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Problem and main result

Problem (Triangle detection)

Given a tripartite graph G , determine whether it has a triangle.

▶ Input: Matrices A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , C ∈ {0, 1}X×Z .

▶ Output: Is there (x , z) ∈ X ×Z where both AB and C are nonzero?

A B

CX Z

Y

x z

y

Until recently, the best combinatorial algorithm was n3 · (log n)−4 time.

Theorem (Abboud–Fischer–Kelley–Lovett–Meka 2024)

There is an n3 · 2−Ω((log n)1/7) time combinatorial algorithm for triangle
detection (and therefore also BMM).
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Notions of regularity

Main idea: Decompose the problem into a bunch of ‘nice’ pieces, on
which solving triangle detection is much easier.

Definition

For A ∈ {0, 1}X×Y , we write E[A] for the density of A. We say A is:

▶ ε-min-degree if degA(x) ≥ (1− ε)E[A] |Y | for all x ∈ X .

▶ (ε, 2, d)-grid regular if for random x1, x2 ∈ X and y1, . . . , yd ∈ Y ,

(P[x1, x2, y1, . . . , yd form a K2,d ])
1/2d ≤ (1 + ε)E[A].
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Regularity speeds up triangle detection

Theorem (Kelley–Lovett–Meka 2024)

If A and B⊺ are ε-min-degree and (ε, 2, d)-grid regular, then

(1− 80ε)E[A]E[B] |Y | ≤ (AB)(x , z) ≤ (1 + 80ε)E[A]E[B] |Y |

for all but a 2−εd/2-fraction of (x , z) ∈ X × Z .

Think of ε ≈ 1
160 as a small constant and d as growing with n.

▶ If A and B meet these conditions, all but a 2−εd/2-fraction of the
entries of AB are positive.

▶ So if more than a 2−εd/2-fraction of the entries of C are 1’s, then
there is automatically a triangle!

▶ Otherwise we can brute force: Go through all (x , z) ∈ X × Z which
are edges in C (there are at most 2−εd/2 |X | |Z | of these) and all
y ∈ Y . This takes 2−εd/2 |X | |Y | |Z | time.
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A regularity decomposition

Theorem (AFKLM24)

Given any A ∈ {0, 1}X×Y and B ∈ {0, 1}Y×Z , we can decompose

AB =
∑
k

AkBk

for smaller matrices Ak ∈ {0, 1}Xk×Yk and Bk ∈ {0, 1}Yk×Zk such that:

▶ E[Ak ] ≤ 2−d , E[Bk ] ≤ 2−d , or both Ak and B⊺
k are ε-min-degree

and (ε, 2, d)-grid regular (for each k).

▶
∑

k |Xk | |Yk | |Zk | ≤ poly(d) · |X | |Y | |Z |.
▶ The number of indices k is at most 2Oε(d

7).

Set d = c(log n)1/7 (so 2Oε(d
7) ≤ n0.1); this gives runtime∑

k

2−εd/2 |Xk | |Yk | |Zk | = 2−εd/2 · poly(d) · |X | |Y | |Z | = 2−Ω(d)n3.
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Finding a good rectangle

Lemma

We can decompose A =
∑

ℓ Aℓ for Aℓ ∈ {0, 1}Xℓ×Yℓ such that:

▶ E[Aℓ] ≤ 2−d , or Aℓ is ε-min-degree and (ε, 2, d)-grid regular.

▶
∑

ℓ |Xℓ| |Yℓ| ≤ (d + 2) · |X | |Y |.
▶ The number of indices ℓ is at most 2Oε(d

3).

Goal

Given A ∈ {0, 1}X×Y such that E[A] ≥ 2−d , find a single regular piece
A[X∗,Y∗] which is not too small (which we call a good rectangle).

Once we can do this, we’ll get the decomposition by iteratively removing
good rectangles.
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Density increments

Main idea: If A is not regular, we can find a density increment — a
piece A[X ′,Y ′] which is substantially denser.

Claim

Let γ ∈ (0, 1). We can find X ′ with |X ′| ≥ (1− γ) |X | such that either
A[X ′,Y ] is ε-min-degree, or E[A[X ′,Y ]] ≥ (1 + εγ)E[A].

