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§1 Introduction

§1.1 The problem and history

The triangle-free process is the following random graph process: We start with an empty n-vertex graph
Gy. Then at every step, we pick a random edge e. If e can be added to the current graph without creating
a triangle, then we add it; otherwise we discard it. We keep on doing this until no more edges can be added
without creating a triangle; at this point, we’ve produced a random maximal triangle-free graph.

One of the main reasons people initially studied the triangle-free process was the question of determining
the Ramsey number r(3, k), the smallest n for which every n-vertex graph has a triangle or an independent
set of size k. In 1981, Ajtai, Kémlos, and Szemerédi [AKS81] proved that every n-vertex triangle-free graph
G has independence number o(G) = Q(v/nlogn); this shows

sn=0()

As discussed by Spencer [Spe95], there are heuristic reasons to think that the graph produced by the triangle-
free process should satisfy «(G) = O(y/nlogn), which would provide a matching lower bound on (3, k).
(We’ll discuss such a heuristic in Subsection 1.2.)

Since the triangle-free process is highly non-independent, it’s difficult to analyze. However, in 1995, Kim
[Kim95] solved the problem of r(3, k) using a ‘semi-random’ modification of the triangle-free process — he
found a way to introduce enough independence into the process to make it easier to analyze (while preserving
these heuristics), and he showed this modified process does produce a graph with a(G) = O(y/nlogn).

Although this solved the problem of r(3, k), studying the triangle-free process continued to be an interesting
problem in its own right. In 2009, Bohman [Boh09] proved that the triangle-free process really does produce
a graph with ©(n%/2\/logn) edges and with a(G) = O(v/nlogn). In 2011, Wolfovitz [Wolll] considered
the question of fixed-size subgraphs of the triangle-free process: He showed that when the number of edges
added is en®/2\/Togn for a small constant ¢, the counts of certain fixed-size subgraphs behave like they would
in a random graph of the same edge density. In 2020, Bohman and Keevash [BK20] and Fiz Pontiveros,
Griffiths, and Morris [PGM20] found the exact first-order asymptotic for both the number of edges and
independence number of the graph produced by the triangle-free process.

In this writeup, we’ll describe Kim’s semirandom construction and analysis from [Kim95]. We’ll then describe
the ideas Bohman [Boh09] and Wolfovitz [Woll1] use to analyze the actual triangle-free process (we won’t
prove their main theorems because of length, but we’ll see many of the key lemmas and proof techniques).

§1.2 Heuristics

First, here’s a very loose heuristic for how we might expect the triangle-free process to behave, and why we
might expect that it produces a graph with a(G) = O(y/nlogn).

Imagine we embed the triangle-free process into time such that each step takes time 2n~3/2; this roughly
means that in a time-interval of length ~ (think of v as small), we’ve sampled a yn~1/2fraction of edges (in
some random order) and attempted to add them to the graph. We'll refer to edges as:

e Chosen if they’ve already been added to the graph.
e Open if they haven’t been added, but could be added without creating a triangle.

e Closed if they haven’t been added, and adding them would create a triangle. (We can essentially
forget about such edges — so in a time-interval of length ~, we can imagine that we’re really sampling

a yn~'/2-fraction of open edges.)
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(In all pictures, we’ll draw chosen edges in light purple and open edges in dark purple.)

Imagine that at time ¢, our chosen edge density is roughly \If(t)nfl/ 2. we’d like to come up with an equation
that predicts what ¥ should be.

First, what’s the open edge density? An edge uv is open if it’s not in a configuration of the following form
(i.e., there is no w such that ww and vw have both been chosen).

w
{ ]

ce
]

There are roughly n choices for w, and the chosen edge density is ‘If(t)n_l/ 2. 5o if we imagine that the graph
has nice ‘independence’ properties, we might expect uv to be open with probability

(1-— \Il(t)n_l)" ~ exp(—\I/(t)2).
Then in a short time-interval of length v, we’re sampling and adding each open edge with probability fynfl/ 2
(this isn’t exactly true — adding one open edge could close another — but if we think of v as small, this
won’t have much effect), so we’d expect our edge density to increase by roughly exp(—W(#)?) - yn~'/2. This
suggests W(t + ) ~ U(t) + exp(—¥(t)?) - v, giving the differential equation

(1) = exp(~W(t)?) (L1)

(with ¥(0) = 0). This doesn’t have an explicit solution, but we can write it as fo\p(t) e d¢ = t, which means
that W(t) ~ y/logt (at least, when t is reasonably large). Throughout the rest of this writeup, we’ll use ¥
to refer to the solution to (1.1), and we’ll write 1(t) = W/(¢). Since ¥(t) ~ /logt (for reasonably large t),
we have 1(t) = exp(—VU(t)?) ~ t~1.

