

A faster combinatorial algorithm for triangle detection

Sanjana Das

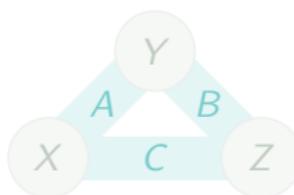
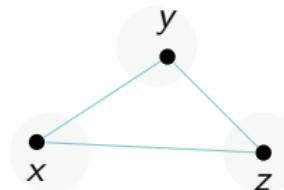
May 6, 2025

Problem and main result

Problem (Triangle detection)

Given a tripartite graph G , determine whether it has a triangle.

- **Input:** Matrices $A \in \{0, 1\}^{X \times Y}$, $B \in \{0, 1\}^{Y \times Z}$, $C \in \{0, 1\}^{X \times Z}$.
- **Output:** Is there $(x, z) \in X \times Z$ where both AB and C are nonzero?

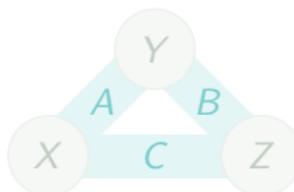
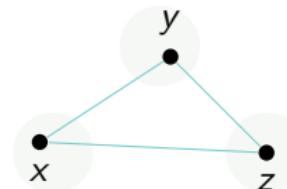


Problem and main result

Problem (Triangle detection)

Given a tripartite graph G , determine whether it has a triangle.

- **Input:** Matrices $A \in \{0, 1\}^{X \times Y}$, $B \in \{0, 1\}^{Y \times Z}$, $C \in \{0, 1\}^{X \times Z}$.
- **Output:** Is there $(x, z) \in X \times Z$ where both AB and C are nonzero?



Until recently, the best combinatorial algorithm was $n^3 \cdot (\log n)^{-4}$ time.

Theorem (Abboud–Fischer–Kelley–Lovett–Meka 2024)

There is an $n^3 \cdot 2^{-\Omega((\log n)^{1/7})}$ time combinatorial algorithm for triangle detection (and therefore also BMM).

Notions of regularity

Main idea: Decompose the problem into a bunch of ‘nice’ pieces, on which solving triangle detection is much easier.

Notions of regularity

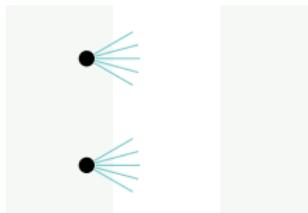
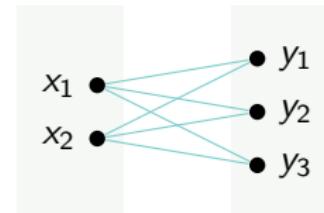
Main idea: Decompose the problem into a bunch of ‘nice’ pieces, on which solving triangle detection is much easier.

Definition

For $A \in \{0, 1\}^{X \times Y}$, we write $\mathbb{E}[A]$ for the density of A . We say A is:

- ε -min-degree if $\deg_A(x) \geq (1 - \varepsilon)\mathbb{E}[A] |Y|$ for all $x \in X$.
- $(\varepsilon, 2, d)$ -grid regular if for random $x_1, x_2 \in X$ and $y_1, \dots, y_d \in Y$,

$$(\mathbb{P}[x_1, x_2, y_1, \dots, y_d \text{ form a } K_{2,d}])^{1/2d} \leq (1 + \varepsilon)\mathbb{E}[A].$$



Regularity speeds up triangle detection

Theorem (Kelley–Lovett–Meka 2024)

If A and B^T are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular, then

$$(1 - 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B] |Y| \leq (AB)(x, z) \leq (1 + 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B] |Y|$$

for all but a $2^{-\varepsilon d/2}$ -fraction of $(x, z) \in X \times Z$.

Think of $\varepsilon \approx \frac{1}{160}$ as a small constant and d as growing with n .

Regularity speeds up triangle detection

Theorem (Kelley–Lovett–Meka 2024)

If A and B^T are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular, then

$$(1 - 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B] |Y| \leq (AB)(x, z) \leq (1 + 80\varepsilon)\mathbb{E}[A]\mathbb{E}[B] |Y|$$

for all but a $2^{-\varepsilon d/2}$ -fraction of $(x, z) \in X \times Z$.

Think of $\varepsilon \approx \frac{1}{160}$ as a small constant and d as growing with n .

- ▶ If A and B meet these conditions, all but a $2^{-\varepsilon d/2}$ -fraction of the entries of AB are positive.
- ▶ So if more than a $2^{-\varepsilon d/2}$ -fraction of the entries of C are 1's, then there is automatically a triangle!
- ▶ Otherwise we can brute force: Go through all $(x, z) \in X \times Z$ which are edges in C (there are at most $2^{-\varepsilon d/2} |X| |Z|$ of these) and all $y \in Y$. This takes $2^{-\varepsilon d/2} |X| |Y| |Z|$ time.

