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The distinct distances problem

Imagine we've got a set of points P C R2. We're interested in the
number of distinct distances between two points in P.

\ 3 distinct distances
(1, /3, and 2)
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The distinct distances problem

Imagine we've got a set of points P C R2. We're interested in the
number of distinct distances between two points in P.

3 distinct distances

LA, s
By 7T

What's the minimum number of distinct distances in a set of n points?
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Upper bounds

» n equally spaced points on a line have n — 1 distinct distances.

—_—— . T,
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Upper bounds

» n equally spaced points on a line have n — 1 distinct distances.

—_—— . T,

» n equally spaced points on a circle have |n/2] distinct distances.

N
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Upper bounds

» n equally spaced points on a line have n — 1 distinct distances.

—_— .

» n equally spaced points on a circle have |n/2] distinct distances.

¢ .
e o
» (Erdds 1946) A \/n x +/n lattice has O(n/+/log n) distinct distances.
.
.
[ ]

The idea is that a, b < y/n, so a> + b?> € {1,...,2n}; and only a
1/+/Tog n fraction of integers in this range are a sum of squares.
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Lower bound Authors
Q(n'/?) Erdds 1946
Q(n?/3) Moser 1952
Q(n°/7) Chung 1984
Q(n*/5/log n) | Chung-Szemerédi-Trotter 1992
Q(n*/®) Székely 1997
Q(nd/7) Solymosi-Téth 2001
Q(n0-8034) Tardos 2001
Q(n0-8041) Katz-Tardos 2004
Q(n/ log n) Guth-Katz 2010

The Guth—Katz result solves the problem up to a factor of 1/log n.
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A distinct distances variant

Suppose we have two lines #; and /,, and two sets of points P; C ¢; and
Py C £y (with n points each). What's the minimum number of distinct
distances between P; and P,?

0y
P

5/20



Distinct distances Distinct distances between two lines My work Proof ideas Acknowledgements

000 0@000 00 00000000 o
:

A simple lower bound

#(distinct distances) = Q(n).
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A simple lower bound

#(distinct distances) = Q(n).

lo

» Fix p € Py; we'll consider only distances between P; and p.

» Each distance from p is repeated at most twice.

» There are n points in Py, so at least n/2 distinct distances.
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Upper bounds

» If £1 || ¢2, there are constructions with O(n) distinct distances.

° ® ° ° ° 4y
1! d=+va’+1
° ® ° ° ® /4
a
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Upper bounds

» If £1 || ¢2, there are constructions with O(n) distinct distances.

° ® ® ® ® 0
1! d=va+1
° ° ® ° ® 01
a

» The same is true if {1 L /5.
l

V3
V2
Vi de{\/I ..... m}
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Upper bounds

Otherwise, the best construction we know of has O(n?/+/log n) distinct

distances (the factor of y/log n comes from the same number-theoretic
fact about sums of squares).
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Upper bounds

Otherwise, the best construction we know of has O(n?/+/log n) distinct

distances (the factor of y/log n comes from the same number-theoretic
fact about sums of squares).

y=x

If we assume ¢1 and ¢, are not parallel or perpendicular, can we get a
better lower bound than Q(n)?
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Better lower bounds

Theorem (Sharir-Sheffer-Solymosi 2013)

#(distinct distances) = Q(n*/3).

Theorem (Solymosi—Zahl 2024)
#(distinct distances) = Q(n/?).

4
Po

P1
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Distances between a line and strip

What if instead of lying on a line, P, lies on a strip?
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Distances between a line and strip

What if instead of lying on a line, P, lies on a strip?

l>

For this to be meaningful, we need to put a spacing condition on the
points — otherwise we could squeeze a configuration with arbitrary P
into the center of the picture.
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Our result

Theorem (D.-Sheffer 2024++)

Suppose that P; lies on the line y = 0 and P, on the strip |y — sx| < ¢,
and both have x-coordinates spaced out by at least €/s. Then

#(distinct distances) > n?2/1570(1) o 146,

Uy y =sx
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SSS13 — distance energy

Theorem (Sharir-Sheffer-Solymosi 2013)
#(distinct distances) = Q(n*/3).
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SSS13 — distance energy

#(distinct distances) = Q(n*/3).
The idea of the proof is to consider the distance energy
E(P1.P2) = #{(a.p, b, q) € (P1 x P2)* | |ap| = |bg]}.

q
p

L e

- b

If the number of distinct distances is small, then E(Py,P,) is large —
intuitively, few possible values of |ap| means lots of collisions.
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SSS13 — incidences

Given a set of points P and curves C, their number of incidences is

I(P.C) =#{(p,c) € P x C | point p lies on curve c}.

p1

P2

El /33

4o l3 Uy
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SSS13 — incidences

Given a set of points P and curves C, their number of incidences is

I(P.C) =#{(p,c) € P x C | point p lies on curve c}.

p1
P2

El /33

4o l3 Uy

There are tools for upper-bounding /(P,C) under certain conditions on P
and C (‘incidence bounds').
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SSS13 — from distance energy to incidences
We want to upper-bound E(P1,P2) = #{(a, p, b, q) | |ap| = |bq|}.
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SSS13 — from distance energy to incidences

We want to upper-bound E(P1,P2) = #{(a,p, b, q) | |ap| = |bq|}.

