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Partitions
A partition X of nis a way of writing
n=MXA+X+- -+ A,

where A\; > Ay > --- > A\ are positive integers.
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Partitions
A partition X of nis a way of writing
n=MXA+X+- -+ A,

where A\; > Ay > --- > A\ are positive integers.

The partitions of 4 are (4), (3,1), (2,2), (2,1,1), and (1,1,1,1).
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Young Diagrams

The partition (4,2,2,1) of 9 corresponds to the following Young diagram:
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Hook Lengths

Given a box in a Young diagram, its hook is the set of boxes below it and
to its right (including the square itself):
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Hook Lengths

Given a box in a Young diagram, its hook is the set of boxes below it and
to its right (including the square itself):

The hook length of a box is the number of boxes in its hook:

[ ]
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Representation Theory of S,

There is a natural way to index irreducible representations of S,, over C
by partitions of n.
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Representation Theory of S,

There is a natural way to index irreducible representations of S, over C
by partitions of n.

The character table takes each irreducible representation p and each
conjugacy class, and records their traces.

L (@) | (12) | (123) | S
vl 1] 1 1 o[ 1] 1 | 1
X1 1 -1 1 E 1| -1 1
X2 | 2] 0 | -1 P 2] 0|1
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Zeros in the Character Table of S,

What proportion of entries in the character table of S, are 07
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:

Zeros in the Character Table of S,

Open Question

What proportion of entries in the character table of S, are 07

Theorem (McSpirit—Ono)

For each d > 0 we have

im 200 _
n=o0 p(n)n9

+00
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Zeros in the Character Table of S,

Open Question

What proportion of entries in the character table of S, are 07

Theorem (McSpirit—Ono)

For each d > 0 we have

im 200 _
n=o0 p(n)n9

+00

Remark
They used p-core p’-partitions to obtain this result.
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p-Core Partitions

A partition is p-core if none of its hook lengths are divisible by p.

The first partition is 3-core, while the second is not:

Sl | | ]

||—l|M-I>U'IOO
—
w
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p’-Partitions

A partition is a p’-partition if none of its parts are divisible by p.

The partition (4,2,2,1) is a 3'-partition; while (6,2, 1) is not:
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Maximal p-Core p’-Partitions

Given a prime p, what is the maximal size of a p-core p’-partition?
p! p p- p-p
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Maximal p-Core p’-Partitions

Given a prime p, what is the maximal size of a p-core p’-partition?

Theorem (McDowell, McSpirit—-Ono)

Any p-core p’-partition \ must satisfy
1
Al < ﬂ(p6 — 4p° + 5p* 4 12p% — 42p% 4 52p — 24).
On the other hand, there exists a p-core p’-partition with

1
A = gg(P° +6p" — 12p® + 89p” — 120p — 48).
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Maximal p-Core p’-Partitions

Let A, denote the unique maximal p-core p’-partition.

How does |A,| behave as p — oo?
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Maximal p-Core p’-Partitions

Let A, denote the unique maximal p-core p’-partition.

Question

How does |A,| behave as p — oo?

Theorem (D)

For all p > 10°, we have

1 1
24p —p°Vp <IN < 4p —%p\/_
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Abacus Notation

The p-abacus consists of p vertical runners, labelled 0 through p — 1,
with positions read from left to right and top to bottom.
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Abacus Notation

Positions are either beads or gaps; position 0 is required to be a gap.
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Abacus Notation
Positions are either beads or gaps; position 0 is required to be a gap.

0 1 2

Each bead contributes a part equal to the number of preceding gaps.

The above abacus corresponds to the partition (5,2,2,1).
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Abacus Notation

Every partition corresponds to a unique abacus.

0 1 2
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:

p-Core Partitions in Abacus Notation

A partition is p-core if and only if in its abacus notation, all beads are
topmost in their runners.
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p-Core Partitions in Abacus Notation

A partition is p-core if and only if in its abacus notation, all beads are
topmost in their runners.

