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Partitions

Definition

A partition λ of n is a way of writing

n = λ1 + λ2 + · · ·+ λk ,

where λ1 ≥ λ2 ≥ · · · ≥ λk are positive integers.

Example

The partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1).
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Young Diagrams

Example

The partition (4, 2, 2, 1) of 9 corresponds to the following Young diagram:
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Hook Lengths

Given a box in a Young diagram, its hook is the set of boxes below it and
to its right (including the square itself):

The hook length of a box is the number of boxes in its hook:

4
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Representation Theory of Sn

Fact

There is a natural way to index irreducible representations of Sn over C
by partitions of n.

Character Tables

The character table takes each irreducible representation ρ and each
conjugacy class, and records their traces.

(1) (12) (123)

χ0 1 1 1
χ1 1 −1 1
χ2 2 0 −1

1 1 1
1 −1 1

2 0 −1

S3 case
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Zeros in the Character Table of Sn

Open Question

What proportion of entries in the character table of Sn are 0?

Theorem (McSpirit–Ono)

For each d > 0 we have

lim
n→∞

Z (n)

p(n)nd
= +∞.

Remark

They used p-core p′-partitions to obtain this result.
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p-Core Partitions

Definition

A partition is p-core if none of its hook lengths are divisible by p.

Example

The first partition is 3-core, while the second is not:

8 5 2 1

5 2

4 1

2

1

3
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p′-Partitions

Definition

A partition is a p′-partition if none of its parts are divisible by p.

Example

The partition (4, 2, 2, 1) is a 3′-partition; while (6, 2, 1) is not:
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Maximal p-Core p′-Partitions

Question

Given a prime p, what is the maximal size of a p-core p′-partition?

Theorem (McDowell, McSpirit–Ono)

Any p-core p′-partition λ must satisfy

|λ| ≤ 1

24
(p6 − 4p5 + 5p4 + 12p3 − 42p2 + 52p − 24).

On the other hand, there exists a p-core p′-partition with

|λ| =
1

96
(p6 + 6p4 − 12p3 + 89p2 − 120p − 48).
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Maximal p-Core p′-Partitions

Definition

Let Λp denote the unique maximal p-core p′-partition.

Question

How does |Λp| behave as p →∞?

Theorem (D)

For all p > 106, we have

1

24
p6 − p5√p < |Λp| <

1

24
p6 − 1

200
p5√p.
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Abacus Notation

The p-abacus consists of p vertical runners, labelled 0 through p − 1,
with positions read from left to right and top to bottom.

0 1 2

...
...

...

(0) (1) (2)

(3) (4) (5)

(6) (7) (8)
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Abacus Notation

Positions are either beads or gaps; position 0 is required to be a gap.

0 1 2

× ×

×

× ×

Each bead contributes a part equal to the number of preceding gaps.

Example

The above abacus corresponds to the partition (5, 2, 2, 1).
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Abacus Notation

Positions are either beads or gaps; position 0 is required to be a gap.

0 1 2

× ×

×

× ×

Each bead contributes a part equal to the number of preceding gaps.

Example

The above abacus corresponds to the partition (5, 2, 2, 1).
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Abacus Notation

Fact

Every partition corresponds to a unique abacus.

0 1 2

× ×

×

× ×
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p-Core Partitions in Abacus Notation

Fact

A partition is p-core if and only if in its abacus notation, all beads are
topmost in their runners.

0 1 2

×

× ×

Proof outline.

The hook lengths in the leftmost column mod p correspond to the runner
labels of their beads, so there are no beads on runner 0. Then delete the
first column by deleting everything before the second gap (moving it to
position 0), so there are no beads below the second gap. And so on.
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4

2

1
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position 0), so there are no beads below the second gap. And so on.
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1
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Bead Multiplicities

Definition

The ith bead multiplicity bi is the number of beads on runner i .