A regularity decomposition

Theorem (AFKLM24)

Given any $A \in \{0, 1\}^{X \times Y}$ and $B \in \{0, 1\}^{Y \times Z}$, we can decompose

$$AB = \sum_k A_k B_k$$

for smaller matrices $A_k \in \{0, 1\}^{X_k \times Y_k}$ and $B_k \in \{0, 1\}^{Y_k \times Z_k}$ such that:

- ▶ $\mathbb{E}[A_k] \leq 2^{-d}$, $\mathbb{E}[B_k] \leq 2^{-d}$, or both A_k and B_k^T are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular (for each k).
- ▶ $\sum_k |X_k| |Y_k| |Z_k| \leq \text{poly}(d) \cdot |X| |Y| |Z|$.
- ▶ The number of indices k is at most $2^{O_\varepsilon(d^7)}$.

A regularity decomposition

Theorem (AFKLM24)

Given any $A \in \{0, 1\}^{X \times Y}$ and $B \in \{0, 1\}^{Y \times Z}$, we can decompose

$$AB = \sum_k A_k B_k$$

for smaller matrices $A_k \in \{0, 1\}^{X_k \times Y_k}$ and $B_k \in \{0, 1\}^{Y_k \times Z_k}$ such that:

- ▶ $\mathbb{E}[A_k] \leq 2^{-d}$, $\mathbb{E}[B_k] \leq 2^{-d}$, or both A_k and B_k^T are ε -min-degree and $(\varepsilon, 2, d)$ -grid regular (for each k).
- ▶ $\sum_k |X_k| |Y_k| |Z_k| \leq \text{poly}(d) \cdot |X| |Y| |Z|$.
- ▶ The number of indices k is at most $2^{O_\varepsilon(d^7)}$.

Set $d = c(\log n)^{1/7}$ (so $2^{O_\varepsilon(d^7)} \leq n^{0.1}$); this gives runtime

$$\sum_k 2^{-\varepsilon d/2} |X_k| |Y_k| |Z_k| = 2^{-\varepsilon d/2} \cdot \text{poly}(d) \cdot |X| |Y| |Z| = 2^{-\Omega(d)} n^3.$$

Finding a good rectangle

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d + 2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.

Finding a good rectangle

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$.
- The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.

Goal

Given $A \in \{0, 1\}^{X \times Y}$ such that $\mathbb{E}[A] \geq 2^{-d}$, find a *single* regular piece $A[X_*, Y_*]$ which is not too small (which we call a **good rectangle**).

Once we can do this, we'll get the decomposition by iteratively removing good rectangles.

Density increments

Main idea: If A is not regular, we can find a **density increment** — a piece $A[X', Y']$ which is substantially denser.

Claim

Let $\gamma \in (0, 1)$. We can find X' with $|X'| \geq (1 - \gamma) |X|$ such that either $A[X', Y']$ is ε -min-degree, or $\mathbb{E}[A[X', Y']] \geq (1 + \varepsilon\gamma)\mathbb{E}[A]$.

Claim

Either A itself is $(\varepsilon, 2, d)$ -grid regular, or we can find X' and Y' with

$$|X'| |Y'| \geq \frac{\varepsilon}{16} \cdot \mathbb{E}[A]^{-2d} \cdot |X| |Y|$$

such that $\mathbb{E}[A[X', Y']] \geq (1 + \frac{\varepsilon}{2})\mathbb{E}[A]$.

We'll have $\mathbb{E}[A] \geq 2^{-d}$, so this shrinks our sets by $\frac{\varepsilon}{16} \cdot 2^{-2d^2} = 2^{-O_\varepsilon(d^2)}$.

Finding a good rectangle

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1 + \frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1 + \frac{\varepsilon}{2})$ with shrinkage $2^{-O_\varepsilon(d^2)}$.
- ▶ If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

Finding a good rectangle

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1 + \frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1 + \frac{\varepsilon}{2})$ with shrinkage $2^{-O_\varepsilon(d^2)}$.
- ▶ If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

Finding a good rectangle

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1 + \frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1 + \frac{\varepsilon}{2})$ with shrinkage $2^{-O_\varepsilon(d^2)}$.
- ▶ If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

Finding a good rectangle

To find a good rectangle, start with $(X_*, Y_*) \leftarrow (X, Y)$, and repeatedly:

- ▶ By shrinking X_* by at most $\frac{1}{2}$, either we can make $A[X_*, Y_*]$ ε -min-degree, or we get a density increment of $(1 + \frac{\varepsilon}{2})$.
- ▶ Either $A[X_*, Y_*]$ itself is $(\varepsilon, 2, d)$ -grid regular, or we get a density increment of $(1 + \frac{\varepsilon}{2})$ with shrinkage $2^{-O_\varepsilon(d^2)}$.
- ▶ If either fails, repeat with this denser submatrix as our new (X_*, Y_*) .

