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February 16, 2024

This is based on work due to Shkredov from 2004 and 2005, and notes by Ben Green.

§1 Introduction

There are several problems which ask for how large a set can be if it avoids a certain pattern. For example,
Roth’s theorem is about avoiding 3-APs, and Szemerédi’s theorem is about avoiding k-APs.

Definition 1.1. We use r3(N) to denote the size of the largest subset of [N ] avoiding {x, x+ d, x+ 2d}
with d 6= 0 (i.e., avoiding 3-APs).

There’s multiple ways to extend the notion of such a pattern. One is to replace d, 2d, . . . with some sort
of polynomial. Another is to go multidimensional. Today we’ll go multidimensional — once you’ve proven
Szemerédi’s theorem it implies the existence of most linear patterns you’d care about in one dimension, so
we’ll now consider a two-dimensional pattern.

Definition 1.2. We use r(N) to denote the maximum size of a corner-avoiding subset A ⊆ [N ]2, where
a corner is a set {(x, y), (x+ d, y), (x, y + d)} (with d 6= 0).

Note that d is allowed to be negative.

(x, y) (x+ d, y)

(x, y + d)

An upper bound for corners implies one for 3-APs via a simple projection argument — given any set avoiding
3-APs, we can draw them on the x-axis and take the lines from each at a 45◦ angle to get a corner-avoiding
set of roughly N times the size.
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(This set is corner-avoiding because if we had a corner and projected it down along lines of this angle, then
we’d get a 3-AP.)
Today we’ll consider the following theorem.

Theorem 1.3
We have r(N) = o(N2).

This was first proved by Ajtai–Szemerédi (1974) using Szemerédi’s theorem. Then Solymosi (2003) proved
it using the triangle removal lemma — this is a nice argument similar to how you prove Roth’s theorem
using the triangle removal lemma.
But the bounds on r(N) that we get from these proofs are pretty poor quantitatively — they involve log
iterated a large number of times. The first quantitatively ‘good’ bound comes from the work of Shkredov
that we’ll be talking about today — in 2004 he proved a bound of r(N) ≤ N2(log log logN)−c for some
c > 0, and in 2005 he improved the bound to N2(log logN)−c.
We’re going to work over finite fields, to illustrate the key points — so we’ll consider r(Fn2 ) instead of r(N)
(defined in the same way). We’ll also see comparisons to Roth’s theorem, which we’ll do in Fn3 (we can’t
work over F2 because our pattern has a coefficient of 2, but the difference isn’t important).

§2 Roth’s theorem

First we’ll review the proof of Roth’s theorem in Fn3 (which states that r3(Fn3 ) = o(3n)). We can prove Roth’s
theorem using a ‘structure vs. pseudorandomness’ approach, as encapsulated by the following statement.

Theorem 2.1
Given a set A ⊆ Fn3 of size |A| = α · 3n, at least one of the following holds:

(1) (Pseudorandom) A has roughly the correct amount of 3-APs given its density, i.e.,

#(3-APs in A) ≈ α3N2.

(2) (Structure) There is some hyperplane H for which

|A ∩H|
|H|

≥ α+ α2

4 .

(3) (Exit) n is too small relative to the density of A — specifically, α2 < 2/3n.

Given this, in order to prove Roth’s theorem, given a set A we iterate Theorem 2.1 roughly O(1/α) times
— whenever we’re in (2), we restrict A to that hyperplane H (which boosts its density). Then we iterate
roughly O(1/α) times; if 1/α � n then we must eventually hit (1) (we can’t keep iterating (2) forever
because then our density would cross 1, and we’re not going to hit (3) because we defined the original
density to be large enough).
One approach to proving Theorem 2.1 is using the Fourier transform.

Definition 2.2. For a finite abelian group G and a function f :G→ C, we define the Fourier coefficient
of f at ξ (for each ξ in the dual group of G, which we denote by Ĝ) as

f̂(ξ) = Ex∈G[f(x)ξ(x)]
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Fact 2.3 (Fourier inversion) — For any x ∈ G, we have f(x) = ∑
ξ∈Ĝ f̂(ξ)ξ(x).