0 1 2

×

× ×

2 1

Lemma

|λ| = −1

2

(
p−1∑
i=1

bi

)2

+
p

2

p−1∑
i=1

b2
i +

p−1∑
i=1

(
i − p − 1

2

)
bi .
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More About Abacus Notation

Fact

A maximal p-core p′-partition has all beads rightmost in their rows.

0 1 2

×

× ×

Proof Outline.

First, add beads to the start if necessary, so that the last runner has the
most beads. Then shift all beads to the right end of their row.
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p′-Partitions in Abacus Notation

Definition

Call an abacus aligned if it has both properties.

Fact

For an aligned abacus, all beads in a row contribute equal parts; if the
row contains i gaps followed by p − i beads, these parts are i more than
the parts corresponding to the previous row.

0 1 2

×

×

× ×

1

2

4

+1

+2
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The Additive Residue Graph

Definition

The additive residue graph Gp has vertices for the residues mod p, and
edges x → x + i labelled i , for every residue x and every 1 ≤ i ≤ p − 1.

0

1 2

1

1

1

2

2

2
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Walks on Gp
Aligned abaci correspond to walks on Gp: start at 0, and for a row with i
gaps, take the edge labelled i . This walk has nondecreasing edge labels;
any such walk corresponds to an aligned abacus.

0 1 2

×

×

× ×

1

2

4

+1

+2

0

1 2

1

1

2

Fact

The abacus corresponds to a p′-partition iff the walk never returns to 0.
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Long Walks and Λp

Theorem (McDowell)

The unique maximal p-core p′-partition Λp corresponds to the longest
valid walk on Gp.
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×

×

× ×

1

2

4
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0

1 2

1

1

1

2

2
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The Longest Walk

Theorem (McDowell)

The longest walk on Gp has an i-edge incident to p − 1 for every i .

This means the longest walk can be split into “independent” segments:

I Start at 0 and take (p − 1) 1-steps to p − 1.

I For each 1 ≤ i ≤ p − 2, start at p − 1, take some number of i-steps,
and some number of (i + 1)-steps, to return to p − 1 without
visiting 0. (This segment may be empty.)

I Start at p − 1, and take (p − 2) (p − 1)-steps to 1.

0

1

2 3

4
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Analyzing the Segments

Think of the ith segment as walking from p − 1 all the way to 0 (using
i-edges) and back to p − 1 (using (i + 1)-edges), and then cutting off a
loop around 0.

0

1

2

3 4

5

6

Focus on the part we’re cutting off — say the entire loop (going all the
way to 0) contains xmax

i i-edges and ymax
i (i + 1)-edges, and the part cut

off contains xi i-edges and yi (i + 1)-edges.
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The Subtractions

Fact

If we didn’t cut off anything, the total number of i -edges would be p.

In other words, ymax
i−1 + xmax

i = p.

0

1

2

3 4

5

6
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The Main Idea

The 1
24p

6 upper bound comes from bounding the number of i-edges
above by p − 2.

Claim (Main Idea)

On average, the subtractions xi and yi are small (on the order of
√
p).

Our proof will proceed in several steps:

I Find a way to estimate the xi and yi .

I Find upper and lower bounds on
∑

(xi + yi ) which are on the order
of p
√
p.

I Use the formula for the size of a partition given its bead
multiplicities, and translate these results to bounds on |Λp|.
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Equations for xi and yi

Lemma

(xi , yi ) is the solution with minimal x + y to

ix + (i + 1)y ≡ 0 (mod p)

where 0 < x ≤ xmax
i and 0 < y ≤ ymax

i .

0
1

2

3 4

5

6

Example

The minimal solution to 2x + 3y ≡ 0 (mod 7) with 0 < x ≤ 4 and
0 < y ≤ 2 is (2, 1).
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Finding a Nicer Equation

Lemma

Every 1 ≤ i ≤ p − 2 can be written as

i + 1

i
≡ − r

s
or

r

s
(mod p),

for relatively prime 0 < r , s <
√
p.