Now let’s consider independent sets. For any set of k vertices, we’d expect the number of open edges in the
set at time t to be (t) (g) In a time-interval of length -, we're picking each with probability yn~'/2, so
the probability we don’t pick any of them would be

(=200 s exp (i) (1) )

Then the probability this set remains independent up to time ¢ should be

o (= X vwt a2 (5) ) o (- [ sae0(5)) <o (w0 n(5)) 1

(since we need this event to occur on each time-interval [iy, (i + 1)7] up to t).

Meanwhile, the number of sets of size k is roughly n* = exp(klogn). So if W(t) -n~1/2 (g) is large compared
to klogn, then a union bound should tell us that there are no independent sets of size k.

Since ¥(t) = /logt, if we take t = n® and k = C'v/nlogn (where ¢ is some small constant, and C' is a large
constant relative to c), then this inequality holds. So this suggests that if we can show the triangle-free
process follows this heuristic up to time ¢ = n®, then we’ll be able to prove a(G) = O(y/nlogn).
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§1.3 Tracking configurations and an expected trajectory

The heuristics in Subsection 1.2 give us a guess for how we might expect the triangle-free process to evolve,
but it’s not clear how to use it to get a proof. We’ll now discuss a more refined heuristic which is the starting
point for all the proofs.

We’ll consider three types of ‘configurations’ in the current graph Gj:

e We write X, (7) for the set of {uw,vw} such that both uw and vw are open (so Xy, (i) is a set of pairs
of edges). We write X, (1) = | Xy ()]

o We write Yy, (7) for the set of {uw,vw} such that one of uw and vw is open, and the other is chosen.
We write Yy, (i) = [Vuw(9)]-

o We write Z,,(7) for the set of {uw,vw} such that both uw and vw are chosen, and Z,,, (i) = | Zy,(1)].

w w w
{

Imagine that at time ¢, we have that Xy, (i) = p,(t)n and Y., (i) = ¢y(t)\/n for all open edges uv, and
that Z,,(i) is small (where ¢, and ¢, are some functions to be determined). The key idea is that this
information alone is enough to determine what ¢, (t + ) and ¢, (t + ) ‘should’ be (for small 7). First, if
wv is currently open, then the probability it gets closed during [t,t + 7] should be roughly

Yoo (i) - yn Y2 a2y, (2)

(since uv gets closed if we add the one open edge in some configuration in Yy, (7) — it could also get closed
if we add both open edges in some configuration in X, (i), but if  is small then this is substantially less
likely). This means that for each of the roughly ¢, (f)n configurations in X, (), the probability it ‘leaves’
(meaning that one of its edges becomes closed) should be roughly 2y¢p, (t); this suggests that we should have

@ (t) = =24 (t)py(t). (1.3)

(Some configurations will also leave X, (i) because we chose one of their edges; but the probability of an
edge becoming closed is much bigger than the probability of it being chosen — they’re roughly v, (t) (which
we think of as n~¢ for small ¢) and yn~1/2, respectively — so this can be ignored.)

Meanwhile, there’s two main factors that contribute to changes in Y,,(i). First, some configuration in
V(i) could ‘leave’ because we closed one of its open edges; there are roughly ¢, (t)\/n such configurations,
and each leaves with probability roughly vy, (t), so we’d expect to lose v, (t)?y/n configurations this way.
Meanwhile, configurations in Xy, (i) could ‘enter’ because we chose one of their two open edges; we’d expect
to gain @, (t)n - 2yn~/2 = 2y, (t)\/n configurations this way. This suggests

oy (1) = =y (1) + 20 (). (1.4)

The heuristics in Subsection 1.2 give the guess ¢, (t) = ¥(t)? and p,(t) = 2¥(¢)1(t), and these functions
indeed satisfy (1.3) and (1.4).
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§1.4 Overview

Subsection 1.3 gives an idea for how we might analyze the triangle-free process: We can try splitting time into
intervals of length v, assuming that X, (7), Yy, (7), and Z,,(7) have roughly followed their expected trajectory
up to some time-interval, and showing that they exhibit good concentration around their expectations for
the next one (in which case they’ll continue to follow the expected trajectory).