In our setting, the ξ’s are given by ξ(x) = e2πi(a·x)/p for each a ∈ Fnp .

Definition 2.4. We say a set A ⊆ G is η-Fourier uniform if maxξ 6=0|1̂A(ξ)| ≤ η.

The Fourier coefficient at ξ = 0 is just the density of A, and Fourier uniformity means that all other Fourier
coefficients are small. (This condition basically gives a L∞ bound on 1̂A.)
Then the point of how we prove Roth’s theorem is that if A is α2/2-uniform, then we can prove (1) by using
its Fourier transform — we can write the 3-AP density in A in terms of the Fourier coefficients of 1A, and
the ξ = 0 term will give the right contribution corresponding to the density of A, while all the other terms
will have small total contribution (using some L2–L∞ inequality).
Meanwhile, if A is not α2/2-uniform, then ξ gives a direction to consider hyperplanes in, and A will need
to have substantially higher density on one of those hyperplanes.

§3 A first attempt for corners

Now we’ll consider the corners problem over Fn2 — so we’ve got a set A ⊆ Fn2 × Fn2 of density α (and we’ll
let N = 2n). We’d like to prove an analog of Theorem 2.1, so as a first attempt, we’d like to prove that A
must fall into one of the following cases.

(1) (Pseudorandom) A has roughly the right number of corners (which is α3N3).
(2) (Structure) A has density at least α + f(α) on a coset of H ×H, where H ⊆ Fn2 is some subspace of

Fn2 with codimension at most g(α). (Think of f(α) and g(α) as some polynomials in α.)
(3) (Exit) n is too small.

Here (1) and (3) are essentially the exact same as their analogs in Theorem 2.1. For (2), we might not
expect to be able to get a hyperplane H (as in Theorem 2.1) — we might have to go down in dimension by
some amount greater than 1 — but as long as that amount is controlled just by α, we’re fine with it.

Remark 3.1. It’s fine to use the same set H in both coordinates — if we got sets H1 and H2 for which
A had a density increment on a coset of H1 ×H2, then we could take H to be their intersection.
However, we do need to choose this subspace (that we’re getting a density increment on) to be
coordinate-aligned — i.e., we can’t choose a subspace defined by a · x+ b · y = 0 for arbitrary a, b ∈ Fn2
— because corners are rectilinear (i.e., they care about the axes). So we really do need to take the
subspace to be a product (and not just an arbitrary subspace) to be able to iterate.

If we could get a statement like this, then we could run the same iteration argument as in Roth’s theorem.
Unfortunately, this dream is not going to work. If you tried to go through the proof of Theorem 2.1 but
with corners, the step you’d get stuck at is trying to extract the subspace H. And there’s a good reason for
this — there are actually counterexamples to this statement, as we’ll now see.
If we’re trying to come up with examples, the first natural example is a completely random set, but that’ll
have the right number of corners. Here we’ve got a product space, so we’ll try ‘diagonally embedding’ a
1-dimensional random set instead, and this does give a counterexample.
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Example 3.2
Consider a random subset B ⊆ Fn2 sampled at rate β, and let A = B ×B (so α = β2).
To count the number of corners in this set, we want to count the number of x, y, and d such that (x, y),
(x+d, y), and (x, y+d) are all in B×B, meaning that x, x+d, y, and y+d are all in B. This occurs for
about a β4-fraction of x, y, and d (as there’s four things that need to be in B), so the number of corners
is roughly β4N3 = α2N3 (as opposed to α3N3, which is what we’d expect looking just at the density).
This means (1) doesn’t hold. (Intuitively, the point is that some of the coordinates are repeated, so
that we only have four conditions on something being in B, rather than six.)
But on the other hand, A is ‘uniform’ with respect to subspaces of the form H ×H (i.e., it has roughly
the density you’d expect on any coset of such a space), because B is. So (2) doesn’t hold either.

This shows that a direct analog of Theorem 2.1 isn’t going to work here — there’s an issue that we have sets
A which don’t look pseudorandom in the sense that they don’t have the right number of corners, but also
are not structured in the sense of (2). (In this example, we actually have more corners than we’d expect,
not fewer; but it’s unclear how we could leverage this.)

