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§1 Introduction

Definition 1.1. The upper density of a set ¥ C N is defined as

= En{l,...
d(E)zlimsup’ nil, ,n}|

n—oo n

Example 1.2

We have d(N) = 1, d(2N + 1) = 1, d(squarefree integers) = %, and d(P) = 0.

Think of sets with positive density as ‘large.” In Ramsey theory, large sets contain a lot of structure; we’ll
look at what structure we can find in positive-density subsets of N.

Theorem 1.3 (Roth 1953)
If d(E) > 0, then E contains a 3-term arithmetic progression {a,a + d, a + 2d}.

Roth’s theorem was a special case of a more general conjecture. In Ramsey theory, van der Waerden’s
theorem states that if you partition N into finitely man classes, one class must contain arbitrarily long
arithmetic progressions; but it does not state which one. Erdés and Turan conjectured that any set with
positive density contains arbitrarily long arithmetic progressions. This was eventually proved by Szemerédi.

Theorem 1.4 (Szemeredi 1975)
If d(E) > 0, then E contains a k-term arithmetic progression for all k > 1.

Question 1.5. What other arrangements do sets of positive density contain?

Theorem 1.6 (Furstenberg—Sarkézy 1978)
If d(E) > 0, then E contains two elements a and b such that b — a is a perfect square.

Furstenberg proved this result, as well as Szemerédi’s theorem, using ergodic theory.

§2 Intersective Sets

The underlying question here is the following;:

Page 1 of



Ergodic Theory in Combinatorics Talk by Florian Richter (February 10, 2023)

Question 2.1. If d(E) > 0, then for how many integers do we have E N (E —n) # (?
The Furstenberg—Sarkdzy theorem states that this is true for some perfect square n.

Definition 2.2. A set R C N is intersective if for all sets E C N with d(E) > 0, there exists n € R with
ENn(E—n)#0.

Equivalently, R is intersective if RN (E — E) # () for all sets E of positive density.

Example 2.3

Some examples and non-examples of intersective sets.

Intersective Non-intersective
N Any finite set
kN 2N+1
{n? | n € N} (by the Furstenberg—Sarkozy theorem) {n?+1|neN}
{p(n) | n € N} for polynomials p with a root mod every prime
P-1 P
D — D for any infinite D C N Any lacunary set

For example, kN is intersective because any infinite set E' contains two numbers of the same residue class
mod k.

For polynomials, if {p(n)} is intersective then p must have a root mod every prime (otherwise we could take
E to be an arithmetic progression); the converse is true as well (this is not obvious).

In particular, although lacunary sets (ones which grow exponentially when enumerated in order) are never
intersective, there do exist very sparse sets that are intersective (D — D is intersective; it is not lacunary, as
it has bounded gaps).

Remark 2.4. We don’t have a complete characterization of intersective sets — for example, we don’t
know whether Le\/ﬁj is intersective. This is true even for sets with polynomial growth, although we do
know that |nlogn], [n¢], and |nB] are all intersective.

Fact 2.5 — If R is intersective, then:
1. RNON # 0 for all b € N;

2. If R = R; U Ry, then at least one R; is intersective. (In other words, being intersective is
partition-regular.)

Remark 2.6. Intersective also generalizes to k-fold intersective. These are not equivalent — the set
{n|n%a mod 1€ (1/2,1/2+¢)} is intersective, but is not double intersective because it is not centered.
It also generalizes to quadratic-intersective — a set R is quadratic-intersective if for all d(E) > 0 there
exists n € R with EN (E —n?) # (. There is an open conjecture that quadratic-intersective and
2-intersective are equivalent.
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§3 Measure-Preserving Systems

Shifting variables plays well with density — if a set has density % and we shift it by 1, then it still has
density % So we can think of (N, d) as a fake probability space, with the fake probability measure preserved

under shifting.

Furstenberg’s idea was to turn this into a measure-preserving system.

Definition 3.1. A measure-preserving system is a triple (X, u,T") where:
e X is a compact metric space;
e 4 is a Borel probability measure on X;

e T is a transformation X — X which preserves u, meaning that T'u = pu.

