
A faster combinatorial algorithm for triangle detection

Sanjana Das

April 23, 2025

§1 Introduction

In the problem of triangle detection, we’re given a tripartite graph, and we want to determine whether it
contains a triangle. To fix some notation, we’ll define it as follows (where A, B, and C are the adjacency
matrices between the three parts).

Problem 1.1 (Triangle detection)

• Input: Matrices A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , and C ∈ {0, 1}X×Z .

• Output: Whether there exists (x, y, z) ∈ X × Y × Z with A(x, y) = B(y, z) = C(x, z) = 1.

In this report, we’ll explain the proof of the following result of [1].

Theorem 1.2 (Abboud–Fischer–Kelley–Lovett–Meka 2024)

There is an n3 · 2−Ω((logn)1/6) time combinatorial algorithm for triangle detection.

(The bound in [1] has (logn)1/7 instead of (log n)1/6, but one can show their algorithm actually achieves
(logn)1/6 by very slightly tweaking their analysis, so I’ll do that here.)

The historical context for this result is that it’s known that any subcubic algorithm for triangle detection
would imply one for Boolean matrix multiplication (BMM) [4]. Although BMM can be solved in O(nω) time
using integer matrix multiplication, there’s interest in specifically finding combinatorial BMM algorithms.
Brute force takes time n3; in 1970, [2] found a n3 · (logn)−2 time algorithm (now called the ‘Four-Russians’
algorithm); and since then, the best we’ve been able to do is n3 · (logn)−4 [5]. Theorem 1.2, along with the

reduction of [4], provides an n3 ·2−Ω((logn)1/6) time algorithm for BMM, which is a substantial improvement.

§2 Regularity and triangle detection

The approach of [1] is based on graph regularity — the paper defines certain notions of regularity and shows
that every graph has a decomposition into a controlled number of regular pieces, on which solving triangle
detection is much easier. Here, we’ll define the notions of regularity that the paper uses and discuss why
these notions are relevant to triangle detection; then we’ll state [1]’s decomposition result and explain why

it gives an 2−Ω((logn)1/6) speedup for triangle detection.

§2.1 Definitions

In this section, we’ll define the notions of regularity that [1] uses; these will be conditions on a single matrix
A ∈ {0, 1}X×Y (which it’ll often be useful to think of as a bipartite graph). To fix some notation:

Page 1 of 10

A faster combinatorial algorithm for triangle detection Sanjana Das (April 23, 2025)

• We write E[A] := Ex∈X, y∈Y [A(x, y)] (intuitively, this is the density of A).

• For each x ∈ X, we write dA(x) := Ey∈Y [A(x, y)] (intuitively, this is a normalized version of the degree
of x). Similarly, for each y ∈ Y , we write dA(y) = Ex∈X [A(x, y)].

We’ll have two regularity conditions, defined as follows.

Definition 2.1. For ε ∈ (0, 1), we say A is ε-min-degree if for all x ∈ X, we have dA(x) ≥ (1− ε)E[A].

Intuitively, this states that no vertices in X have degree substantially lower than average.

Definition 2.2. For k, ℓ ∈ N, we define the (k, ℓ)-grid norm of A as

∥A∥U(k,ℓ) =

Ex1,...,xk∈X, y1,...,yℓ∈Y

 k∏
i=1

ℓ∏
j=1

A(xi, yj)

1/kℓ

.

We say A is (ε, k, ℓ)-grid regular if ∥A∥U(k,ℓ) ≤ (1 + ε)E[A].

Intuitively, ∥A∥kℓU(k,ℓ) is the probability that randomly chosen x1, . . . , xk ∈ X and y1, . . . , yℓ ∈ Y form a Kk,ℓ

(allowing repeated vertices). If A were a random graph with density E[A], we’d expect this to be roughly
E[A]kℓ, so we’d have ∥A∥U(k,ℓ) ≈ E[A]. So grid regularity essentially states that A doesn’t have too many
more copies of Kk,ℓ than a random graph of the same density.

§2.2 Relevance to triangle detection

The reason these notions of regularity are useful for triangle detection is the following theorem of [3], which
states that a product of two ε-min-degree (ε, 2, d)-grid regular matrices is close to uniform.

Theorem 2.3 (Kelley–Lovett–Meka 2024)

Let ε ∈ (0, 1
80) and d ≥ 2/ε. Suppose that A ∈ {0, 1}X×Y and B ∈ {0, 1}Y×Z are such that A and B⊺

are ε-min-degree and (ε, 2, d)-grid regular. Then for all but a 2−εd/2-fraction of (x, z) ∈ X ×Z, we have

(1− 80ε)E[A]E[B] ≤ Ey∈Y [A(x, y)B(y, z)] ≤ (1 + 80ε)E[A]E[B].

There isn’t enough space to prove this theorem, but we’ll prove a ‘baby’ version — a one-sided version
whose proof is much simpler — in order to hopefully provide some intuition for why it’s plausible that these
notions of regularity could lead to such a statement.