§4 The main idea

We’ll now get to the key idea of Shkredov, which is very beautiful. The idea is that we still want to get a
density increment on some kind of set, as in (2), but we can’t guarantee one on sets of the form H × H
(where H is a subspace), so we’re going to relax what kinds of sets we’re looking for.

Question 4.1. What class of sets can we get a density increment on (meaning that if A doesn’t have
the right number of corners and has reasonable density, then A has a density increment on a set from
this class)?

Example 3.2 shows that we can’t just take sets which are algebraically structured — we have to allow some
sort of looseness.
The first thing that jumps out is that the counterexample in Example 3.2 is caused by a diagonal embedding,
where A is a product; so as a first attempt, what if we try to get a density increment onto a product set —
i.e., a set of the form E1 × E2 (for large but otherwise arbitrary E1 and E2)?
It turns out that a statement like this will be true. But then the problem is that E1 and E2 are arbitrary sets,
so how do you iterate? (With Roth’s theorem, iteration was nice because we passed down to hyperplanes,
where everything continued to work in the same way; but here when we pass down to E1 × E2 we’ll have
these weird host sets that we can’t do much with.)
It might be able to iterate for a few more steps, by still doing Fourier analysis with respect to the original
space. But the problem is that as you iterate multiple times, the host sets E1 and E2 become sparse, and
this Fourier analysis is going to lose factors based on their densities; and this means we lose. So to fix this,
we have to somehow ‘relativize’ the argument with respect to E1×E2 (rather than doing the argument with
Fourier analysis in the original set).
But we can’t do this with arbitrary sets E1 and E2. So we’re going to try to require E1 and E2 to be very
Fourier uniform — this will allow us to do the argument relative to E1 ×E2. (In some sense, such sets end
up being just as good as subspaces for our purposes, but they really have to be very uniform — specifically,
their uniformity needs to be really good with respect to their densities.)
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§4.1 The trichotomy

Here’s the right trichotomy that we’ll use (as an analog to Theorem 2.1), stated informally.

Theorem 4.2 (Informal trichotomy for corners)
For any set A ⊆ Fn2 × Fn2 of density α, one of the following holds (letting N = 2n):

(1) A has roughly α3N3 corners.
(2) A has density at least α+ (α/2)100 on a translate of some E1 × E2 ⊆ H ×H where H ⊆ Fn2 is a

subspace of low codimension, and E1 and E2 are subsets of H of size at least poly(α) |H| which
are very Fourier uniform with respect to H.

(3) n is too small.

We’re not yet going to quantify what ‘very’ means in (2), but if E1 and E2 have densities β1 and β2 in H,
then we’ll need them to be η-Fourier uniform where η is good with respect to α as well as β1 and β2, such
that a set with this uniformity are in some sense as good a host set as the original subspace itself.

Remark 4.3. By a ‘translate’ of E1×E2, we mean a set obtained by taking a fixed vector and adding it
to each vector in E1 ×E2. (The only reason we write this is because if we wanted to avoid translating,
we’d need to consider cosets of H ×H, which would be affine subspaces rather than actual subspaces,
and then we’d have to define Fourier coefficients in affine subspaces.)

§4.2 A proof outline

Ben Green breaks the proof down into the following three steps.
(1) (Generalized von Neumann) We show that if A is ‘close’ to the constant function α in some appropriate

norm, then it has roughly the right number of corners. This doesn’t have a direct analog in the proof
of Roth’s theorem we described. But you can also handle the pseudorandom case of Roth’s theorem
(where we assume A is Fourier uniform and show it has the right 3-AP count) by using the Gowers
U2 norm and Cauchy–Schwarz — to show that if A is close to constant in U2 norm then it has the
right 3-AP count — and then relating the U2 norm to Fourier coefficients. And then you can think of
this step as replacing the U2 norm with a different norm — it’ll be a ‘rectangle norm’ that’s sort of
counting C4’s in some sense (we’ll define this norm later).