» Let ¢; be the x-axis and ¢, the line y = sx, so that a = (a1,0),
p = (p1,sp1), and so on. Then |ap| = |bg| means

(a1 — p1)* + (sp1)* = (b1 — q1)* + (sq1)>.
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SSS13 — from distance energy to incidences

We want to upper-bound E(P1,P2) = #{(a,p, b, q) | |ap| = |bq|}.

» Let ¢; be the x-axis and ¢, the line y = sx, so that a = (a1,0),
p = (p1,sp1), and so on. Then |ap| = |bg| means

(a1 — p1)* + (sp1)* = (b1 — )% + (sq1).
» We can turn this into an incidence problem in R? by letting a and b
define a point, and p and g a hyperbola:
» P ={(a1, b) | a,bePi}.
> H={(x—p)*+(sp)* = (v — q1)° + (sq1)’ | p,q € P2}.

(a1, b1)

(P1~, Ch)
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SSS13 — applying an incidence bound

We've made sets of n? points P (one for each a, b € P;) and hyperbolas
H (one for each p, g € P>) such that |ap| = |bg| means the point defined
by (a, b) lies on the hyperbola defined by (p, q).

(a1, b1)

(p1,q1)

Then E(P1,P2) is the number of incidences between these points and
hyperbolas, and an incidence bound gives

E(P1,P2) = I(P.H) < [PI? [HP? = n®F2.
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SZ22 — proximal distance energy

Theorem (Solymosi—Zahl 2024)
#(distinct distances) = Q(n%/?).
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SZ22 — proximal distance energy

#(distinct distances) = Q(n?/?).
Previously, we considered the distance energy

E(P1,P2) = {(a,p, b, q) € (P x P2)* | |ap| = [bgl}.

Now we consider the t-proximal distance energy E;(Py1,P>) (for some
t € (0,1]), where we also require that b is one of the tn closest points to
a, and g is one of the tn closest points to p.

tn

p
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p
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SZ22 — proximal distance energy

#(distinct distances) = Q(n?/?).
Previously, we considered the distance energy

E(P1,P2) = {(a,p, b, q) € (P x P2)* | |ap| = [bgl}.

Now we consider the t-proximal distance energy E;(Py1,P>) (for some
t € (0,1]), where we also require that b is one of the tn closest points to
a, and g is one of the tn closest points to p.

q
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SZ22 — intuition behind proximity

» We only allow a t-fraction of possible pairs (a, b) and (p, q) in our
quadruples (a, p, b, q). So our incidence problem has tn? points and
hyperbolas (instead of n?), and

Ec(P1, P2) = I(Pr, He) < (t0?)2/3(tn?)?/3 = t4/318/3,

(a1, b1)

(pla ql)
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SZ22 — intuition behind proximity

» We only allow a t-fraction of possible pairs (a, b) and (p, q) in our
quadruples (a, p, b, q). So our incidence problem has tn? points and
hyperbolas (instead of n?), and

Ec(P1, P2) = I(Pr, He) < (t0?)2/3(tn?)?/3 = t4/318/3,

(a1, b1)

(p1,q1)

> We might expect that E.(Py, P2) ~ t*E(P1,P,). Then we'd get
E(Py,P2) S t*30%3 = E(Py,Py) S t72/30%3,

which would mean proximity doesn't help.
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SZ22 — intuition behind proximity

» If p and g are close to each other and |ap| = |bg|, then we'd expect
a and b to also be close to each other.

q

=

J

L ¢
lopl
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SZ22 — intuition behind proximity

» If p and g are close to each other and |ap| = |bg|, then we'd expect
a and b to also be close to each other.

/ ap
» We can show E;(P1,P,) 2 tE(P1, P2) — shrinking the possibilities

for each of b and g by a t-fraction only shrinks the number of
quadruples with |ap| = |bg| by one factor of t, not two.
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SZ22 — intuition behind proximity

» If p and g are close to each other and |ap| = |bg|, then we'd expect
a and b to also be close to each other.

= o

» We can show E(P1,P2) 2 tE(P1,P2) — shrinking the possibilities
for each of b and g by a t-fraction only shrinks the number of
quadruples with |ap| = |bg| by one factor of t, not two.

» Since E;(P1,P2) < t*/3n8/3 from the incidence bounds, we get
tE(P1,Po) < t*30%3 — E(Py, Ps) < tY/3n8/3,
so making t small gives a better bound.
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Our result

For well-spaced P; on a line and P, on a strip,

#(distinct distances) > n??/15=°(1),
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Our result

For well-spaced P; on a line and P, on a strip,

#(distinct distances) > n?%/15—°(1),

» We also consider the proximal distance energy E:(P1, P2).
P :7

L ] L ]

a

b

» We upper-bound E;(P1, P2) using another incidence bound.

» We again show E;(Py,P,) 2 tE(P1,P2) — the intuition is the
same, though there are a few more details involved.
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