bohman–Keevash and Fiz Pontiveros–Griffiths–Morris.

Meanwhile R(4, k) has recently been determined up to log factors, by a breakthrough of Mattheus and
Verstraete that came up with a totally new idea for a lower bound construction.

§1.5 Diagonal Ramsey numbers

Now we’ll return to the diagonal case. So far, we’ve seen that R(k) ≤ 4k by the Erdős–Szekeres argument
from 1935. In fact, they did a bit better, using a different argument that gives a bound of

R(k) ≤ 4k√
k
. (Erdős–Szekeres 1935)

(The idea is to use a slightly better weight function than 1
2 when deciding whether to put a vertex in the

red or blue set.)

This was pretty much the state of the art until a couple of independent works in the 1980s. First, Rödl
showed that

R(k) ≤ a4k√
k(log k)c

(Rödl 1988)

(for some constants a and c), and then Thomason showed that

R(k) ≤ c4k

k
. (Thomason 1988)

These might seem like meager improvements relative to the exponential factor, but they already require new
and important ideas. This approach was taken farther by Conlon, who showed we can replace the k in the
denominator with any polynomial factor — specifically, he showed that

R(k) ≤ 4k−(log k)2−o(1)
. (Conlon 2008)

This was further improved by Ashwin Sah, who removed an extra log log factor (the o(1) term in the above
bound) and proved that

R(k) ≤ 4k−c(log k)2
. (Sah 2023)

If we look at the methods used, this last result is in some sense the limit of the approach. (We’ll talk about
these methods soon.) So we have to do something different to get beyond this barrier.

That brings us to the main topic of today, an exponential improvement.

Theorem 1.10 (Campos–Griffiths–Morris–Sahasrabudhe)
There exists c > 0 such that R(k) ≤ (4− c)k.
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Remark 1.11. This means we’ve finally moved the constant of 4. However, we’re still a long way from
the
√

2 in the lower bound — c is pretty small, and the bound is basically R(k) ≥ 3.99k.

We haven’t talked too much about the off-diagonal Ramsey numbers, but in some sense, this proof actually
works better on the off-diagonal case — and the off-diagonal case was actually important for understanding
the diagonal case.

Theorem 1.12 (Campos–Griffiths–Morris–Sahasrabudhe)
For all ` ≤ k, we have R(`, k) ≤ e−c`(k+`

`

)
.

Remark 1.13. The expression
(k+`
`

)
is one we haven’t seen yet, but it’s actually the bound that Erdős–

Szekeres gives for all (k, `). This bound for the off-diagonal case is new when `� log k.

§2 Previous methods

§2.1 The difficulty

First, what makes this problem hard? One way of starting to ask this question is to try to figure out what’s
lossy about the original Erdős–Szekeres argument, and why we can’t improve it easily.

Imagine that we have one fist of red vertices and another of blue, and our algorithm is chugging along
looking for a monochromatic Kk. In the algorithm, if we come up with a red Kk at the end of the day, in
our accounting we’re still paying for finding almost a blue Kk (corresponding to the fact that we pay one
(1

2)k for the red vertices, and another for the blue vertices).

So it seems that what we’d like to do is just look at the graph and say that it’s clearly a graph where we
want to take red steps — so let’s just focus on red steps, and not waste vertices on blue steps.

But here’s what’s hard about this — imagine that I tell you the first ck steps to take. Once you’ve taken
those steps, you’re left with an exponentially small piece of the world. How can you possibly look at the
original world and say what this exponential piece will look like?

A

X

For example, imagine that an enemy gives you a graph where you can take many red steps at the start, but
then you’re forced to take lots of blue steps. So even if you can say all kinds of things about the original
graph, you lose those things really quickly when you zoom in.
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§2.2 Taking two red steps

Still, what if we try taking a bunch of red steps at once? Taking two red steps at once is actually already a
very good idea, and the basis of Thomason’s argument.
Thomason’s idea is to take two red steps at once — this means we grab two vertices from X, and we pass
to their common red neighborhood.

x y

Trying to analyze this automatically leads us to consider triangles.
First, we want to control degrees. If in X some vertex x has large red degree, then we get an extra win (our
world doesn’t shrink as much when we move it to A). So we can assume that all red and blue degrees are
roughly balanced.
And then we can use Goodman’s formula, which states that if all degrees are roughly what they would be
in a random graph, then the number of monochromatic triangles is also roughly what you’d expect in a
random graph. Then by pigeonhole you can find some pair of vertices involved in lots of monochromatic
triangles, which lets you take two steps in a row.
The improvement this gives at each step is very small, but we’re taking k steps in total, so they accumulate;
and this is what accounts for winning the

√
k factor.