Claim 2.4 — Suppose that A ∈ {0, 1}X×Y and B ∈ {0, 1}Y×Z are such that A and B⊺ are (ε, 2, d)-grid
regular. Then for all but a 2−εd-fraction of (x, z) ∈ X × Z, we have

Ey∈Y [A(x, y)B(y, z)] ≤ (1 + 10ε)E[A]E[B].

Proof. Assume for contradiction that this is not the case. Then we have

Ex∈X, z∈Z

[
(Ey∈Y [A(x, y)B(y, z)])d

]
≥ 2−εd · (1 + 10ε)dE[A]dE[B]d ≥ (1 + 8ε)dE[A]dE[B]d.

On the other hand, we can write the left-hand side as Ey1,...,yd∈Y [Ex∈X [
∏d

i=1A(x, yi)][Ez∈Z
∏d

i=1B(yi, z)]]
(taking a dth power corresponds to taking d independent copies of y, and once we fix y1, . . . , yd, then the

Page 2 of 10

Sanjana Das (April 23, 2025) A faster combinatorial algorithm for triangle detection

parts corresponding to x and z become independent), and Cauchy–Schwarz gives that this is at most(
Ex1,x2∈X, y1,...,yd∈Y

[
d∏

i=1

A(x1, yi)A(x2, yi)

]
· Ez1,z2∈Z, y1,...,yd∈Y

[
d∏

i=1

B(yi, z1)B(yi, z2)

])1/2

(the squares that arise from Cauchy–Schwarz correspond to taking two independent copies of x and z). But
these expressions exactly correspond to the (2, d)-grid norms of A and B⊺! So we’ve shown that

(1 + 8ε)dE[A]dE[B]d ≤ Ex∈X, z∈Z

[
(Ey∈Y [A(x, y)B(y, z)])d

]
≤ ∥A∥dU(2,d) · ∥B

⊺∥dU(2,d) ,

and since we assumed ∥A∥U(2,d) ≤ (1 + ε)E[A] and ∥B⊺∥U(2,d) ≤ (1 + ε)E[B], this is a contradiction.

For the actual statement of Theorem 2.3, we don’t just care about Ey∈Y [A(x, y)B(y, z)] being too big ; we
also care about it being too small. This is intuitively why we need the ε-min-degree condition — if A had a
bunch of low-degree vertices x ∈ X and B were random, then Ey∈Y [A(x, y)B(y, z)] would be small for these
x ∈ X. It turns out that these two conditions are enough to get the two-sided bound in Theorem 2.3; but
the proof requires significantly more complicated analytic arguments, so we won’t present it here.

Why is Theorem 2.3 useful for triangle detection? Imagine that we’re given input (A,B,C), and we know
that A and B⊺ are ε-min-degree and (ε, 2, d)-grid regular (think of ε as a small absolute constant and d as
slowly growing with n). Then Theorem 2.3 guarantees that all but a 2−εd/2-fraction of the entries of AB
are positive. To solve triangle detection, we just want to know whether some positive entry of AB coincides
with a 1 in C. So if more than a 2−εd/2-fraction of the entries of C are 1’s, then we automatically know the
answer is yes, without doing any computations. Meanwhile, if at most a 2−εd/2-fraction of the entries of C
are 1’s, then we can simply brute force over the edges (x, z) ∈ X×Z given by C (of which there are at most
2−εd/2 |X| |Z|) and all y ∈ Y ; this costs 2−εd/2 |X| |Y | |Z|, giving a 2−εd/2 speedup.

§2.3 A regularity decomposition and triangle detection algorithm

In general, our matrices won’t satisfy these regularity conditions. However, [1] shows that we can always
decompose AB into not too many smaller matrix products AkBk which do satisfy these conditions.

Theorem 2.5

Let ε ∈ (0, 1) and d ∈ N. There is an n2 · 2Oε(d6) time algorithm DecomposeProduct(A,B) which takes
matrices A ∈ {0, 1}X×Y and B ∈ {0, 1}Y×Z and outputs {(Xk, Yk, Zk, Ak, Bk)}k∈K, where Xk ⊆ X,
Yk ⊆ Y , Zk ⊆ Z, Ak ∈ {0, 1}Xk×Yk , and Bk ∈ {0, 1}Yk×Zk are such that:

(i) We have AB =
∑

k∈K AkBk (padding each AkBk with 0’s to get a matrix in {0, 1}X×Z).

(ii) For each k ∈ K, either E[Ak] ≤ 2−d, E[Bk] ≤ 2−d, or Ak and B⊺
k are ε-min-degree and (ε, 2, d)-grid

regular.

(iii) We have
∑

k∈K |Xk| |Yk| |Zk| ≤ 2(d+ 2)2 |X| |Y | |Z|.

(iv) We have |K| ≤ 2Oε(d6).

We’ll prove this in Section 3; here, we’ll see how to use it to get a 2−Ω((logn)1/6) speedup for triangle detection.