(2) (Density increment on a product set) Now we consider the case where A is ‘far’ from the constant
function α in norm; then we show that it has a density increment on some product set F1×F2 (where
F1 and F2 are reasonably large, but we don’t impose any other conditions on them yet).
This is not hard; intuitively, our norm is basically a C4 count and F1×F2 is a box, so we can do basically
the same thing as Chung–Graham–Wilson (where they show several notions of pseudorandomness in
a graph are equivalent; here the two relevant ones are the graph having C4 count roughly what you’d
expect from its number of edges (which intuitively corresponds to A being close to α in norm), and
the graph having roughly the same density between any two large sets (which corresponds to A having
roughly the same density on all large product sets F1 × F2)).

(3) (Uniformizing the product set) This is the key step of the argument. From (2), we’re starting off with
some arbitrary product set F1 × F2 in some host subspace W . And then we want to use this to find
a small codimension subspace W ′ (of the original space) and a coset of W ′ on which we can basically
replace F1 × F2 with a product set E′1 × E′2 where E′1 and E′2 are Fourier uniform, and A still has a
density increment on this smaller host E′1 × E′2.
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(Then when we iterate, you can think of W ′ as the new host subspace we’re in, and E′1×E′2 as the new
product set that A lives in. We’ll maybe have worse densities than before, so we’ll need to uniformize
a lot at this stage to be able to loop back; but this is the basic sketch.)

§5 The proof

Next, we’ll write an outline of the concrete statements that you prove, and then we’ll discuss some points
about these statements — we’ll especially focus on (3) (the uniformization process), because that’s the
thing that’s particularly novel in the proof; but there’s also an additional novelty in (1) (the generalized von
Neumann step), because you need to make sure that the argument relativizes correctly with respect to the
pseudorandom host sets.

§5.1 Some definitions

First, we’ll define what it means to be ‘sufficiently’ uniform.

Definition 5.1. Given a density α ∈ (0, 1), we define Structα as the collection of all translates of sets of
the form E1 × E2 such that:

• There is some subspaceH ⊆ Fn2 such that E1 and E2 are both subsets ofH, with sizes |Ei| = βi |H|.
• E1 and E2 are both (αβ1β2/2)100-Fourier uniform with respect to H.

This quantifies the notion of uniformity that we want in step (3) (or in case (2) of Theorem 4.2) — Structα
is essentially the collection of ‘structured sets’ that we’re trying to get a density increment on. (The reason
for naming it this way is that Ben Green’s notes consider several problems along these lines, and for each
problem he defines the correct kind of ‘structured set’ that you want to pass to — for example, in Roth’s
theorem, the structured sets are just hyperplanes of codimension 1.)
Next, we’ll define the relevant norm.

Definition 5.2. For a function f :S → R where S = E1 × E2 is a product set, we define its rectangle
norm, denoted ‖f‖S , by

‖f‖4S = Ex,x′∈E1Ey,y′∈E2f(x, y)f(x′, y)f(x, y′)f(x′, y′).

f(x, y) f(x′, y)

f(x, y′) f(x′, y′)

x x

y′

y′
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The reason we referred to this norm as a C4 count is that we can imagine a graph with vertex set E1 on one
side and E2 on the other, where we draw an edge for each (e1, e2) ∈ A (where f = 1A); then in this norm
we’re taking two vertices on each side and checking whether they form a C4.
Finally, we’ll set up a bit of convenient notation (since we’ll be considering the density of A on various sets).

Notation 5.3. We use δS(A) to denote |A ∩ S| /|S|.

§5.2 A quantitative version of the outline

We’ll now give a quantitative version of the outline from Subsection 4.2. First, step (1) — that if the
indicator of A is very close to constant (i.e., to the relative density of A), then we have many corners —
corresponds to the following statement.

Proposition 5.4
Let S = E1×E2 be in Structα with δS(A) ≥ α. Then if ‖1A − δS(A)‖4S ≤ (α/2)100, then A has at least
(αβ1β2/2)100 |A|3 corners.

Remark 5.5. This is different than the way we’ve written step (1) earlier — we’re not claiming that A
has the correct number of corners, just a lower bound (which is much smaller than the correct number).
But you should actually be able to get that A has the correct count of corners; this is just simpler.