4
2
1

The hook lengths in the leftmost column mod p correspond to the runner
labels of their beads, so there are no beads on runner 0.
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p-Core Partitions in Abacus Notation

A partition is p-core if and only if in its abacus notation, all beads are
topmost in their runners.

The hook lengths in the leftmost column mod p correspond to the runner
labels of their beads, so there are no beads on runner 0. Then delete the
first column by deleting everything before the second gap (moving it to

position 0), so there are no beads below the second gap. And so on. [J
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Bead Multiplicities

The ith bead multiplicity b; is the number of beads on runner j.

0 1 2
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Bead Multiplicities

The ith bead multiplicity b; is the number of beads on runner j.

0 1 2
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More About Abacus Notation

A maximal p-core p'-partition has all beads rightmost in their rows.

0 1 2
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:

More About Abacus Notation

A maximal p-core p’-partition has all beads rightmost in their rows.

First, add beads to the start if necessary, so that the last runner has the
most beads.
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More About Abacus Notation

A maximal p-core p’-partition has all beads rightmost in their rows.

First, add beads to the start if necessary, so that the last runner has the
most beads. Then shift all beads to the right end of their row. O



Introduction Description of Ap Main Idea Analyzing Subtractions Bounding Ap Conclusion

000000000 00000080000 000 00000000 000000000 [ele]
:

p’-Partitions in Abacus Notation

Call an abacus aligned if it has both properties.
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:

p’-Partitions in Abacus Notation

Call an abacus aligned if it has both properties.

For an aligned abacus, all beads in a row contribute equal parts; if the
row contains i gaps followed by p — i beads, these parts are i more than
the parts corresponding to the previous row.
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The Additive Residue Graph

The additive residue graph G, has vertices for the residues mod p, and

edges x — x + i labelled /, for every residue x and every 1 </ < p—1.

0



Introduction Description of Ap Main Idea Analyzing Subtractions Bounding Ap Conclusion

000000000 00000000800 000 00000000 000000000 00
:

Walks on G,

Aligned abaci correspond to walks on G,: start at 0, and for a row with /
gaps, take the edge labelled i. This walk has nondecreasing edge labels;
any such walk corresponds to an aligned abacus.

0
[ J [ 1 1
2
A/\
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Walks on G,

Aligned abaci correspond to walks on G,: start at 0, and for a row with /

gaps, take the edge labelled i. This walk has nondecreasing edge labels;

any such walk corresponds to an aligned abacus.

0
[ J [ 1 1
2
4/\
® 4 1 2

The abacus corresponds to a p’-partition iff the walk never returns to 0.
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Long Walks and A,

Theorem (McDowell)

The unique maximal p-core p’-partition A\, corresponds to the longest
valid walk on G,,.
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Long Walks and A,

Theorem (McDowell)

The unique maximal p-core p’-partition A\, corresponds to the longest
valid walk on G,,.

o 1 2 0
1 1
1+1
2
142 2
‘ 1
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The Longest Walk

The longest walk on G, has an i-edge incident to p — 1 for every i.

This means the longest walk can be split into “independent” segments:
» Start at 0 and take (p — 1) 1-steps to p — 1.
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The Longest Walk

The longest walk on G, has an i-edge incident to p — 1 for every i.

This means the longest walk can be split into “independent” segments:

» Start at 0 and take (p — 1) 1-steps to p — 1.

» Foreach 1 << p—2, start at p — 1, take some number of j-steps,
and some number of (i 4 1)-steps, to return to p — 1 without
visiting 0. (This segment may be empty.)
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The Longest Walk

The longest walk on G, has an i-edge incident to p — 1 for every i.

This means the longest walk can be split into “independent” segments:
» Start at 0 and take (p — 1) 1-steps to p — 1.