However, proving concentration is difficult because of how non-independent the process is. So Kim’s ap-
proach in [Kim95] is to modify the triangle-free process to a semi-random variant where in each time-interval,
edges are essentially independent: In each time-interval, instead of running the triangle-free process (where
we choose a yn~/2-fraction of the open edges, then go through them in order and only add the ones that
wouldn’t create triangles), we choose a yn~1/2-fraction of the open edges and use all of them to update the
sets Xyy (1), Yun(i), and Z,,(7), and use the alteration method to get rid of triangles when building G;. This
has much better independence properties, which makes it possible to use tools like the bounded differences
inequality to prove concentration.

To prove statements about the triangle-free process itself, though, we need some way of handling this non-
independence. Bohman [Boh09] and Wolfovitz [Woll1] take fairly different approaches to this. Wolfovitz’s
idea is to combine a semi-random approach (where we split time into length-v intervals and try to prove
concentration on each) with branching processes that model how different edges affect each other, in a way
that lets us say there isn’t ‘too much’ dependence within a round (so that tools like the bounded differences
inequality still work).

Meanwhile, instead of splitting time into chunks, Bohman analyzes the process step by step. Of course
we can’t say the process concentrates around its expectation on a single step (that doesn’t really mean
anything). Instead, the key idea is to define martingales that accumulate how much each step differs from
the expected trajectory. We then use martingale concentration inequalities to show that these martingales
remain small with high probability, which means the process always remains close to its expected trajectory.
(This technique is called the differential equation method, and it’s really powerful — in particular, [BK20]
and [PGM20] both use a much more intricate version of the differential equation method to analyze the
triangle-free process all the way to its end.)

In Section 2, we’ll explain Kim’s construction and its full analysis (in particular, we’ll prove it produces a
graph with a(G) = O(v/nlogn)). In Section 3, we’ll explain the portion of Wolfovitz’s argument that proves
the triangle-free process follows its expected trajectory (as described in Subsection 1.3), and in Section 4,
we’ll explain the portion of Bohman’s argument that proves this. (Bohman uses a slightly different, and
probably more natural, parametrization of the triangle-free process where at each step we choose an open
edge and add it (rather than choosing an edge and adding it if it’s open). This is equivalent in terms of
the final graph produced, but the trajectory and differential equations for how it evolves over time are a bit
different. T’ll describe a version of his analysis for the parametrization described here (so that the process
still has the trajectory described in Subsection 1.3) to make the similarities with the other two arguments
easier to see.)

§2 Kim 1995: A semi-random construction for (3, k)

In this section, we’ll describe Kim'’s proof of the following theorem from [Kim95] (which uses a semi-random
modification of the triangle-free process).

Theorem 2.1 (Kim 1995)
For all (sufficiently large) n, there exists a n-vertex graph G with a(G) = O(y/nlogn).
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§2.1 Setup

Let € > 0 and ¢ > 0 be small constants (we’ll assume ¢ is small with respect to e for convenience, but this
isn’t necessary), let C' be a large constant with respect to ¢, and let v = n=¢. We'’re going to construct a
sequence of graphs Gy, G, ..., where we think of G; as a semi-random modification of the triangle-free
process up to time yi. We’ll run up to time n®, which means ¢ goes up to n¢/v, and our target bound on

a(G) will be Cy/nlogn.
We’ll maintain the following objects, for each i:
e A collection of edges E; (which may contain some triangles), which we’ll call the chosen edges.
o A triangle-free graph G; C F;.
e A collection of edges O;, which we’ll call the open edges, such that there are no triangles consisting of
one edge in O; and two in F;.

We define Xy, (1), Yup (i), and 2, () as in Subsection 1.3 with respect to these chosen and open edges. (The
idea is that we’ll construct F; with nice independence properties, and we’ll construct G; by deleting triangles
from E; using the alteration method. This means we want to work with F; instead of (G; when defining the
tracked sets — these nice independence properties will let us prove concentration.)