Next we’ll quantify step (2), which states that if A is far from its density in norm, then we can get a big
product set where we have a density increment. This is just a statement about the norm; it doesn’t have
anything to do with the host sets.

Proposition 5.6
Suppose that S = E1×E2 (for any E1 and E2) and that A ⊆ S is such that δS(A) = α and ‖1A − α‖4S ≥
η. Then there are subsets F1 ⊆ E1 and F2 ⊆ E2 of relatively big sizes — i.e., with |Fi| ≥ 2−100η |Ei|
for each i ∈ {1, 2} — such that

δF1×F2(A) ≥ α+ 2−100η2.

Finally, the key proposition is the one for (3) (the uniformization step).

Proposition 5.7
Let α, τ, σ ∈ (0, 1), and let W ⊆ Fn2 be a subspace of size |W | ≥ exp(16σ−2δ−1τ−1). Let S′ = F1×F2 ⊆
W ×W be such that δW (A) = α and δS′(A) = α+ τ . Let δi = |Fi| /|W | and δ = δ1δ2.
Then there is a subspace W ′ ⊆W and shifts t1, t2 ∈W such that if we define E′1 = (Fi − ti) ∩W ′ and
S′′ = E′1 × E′2, then the following statements all hold:

(1) dimW − dimW ′ ≤ 8σ−2δ−1τ−1.
(2) |S′′| ≥ δτ |W ′|2 /2.
(3) E′1 and E′2 are 2σ-Fourier uniform subsets of W ′.
(4) δS′′(A− (t1, t2)) ≥ α+ τ/8.

This is kind of a mouthful. But in words, we think of α as the original density, τ as the increment size
we got on an arbitrary product set (from step (2)), and σ as our target uniformity. (When we apply the
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proposition, σ will be really small.)
Here, W is the subspace we’re starting with (it’s essentially the same thing as the subspace H corresponding
to E1×E2 in the definition of Structα); we don’t want W to be too small, but this is more of an exit condition.
(In particular, in comparison to Theorem 4.2, W corresponds to Fn2 and the size condition on W corresponds
to the exit condition (3).) And we’ve got a product set S′, which we can think of as the output of Proposition
5.6 — so we’ve got a density increment of τ on S′. And we use δi to denote the density of Fi in W , and δ
to denote the density of their product S′ in W ×W .
And in the conclusion, W ′ is essentially the same thing as H from Theorem 4.2; it’s the subspace hosting
our new pseudorandom hosts E′1 and E′2, and S′′ is this new pseudorandom host (i.e., when we iterate, it’s
going to become the S in Proposition 5.4). The second condition says that S′′ is still pretty big, the third
condition (that E′1 and E′2 are uniform) is the key point that allows us to iterate, and the fourth condition
says that we didn’t sacrifice too much of our density increment — we started with a density increment of τ
onto an arbitrary product, and we’ve gotten a density increment comparable to τ onto this really uniform
product S′′.

Remark 5.8. As a technical remark, it’s important that Proposition 5.6 makes no reference to σ (i.e.,
the uniformity of E1 and E2) — this is because when we apply Proposition 5.7, we’ll need σ to be very
small relative to δ and τ (i.e., we’ll need to be able to uniformize in a meaningful set — if δ were really
small relative to σ instead, then you’d trivially have the level of uniformity coming from any sparse set
being uniform).

Given these three statements, here’s how we finish the proof — we essentially run the three statements in
order, take the output of the third and plug it back into the first, and iterate.

Proof of Theorem 1.3. Suppose we start with a corner-avoiding set A ⊆ Fn2 × Fn2 of density α (and let
E1 = E2 = Fn2 and S = E1 × E2). Then plugging this into Proposition 5.4, we get δS(A) ≥ (α/2)100, and
then Proposition 5.6 gives that A has a density increment of at least τ = (α2/8)100 on some reasonably
large product set F1 × F2. Then Proposition 5.7 (with W = Fn2 ) gives new sets A′ ⊆ E′1 × E′2 ⊆ W ′ ×W ′
(where A′ is obtained by shifting A and intersecting it with the new product set E′1 × E′2) where A′ has
density at least α+ τ/8 ≥ α+ (α2/16)100 on E′1×E′2, E′1 and E′2 are sufficiently uniform, and W ′ has small
codimension in W (so we haven’t lost too much in the dimension). (We take σ to be small enough that we
can then apply Proposition 5.4 to these new sets.)
And then we iterate — we apply Proposition 5.4, then Proposition 5.6, then Proposition 5.7 again, until we
hit density 1. At each step we’re not losing too much in the dimension, so we end up getting a bound of
r(Fn2 ) . N2/(log logN)c for some small c.