» Foreach 1 << p—2, start at p — 1, take some number of j-steps,
and some number of (i 4 1)-steps, to return to p — 1 without
visiting 0. (This segment may be empty.)

» Start at p — 1, and take (p — 2) (p — 1)-steps to 1.
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Analyzing the Segments

Think of the ith segment as walking from p — 1 all the way to 0 (using
i-edges) and back to p — 1 (using (i + 1)-edges), and then cutting off a
loop around 0.
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Analyzing the Segments

Think of the ith segment as walking from p — 1 all the way to 0 (using
i-edges) and back to p — 1 (using (i + 1)-edges), and then cutting off a
loop around 0.

3 4

Focus on the part we're cutting off — say the entire loop (going all the
way to 0) contains x> j-edges and y™* (i + 1)-edges, and the part cut

off contains x; i-edges and y; (i + 1)-edges.



Introduction Description of Ap Main Idea Analyzing Subtractions Bounding Ap Conclusion

000000000 00000000000 (o] Je} 00000000 000000000 [ele]
:

The Subtractions

Fact
If we didn't cut off anything, the total number of i-edges would be p.

In other words, y™3* 4+ x> = p.

[u—y
[o)]
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The Subtractions

Fact
If we didn't cut off anything, the total number of i-edges would be p.

In other words, y™3* 4+ x> = p.
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The Main Idea

The ipﬁ upper bound comes from bounding the number of i-edges
above by p — 2.
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:

The Main ldea

The ipﬁ upper bound comes from bounding the number of i-edges
above by p — 2.

Claim (Main Idea)

On average, the subtractions x; and y; are small (on the order of \/p).
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The Main Idea

The ipﬁ upper bound comes from bounding the number of i-edges
above by p — 2.

On average, the subtractions x; and y; are small (on the order of \/p).

Our proof will proceed in several steps:
» Find a way to estimate the x; and y;.
» Find upper and lower bounds on Y (x; + y;) which are on the order
of p\/p.
» Use the formula for the size of a partition given its bead
multiplicities, and translate these results to bounds on |A,|.
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Equations for x; and y;

Lemma

(xi, yi) Is the solution with minimal x + y to
ix+(i+1)y =0 (mod p)

where 0 < x < x™ and 0 < y <y,

0
1 v 6
\
2 5

/V

3 4

Example

The minimal solution to 2x + 3y =0 (mod 7) with 0 < x < 4 and
0<y<2is(21).
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Finding a Nicer Equation

Every 1 < i < p— 2 can be written as

I+ 1
Hj =_r or r (mod p),
i s s

for relatively prime 0 < r,s < ./p.
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Finding a Nicer Equation

Lemma

Every 1 < i < p— 2 can be written as

i+1 r r

for relatively prime 0 < r,s < \/p.

Lemma

In each case, the pair (r,s) is unique — there is at most one way to write

# = —Z, and at most one way to write # =L
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The First Case
If we can write &2 = —£ (mod p), then our equation for (x;, y;) becomes

sx—ry=0 (mod p).
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:

The First Case

If we can write &2 = —£ (mod p), then our equation for (x;, y;) becomes
sx—ry=0 (mod p).

Lemma

In this case, we have
Xi+yi<r+s.
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!
The First Case
If we can write &2 = —£ (mod p), then our equation for (x;, y;) becomes

sx —ry =0 (mod p).

In this case, we have
xityi<r+s.

Note that (r,s) is a solution to sx — ry =0 (mod p).
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!
The First Case
If we can write &2 = —£ (mod p), then our equation for (x;, y;) becomes

sx —ry =0 (mod p).

In this case, we have
xityi<r+s.