Proof of Theorem 1.2. Set ε = 1
160 and d = c(log n)1/6, where c is a constant small enough that both 2Oε(d6)

terms in Theorem 2.5 are at most n1/4. Then to solve triangle detection on input (A,B,C), we first compute

{(Xk, Yk, Zk, Ak, Bk)}k∈K ← DecomposeProduct(A,B),

and set Ck ← C[Xk, Zk] for each k ∈ K. Then (A,B,C) has a triangle if and only if (Ak, Bk, Ck) does for
some k ∈ K. So we loop through all k ∈ K, doing the following:

Page 3 of 10

A faster combinatorial algorithm for triangle detection Sanjana Das (April 23, 2025)

• If E[Ak] > 2−d and E[Bk] > 2−d, then Theorem 2.5(ii) states that Ak and B⊺
k are ε-min-degree and

(ε, 2, d)-grid regular, so by Theorem 2.3, all but a 2−εd/2-fraction of entries of AkBk are positive.

– If E[Ck] > 2−εd/2, then we automatically know (Ak, Bk, Ck) has a triangle.

– If E[Ck] ≤ 2−εd/2, then we can brute force over edges (x, z) ∈ Xk×Zk given by Ck and then over
y ∈ Yk; this costs 2

−εd/2 |Xk| |Yk| |Zk|.
• If E[Ak] ≤ 2−d, then we can brute force over edges (x, y) ∈ Xk ×Yk given by Ak and then z ∈ Zk; this
costs 2−d |Xk| |Yk| |Zk|. Similarly, if E[Bk] ≤ 2−d, then we can brute force over edges (y, z) ∈ Yk × Zk

given by Bk and then y ∈ Yk (with the same cost).

We spend at most 2−εd/2 |Xk| |Yk| |Zk| time on each k ∈ K, so by Theorem 2.5(iii), we have total runtime

2−εd/2
∑
k∈K
|Xk| |Yk| |Zk| ≤ 2−εd/2 · poly(d) |X| |Y | |Z| = 2−Ω((logn)1/6) |X| |Y | |Z| .

§3 Constructing a regularity decomposition

In this section, we’ll prove Theorem 2.5. We’ll mostly ignore questions of runtime; but for most steps of the
argument, it should be clear how to implement them with good runtime. (The one exception is Lemma 3.2,
which we’ll comment on in Remark 3.4.)

§3.1 Regularity vs. density increments

As a first step towards Theorem 2.5, we’ll consider a much simpler problem: Given a matrix A ∈ {0, 1}X×Y ,
how do we find a single regular piece? For this, we’ll use a density increment strategy — we’ll show that
we can either enforce regularity or find subsets X ′ ⊆ X and Y ′ ⊆ Y on which A is substantially denser.
Then we can imagine replacing A with A[X ′, Y ′] and iterating. Since our density can’t go above 1, this must
terminate after a controlled number of steps, giving a regular piece.

Lemma 3.1

There is an algorithm MinDegree(A, ε, γ) which takes in A ∈ {0, 1}X×Y and ε, γ ∈ (0, 1) and outputs
X ′ ⊆ X such that |X ′| ≥ (1− γ) |X| and E[A[X ′, Y]] ≥ E[A[X,Y]], and either:

• (Regular case) A[X ′, Y] is ε-min-degree; or

• (Increment case) E[A[X ′, Y]] ≥ (1 + εγ)E[A].

Proof. We initialize X ′ ← X. Then we repeatedly find vertices x ∈ X ′ with dA(x) < (1− ε)E[A[X ′, Y]] and
remove them from X ′. We stop when there are no such vertices (which means A[X ′, Y] is ε-min-degree) or
E[A[X ′, Y]] ≥ (1 + εγ)E[A].

We’re only removing vertices of below-average degree, so our density increases at every step. To see that we
must stop by the time we’ve removed a γ-fraction of vertices, note that each removed vertex satisfies

dA(x) < (1− ε)(1 + εγ)E[A].

So if we’ve removed a γ-fraction of vertices, we’ll have

E[A[X ′, Y]] ≥ E[A]− γ(1− ε)(1 + εγ)E[A]
1− γ

≥ (1 + εγ)E[A],

which means we’ll terminate (if we haven’t already terminated).

Page 4 of 10

Sanjana Das (April 23, 2025) A faster combinatorial algorithm for triangle detection

Lemma 3.2

There is an algorithm GridRegular(A, ε, k, ℓ) taking A ∈ {0, 1}X×Y , ε ∈ (0, 1), and k, ℓ ∈ N, which either:

• (Regular case) Correctly outputs that A is (ε, k, ℓ)-grid regular; or

• (Increment case) Outputs X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε
8 ·E[A]

kℓ · |X| and |Y ′| ≥ E[A]k2 · |Y |,
such that E[A[X ′, Y ′]] ≥ (1 + ε

2)E[A].

Proof. For x ∈ X, we write Yx = {y ∈ Y | A(x, y) = 1} and Ax = A[X,Yx].