Remark 5.9. Where does the second log come from (in comparison to Roth’s theorem, where this proof
only ends up with one log)? It’s there because we have some loss in the uniformization — the βi’s
sort of explode when we iterate. If we begin with β1 and β2 (representing the densities of our original
pseudorandom hosts E1 and E2 in the original subspace W ), then Proposition 5.6 gives a product set
with |Fi| ≥ (α/4)100 |Ei| ≥ (α/4)100 · βi |W |, which means δ ≥ (α/4)200β1β2, while τ ≥ (α2/8)100. And
δτ/2 corresponds to β′1β′2 because of the second condition of Proposition 5.7 (where β′1 and β′2 are the
values of β1 and β2 we’ll have on the next iteration), so we’ll have β′1β′2 ≈ (α4/128)100β1β2. And when
we apply Proposition 5.7, we need σ to be small enough that we can iterate Proposition 5.4, so we’re
taking 2σ ≈ (αβ′1β′2/2)100.
And we need at most (16/α2)100 iterations to hit density 1, so in the end we’ll have β1β2 ≈ αα

−200

(where we’ve dropped several constants), which means we’re losing roughly α−α
−200 in the dimension

in the end. This means we need α−α
−200 to be small compared to n (to ensure we don’t hit the exit

condition before density 1), so α−1 should be a small power of logn ≈ log logN .
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Remark 5.10. For integers, this strategy ends up giving r(N) . N/(log log logN)c (for small c > 0).
Shkredov later improved the bound for Fn2 to have one log and the bound for integers to have two log’s.

Remark 5.11. Finally, we’ll remark that the example from Example 3.2 is compatible with this outline
— Proposition 5.6 is going to identify B, and the uniformization step (Proposition 5.7) is going to chop
it up and find some uniform component of B.

§5.3 Proof sketch of Proposition 5.4

First, for Proposition 5.6, the point is that the rectangle norm is really counting C4’s, and then we can use
a slightly modified Chung–Graham–Wilson type argument. The really interesting pieces are Propositions
5.4 and 5.7; we’ll first say a couple of words about Proposition 5.4, and then we’ll focus on Proposition 5.7.
We can think of Proposition 5.4 as some type of Cauchy–Schwarz argument, in analogy to the Gowers
Cauchy–Schwarz argument relating the Uk−2 norm to k-APs (where you do iterated Cauchy–Schwarz,
duplicating variables one at a time). But the important thing is that we need things to be relativized — we
need to be taking expectations relative to the quasirandom host sets Ei, rather than H itself. (Otherwise
we’d be losing factors corresponding to the densities of the host sets, and this would be bad.)
This means you have to be careful — when we use Cauchy–Schwarz to duplicate a variable x (as with the
Gowers argument for k-APs) we usually get x and x+ h, and we need to be working in a subspace in order
to say that if x and x+ h are uniform then so is h.
So in order to relativize correctly, we include terms like 1E1(x) and 1E1(x+ h) and 1E2(y) and 1E2(y + h)
and so on, alongside everything else, when we use Cauchy–Schwarz (and we’re still choosing x, y, and h from
the host subspace). And in the end, we use the quasirandomness of E1 and E2 to show that the associated
terms end up averaging out and being roughly the correct constant (you can do this using Fourier analysis
or some pseudorandomness arguments involving Cayley graphs and codegrees).

