Introduction Our results Acknowledgements

0000 0000 [©]
:

A local properties problem for difference sets

Sanjana Das
Massachusetts Institute of Technology

JMM 2024



Introduction Our results Acknowledgements

0000 0000 [©]
:

Motivation

Suppose we have a big set of numbers, and we know that every small
subset is ‘arithmetically unstructured.” How arithmetically unstructured
does the entire set have to be?



Introduction Our results Acknowledgements

0000 0000 [©]
:

Motivation

Suppose we have a big set of numbers, and we know that every small
subset is ‘arithmetically unstructured.” How arithmetically unstructured
does the entire set have to be?

» In other words, can we go from ‘local arithmetic unstructuredness’
to ‘global arithmetic unstructuredness’?



Introduction Our results Acknowledgements
0000 0000 [©]

Motivation

Suppose we have a big set of numbers, and we know that every small
subset is ‘arithmetically unstructured.” How arithmetically unstructured
does the entire set have to be?

» In other words, can we go from ‘local arithmetic unstructuredness’
to ‘global arithmetic unstructuredness’?

» We can measure how ‘arithmetically unstructured’ a set is by how
many distinct differences it contains — we can think of sets with
lots of distinct differences as unstructured.



Introduction Our results Acknowledgements
0000 0000 [©]

Motivation

Suppose we have a big set of numbers, and we know that every small
subset is ‘arithmetically unstructured.” How arithmetically unstructured
does the entire set have to be?

» In other words, can we go from ‘local arithmetic unstructuredness’
to ‘global arithmetic unstructuredness’?

» We can measure how ‘arithmetically unstructured’ a set is by how
many distinct differences it contains — we can think of sets with
lots of distinct differences as unstructured.

Suppose we have a big set of numbers, and we know that every small
subset has lots of distinct differences. How many distinct differences does
this force the entire set to have?
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The Question

For a set A C R, its difference setis A—A={a—b|abeA, a> b}

We define g(n, k, /) to be min |A — A| over all n-element sets A C R with
the ‘local property’ that every k-element subset A’ C A has |A" — A’| > /.

For fixed k and ¢, how does g(n, k, £) grow asymptotically with n?

Any n-element set A satisfies n — 1 < |A— A| < (5). So we consider ¢

with k—1< /< (’;) then g(n, k, £) is always at least linear in n, and at
most quadratic in n.
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Thresholds

As we increase £ from k — 1 to (’2() at what point does g(n, k, £) begin to
behave in a certain way?

» The superlinear threshold is the largest ¢ (as a function of k) for
which g(n, k,£) = O(n).
» The quadratic threshold is the smallest £ with g(n, k,£) = Q(n?).

For each k, the superlinear threshold is k — 1.

For each k, the quadratic threshold is at most ~ 3 k>.
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Previous bounds

Several lower bounds are known.

» Fish, Pohoata, Sheffer (2020) proved a family of lower bounds for ¢
between ~ 37—2k2 and ~ %kz — e.g., when 4 | k, we have

k2 8
g <n7 k, " + 1) = Q(n*"%).

» Li (2022) proved several others — e.g., when k is a power of 2,

klog 3 1
g (n, k, 22+) = Q(nHﬁ).

Some upper bounds are known for ‘small’ ¢ (compared to k?), due to
Fish—Lund-Sheffer (2019), Fish-Pohoata—Sheffer (2020), and Li (2022).

» Fish, Lund, Sheffer (2019) proved that

klog 3 _ 1
g (n, k, 722 ) = O(n'"823),
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The quadratic threshold

» For k even, the quadratic threshold is %2 + 1.

» For k odd, the quadratic threshold is between (kjl) — 3 and @.

» To prove that g(n, k, k + 1) = Q(n?), we show that any set A with
|A— Al < n® must contain k elements with

apta=a+ag=--=ak-1+a.

2 L. .
Then {ay,...,ac} has at most & distinct differences.

» To prove that g(n, k, %2) = o(n?), we use a random construction.
We analyze which k-element ‘configurations’ are expected to appear
in it, and show that all of them have at least %2 distinct differences
(i.e., the configuration a; 4+ ap = - -+ = ax_1 + ax is the ‘worst’).
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Theorem (D. '23+)
For all 1 < ¢ <2, we have g(n, k,{) = o(n°) for £ ~ (‘:—;1)2 k2.

Theorem (D. '23+)

For all t € N, we have g(n, k,¢) = Q(n** 1) for ¢ ~ - (3) k2.
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Intermediate bounds

Theorem (D. '23+)

For all 1 < ¢ <2, we have g(n, k,{) = o(n°) for £ ~ (5—21)2 k2.

Theorem (D. '23+)

For all t € N, we have g(n, k,¢) = Q(n** 1) for ¢ ~ - (3) k2.

9 /‘64 3 /‘16 1/4 1/2
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Thresholds for Q(n°)

For each 1 < ¢ < 2, we define the threshold for Q(n°) as the smallest £

(as a function of k) for which g(n, k, £) = Q(n°).

For each 1 < ¢ < 2, the threshold for Q(n®) is quadratic in k (i.e.,
between = a1 k? and ayk® for some a; and a,).
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We define Sy as the set of ‘possible exponents’ of nin g(n, k,£), i.e.,

Sk—{liminflogg(n’k’e) k—1<(< <’2<)}

n—00 log n

For some constant a > 0, we have |Si| > aloglog k for all k.
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The number of possible exponents

We define Sy as the set of ‘possible exponents’ of nin g(n, k,£), i.e.,

S = {Iim inf 1988

logg(mkf) |\ _1<4< <’<)}
n—oo log n 2

For some constant a > 0, we have |Si| > aloglog k for all k.

exponent A

for ¢4

exponent4
for 4,

exponent{ -4
- — 4

for [3

Ty

l3



Introduction Our results Acknowledgements

0000 0000 [
: :

Acknowledgements

This research was conducted at the University of Minnesota Duluth REU
and supported by the generosity of Jane Street Capital, the National
Security Agency, and the CYAN Undergraduate Mathematics Fund. |
would like to thank Joe Gallian and Colin Defant for organizing the REU,
and Noah Kravitz, Maya Sankar, and Yelena Mandelshtam for helpful
guidance.

Thanks for listening!



	Introduction
	Our results
	Acknowledgements