Lemma

In each case, the pair (r , s) is unique — there is at most one way to write
i+1
i ≡ −

r
s , and at most one way to write i+1

i ≡
r
s .
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The First Case

If we can write i+1
i ≡ −

r
s (mod p), then our equation for (xi , yi ) becomes

sx − ry ≡ 0 (mod p).

Lemma

In this case, we have
xi + yi ≤ r + s.

Proof.

Note that (r , s) is a solution to sx − ry ≡ 0 (mod p).
It remains to check that r ≤ xmax

i and s ≤ ymax
i . We can do this by

explicitly computing

xmax
i ≡ 1

i
≡ − r + s

s
(mod p) =⇒ sxmax

i + r + s ≥ p.
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The Second Case

Meanwhile, if i+1
i ≡

r
s (mod p), the equation becomes

sx + ry ≡ 0 (mod p).

Lemma

In this case, we have

p

max(r , s)
< xi + yi <

p

max(r , s)
+ max(r , s)−min(r , s).

Proof of Lower Bound.

For any solution (x , y),

max(r , s) · (x + y) > sx + ry ≥ p.
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The Second Case

Proof of Upper Bound.

WLOG s > r . Choose 0 < a < rs with s | (p − a) and r | a, and take

(x , y) =

(
p − a

s
,
a

r

)
.

We can check x ≤ xmax
i and y ≤ ymax

i as in the previous case.

0 1 2 3 4 5 6 7 8 9 10 11

a
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Upper Bound on Subtractions

Lemma

p−2∑
i=1

(xi + yi ) <
11

3
p
√
p.

Proof.

For the i+1
i ≡ −

r
s case, the total contribution is at most∑
(r ,s)

(r + s) < 2(
√
p − 1)

∑
r<
√
p

r < p
√
p.
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Upper Bound on Subtractions

Proof (Cont.)

For the i+1
i ≡

r
s case, the total contribution is less than∑

(r ,s)

p

max(r , s)
+ max(r , s)− 1.

Every m = max(r , s) occurs less than 2m times, giving the upper bound∑
m<
√
p

2m
( p

m
+ m − 1

)
<

8

3
p
√
p.
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Lower Bound on Subtractions

Lemma

p−2∑
i=1

(xi + yi ) >
6

5
p
√
p − 16p.

Proof.

Only consider the i+1
i ≡

r
s case. Every m = max(r , s) occurs exactly

2ϕ(m) times (if m > 1), giving the lower bound∑
2≤m<

√
p

2ϕ(m) · p
m
≈ 2p · 6

π2

√
p.
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Row Multiplicities

Definition

The ith row multiplicity mi is the number of rows with i gaps.

0 1 2

×

×

× ×

2 3

m1 = 2

m2 = 1

Then bi = m1 + m2 + · · ·+ mi .
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Row Multiplicities

Fact

For all 2 ≤ i ≤ p − 2, mi = p − yi−1 − xi .

0

1

2

3 4

5

6

I For the (i − 1)th segment, we take ymax
i−1 i-edges, and cut off yi−1.

I For the ith segment, we take xmax
i i-edges, and cut off xi .

I We know ymax
i−1 + xmax

i = p.
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A Useful Symmetry

Fact

For all 2 ≤ i ≤ p − 2, mi = mp−i (while mp−1 = m1 − 1).

0

1

2 3

4
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Cumulative Subtractions

We have

bi = (p − x1) + (p − y1 − x2) + · · ·+ (p − yi−1 + xi ),

so define ci = ip − bi and c =
∑p−2

i=1 (xi + yi ).

Fact

We have ci + cp−1−i = c for all 1 ≤ i ≤ p − 2, and cp−1 = c + 1.
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The Theorem

Theorem (D)

For all p > 106, we have

1

24
p6 − p5√p < |Λp| <

1

24
p6 − 1

200
p5√p.