Claim 3.3 — Let α, ε ∈ (0, 1), and suppose that ∥A∥U(k,ℓ) ≥ (1 + ε)α. Then either:

• (Good case) At least an εαkℓ-fraction of x ∈ X satisfy dA(x) ≥ α; or

• (Drop-k case) k ≥ 2, and there is x ∈ X with dA(x) ≥ αk and ∥Ax∥U(k−1,ℓ) ≥ (1 + ε)α.

(When proving Lemma 3.2, we’ll take α and ε to be (1 + ε
2)E[A] and

ε
8 , respectively.)

Proof. First, we claim that we can write

∥A∥kℓU(k,ℓ) = Ex∈X [f(x)] where f(x) =

{
dA(x)

ℓ if k = 1

dA(x)
ℓ · ∥Ax∥(k−1)ℓ

U(k−1,ℓ) if k ≥ 2.
(3.1)

This is because ∥A∥kℓU(k,ℓ) is the probability that randomly chosen x1, . . . , xk ∈ X and y1, . . . , yℓ ∈ Y form
a Kk,ℓ. If we imagine first choosing x1 = x, then y1, . . . , yℓ need to all land in Yx; this happens with
probability dA(x)

ℓ. And conditional on this, we’re choosing x2, . . . , xk ∈ X and y1, . . . , yℓ ∈ Yx and checking

whether they form a Kk−1,ℓ; this has probability ∥Ax∥(k−1)ℓ
U(k−1,ℓ).

We’d like to use (3.1) and the assumption ∥A∥kℓU(k,ℓ) ≥ (1 + ε)kℓαkℓ to say that there are many x ∈ X for
which f(x) is large. For this, for any t ∈ [0, 1], we can write

Ex∈X [f(x)] ≤ Px∈X [f(x) ≥ t] · 1 + Px∈X [f(x) < t] · t ≤ Px∈X [f(x) ≥ t] + t.

So we say x ∈ X is interesting if f(x) ≥ (1 + ε)(k−1)ℓαkℓ; then plugging in t = (1 + ε)(k−1)ℓαkℓ gives that

Px∈X [x is interesting] ≥ (1 + ε)kℓαkℓ − (1 + ε)(k−1)ℓαkℓ ≥ εαkℓ.

Now, if every interesting x ∈ X satisfies dA(x) ≥ α, then we’re in the good case. Otherwise, suppose there’s
some interesting x ∈ X with dA(x) < α. Then we must have k ≥ 2, and

∥Ax∥U(k−1,ℓ) =

(
f(x)

dA(x)ℓ

)1/(k−1)ℓ

>

(
(1 + ε)(k−1)ℓαkℓ

αℓ

)1/(k−1)ℓ

= (1 + ε)α.

Also, we have αkℓ ≤ f(x) ≤ dA(x)
ℓ, which ensures dA(x) ≥ αk. So we’re in the drop-k case.

Now to prove Lemma 3.2, note that if A is not (ε, k, ℓ)-grid regular, then the hypothesis of Claim 3.3 holds
with α = (1 + ε

2)E[A] and ε replaced by ε
8 . So we initialize Y ′ ← Y , A′ ← A, and k′ ← k, and repeat:

• If at least an ε
8α

k′ℓ-fraction of x ∈ X satisfy dA′(x) ≥ α, let X ′ be the set of such x ∈ X, and return

(X ′, Y ′). This guarantees E[A[X ′, Y ′]] ≥ α, and |X ′| ≥ ε
8α

k′ℓ · |X| ≥ ε
8 · E[A]

kℓ · |X|.

Page 5 of 10

A faster combinatorial algorithm for triangle detection Sanjana Das (April 23, 2025)

• Otherwise, Claim 3.3 guarantees there is some x ∈ X with dA′(x) ≥ αk′ (which means |Y ′
x| ≥ αk′ ·|Y ′| ≥

E[A]k · |Y ′|) and ∥A′
x∥U(k′−1,ℓ) ≥ (1+ ε

8)α. Set Y
′ ← Yx, A

′ ← Ax, and k′ ← k′− 1; the first statement

means that this shrinks Y ′ by at worst a factor of E[A]k, and the second statement means that the
hypothesis of Claim 3.3 continues to hold.

We land in the second case at most k times (because each time, we drop k′ by 1) and each shrinks Y ′ by a
factor of E[A]k, so in the end we’ll have |Y ′| ≥ E[A]k2 · |Y |, as desired.

Remark 3.4. Implementing this algorithmically seems to require us to compute grid norms (since we
need to find x ∈ X for which ∥A′

x∥U(k′−1,ℓ) is large), and it’s not clear how to do so efficiently. In fact,
it’s good enough to be able to estimate these grid norms. There’s a simple randomized algorithm to
do so — ∥A∥kℓU(k,ℓ) is the probability that randomly chosen vertices form a Kk,ℓ, and we can estimate
this probability by randomly sampling. In fact, [1] shows that this can be derandomized using oblivious
samplers, but we won’t discuss that here.