Note that (r,s) is a solution to sx — ry =0 (mod p).
It remains to check that r < x™® and s < y™**. We can do this by
explicitly computing

r+s
s

max
Xi

(mod p) = sx™ +r+s>p. O

1
i
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The Second Case

Meanwhile, if # = £ (mod p), the equation becomes

sx+ry=0 (mod p).
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Meanwhile, if # = £ (mod p), the equation becomes
sx+ry =0 (mod p).
In this case, we have
p

p .
=~ ) X; + yi ax(r.3) + max(r,s) — min(r, s)
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Meanwhile, if # = £ (mod p), the equation becomes

sx+ry =0 (mod p).

In this case, we have

P .
W <X,'+_y,' < W+max(r,5)—mln(r,5).

For any solution (x,y),

max(r,s) - (x +y) > sx+ry > p.
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The Second Case

WLOG s > r. Choose 0 < a < rs with s | (p — a) and r | a, and take

= (B552).

We can check x < x™® and y < y™® as in the previous case. O

0 1 2 3 4 5 6 7 8 9 10 11
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Upper Bound on Subtractions

Lemma

=3 11
E (xi +yi) < ?P\/I_’-
i=1
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Upper Bound on Subtractions

h
N

(xi +¥i) < 5 PVP-

Il
=

For the # = —g case, the total contribution is at most

Z(r—i—s) <2(v/p—-1) Z r < py/p.
(r.s) r<\/p
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Upper Bound on Subtractions

For the # = g case, the total contribution is less than

Z S max(r,s) — 1.

= max(r, s)
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Upper Bound on Subtractions

For the # = L case, the total contribution is less than

Z S max(r,s) — 1.
max(r, s)
(r:s)

Every m = max(r, s) occurs less than 2m times, giving the upper bound

8
m;/ﬁ2m (%—l—m—l) <§p\/ﬁ. O
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Lower Bound on Subtractions

Lemma

p—2

6
> i+ yi) > =PV/P — 16p,

i=1
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Lower Bound on Subtractions

p—2 6
> (xi+yi) > =PV/P — 16p,

i=1

Only consider the &1 = L case. Every m = max(r, s) occurs exactly

2¢(m) times (if m > 1) gwmg the lower bound

p 6
2 - = 2p —+/p.
2 2edm) s Gy

<m<,/p
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Row Multiplicities

The ith row multiplicity m; is the number of rows with i gaps.

0 1 2

Then bj=my +my + -+ + m;.
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Row Multiplicities

Fact
Forall2<i<p—2 mi=p—y_1—Xx.

0

\6

ju—y

» For the (i — 1)th segment, we take y™3* i-edges, and cut off y;_.
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Row Multiplicities

Forall2<i<p—2 mi=p—y_1—Xx.

» For the (i — 1)th segment, we take y™3* i-edges, and cut off y;_.
» For the jth segment, we take x™®* j-edges, and cut off x;.
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Row Multiplicities

Forall2<i<p—2 mi=p—y_1—Xx.

0

» For the (i — 1)th segment, we take y™3* i-edges, and cut off y;_.
» For the jth segment, we take x™®* j-edges, and cut off x;.
» We know y™3 + x** = p.
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A Useful Symmetry

Fact
Forall2<i<p—2, mi=m,_; (while mp_y =m; —1).

0

N/
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Cumulative Subtractions
We have

bi=(p—x)+(p—yi—x)+ - +(p—yi-1+x)

so define ¢; = ip — bj and ¢ = f;lz(x,- + vi)-
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Cumulative Subtractions
We have

bi=(p—x)+(p—y1—x)+ - +(p—yi-1+x),

so define ¢; = ip — bj and ¢ = f;lz(x,- + vi)-

We have ¢; + cp—1—i=c forall1 <i<p—2,and cp_1 = c+ 1.
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The Theorem

Theorem (D)

For all p > 10°, we have

1 1
24p —p\/_<|/\p|< p —ﬁpx/_
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The Theorem

For all p > 10°%, we have

1 1
— A _
54 P° = PPVP <IN < o p° 200p °\/P-

Recall that

P

p > . op—1
A _- E L 2 _ .
|P‘ < b) +2 bl+ (’ 2 )bla

where b; = ip — ¢;. The idea is to translate our previous bounds on ¢ to
bounds on |A,|, using this formula.
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The Lower Bound