Claim

This gives a good rectangle with $|X_*| |Y_*| \geq 2^{-O_\varepsilon(d^3)} |X| |Y|$.

- ▶ We get a density increment of $(1 + \frac{\varepsilon}{2})$ each time, starting at 2^{-d} , so we fail at most $O_\varepsilon(d)$ times.
- ▶ Each failure shrinks $|X_*| |Y_*|$ by $2^{-O_\varepsilon(d^2)}$.

Decomposing a single matrix

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d + 2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.

Decomposing a single matrix

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- ▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

1	0	1	0	1
---	---	---	---	---

1	1	1	1	0
---	---	---	---	---

0	1	0	1	1
---	---	---	---	---

Decomposing a single matrix

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- ▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

1	0	1	0	1
1	1	1	1	0
0	1	0	1	1

Decomposing a single matrix

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- ▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

$$\begin{array}{ccccc}
 1 & 0 & 1 & 0 & 1 \\
 1 & | \overbrace{0} & \overbrace{0} & \overbrace{0} & 0 \\
 | & | & | & | & | \\
 0 & | \overbrace{0} & \overbrace{0} & \overbrace{0} & 1
 \end{array}$$

Decomposing a single matrix

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- ▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

$$\begin{array}{ccccc}
 1 & 0 & 1 & 0 & 1 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1
 \end{array}$$

Decomposing a single matrix

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$.
- The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.

- Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

0	0	0	0	1
0	0	0	0	0
0	0	0	0	1

Decomposing a single matrix

Lemma

We can decompose $A = \sum_{\ell} A_{\ell}$ for $A_{\ell} \in \{0, 1\}^{X_{\ell} \times Y_{\ell}}$ such that:

- ▶ $\mathbb{E}[A_{\ell}] \leq 2^{-d}$, or A_{ℓ} is ε -min-degree and $(\varepsilon, 2, d)$ -grid regular.
- ▶ $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$.
- ▶ The number of indices ℓ is at most $2^{O_{\varepsilon}(d^3)}$.
- ▶ Repeatedly find a good rectangle $A[X_*, Y_*]$, add $A_{\ell} = A[X_*, Y_*]$ to the decomposition, and remove it from A (i.e., update $A \leftarrow A - A_{\ell}$).
- ▶ When $\mathbb{E}[A]$ drops below 2^{-d} , add a final piece to the decomposition consisting of A itself.

0	0	0	0	1
0	0	0	0	0
0	0	0	0	1

Decomposing a single matrix — analysis

To show $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$:

- ▶ Every piece we remove is at least as dense as the current A , so removing it drops the density of A by a factor of

$$1 - \frac{|X_{\ell}| |Y_{\ell}|}{|X| |Y|}.$$

- ▶ The density stays above 2^{-d} , so $\prod_{\ell} \left(1 - \frac{|X_{\ell}| |Y_{\ell}|}{|X| |Y|}\right) \geq 2^{-d}$ (excluding the last two pieces).
- ▶ Use the bound $1 - x \leq 2^{-x}$ to conclude.

Decomposing a single matrix — analysis

To show $\sum_{\ell} |X_{\ell}| |Y_{\ell}| \leq (d+2) \cdot |X| |Y|$:

- Every piece we remove is at least as dense as the current A , so removing it drops the density of A by a factor of

$$1 - \frac{|X_{\ell}| |Y_{\ell}|}{|X| |Y|}.$$

- The density stays above 2^{-d} , so $\prod_{\ell} \left(1 - \frac{|X_{\ell}| |Y_{\ell}|}{|X| |Y|}\right) \geq 2^{-d}$ (excluding the last two pieces).
- Use the bound $1 - x \leq 2^{-x}$ to conclude.

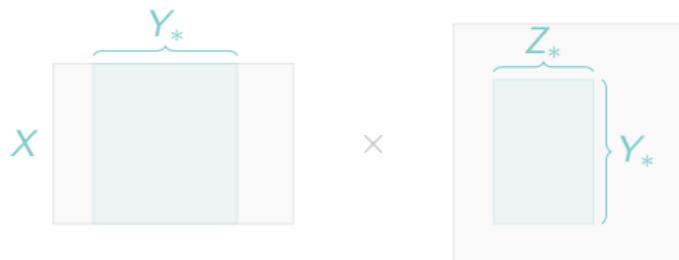
To bound the number of parts:

- Each part has $|X_{\ell}| |Y_{\ell}| \geq 2^{-O_{\varepsilon}(d^3)} |X| |Y|$.
- So there's at most $2^{O_{\varepsilon}(d^3)}$ indices ℓ in the above sum.