§2.3 Taking multiple red steps

Then Conlon takes this further — what if instead of taking two steps at once, we take r steps at once?
This corresponds to controlling the number of monochromatic Kr+1’s. (We’ve been talking about taking
multiple red steps at a time, but it also could be that we’re forced to take a bunch of blue steps too.)
Here there’s no analog of Goodman’s formula (the analogous statement is false). But there’s another
set of tools we can use. Suppose that we can control the degrees in the graph, and also the number of
monochromatic C4’s (cycles of length 4). Then we can use ideas going back to Thomason and Chung–
Graham–Wilson — if the degrees are all roughly 50% and the number of monochromatic C4’s is roughly
what you’d expect in a random graph, then the number of monochromatic Kr+1’s are also roughly what
you’d expect. So you can get a count of these monochromatic Kr+1’s and use pigeonhole to find r good
vertices to take a step with.
Then the work of Sah improves this quasirandomness step.
But the problem is this really seems to break down when r ≈ log k. (This accounts for one of the log k
factors in the bound.) And to get an exponential improvement, we really want to take a linear number of
red steps in a row (passing to an exponentially small piece of the graph.)

§2.4 A new perspective

For this, we’ll change the perspective slightly. We’re interested in taking a bunch of red steps at once; what
does that look like as a structure? If we want to take t red steps, we essentially want a red clique of size
t, and another set such that all edges between them are red (we don’t know anything about what’s inside
that set). And we want t ≈ ck.
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Suppose we’ve found this structure, and suppose that we can guarantee that the world inside the other set
has size at least R(k, k − t). Then we can actually finish — because either we have a blue Kk in there (in
which case we’re just done), or we have a red Kk−t in there, which we can complete into a red Kk by just
adding back our t vertices.

So all this is to say that this is the kind of structure we want to look for — it’s the same in spirit as taking
red steps. So we’ll try to focus on an algorithm that builds objects of this form.

§3 The book algorithm

For the remainder of the talk, we won’t prove anything, but we’ll set up the algorithm for finding this object.
We’ll then see what the main difficulty for making it work is, and state a conjecture that in some sense
sort of quantifies what’s happening with this obstacle. The authors weren’t able to prove this conjecture;
instead, they proved a weaker version and pushed slack off into other parts of the argument.

As before, we’ll maintain a certain picture as time goes on. Previously, we had three sets A, B, and X.
Now we’ll have sets A, B, X, and Y — where A is a handful of red vertices joined to both X and Y in red,
and B is a handful of blue vertices joined to just X in blue.

A

B

X Y

And as the algorithm zooms into a small portion of the graph, we’d additionally like to control the density
of red edges between X and Y — so we’ll track the evolution of this red density as well.
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A

B

X Y

Our ‘book’ — the structure we’re looking for — is going to consist of A on one side and the rest of the
world (X and Y ) on the other. We’ll either find this or a blue clique in B. (So we’re looking for a red book
vs. a blue clique, rather than a clique vs. a clique.)

As before, we’ll think of X as our reservoir (where we pull vertices out of). Taking a blue step will essentially
be the same as before — we choose a vertex x ∈ X with a bunch of blue neighbors in X, and we shrink X
to just consist of those blue neighbors (and keep Y as it is). There’s a bit of a wrinkle because we need to
track the red density between X and Y , but this turns out to not be too much of a problem (and we won’t
focus on it here).