§5.4 Proof of Proposition 5.7 — the uniformization step

Now we’ll talk about how to perform the uniformization step. The way we wrote Proposition 5.7, we start
with A, and we want to cut up our original space W ×W into smaller pieces and eventually find one piece
where A gets a density increment and the piece is ‘regular’ (i.e., E′1 and E′2 are uniform). But the way we’ll
actually show this is by getting a sort of ‘regular decomposition’ — in analogy to Szemerédi’s regularity
lemma, you can imagine we’re taking something like a weakly regular decomposition of F1 × F2 on W ×W
(meaning that we’re chopping up W ×W , and F1 × F2 is supposed to be regular (i.e., uniform) on most of
the pieces). This decomposition will have some error pieces of two types — either they’re small (these pieces
are referred to as expired) or non-uniform. We’ll show that the contribution of these pieces is small, and
we’ll choose parameters so that they’re so small that even if we kill them, our set A still has a reasonable
density increment.
So the first step — which is the big one — is to get the decomposition. The second step is to forget the ‘bad’
pieces. And the third step is to use averaging (or Markov) to show that we still get a density increment on
one of the good (i.e., uniform) pieces.

§5.4.1 A proof sketch

First, we’ll discuss the high-level ideas behind how we get the regular decomposition. We’re going to do this
by an iterative algorithm, where we iteratively take partitions (very much like the proof of the Szemerédi
regularity lemma) and use an energy argument.
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Let dimW = n (we’re chopping up the space W ×W ). At step 0, we’ll just have the whole set W ×W
(as one part). And we’re going to repeatedly partition so that at every further step t, we’ll have a partition
W ×W = ⋃

i∈It
C(i), where It is some index set that grows with time, and each C(i) is a cell in our partition

of the form
c(i) = (W (i) + t

(i)
1 )× (W (2) + t

(i)
2 )

for some subspace W (i) ⊆W with dimW (i) ≥ n− t.
Imagine we start out with W ×W as a big square; in the first step, we just have a single piece, and we
have F1 × F2 on this big square. If F1 × F2 is uniform on this big square, then we’re done (and if it’s very
low-density, then it’s also uniform, so we’re also done). So we can imagine that it’s not uniform.
This means either F1 is non-uniform in W , or F2 is. So we can find some vector along which to cut (i.e.,
we split W into two subspaces along a certain vector). Now we have four cells (since we cut W into two in
both directions).

W ×W

Intuitively, because we were non-uniform in one of these directions (i.e., either F1 or F2 was non-uniform,
and we took a cut showing this), the cut in that direction should give us an energy increment, and the cut
in the other direction won’t change that (as in general, cutting can only increase energy). So taking this
partition will give us an energy increment — if we failed to be σ-uniform, then we’ll get an energy increment
of roughly σ2.
Then we look at the pieces we have left after this cut. On some of these pieces F1 × F2 will be small; we
ignore those pieces. On some it’ll be uniform; we’re done with those pieces. So we only need to deal with
the pieces on which F1 × F2 is non-uniform.
And for each of these pieces, we can find some other direction on which one of F1 and F2 is non-uniform,
and then split them up along that direction. (We can use different directions for the different pieces; in the
end, we’ll just be passing to a single cell.)

W ×W

small uniform
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At time t, each cell has only been subdivided t times, so its corresponding subspaces have codimension at
most t.
And as long as there’s ‘many’ non-uniform cells (e.g., at least a τδ/16-fraction of W ×W — the reason
for this parameter is that it’s roughly the amount of badness we’re able to throw away without losing the
density increment), we can get an energy increment of Ω(σ2τδ) (where δ is the original density of F1 × F2).
This means the process should continue for at most roughly σ−2τ−1δ−1 steps (or else the energy would cross
1), so that’s the codimension of each cell we end up with.
And once we’ve got this decomposition, we can throw away the bad pieces (i.e., the ones where F1 × F2 is
non-uniform or small). These pieces have very little contribution to the density increment (they certainly
aren’t contributing to the density increment if F1 × F2 is very small on them, and the non-uniform cells
occupy a small fraction of W × W relative to the density increment). So A still has reasonable density
increment on average over all the ‘good’ pieces (i.e., one where F1 × F2 is uniform and not small), which
means we can find some good piece where it has such a density increment.