§3.2 Decomposing a single matrix

In this section, as a first step towards Theorem 2.5, we’ll construct a regularity decomposition of a single
matrix. First, we’ll show how to find one regular piece (which we refer to as a ‘good rectangle’), using the
density increment strategy discussed at the beginning of the previous section.

Lemma 3.5

Let ε ∈ (0, 1) and d ∈ N. There is an algorithm GoodRectangle(A) which takes a matrix A ∈ {0, 1}X×Y

with E[A] ≥ 2−d and outputs (X∗, Y∗), where X∗ ⊆ X and Y∗ ⊆ Y are such that:

(i) A[X∗, Y∗] is ε-min-degree and (ε, 2, d)-grid regular.

(ii) E[A[X∗, Y∗]] ≥ E[A].

(iii) |X∗| ≥ 2−Oε(d3) |X| and |Y∗| ≥ 2−Oε(d2) |Y |.

Proof. We initialize X∗ ← X and Y∗ ← Y , and repeat the following loop:

(1) Update X∗ ← MinDegree(A[X∗, Y∗], ε,
1
2). If we’re in the regular case (meaning that A[X∗, Y∗] is ε-

min-degree), we proceed to the next step. Otherwise we say this step has failed and go back to the
start of this loop.

(2) Run GridRegular(A[X∗, Y∗], ε, 2, d). If we’re in the regular case, we output (X∗, Y∗) and terminate.
Otherwise, we say this step has failed ; we update X∗ ← X ′

∗ and Y∗ ← Y ′
∗ (where X ′

∗ and Y ′
∗ are as

given by Lemma 3.2) and go back to the start of the loop.

It’s clear that in the end A[X∗, Y∗] is ε-min-degree (as ensured by Step (1)) and (ε, 2, d)-grid regular (as
ensured by Step (2)), and each of these steps can only increase E[A[X∗, Y∗]].

To prove (iii), note that each time Step (1) fails, we’ve shrunk X∗ by a factor of 1
2 and multiplied the density

E[A[X∗, Y∗]] by (1 + ε
2). Since we start out with density at least 2−d, and our density can’t go above 1, this

occurs at most Oε(d) times; so it causes X∗ to shrink by a factor of 2−Oε(d).

Meanwhile, each time Step (2) fails, the entire round has shrunk X∗ by a factor of 1
2 ·

ε
8 ·E[A]

2d ≥ ε
16 · 2

−2d2

(the factor of 1
2 accounts for Step (1), and the rest comes from the bound in Lemma 3.2, noting that

E[A[X∗, Y∗]] ≥ E[A] ≥ 2−d) and Y∗ by a factor of E[A]4 ≥ 2−4d. And again, we get a multiplicative density
increment of (1+ ε

2) each time this happens, so it happens at most Oε(d) times. So in total, this shrinks X∗

by 2−Oε(d3) and Y∗ by 2−Oε(d2).

So overall, X∗ shrinks by 2−Oε(d) · 2−Oε(d3) = 2−Oε(d3) and Y∗ by 2−Oε(d2), proving (iii).

Page 6 of 10

Sanjana Das (April 23, 2025) A faster combinatorial algorithm for triangle detection

Now we’ll obtain a full decomposition of A by iteratively removing good rectangles.

Lemma 3.6

Let ε ∈ (0, 1) and d ∈ N. There is an algorithm Decompose(A) which takes A ∈ {0, 1}X×Y and outputs
{(Xℓ, Yℓ, Aℓ)}ℓ∈L, where Xℓ ⊆ X, Yℓ ⊆ Y , and Aℓ ∈ {0, 1}Xℓ×Yℓ are such that:

(i) We have A =
∑

ℓ∈LAℓ (padding each Aℓ with 0’s to get a matrix in {0, 1}X×Y).

(ii) For each ℓ ∈ L, either E[Aℓ] ≤ 2−d, or Aℓ is ε-min-degree and (ε, 2, d)-grid regular.

(iii) We have
∑

ℓ∈L |Xℓ| |Yℓ| ≤ (d+ 2) |X| |Y |.

(iv) For each ℓ ∈ L, we have |Yℓ| ≥ 2−Oε(d2) |Y |.

(v) We have |L| ≤ 2Oε(d3).

Proof. We initialize A′ ← A, and then repeatedly do the following (where ℓ is the current index):

• If E[A′] ≥ 2−d, we compute (Xℓ, Yℓ) ← GoodRectangle(A′), add (Xℓ, Yℓ, A
′[Xℓ, Yℓ]) to our decomposi-

tion, and update A′ ← A′ −A′[Xℓ, Yℓ].

• If E[A′] < 2−d, we add (X,Y,A′) to our decomposition and terminate.

It’s clear that this satisfies (i) (we’re repeatedly finding pieces of A, inserting them to our decomposition,
and removing them from A) and (ii) (all but the last piece will be regular, and the last will be sparse).