Claim

Either A itself is (ε, 2, d)-grid regular, or we can find X ′ and Y ′ with

|X ′| |Y ′| ≥ ε

16
· E[A]−2d · |X | |Y |

such that E[A[X ′,Y ′]] ≥ (1 + ε
2 )E[A].

We’ll have E[A] ≥ 2−d , so this shrinks our sets by ε
16 · 2

−2d2

= 2−Oε(d
2).
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Finding a good rectangle

To find a good rectangle, start with (X∗,Y∗)← (X ,Y ), and repeatedly:
▶ By shrinking X∗ by at most 1

2 , either we can make A[X∗,Y∗]
ε-min-degree, or we get a density increment of (1 + ε

2 ).
▶ Either A[X∗,Y∗] itself is (ε, 2, d)-grid regular, or we get a density

increment of (1 + ε
2 ) with shrinkage 2−Oε(d

2).
▶ If either fails, repeat with this denser submatrix as our new (X∗,Y∗).

X∗

Y∗

Claim

This gives a good rectangle with |X∗| |Y∗| ≥ 2−Oε(d
3) |X | |Y |.

▶ We get a density increment of (1 + ε
2 ) each time, starting at 2−d , so

we fail at most Oε(d) times.
▶ Each failure shrinks |X∗| |Y∗| by 2−Oε(d

2).
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Decomposing a single matrix

Lemma

We can decompose A =
∑

ℓ Aℓ for Aℓ ∈ {0, 1}Xℓ×Yℓ such that:

▶ E[Aℓ] ≤ 2−d , or Aℓ is ε-min-degree and (ε, 2, d)-grid regular.

▶
∑

ℓ |Xℓ| |Yℓ| ≤ (d + 2) · |X | |Y |.
▶ The number of indices ℓ is at most 2Oε(d

3).

▶ Repeatedly find a good rectangle A[X∗,Y∗], add Aℓ = A[X∗,Y∗] to
the decomposition, and remove it from A (i.e., update A← A−Aℓ).

▶ When E[A] drops below 2−d , add a final piece to the decomposition
consisting of A itself.
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Decomposing a single matrix — analysis

To show
∑

ℓ |Xℓ| |Yℓ| ≤ (d + 2) · |X | |Y |:
▶ Every piece we remove is at least as dense as the current A, so

removing it drops the density of A by a factor of

1− |Xℓ| |Yℓ|
|X | |Y |

.

▶ The density stays above 2−d , so
∏

ℓ(1−
|Xℓ||Yℓ|
|X ||Y | ) ≥ 2−d (excluding

the last two pieces).

▶ Use the bound 1− x ≤ 2−x to conclude.

To bound the number of parts:

▶ Each part has |Xℓ| |Yℓ| ≥ 2−Oε(d
3) |X | |Y |.

▶ So there’s at most 2Oε(d
3) indices ℓ in the above sum.
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Decomposing a product

Goal

Remove some B[Y∗,Z∗] from B, and account for A[X ,Y∗]B[Y∗,Z∗].

▶ Decompose A[X ,Y∗] =
∑

ℓ Aℓ (for Aℓ ∈ {0, 1}Xℓ,Yℓ).

▶ Then A[X ,Y∗]B[Y∗,Z∗] =
∑

ℓ AℓB[Yℓ,Z∗]. So for each ℓ:

▶ Find Zℓ ⊆ Z∗ with |Zℓ| ≥ (1− γ) |Z∗| such that either B[Yℓ,Zℓ]
⊺ is

ε-min-degree, or we get a density increment of (1 + εγ).
▶ B[Yℓ,Zℓ]

⊺ is (ε, 2, d)-grid regular, or we get an increment of (1 + ε
2
).

▶ We’re missing A[Xℓ,Yℓ]B[Yℓ,Z∗ \ Zℓ]; we recurse to handle it.

× Y∗

Z∗
Y∗

X
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2
).

▶ We’re missing A[Xℓ,Yℓ]B[Yℓ,Z∗ \ Zℓ]; we recurse to handle it.
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