(T is the pushforward measure; the statement T = p means that u(T-1A) = p(A) for all A.)

Instead of just considering T', you can also look at its powers — T"t™ = T™ o T™ so T gives an action
of (Z,+). To understand the arithmetic structure of the integers, you can consider their actions; these
dynamics can be understood through ergodic theory, which can be used to say more about arithmetics.

Example 3.2
One measure-preserving system is to take X to be the torus II = R/Z, u the Lebesgue measure, and
T(zx) =24+« mod 1 (i.e., a rotation).

Another is to again take X to be the torus and p the Lebesgue measure, and 7T'(x) = 2z mod 1.

(Note that  — 2z mod 1 is a measure-preserving transformation because pu(T~1A) = u(A); however, it is
not true that u(T'A) = u(A).)

These examples have very different behavior — a rotation is very deterministic, while 2 mod 1 is chaotic.
The dichotomy between structure and randomness is often useful (for example, Szemerédi’s regularity
lemma). The idea in dynamical systems and ergodic theory is similar — we take a system and decom-
pose it into things which look like the first example, and things which look like the second.

One of the most basic results in ergodic theory is the following.

Theorem 3.3 (Poincaré Recurrence)
If (X, u,T) is a measure-preserbing system, then for every A C X with pu(A) > 0, there is an integer
n € N such that y(ANT"A) > 0.

This says that the orbit of any set must eventually come back to itself.

Question 3.4. What can we say about the sets of integers n that make this happen — how large or
how structured are they? (In terms of dynamical systems, around what times can we come back to our

initial position?)

Definition 3.5. A set R C N is a set of recurrence if for all (X, pu,T) and all subsets A C X with
wu(A) > 0, there is some n € R with u(ANT""A) > 0.

This definition feels very similar to the one of an intersective set, and in fact Furstenberg showed that these
two notions are the same.
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Theorem 3.6 (Furstenberg)

A set R is intersective if and only if R is a set of recurrence.

Then the Furstenberg-Sarkozy theorem states that {n? | n € N} is intersective; to prove this, it’s enough
to prove that it’s a set of recurrence. This is how Furstenberg proved the theorem.

Theorem 3.7 (Furstenberg's Quadratic Recurrence Theorem 1978)

The set {n? | n € N} is a set of recurrence.

Furstenberg also used similar ideas to prove Szemerédi’s theorem (by establishing a higher-order version of
Poincare’s conjecture with multiple intersections).

Theorem 3.8 (Furstenberg's Multiple Recurrence Theorem 1978)
For any A C X with pu(A) > 0 and any k € N, there is some integer n such that

pANT"ANT AN---NT~A) > 0.

Using the same ideas, this can be used to show that then any set of positive integers with positive density
contains a (k + 1)-term arithmetic progression.

Today we will see two proofs — of the equivalence between being intersective and being a set of recurrence,
and if time permits, a sketch of the proof that {n? | n € N} is a set of recurrence.

§4 Furstenberg’s Correspondence

Theorem 4.1

For any set £ C N there is a dynamical system (X, u,T) and a subset A C X with u(A) = d(E), such
that for all nq, ..., np € N,

pANT™AN---NT ™ A) <d(EN(E—n1)N---N(E—nyg)).

(In particular, if F' has positive density, then so does A.) This means we can model the outer correlations
of E by the outer correlations of the dynamical system. So in some sense, this is a way to turn the integers
into an actual probability space.

Proof. We will take X to be {0, 1}NY{%} (this is a compact metric space). Identify F with its indicator
function 15 € {0, 1}NV{0},

We will take T to be the shift operator (z,)nen — (Zn+1)nen (i-e., we erase the first letter and shift the rest
of the sequence to the left).

Our set A will be the set of all sequences (zy,)neny With zg = 1; this is a clopen subset of the compact metric
space.

Finally, we need to construct a measure. We first define the finite measures

1 N
UN = N Z 6T_n1E’
n=1

(We're placing a point mass on each of the points in the orbit of 15 — the points 1g, 1g_1, 1g_2, and so
on — and averaging them.)
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Choose a sequence (Nj) such that

_ 1 N
d(E) klggom Z 1g(n li)noloN—knz::l 15— (0).