To see (iii), the key insight is that every piece A′[Xℓ, Yℓ] that we remove is at least as dense as the current

A′ (by Lemma 3.5(ii)), so removing it drops the density of A′ by a factor of at least 1− |Xℓ||Yℓ|
|X||Y | . This density

starts out at most 1, and it can’t go below 2−d until the end. This means∏
ℓ

(
1− |Xℓ| |Yℓ|

|X| |Y |

)
≥ 2−d,

where the product ranges over all but the last two indices ℓ (the second-last ℓ drops our density below 2−d,
and the last is the one where we take everything that’s left). Using the fact that 1 − t ≤ e−t ≤ 2−t (for
t ≥ 0) gives that

∑
ℓ |Xℓ| |Yℓ| ≤ d |X| |Y |, and replacing d with d+ 2 accounts for the last two indices.

Finally, Lemma 3.5(iii) states that |Xℓ| ≥ 2−Oε(d3) |X| and |Yℓ| ≥ 2−Oε(d2) |Y | for all ℓ ∈ L, which implies
(iv). It also means that |Xℓ| |Yℓ| ≥ 2−Oε(d3) |X| |Y | for all ℓ ∈ L, and together with (iii), this implies (v).

§3.3 Decomposing a product

In this section, we’ll prove Theorem 2.5. First, we’ll prove the following analog of Lemma 3.5.

Lemma 3.7

Let ε ∈ (0, 1), γ ∈ (0, 12), and d ∈ N. There is an algorithm GoodCube(A,B) which takes A ∈ {0, 1}X×Y

and B ∈ {0, 1}Y×Z with E[B] ≥ 2−d and outputs (Y∗, Z∗, {(X∗ℓ, Y∗ℓ, Z∗ℓ, A∗ℓ)}ℓ∈L) where:

(i) Y∗ ⊆ Y , Z∗ ⊆ Z, {(X∗ℓ, Y∗ℓ, A∗ℓ)}ℓ∈L is a decomposition of A[X,Y∗] with the properties given by
Lemma 3.6, and for every ℓ ∈ L we have Z∗ℓ ⊆ Z∗ and |Z∗ℓ| ≥ (1− γ) |Z∗|.

(ii) For each ℓ ∈ L, B[Y∗ℓ, Z∗ℓ]
⊺ is ε-min-degree and (ε, 2, d)-grid regular.

(iii) E[B[Y∗, Z∗]] ≥ E[B].

(iv) We have |Y∗| ≥ 2−Oε(d3/γ) |Y | and |Z∗| ≥ 2−Oε(d3) |Z|.

Page 7 of 10

A faster combinatorial algorithm for triangle detection Sanjana Das (April 23, 2025)

Here’s some intuition for how to think about this statement: When we decomposed a single matrix A, the
idea was to repeatedly take big bites out of A (using Lemma 3.5). To decompose a product AB, we’d like to
take big bites out of B. If we want to take out a bite (Y∗, Z∗), then we need to account for A[X,Y∗]B[Y∗, Z∗].
We can imagine doing so by taking a regularity decomposition {(X∗ℓ, Y∗ℓ, A∗ℓ)}ℓ∈L of A[X,Y∗], and adding
{(X∗ℓ, Y∗ℓ, Z∗, A∗ℓ, B[Y∗ℓ, Z∗])}ℓ∈L to our decomposition of AB. Lemma 3.7 gives us a way to do not exactly
this, but something very ‘close’ — we find subsets Z∗ℓ ⊆ Z∗ which cover all but a tiny fraction of Z∗ (as
quantified by γ) and add {(X∗ℓ, Y∗ℓ, Z∗ℓ, A∗ℓ, B[Y∗ℓ, Z∗ℓ])}ℓ∈L to the decomposition instead. This misses the
contributions of A[X∗ℓ, Y∗ℓ]B[Y∗ℓ, Z∗ \Z∗ℓ]; but these are small, so we’ll be able to handle them recursively.

Proof. We initialize Y∗ ← Y and Z∗ ← Z and repeat the following loop:

(1) Update Y∗ ← MinDegree(B[Y∗, Z∗],
εγ
4 ,

1
2). If we’re in the regular case (so B[Y∗, Z∗] is

εγ
4 -min-degree),

we proceed to the next step; otherwise we say this step has failed and go back to the start of the loop.

(2) Compute {(X∗ℓ, Y∗ℓ, A∗ℓ)}ℓ∈L ← Decompose(A[X,Y∗]).

(3) Loop through all ℓ ∈ L and do the following:

(3a) Compute Z∗ℓ ← MinDegree(B[Y∗ℓ, Z∗]
⊺, ε, γ). If we’re in the regular case, we move to the next

step. Otherwise we say this step has failed, and we update Y∗ ← Y∗ℓ and Z∗ ← Z∗ℓ, break out of
this inner loop, and return to the start of the outer loop (forgetting about all the other pieces of
our decomposition of A[X,Y∗]).

