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Motivation

Question

Suppose we have a big set of numbers, and we know that every small
subset is ‘arithmetically unstructured.’ How arithmetically unstructured
does the entire set have to be?

I In other words, can we go from ‘local arithmetic unstructuredness’
to ‘global arithmetic unstructuredness’?

I We can measure how ‘arithmetically unstructured’ a set is by how
many distinct differences it contains — we can think of sets with
lots of distinct differences as unstructured.

Question

Suppose we have a big set of numbers, and we know that every small
subset has lots of distinct differences. How many distinct differences does
this force the entire set to have?
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The Question

Definition

For a set A ⊆ R, its difference set is A− A = {a− b | a, b ∈ A, a > b}.

Definition

We define g(n, k, `) to be min |A− A| over all n-element sets A ⊆ R with
the ‘local property’ that every k-element subset A′ ⊆ A has |A′ − A′| ≥ `.

Question

For fixed k and `, how does g(n, k, `) grow asymptotically with n?

Observation

Any n-element set A satisfies n − 1 ≤ |A− A| ≤
(
n
2

)
. So we consider `

with k − 1 ≤ ` ≤
(
k
2

)
; then g(n, k, `) is always at least linear in n, and at

most quadratic in n.
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Thresholds

Question

As we increase ` from k − 1 to
(
k
2

)
, at what point does g(n, k, `) begin to

behave in a certain way?

Definition

I The superlinear threshold is the largest ` (as a function of k) for
which g(n, k, `) = O(n).

I The quadratic threshold is the smallest ` with g(n, k, `) = Ω(n2).

Theorem (Li ’22)

For each k, the superlinear threshold is k − 1.

Theorem (Li ’22)

For each k, the quadratic threshold is at most ≈ 3
8k

2.
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Previous bounds

Several lower bounds are known.

I Fish, Pohoata, Sheffer (2020) proved a family of lower bounds for `
between ≈ 7

32k
2 and ≈ 1

4k
2 — e.g., when 4 | k , we have

g

(
n, k ,

k2

4
+ 1

)
= Ω(n2−

8
k ).

I Li (2022) proved several others — e.g., when k is a power of 2,

g

(
n, k,

k log2 3 + 1

2

)
= Ω(n1+

2
k−2 ).

Some upper bounds are known for ‘small’ ` (compared to k2), due to
Fish–Lund–Sheffer (2019), Fish–Pohoata–Sheffer (2020), and Li (2022).

I Fish, Lund, Sheffer (2019) proved that

g

(
n, k,

k log2 3 − 1

2

)
= O(nlog2 3).



Introduction Our results Acknowledgements

Previous bounds

Several lower bounds are known.

I Fish, Pohoata, Sheffer (2020) proved a family of lower bounds for `
between ≈ 7

32k
2 and ≈ 1

4k
2 — e.g., when 4 | k , we have

g

(
n, k ,

k2

4
+ 1

)
= Ω(n2−

8
k ).

I Li (2022) proved several others — e.g., when k is a power of 2,

g

(
n, k ,

k log2 3 + 1

2

)
= Ω(n1+

2
k−2 ).

Some upper bounds are known for ‘small’ ` (compared to k2), due to
Fish–Lund–Sheffer (2019), Fish–Pohoata–Sheffer (2020), and Li (2022).

I Fish, Lund, Sheffer (2019) proved that

g

(
n, k,

k log2 3 − 1

2

)
= O(nlog2 3).



Introduction Our results Acknowledgements

Previous bounds

Several lower bounds are known.

I Fish, Pohoata, Sheffer (2020) proved a family of lower bounds for `
between ≈ 7

32k
2 and ≈ 1

4k
2 — e.g., when 4 | k , we have

g

(
n, k ,

k2

4
+ 1

)
= Ω(n2−

8
k ).

I Li (2022) proved several others — e.g., when k is a power of 2,

g

(
n, k ,

k log2 3 + 1

2

)
= Ω(n1+

2
k−2 ).

Some upper bounds are known for ‘small’ ` (compared to k2), due to
Fish–Lund–Sheffer (2019), Fish–Pohoata–Sheffer (2020), and Li (2022).

I Fish, Lund, Sheffer (2019) proved that

g

(
n, k ,

k log2 3 − 1

2

)
= O(nlog2 3).



Introduction Our results Acknowledgements

The quadratic threshold

Theorem (D. ’23+)

I For k even, the quadratic threshold is k2

4 + 1.

I For k odd, the quadratic threshold is between (k+1)2

4 − 3 and (k+1)2

4 .

I To prove that g(n, k, k2

4 + 1) = Ω(n2), we show that any set A with
|A− A| � n2 must contain k elements with

a1 + a2 = a3 + a4 = · · · = ak−1 + ak .

Then {a1, . . . , ak} has at most k2

4 distinct differences.

I To prove that g(n, k, k2

4 ) = o(n2), we use a random construction.
We analyze which k-element ‘configurations’ are expected to appear

in it, and show that all of them have at least k2

4 distinct differences
(i.e., the configuration a1 + a2 = · · · = ak−1 + ak is the ‘worst’).
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Intermediate bounds

Theorem (D. ’23+)

For all 1 < c ≤ 2, we have g(n, k , `) = o(nc) for ` ≈
(
c−1
c

)2
k2.

Theorem (D. ’23+)

For all t ∈ N, we have g(n, k, `) = Ω(n1+
1

2t−1 ) for ` ≈ 1
3 ·

(
3
4

)t
k2.

`/k2

c
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Thresholds for Ω(nc)

Definition

For each 1 < c ≤ 2, we define the threshold for Ω(nc) as the smallest `
(as a function of k) for which g(n, k , `) = Ω(nc).

Corollary (D. ’23+)

For each 1 < c ≤ 2, the threshold for Ω(nc) is quadratic in k (i.e.,
between ≈ a1k

2 and a2k
2 for some a1 and a2).

`/k2

1/21/4

2

1

c

a2a1
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The number of possible exponents

Definition

We define Sk as the set of ‘possible exponents’ of n in g(n, k, `), i.e.,

Sk =

{
lim inf
n→∞

log g(n, k , `)

log n

∣∣∣ k − 1 ≤ ` ≤
(
k

2

)}
.

Corollary (D. ’23+)

For some constant a > 0, we have |Sk | ≥ a log log k for all k.

`/k2

`1

exponent
for `1

`2

exponent
for `2

`3

exponent
for `3
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