A

B

X Yx  

A

B

X Y

x

The meat of the argument is in the red steps. Suppose we have a vertex x ∈ X with big red degree to
X. Now for a red step, it’s not enough to just consider what’s happening in X — because we also need to
maintain that A is complete in red to Y . So we also have to consider the red neighborhood of x in Y —
and we’d like to shrink both X and Y to be those red neighborhoods, and put x into A.
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A

B

X Y
x

There’s a wrinkle — what if that red neighborhood is too small, so that Y shrinks too much? But we won’t
worry about that for now.
The real difficulty is in controlling the red density between X and Y when we do this. This is really subtle
— for example, the regularity lemma is a kind of thing you can use to control densities, but it’s not helpful
here (the graph would have to be far too big for it to be useful).
And there’s counterexamples to the sorts of things we’d hope to be true. For example, imagine your enemy
hands you a setup where every time we have vertices x, y ∈ X joined by a red edge, the red neighborhoods
of x and y in Y are both 1

2 of Y , but these neighborhoods — rather than being totally random (in which
case they’d have an intersection of 1

4) — slightly repulse each other, so that the intersection has size slightly
smaller than 1

4 . Specifically, suppose that this intersection has size 1
4(1− c

k ) for some constant c.

A

B

x

y

This would be a total disaster for us — then when we take a red step, all the neighborhoods of x are poking
outside of what we want a bit too much. And so we lose a factor of 1 − c/k, and this accumulates over k
steps and really spins out of control.
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You might hope that this sort of thing never exists — maybe this just can’t happen. Unfortunately, it can.
But you’ll find that the first examples you think about where it does happen have some sort of ‘macroscopic
clustering’ — there will be lots of edges xy in X whose neighborhoods push apart, but you’ll also see clumps
of the graph that have much more edges than you’d expect from a random graph.

A

B

And then you can zoom in on these clumps, and we get a huge bump in density that’s good for other reasons.

So you might think, maybe this sort of bad situation only happens when we have this macroscopic clustering.
But that’s also false — there are also graphs where you get ‘mezzoscopic clustering’ (more than microscopic,
but not really macroscopic).

But then you might hope that maybe when this situation happens, we always get this mezzoscopic clustering
that we can still take advantage of (to get a density increment). The authors spent a long time trying to
prove this, but couldn’t (we’ll state a toy version of this statement soon).

What they did prove is a weak version of this implication. And it turns out that this weak version is not good
enough for the diagonal case, but it works much better on the off-diagonal case — so you can get exponential
improvements for something like R(k/10, k). And then for the diagonal case, you run an algorithm similar
to this, but at a loss. If we pushed that algorithm all the way to the end, it’d be a really complicated way
to prove R(k) ≤ 4.1k. But instead of pushing all the way to the end, we push down to R(k/10, k) — the
algorithm lets you force R(k) to depend on R(k/10, k), and the exponential win in R(k/10, k) makes up for
the loss in the algorithm.

§4 A conjecture in high dimensional geometry

That’s all we’ll say about the proof, but we’ll finish with a sort of toy example that should shed light on the
conjecture the authors tried hard to prove. (This is where geometry comes in.)

Consider a random variable X = (X1, . . . , Xd) ∈ Rd (we think of d as going to ∞). For simplicity, we’ll
assume that X is centered and isotropic — so E[Xi] = 0, E[X2

i ] = 1, and E[XiXj ] = 0 for all i 6= j.

Here’s two definitions (the first one is standard, and the second is particular to this problem).
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Definition 4.1. We say X is δ-subGaussian if for all θ ∈ Rd with ‖θ‖2 = 1, we have

P[〈X, θ〉 > t] ≤ e−δt2 .

Think of θ as representing a direction on the d-dimensional unit sphere. Then 〈X, θ〉 is some random
variable; and this condition says that its tails decay at least as fast as a Gaussian’s.

Definition 4.2. We say X is ε-lopsided if taking Y to be an independent copy of X, we have

PX,Y [〈X,Y 〉 ≤ −ε
√
d] ≥ 2

3 .

Here Y is an independent copy of X, and 〈X,Y 〉 varies on a scale of
√
d and is expected to be 0. So

we’re looking at the probability that it’s noticeably below this; and the point of that definition is that this
probability is much bigger than you’d expect. (The value of 2

3 doesn’t matter; it’s just some constant bigger
than 1

2 .)

Conjecture 4.3 — For all ε, δ > 0, for all large d, there does not exist a random variable X ∈ Rd that
is both δ-subGaussian and ε-lopsided.

How does this correspond to the picture we had earlier? SubGaussianity is sort of like saying you’re not
clustered in any way (so it corresponds to the mezzoscopic clustering condition). And lopsidedness is
capturing the repulsion of neighborhoods — in some sense, 〈X,Y 〉 is precisely capturing the error term in
the overlap of neighborhoods (which we need to not be −c/k).
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