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The distinct distances problem

Imagine we’ve got a set of points P ⊆ R2. We’re interested in the
number of distinct distances between two points in P.

 3 distinct distances
(1,
√

3, and 2)

Question (Erdős 1946)

What’s the minimum number of distinct distances in a set of n points?
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Upper bounds

I n equally spaced points on a line have n − 1 distinct distances.

I n equally spaced points on a circle have bn/2c distinct distances.

I (Erdős 1946) A
√
n×
√
n lattice has O(n/

√
log n) distinct distances.

d =
√
a2 + b2

b

a

The idea is that a, b ≤
√
n, so a2 + b2 ∈ {1, . . . , 2n}; and only a

1/
√

log n fraction of integers in this range are a sum of squares.
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Lower bounds

Lower bound Authors

Ω(n1/2) Erdős 1946

Ω(n2/3) Moser 1952

Ω(n5/7) Chung 1984

Ω(n4/5/ log n) Chung–Szemerédi–Trotter 1992

Ω(n4/5) Székely 1997

Ω(n6/7) Solymosi–Tóth 2001

Ω(n0.8634) Tardos 2001

Ω(n0.8641) Katz–Tardos 2004

Ω(n/ log n) Guth–Katz 2010

The Guth–Katz result solves the problem up to a factor of
√

log n.
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A distinct distances variant

Question

Suppose we have two lines `1 and `2, and two sets of points P1 ⊆ `1 and
P2 ⊆ `2 (with n points each). What’s the minimum number of distinct
distances between P1 and P2?

P1

P2

`2

`1
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A simple lower bound

Claim

#(distinct distances) = Ω(n).

`2

`1

p

Proof.

I Fix p ∈ P2; we’ll consider only distances between P1 and p.

I Each distance from p is repeated at most twice.

I There are n points in P1, so at least n/2 distinct distances.
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Upper bounds

I If `1 ‖ `2, there are constructions with O(n) distinct distances.

`1

`2
d =
√
a2 + 1

a

1

I The same is true if `1 ⊥ `2.

`1

`2

√
1

√
1

√
2

√
2

√
3

√
3

d ∈ {
√

1, . . . ,
√

2n}
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Upper bounds

Otherwise, the best construction we know of has O(n2/
√

log n) distinct
distances (the factor of

√
log n comes from the same number-theoretic

fact about sums of squares).

y = 0

y = x

(a, 0)

(b, b)

d =
√

(a− b)2 + b2

Question

If we assume `1 and `2 are not parallel or perpendicular, can we get a
better lower bound than Ω(n)?
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Better lower bounds

Theorem (Sharir–Sheffer–Solymosi 2013)

#(distinct distances) = Ω(n4/3).

Theorem (Solymosi–Zahl 2024)

#(distinct distances) = Ω(n3/2).

P1

P2

`2

`1

9 / 20



Distinct distances Distinct distances between two lines My work Proof ideas Acknowledgements

Distances between a line and strip

Question

What if instead of lying on a line, P2 lies on a strip?

`1

`2

For this to be meaningful, we need to put a spacing condition on the
points — otherwise we could squeeze a configuration with arbitrary P2

into the center of the picture.
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Our result

Theorem (D.–Sheffer 2024++)

Suppose that P1 lies on the line y = 0 and P2 on the strip |y − sx | ≤ ε,
and both have x-coordinates spaced out by at least ε/s. Then

#(distinct distances) & n22/15−o(1) ≈ n1.46.

`1 : y = 0

`2 : y = sx

2ε
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SSS13 — distance energy

Theorem (Sharir–Sheffer–Solymosi 2013)

#(distinct distances) = Ω(n4/3).

The idea of the proof is to consider the distance energy

E (P1,P2) = #{(a, p, b, q) ∈ (P1 × P2)2 | |ap| = |bq|}.

a

p
q

b

If the number of distinct distances is small, then E (P1,P2) is large —
intuitively, few possible values of |ap| means lots of collisions.
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SSS13 — incidences

Definition

Given a set of points P and curves C, their number of incidences is

I (P, C) = #{(p, c) ∈ P × C | point p lies on curve c}.

`1

`3 `4`2

p2

p3

p1

There are tools for upper-bounding I (P, C) under certain conditions on P
and C (‘incidence bounds’).
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SSS13 — from distance energy to incidences

We want to upper-bound E (P1,P2) = #{(a, p, b, q) | |ap| = |bq|}.

I Let `1 be the x-axis and `2 the line y = sx , so that a = (a1, 0),
p = (p1, sp1), and so on. Then |ap| = |bq| means

(a1 − p1)2 + (sp1)2 = (b1 − q1)2 + (sq1)2.

I We can turn this into an incidence problem in R2 by letting a and b
define a point, and p and q a hyperbola:
I P = {(a1, b1) | a, b ∈ P1}.
I H = {(x − p1)2 + (sp1)2 = (y − q1)2 + (sq1)2 | p, q ∈ P2}.

(p1, q1)

(a1, b1)
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SSS13 — applying an incidence bound

We’ve made sets of n2 points P (one for each a, b ∈ P1) and hyperbolas
H (one for each p, q ∈ P2) such that |ap| = |bq| means the point defined
by (a, b) lies on the hyperbola defined by (p, q).

(p1, q1)

(a1, b1)

Then E (P1,P2) is the number of incidences between these points and
hyperbolas, and an incidence bound gives

E (P1,P2) = I (P,H) . |P|2/3 |H|2/3 = n8/3.
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SZ22 — proximal distance energy

Theorem (Solymosi–Zahl 2024)

#(distinct distances) = Ω(n3/2).

Previously, we considered the distance energy

E (P1,P2) = {(a, p, b, q) ∈ (P1 × P2)2 | |ap| = |bq|}.
Now we consider the t-proximal distance energy Et(P1,P2) (for some
t ∈ (0, 1]), where we also require that b is one of the tn closest points to
a, and q is one of the tn closest points to p.

tn

a

p

tn
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SZ22 — intuition behind proximity

I We only allow a t-fraction of possible pairs (a, b) and (p, q) in our
quadruples (a, p, b, q). So our incidence problem has tn2 points and
hyperbolas (instead of n2), and

Et(P1,P2) = I (Pt ,Ht) . (tn2)2/3(tn2)2/3 = t4/3n8/3.

(p1, q1)

(a1, b1)

I We might expect that Et(P1,P2) ≈ t2E (P1,P2). Then we’d get

t2E (P1,P2) . t4/3n8/3 =⇒ E (P1,P2) . t−2/3n8/3,

which would mean proximity doesn’t help.

17 / 20
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SZ22 — intuition behind proximity

I If p and q are close to each other and |ap| = |bq|, then we’d expect
a and b to also be close to each other.

p

a

q

b

I We can show Et(P1,P2) & tE (P1,P2) — shrinking the possibilities
for each of b and q by a t-fraction only shrinks the number of
quadruples with |ap| = |bq| by one factor of t, not two.

I Since Et(P1,P2) . t4/3n8/3 from the incidence bounds, we get

tE (P1,P2) . t4/3n8/3 =⇒ E (P1,P2) . t1/3n8/3,

so making t small gives a better bound.
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Our result

Theorem

For well-spaced P1 on a line and P2 on a strip,

#(distinct distances) & n22/15−o(1).

I We also consider the proximal distance energy Et(P1,P2).

p q

a b

I We upper-bound Et(P1,P2) using another incidence bound.

I We again show Et(P1,P2) & tE (P1,P2) — the intuition is the
same, though there are a few more details involved.
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