Using the symmetry ¢; + ¢c,—1—; = ¢, we get

p—1 p—1
3 _ pc

Zb; = Z(ip— Gi) ~ 'DT
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:

The Lower Bound

Using the symmetry ¢; + ¢c,—1—; = ¢, we get
S P’ — pc
Z;b,- = Z;(ipf G) =~ —
i= i=

For the second term, use the bound

p—1 p—1 p5
b2 > ’p? — 2ipc) ~ — — p3c.
; ; ;( P’ —2ipc) = S —p



Introduction Description of Ap Main Idea Analyzing Subtractions Bounding Ap Conclusion

000000000 00000000000 000 00000000 00000e000 00
:

The Lower Bound

Using the symmetry ¢; + ¢c,—1—; = ¢, we get
S P’ — pc
Z;b,- = Z;(ipf G) =~ —
i= i=

For the second term, use the bound
p—1 p—1 p5
b2 > i2p? — 2ipc) ~ = — p3c.
; ; ;( P’ —2ipc) = S —p

Combining these and using ¢ < %pﬁ gives a lower bound around

2
1 (p®—pc p (P 3 p° plc _p°
—— | — | = - R——— > — — O
2( 2 )+2 3 PC)¥% & T PVP
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The Upper Bound

Again, the first term is around

1 [Pt 6 4

p° | pc
S b | ~ -5 + 2=
2 |2 st a
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The Upper Bound

Again, the first term is around
(55)-2
—= b,' N ——+ —.
2 \= 4

For the second, pair terms and use symmetry: b? + b,23_1_,- is around

p(i7+(p—1—1i)) = cp(p — 1) — p(c — 2¢;)(p — 1 — 2i).



Introduction Description of Ap Main Idea Analyzing Subtractions Bounding Ap Conclusion

000000000 00000000000 000 00000000 000000080 00
:

Another Lemma

2
Clp/18) < gPVP + P



Conclusion
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Another Lemma

2
Clp/18] < gPVP+ P-

The largest bounds are £ + m — 1, where £ = £ with max(r, s) = m.
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Another Lemma

2
Clp/18] < gPVP+ P-

The largest bounds are £ + m — 1, where £ = £ with max(r, s) = m.

Each m occurs for at most m pairs (r,s). Since

VPP

1424... 7
FRAFoo0 A 3 18’
by bounding each term individually we get
Z m(£+m—1)<gp\/,5+p O]
m 5 ’

m</p/3+1
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Finishing the Upper Bound

Recall that b7 4 b5, ; was around

p(i+(p—1—1i)) = cp(p — 1) — p(c — 2¢;)(p — 1 — 2i).
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Finishing the Upper Bound

Recall that b7 4 b5, ; was around
p(i+(p—1—1i)) = cp(p — 1) — p(c — 2¢;)(p — 1 — 2i).

Now, for i < %, the last term has nontrivial contribution! Use

6 2
c—2c,->5p\fp—16p—2(5pﬁ+p),

andp—1—2i>gp—1.
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Conclusion
00

Finishing the Upper Bound

Recall that b7 4 b5, ; was around

p(i+(p—1—1i)) = cp(p — 1) — p(c — 2¢;)(p — 1 — 2i).

Now, for i < £, the last term has nontrivial contribution! Use

18"
6 2
c—2c;>gp\//3—16p—2 gp\/ﬁ+p ;

and p—1—2i > gp—l.
Combining everything gets a bound of around

6 4 6 4 5
P Py, (P _Pc PP
( g " )+(6 2 120)'
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Summary

Theorem (D)

For all p > 10°, we have

1 1
24p -V <INl < 24P QOOP\/_
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:

Summary

For all p > 10°%, we have

1
5 5
- A — —p°/p.
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