Decomposing a product

Goal

Remove some $B[Y_*, Z_*]$ from B , and account for $A[X, Y_*]B[Y_*, Z_*]$.

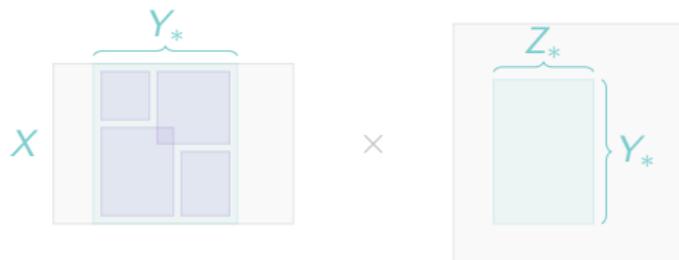


Decomposing a product

Goal

Remove some $B[Y_*, Z_*]$ from B , and account for $A[X, Y_*]B[Y_*, Z_*]$.

- Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).



Decomposing a product

Goal

Remove some $B[Y_*, Z_*]$ from B , and account for $A[X, Y_*]B[Y_*, Z_*]$.

- Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).
- Then $A[X, Y_*]B[Y_*, Z_*] = \sum_{\ell} A_{\ell}B[Y_{\ell}, Z_*]$. So for each ℓ :

Decomposing a product

Goal

Remove some $B[Y_*, Z_*]$ from B , and account for $A[X, Y_*]B[Y_*, Z_*]$.

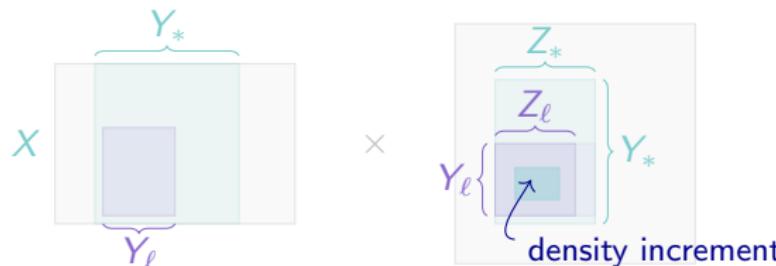
- ▶ Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).
- ▶ Then $A[X, Y_*]B[Y_*, Z_*] = \sum_{\ell} A_{\ell}B[Y_{\ell}, Z_*]$. So for each ℓ :
 - ▶ Find $Z_{\ell} \subseteq Z_*$ with $|Z_{\ell}| \geq (1 - \gamma)|Z_*|$ such that either $B[Y_{\ell}, Z_{\ell}]^T$ is ε -min-degree, or we get a density increment of $(1 + \varepsilon\gamma)$.

Decomposing a product

Goal

Remove some $B[Y_*, Z_*]$ from B , and account for $A[X, Y_*]B[Y_*, Z_*]$.

- ▶ Decompose $A[X, Y_*] = \sum_{\ell} A_{\ell}$ (for $A_{\ell} \in \{0, 1\}^{X_{\ell}, Y_{\ell}}$).
- ▶ Then $A[X, Y_*]B[Y_*, Z_*] = \sum_{\ell} A_{\ell}B[Y_{\ell}, Z_*]$. So for each ℓ :
 - ▶ Find $Z_{\ell} \subseteq Z_*$ with $|Z_{\ell}| \geq (1 - \gamma)|Z_*|$ such that either $B[Y_{\ell}, Z_{\ell}]^T$ is ε -min-degree, or we get a density increment of $(1 + \varepsilon\gamma)$.
 - ▶ $B[Y_{\ell}, Z_{\ell}]^T$ is $(\varepsilon, 2, d)$ -grid regular, or we get an increment of $(1 + \frac{\varepsilon}{2})$.



Decomposing a product

Goal

Remove some $B[Y_*, Z_*]$ from B , and account for $A[X, Y_*]B[Y_*, Z_*]$.

- Decompose $A[X, Y_*] = \sum_\ell A_\ell$ (for $A_\ell \in \{0, 1\}^{X_\ell, Y_\ell}$).
- Then $A[X, Y_*]B[Y_*, Z_*] = \sum_\ell A_\ell B[Y_\ell, Z_*]$. So for each ℓ :
 - Find $Z_\ell \subseteq Z_*$ with $|Z_\ell| \geq (1 - \gamma)|Z_*|$ such that either $B[Y_\ell, Z_\ell]^\top$ is ε -min-degree, or we get a density increment of $(1 + \varepsilon\gamma)$.
 - $B[Y_\ell, Z_\ell]^\top$ is $(\varepsilon, 2, d)$ -grid regular, or we get an increment of $(1 + \frac{\varepsilon}{2})$.
- We're missing $A[X_\ell, Y_\ell]B[Y_\ell, Z_* \setminus Z_\ell]$; we recurse to handle it.