(Such a sequence exists because d(E) is defined as the lim sup of this quantity over all N, and there must
be a subsequence approaching the lim sup.)

Endowed with the weak-* topology, this is a compact metric space, so every sequence has a convergent
subsequence. Let p be any weak-+ accumulation point of the sequence of measures pp,. (A sequence of
measures v, cconverges to v in the weak-* topology if and only if for all continuous functions f we have

[ fdv, — [ fdv.)

We now have our measure . The fact that u(A) = d(E) follows from the above relation and the definition
of A (since 61, ,(A) is 1 if 15, begins with a 1, or equivalently if & —n contains 0, and is 0 otherwise).
The same reasoning can be used to show u(ANT ™ AN---NT"™A) <d(EN(E—ny)N---N(E—ng)). O

This proves one direction of Furstenberg’s theorem — that if R is a set of recurrence, then it is intersective.
(This is the direction that we need; we will not prove the other direction.)

8§56 The Furstenberg—Sarkozy Theorem

We have the Hilbert space L?(X, 1) and a measure-preserving transformation T', so we can define an operator
Up:L? 5 L? asUpf = foT.

Since T is measure-preserving, we have u(T-1A) = p(A). This means [Urfdu = [ fdu, so (Urf,Urg) =
(f,g). So Ur is a unitary operator. In particular, since unitary operators are isometric, we have ||Urf||; 2 =

111 e

The main theorem in ergodic theory is the following.

Theorem 5.1 (von Neumann's Ergodic Theorem)

If (X, u,T) is a measure-preserving system and f € L? is any function, then

=2

Z Urf — Pf,

where P is an orthogonal projection onto Hi, = {f € L? | UT f = f}.

If X is a finite set, this corresponds to convergence to the l-eigenspace — there, the point is that any
eigenvalue that is not 1 will average out to 0. Here something similar happens — if f is invariant under Up
then this average converges to f itself, while if f is orthogonal to the invariant space then it converges to 0.

Now we will use this to prove that {n? | n € N} is a set of recurrence. We will first prove this for the
specific system corresponding to rotation on a circle (as in the initial example), before seeing the proof in
the abstract case.

Theorem 5.2

The set {n?a mod 1} (for fixed irrational «) is dense in II.
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This is an analog of the Furstenberg—Sérkozy theorem for this specific system. This problem was open for
decades (if « is irrational then it’s known {na mod 1} is dense; it’s natural to ask if the same is true for
n?), and was eventually solved by Hardy. A couple of years later it was proven by Weyl, who came up
with the notion of a uniform distribution — he showed that it’s not just dense, but uniformly distributed.
Uniform distribution can be quantified in the following ways.

Definition 5.3. A sequence (zp)nen is uniformly distributed in II if one of the following equivalent
conditions holds:

1. For all intervals [a,b] C II, we have +#{1 <n < N |z, € [a,b]} = b— a.
2. For all continuous functions f on II, % SN flzn) = [ fda.

3. The above is true for all ezponential functions, ie., 3 SN e(hx,) — 0 for all nonzero integers
h (where e(x) = e2™%),

Theorem 5.4
The set {n?a mod 1} is uniformly distributed.

Proof. We will check the third condition — we want to show that

1N
— Z e(hn*a) — 0
N n=1

for all nonzero h. We can assume h = 1, by absorbing it into « otherwise.

Note that the above average is shift-invariant (as N — 00), so we can consider + SN e((n+1)%a) instead,
and more generally we can shift by any fixed finite number h. We can then average over these values of h,

so it suffices to show that
1N H
n:l h=1

(Think of N as much larger than H — we are taking N — oo first.)