(3b) Run GridRegular(B[Y∗ℓ, Z∗ℓ]
⊺, ε, 2, d). If we’re in the regular case, we move on (moving to the next

value of ℓ). If we’re in the increment case (so it returns some Z ′
∗ℓ ⊆ Z∗ℓ and Y ′

∗ℓ ⊆ Y∗ℓ), we say
this step has failed. We update Y∗ ← Y ′

∗ℓ and Z∗ ← Z ′
∗ℓ, break out of this inner loop, and return

to the start of the outer loop.

If we get through all ℓ ∈ L without failing, we return (Y∗, Z∗, {(X∗ℓ, Y∗ℓ, Z∗ℓ, A∗ℓ)}ℓ∈L) and terminate.

For the analysis, first note that on every iteration of the outer loop, since we ensure B[Y∗, Z∗] is
εγ
4 -min-

degree in Step (1), we’ll have E[B[Y∗ℓ, Z∗]] ≥ (1− εγ
4)E[B[Y∗ℓ, Z∗]] for all ℓ ∈ L. Lemma 3.1 guarantees that

every time Step (3a) fails, it’ll give us a density increment of (1 + εγ) over B[Y∗ℓ, Z∗]; this means we get
a density increment of at least (1 + εγ)(1 − εγ

4) ≥ (1 + εγ
2) over the B[Y∗, Z∗] we started the round with.

Similarly, every time Step (3b) fails, we get a density increment of at least (1 + ε
2)(1−

εγ
4) ≥ (1 + ε

8).

This in particular means the density of B[Y∗, Z∗] only ever increases, proving (iii). It also means the density
of every B[Y∗ℓ, Z∗ℓ]

⊺ in Step (3b) is at least (1− εγ
4) · 2

−d ≥ 2−2d (when proving (iv), we’ll plug this into the
bounds in Lemma 3.2 when analyzing how much Step (3b) shrinks our sets by).

To prove (iv), every time Step (1) fails, we’ve shrunk Y∗ by 1
2 and gotten a multiplicative density increment

of (1+ εγ
4). Since our density starts out at least 2−d, this occurs at most Oε(d/γ) times, so in total, it causes

Y∗ to shrink by 2−Oε(d/γ).

Every time Step (3a) fails, we’ve shrunk Y∗ by
1
2 ·2

−Oε(d2) (where 1
2 comes from Step (1), and 2−Oε(d2) comes

from the fact that we’re passing to a piece Y∗ℓ of the regularity decomposition of A[X,Y∗], using Lemma
3.6(iv)) and Z∗ by (1 − γ). And we get a density increment of (1 + εγ), so this occurs at most Oε(d/γ)
times, and in total it shrinks Y∗ by 2−Oε(d3) and Z∗ by (1− γ)Oε(d/γ) = 2−Oε(d).

Finally, every time Step (3b) fails, we’ve shrunk Y∗ by 1
2 · 2

−Oε(d2) · 2−8d = 2−Oε(d2) (these factors come
from Step (1), passing from Y∗ to a piece Y∗ℓ, and running GridRegular, respectively — Lemma 3.2 gives
that GridRegular causes it to shrink by E[B[Y∗ℓ, Z∗ℓ]]

4, and we have E[B[Y∗ℓ, Z∗ℓ]] ≥ 2−2d). Similarly, we’ve
shrunk Z∗ by a factor of (1 − γ) · ε8 · 2

−4d2 (these factors come from running MinDegree and GridRegular,
respectively). And we get a density increment of (1 + ε

2), so this occurs at most Oε(d) times; so in total, it

causes Y∗ to shrink by 2−Oε(d3) and Z∗ by 2−Oε(d3).

So in total, Y∗ shrinks by 2−Oε(d/γ) · 2−Oε(d3/γ) · 2−Oε(d3) = 2−Oε(d3/γ), and Z∗ shrinks by 2−Oε(d) · 2−Oε(d3) =
2−Oε(d3), proving (iv).

Page 8 of 10

Sanjana Das (April 23, 2025) A faster combinatorial algorithm for triangle detection

Finally, we’ll use this to prove Theorem 2.5 (in the manner discussed after the statement of Lemma 3.7).

Proof of Theorem 2.5. Set γ = 1
4(d+2)2

. We initialize B′ ← B, and repeat (where m is the current index):

• If E[B′] ≥ 2−d, then we compute (Ym, Zm, {(Xmℓ, Ymℓ, Zmℓ, Amℓ)}ℓ∈L) ← GoodCube(A,B′), and we
add (Xmℓ, Ymℓ, Zmℓ, Amℓ, B

′[Ymℓ, Zmℓ]) to our decomposition for all ℓ ∈ L.

Then we recursively run DecomposeProduct(A[Xmℓ, Ymℓ], B
′[Ymℓ, Zm \Zmℓ]) for all ℓ ∈ L, and add all

its outputs to our decomposition as well.

Finally, this accounts for the entire contribution of B′[Ym, Zm] to our matrix product; so we remove
it, meaning that we update B′ ← B′ \B′[Ym, Zm].

• If E[B′] < 2−d, we add (X,Y, Z,A,B′) to our decomposition and terminate.