§5.4.2 The energy argument

Finally, we’ll describe in more quantitative detail how the energy argument works. Suppose we’ve got a
partition of W ×W into cells ⋃i∈It

C(i), where each cell C(i) is of the form

C(i) = (W (i) + t
(i)
1 )× (W (i) + t

(i)
2 )

for some subspace W (i) ⊆W of codimension at most t.
We care about how much of each cell our host product set F1×F2 occupies (which we refer to as its relative
density in the cell), as well as how uniform it is. So we’ll consider C(i) ∩ (F1 × F2), which we can write as
D

(i)
1 ×D

(i)
2 . We’ll define

δ
(i)
1 = |D

(i)
1 |

|W (i)|
and δ

(i)
2 = |D

(i)
2 |

|W (i)|
,

and δ(i) = δ
(i)
1 δ

(i)
2 — so δ(i) is just the density of F1×F2 in our cell C(i). And the overall density of F1×F2

in W ×W is δ, so when we average δ(i) over all cells C(i), we should get δ.
We say C(i) is expired if δ(i) < δτ/2 — the point is that then F1 × F2 occupies less than a δτ/2-fraction of
all the expired cells, so throwing those cells away isn’t going to affect our density increment by too much
(specifically, A had a density increment of τ on F1×F2, which had size a δ-fraction of W ; so throwing away
these cells means we lose at most a τ/2-fraction of F1 × F2, and by an averaging argument we still need to
have at least a density increment of τ/2 on the rest).

We say C(i) is uniform if D(i)
1 − t

(i)
1 and D(i)

2 − t
(i)
2 are both σ-uniform as subsets of W (i). (In words, F1×F2

on our cell C(i) is uniform — the shifting is just so that we’ve got subsets in a real subspace and not an affine
one.) And finally, we say C(i) is non-uniform if it’s neither expired nor uniform. (This is a quantitative
version of what we discussed earlier.)
If the total fraction of W ×W occupied by non-uniform cells is less than τδ/4, then we’ll stop; the point is
that when this happens, the fraction of F1 × F2 in non-uniform cells is small, and the fraction of F1 × F2
in expired cells is also small by the definition of an expired cell; so we can throw these cells away, and an
averaging argument says that we still have a density increment on the remaining cells.
And otherwise, we iterate — we keep on subdividing all the non-uniform cells. To bound how long this
process can run for, we use an energy argument — given a decomposition with cells C(i) for i ranging over
some index set I, we define its energy as

1
2
∑
i∈I

|C(i)|
|W |2

(
(δ(i)

1 )2 + (δ(i)
2 )2

)
.
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Claim 5.12 — If we haven’t yet stopped (so the fraction of W ×W occupied by non-uniform cells is
at least δτ/4), then we can subdivide each non-uniform cell into 4 cells such that in total, we get an
energy increment of Ω(σ2rδ).

Proof. First, let’s consider a single non-uniform cell C(i), and let’s consider D(i)
1 ×D

(i)
2 ⊆ C(i) (this is the

restriction of F1 × F2 to C(i)). Then the fact that the cell is non-uniform means that either D(i)
1 − t

(i)
1 or

D
(i)
2 − t

(i)
2 has some large Fourier coefficient with respect to W (i); we’ll assume without loss of generality

that this is true for D1.
Then this large Fourier coefficient means there is a vector a 6= 0 (in the dual of W (i)) such that we can
decompose

D
(i)
1 = D

(i)
10 ∪D

(i)
11 = {x ∈ D(i)

1 | a · x = 0} ∪ {x ∈ D(i)
1 | a · x = 1}

where the two pieces have densities at least δ(i)
1 + σ and at most δ(i)

1 − σ (in the analogous pieces that W (i)

gets split into), essentially by the definition of what it means to have a large Fourier coefficient.

This changes the contribution to the energy from d
(i)
1 to at least d(i)

1 + σ2 (for just this term).
And then we split up D2 along the same vector a (which means we get 4 cells); this at least doesn’t decrease
its contribution to the energy.
And finally, this means we’re increasing the energy contributed by each non-uniform cell by at least σ2

(before we weight by the size of the cell); so if non-uniform cells occupy at least a δτ/4-fraction of the entire
space, then we get a total energy increment of at least σ2δτ/4.
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