Recall that

|Λp| = −1

2

(
p−1∑
i=1

bi

)2

+
p

2

p−1∑
i=1

b2
i +

p−1∑
i=1

(
i − p − 1

2

)
bi ,

where bi = ip − ci . The idea is to translate our previous bounds on c to
bounds on |Λp|, using this formula.
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The Lower Bound

Proof of Lower Bound.

Using the symmetry ci + cp−1−i = c , we get

p−1∑
i=1

bi =

p−1∑
i=1

(ip − ci ) ≈
p3 − pc

2
.

For the second term, use the bound

p−1∑
i=1

b2
i >

p−1∑
i=1

(i2p2 − 2ipc) ≈ p5

3
− p3c .

Combining these and using c < 11
3 p
√
p gives a lower bound around

−1

2

(
p3 − pc

2

)2

+
p

2

(
p5

3
− p3c

)
≈ p6

24
− p4c

4
>

p6

24
− p5√p.
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The Upper Bound

Proof of Upper Bound.

Again, the first term is around

−1

2

(
p−1∑
i=1

bi

)
≈ −p6

8
+

p4c

4
.

For the second, pair terms and use symmetry: b2
i + b2

p−1−i is around

p2(i2 + (p − 1− i)2)− cp(p − 1)− p(c − 2ci )(p − 1− 2i).
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Another Lemma

Lemma

cbp/18c <
2

5
p
√
p + p.

Proof.

The largest bounds are p
m + m − 1, where i+1

i ≡
r
s with max(r , s) = m.

Each m occurs for at most m pairs (r , s). Since

1 + 2 + · · ·+
√
p

3
≈ p

18
,

by bounding each term individually we get∑
m<
√
p/3+1

m
( p

m
+ m − 1

)
<

2

5
p
√
p + p.
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Finishing the Upper Bound

Proof of Upper Bound (Cont.)

Recall that b2
i + b2

p−1−i was around

p2(i2 + (p − 1− i)2)− cp(p − 1)− p(c − 2ci )(p − 1− 2i).

Now, for i < p
18 , the last term has nontrivial contribution! Use

c − 2ci >
6

5
p
√
p − 16p − 2

(
2

5
p
√
p + p

)
,

and p − 1− 2i > 8
9p − 1.

Combining everything gets a bound of around(
−p6

8
+

p4c

4

)
+

(
p6

6
− p4c

4
−

p5√p
120

)
.



Introduction Description of Λp Main Idea Analyzing Subtractions Bounding Λp Conclusion

Finishing the Upper Bound

Proof of Upper Bound (Cont.)

Recall that b2
i + b2

p−1−i was around

p2(i2 + (p − 1− i)2)− cp(p − 1)− p(c − 2ci )(p − 1− 2i).

Now, for i < p
18 , the last term has nontrivial contribution! Use

c − 2ci >
6

5
p
√
p − 16p − 2

(
2

5
p
√
p + p

)
,

and p − 1− 2i > 8
9p − 1.

Combining everything gets a bound of around(
−p6

8
+

p4c

4

)
+

(
p6

6
− p4c

4
−

p5√p
120

)
.



Introduction Description of Λp Main Idea Analyzing Subtractions Bounding Λp Conclusion

Finishing the Upper Bound

Proof of Upper Bound (Cont.)

Recall that b2
i + b2

p−1−i was around

p2(i2 + (p − 1− i)2)− cp(p − 1)− p(c − 2ci )(p − 1− 2i).

Now, for i < p
18 , the last term has nontrivial contribution! Use

c − 2ci >
6

5
p
√
p − 16p − 2

(
2

5
p
√
p + p

)
,

and p − 1− 2i > 8
9p − 1.

Combining everything gets a bound of around(
−p6

8
+

p4c

4

)
+

(
p6

6
− p4c

4
−

p5√p
120

)
.



Introduction Description of Λp Main Idea Analyzing Subtractions Bounding Λp Conclusion

Summary

Theorem (D)

For all p > 106, we have

1

24
p6 − p5√p < |Λp| <

1

24
p6 − 1

200
p5√p.
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