We also cut off the recursion at depth d — when we hit recursion depth d, we don’t perform the above
procedure. Instead, we split B into 2d matrices on the same host sets, each with density at most 2−d. More

precisely, we write B =
∑2d

i=1Bi where Bi ∈ {0, 1}Y×Z and E[Bi] ≤ 2−d for all i, and add (X,Y, Z,A,Bi) to
the decomposition for all i. (In the analysis, we’ll show that our subproblems at depth d are so small that
we can afford to do this.)

To prove (iii), let’s first consider the top level of the recursion. Lemma 3.6(iii) gives that
∑

ℓ |Xmℓ| |Ymℓ| ≤
(d+ 2) |X| |Ym|, and the same argument from its proof also shows

∑
m |Ym| |Zm| ≤ (d+ 2) |Y | |Z| — every

piece B′[Ym, Zm] we remove is at least as dense as the current B′, which means that removing it shrinks the

density of B′ by a factor of 1− |Ym||Zm|
|Y ||Z| , and this density must remain above 2−d until the end. So∑

m,ℓ

|Xmℓ| |Ymℓ| |Zmℓ| ≤
∑
m,ℓ

|Xmℓ| |Ymℓ| |Zm| ≤ (d+ 2)
∑
m

|X| |Ym| |Zm| ≤ (d+ 2)2 |X| |Y | |Z| . (3.2)

Then when we recurse, we have a subproblem on the sets (Xmℓ, Ymℓ, Zm \Zmℓ) for all m and ℓ, and Lemma
3.5 ensures that |Zm \ Zmℓ| ≤ γ |Zm|. So if we think of |X| |Y | |Z| as the ‘volume’ of our original problem,
then the total volume of all our subproblems (at recursive depth 1) is at most∑

m,ℓ

|Xmℓ| |Ymℓ| |Zm \ Zmℓ| ≤ γ
∑
m,ℓ

|Xmℓ| |Ymℓ| |Zm| ≤ γ(d+ 2)2 |X| |Y | |Z| ≤ 1

4
|X| |Y | |Z| .

So every time we move a level down in the recursion, our total volume multiplies by 1
4 . This means when se

sum (3.2) over all levels of the recursion, we’ll get
∑

k |Xk| |Yk| |Zk| ≤ (d+2)2 |X| |Y | |Z| (1 + 1
4 +

1
16 + · · ·+

1
4d−1 + 1

4d
· 2d) ≤ 2(d+ 2)2 |X| |Y | |Z|. (The final term is because we’re cutting off the recursion at depth d

and doing something that has blowup 2d there.) This proves (iii).

For (iv), again let’s first consider the top level of the recursion. Lemma 3.7(iv) guarantees that |Ym| |Zm| ≥
2−Oε(d3/γ) · 2−Oε(d3) |Y | |Z| = 2−Oε(d5) |Y | |Z| for all m, and we have

∑
m |Ym| |Zm| ≤ (d+ 2)2 |Y | |Z| (as we

saw above), so the total number of indices m is at most 2Oε(d5). And each m corresponds to at most 2Oε(d3)

indices ℓ by Lemma 3.6(v). So in total, we add at most 2Oε(d5) ·2Oε(d3) = 2Oε(d5) pieces to the decomposition
at the top level of recursion. This also means we spawn at most 2Oε(d5) subproblems. So each level of the
recursion multiplies our number of subproblems by 2Oε(d5), and we have d levels; this means we have 2Oε(d6)

total subproblems, and therefore the decomposition has 2Oε(d6) · 2Oε(d5) = 2Oε(d6) parts.

Page 9 of 10

A faster combinatorial algorithm for triangle detection Sanjana Das (April 23, 2025)

References

[1] Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett, and Raghu Meka. New graph decompositions
and combinatorial Boolean matrix multiplication algorithms. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, STOC 2024, pages 935–943, 2024. arxiv:2311.09095.

[2] V. L. Arlazarov, Y. A. Dinic, M. A. Kronrod, and I. A. Faradzhev. On economical construction of the
transitive closure of an oriented graph. Doklady Academii Nauk SSSR, 194(3):487–488, 1970.

[3] Zander Kelley, Shachar Lovett, and Raghu Meka. Explicit separations between randomized and deter-
ministic number-on-forehead communication. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, STOC 2024, pages 1299–1310, 2024. arxiv:2308.12451.

[4] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path, matrix, and
triangle problems. Journal of the ACM, 65(5):1–38, 2018.

[5] Huacheng Yu. An improved combinatorial algorithm for Boolean matrix multiplication. Information
and Computation, 261(2):240–247, 2018.

Page 10 of 10

https://arxiv.org/abs/2311.09095
https://arxiv.org/abs/2308.12451

	Introduction
	Regularity and triangle detection
	Definitions
	Relevance to triangle detection
	A regularity decomposition and triangle detection algorithm

	Constructing a regularity decomposition
	Regularity vs. density increments
	Decomposing a single matrix
	Decomposing a product