We will actually show that the square of the above expression goes to 0. By Cauchy—Schwarz, this square

is at most 9

—Z Z (n+ h)2a)

Now using |z|” = 2Z, we can expand this out as

HQZ Z (n+ h1)’a — (n + h2)’a).

hi,ha

The expression inside the exponent is 2n(h; — ha)a plus a constant, which is linear; this means we have a
geometric series, which must go to 0, so we are done. O

Van der Corput realized you can do this with things other than squares — if you have a sequence (x,) of
complex numbers with % Z,’Ll TptnZTn — 0 for all h € N| then % Efyzl T, — 0 as well. So if all outer
correlations of a sequence go to 0, the sequence does as well.

In this proof, we used basic properties of averages and Cauchy—Schwarz. So it’s reasonable to think that
the generalization of Van der Corput holds not just for C, but in any place where we have Cauchy—Schwarz.
In particular, the same thing works for any Hilbert space.
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Theorem 5.5

If (v,) € L? and + S0 (2p1p, n) — 0 for all h € N, then H% >N mn‘ — 0.

L2

Now using von Neumann’s Ergodic Theorem, we can split the space of functions into invariant functions,
and functions whose averages go to 0, as
— O} .

But if 7 is measure-preserving, so is 72, and T3, and so on. So we get an infinite number of such decom-
positions; taking the direct sum of the sets on the left and the intersection of the sets on the right gives the
decomposition

DX ={fe L |Urf = o {fet?| |y T Ups

. 1 )
Lz(X,u)_{feLg\Ur}f_fforsomeieN}EB{feLz | ’NZLU%”

—>0f0ralli€N}.

This means we can write any function f as fi + f2, where fi is in the first set and fy in the second. This
corresponds to splitting the dynamical system into things that kind of look like progressions, and things
that look the opposite.

Proof of Furstenberg—Sarkézy. We want to show that u(ANT —n’? A) > 0 for some n. Instead of showing this
for an explicit n (which may be hard to find), we will take an average and show that the average is positive
— so we instead consider

1 X _n2 yl n2
NZM(AQT A):NZ<UT La,14).
n=1 n=1
Now splitting 14 = f1 + f2, this sum becomes
1 X n2 1 X n2
N S (UF f 1)+ N > (UF fa, fo).-
n=1 n=1

In reality there are four terms, not 2; but f; and fs are from orthogonal subspaces which are both invariant
under Ur, so the cross-terms must be 0 by orthogonality. So something really nice has happened, which
is the idea behind Furstenberg’s approach — we’ve isolated two completely different behaviors (completely
rational and completely irrational), which we can think of as a structured and a random component. We
will show that the random component is 0 and the structured component is positive, which suffices.

First, for the random component, we want to show % E(U%Q f2, f2) — 0. To do this, we apply Van der
Corput — taking x,, = UT_"Qfg, it is enough to show that % Z;V:l(xmrh, xn) — 0. We have
h)? 2
(@ wn) = (UF o, U o),

and since Ur is unitary, we can move all copies of it to one side and cancel to get that this equals

n 2
<U}2 e )f2,f2>-

Since fy belongs to the space with % don Uj’?h f — 0, this term (averaged over n) must go to 0, as desired.

This means H% N U%Q ng — 0, so our expression also goes to 0 (by Cauchy-Schwarz).

Next, we want to show that the term from f; is positive. First, all terms in the sum are nonnegative by
properties of orthogonal projections, as f; is the projection of 14 onto this space: if f; is invariant under U%,
then the function f; = max{ f1,0} where we cut away all negative parts is also invariant. But the orthogonal
projection is the function in the relevant space closest to the original function. If f; is not nonnegative, then
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f1 is strictly closer to 14 than f; was, which is a contradiction; so we must have fi = fi, and f; must be
nonnegative.

This means we can ignore all terms except for the multiples of 7; so our expression is at least

N/z

*Z (in) f1,f1 *Hf1||iz-

Finally, the fact that || f1]|;2 > 0 follows from the assumption that p(A) > 0 — we have
0 < u(A) = (14,1),

and since 1 (the constant function) is in the invariant space, we can write this as (14, P1), where P is the
orthogonal projection. But by a property of orthogonal projections, this is then equal to (P14, P1) = (f1,1).
So f1 cannot be the zero function, and must hvae nonzero norm. O
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