For convenience, we define ¢; = ¥ (i) and p; = Z;;%) vqi (so p; is a discrete approximation to W(vyi) — in
particular, we have U(vi) < p; < U(~vi) + ). Intuitively, the way to think about how these scale is that
n°®<qg <1land n ¢ < p; < cylog 7”;, and p;q; and p?qi are bounded (e.g., they’re at most % — this is
because 1(t) = exp(—V(t)?), and ze~*" is bounded).

We’ll want these objects to satisfy the following eight properties. The first three properties correspond to
saying that the construction follows the trajectory described in Subsection 1.3 (except that we only state
upper bounds), and will be used to prove each other.

Property 2.2. For all edges uv ¢ E;, we have Xy, (i) < ¢?n.
Property 2.3. For all edges uv ¢ E;, we have Yy,,(i) < 2(p; + 87)giv/n.

Property 2.4. For all edges uv, we have Z,,(i) < i(logn)2.

We'll also need two more properties saying that the degrees of individual vertices are roughly what we’d
expect, which will be used for the analysis of independent sets.

Property 2.5. For all vertices v, we have degg, (v) < gin.

Property 2.6. For all vertices v, we have degp, (v) < piv/n + int/3.
Next, we’ll need two properties about the number of open edges in big sets.

Property 2.7. Let kg = 72qi2\/ﬁ. Then the number of open edges between any two disjoint sets of sizes
(exactly) ko is at most q;k3.

Property 2.8. Let k = C'y/nlogn. Then the number of open edges inside every set of size k is at least
¢i(1— 64p;7) (5) — 16pigik/n.

These bounds make sense because our heuristic (based on Subsection 1.2) is that the density of open
edges should be roughly ¢;. Note that the error terms in Property 2.8 are ‘reasonable’ — we always have
p; < cy/logn and we set v =n"¢, so p;y < 1 and p;k+/n goes up to a tiny constant fraction of (g)
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Since we care about independent sets, we only really care about a lower bound on the number of open edges
in big sets; but Property 2.7 will be needed for technical reasons when proving Property 2.8. (The choice of
ko in Property 2.7 is not super important for the proof — the proof would work for anything on the scale
of /n — and it’s there just because that’s what we’ll need for Property 2.8.)

Finally, the last property is about independent sets and roughly corresponds to (1.2), up to constants (this
is the only property that looks at G;).

Property 2.9. The number of independent sets in G; of size k = C'y/nlogn is at most

1 k
k. _ n—1/2
n" - exp < 64pm <2>> .

To prove Theorem 2.1, we’ll show that given (E;, G;,0;) which satisfy these properties, we can construct
(Eit1,Git1,0;41) which still satisfy these properties (with i replaced by i + 1), as long as i < n¢/~. Once
we reach i = n¢/~, Property 2.9 says that the number of size-k independent sets is at most

1 Cvnl
oxp (Om-logn—mc@.n—w. ( @)) <1,

which means none exist (proving Theorem 2.1).

§2.2 The construction

We’ll now describe how to construct (Fjit1,Git1,Oiq1) from (E;, Gy, O;).

We first perform a ‘regularization’ step to make Property 2.3 an equality: For every uv € E;, we introduce
some dummy vertices w and add dummy edges uw to O; and vw to E; so that equality holds in Property
2.3. (We're not going to include these in the output; their purpose is only so that we have two-sided control
on the probability that uv gets closed.)

Then we sample a subset of O; where we include each edge independently with probability yn~=1/2. We’ll
refer to these edges as new, and we’ll depict them by highlighting them in blue. We let F;y1 be the set of
real (i.e., non-dummy) edges which we picked, and we set F;11 = F; U Fj41.

Next, we need to define O;41 by removing edges which got closed this round from O;. We say that uv gets
YV-closed if there is some configuration in ), (i) (either real or dummy) for which we picked its open edge
this round, and X-closed if there is some configuration in X, (i) for which we picked both its open edges
this round. We define O; 1 by removing all such edges from O;.

w w
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Finally, we'll define a subset F" | C Fi11 to add to G; by using the alteration method to get rid of triangles.
First, since F;11 C O;, there are no edges in F;; which would form a triangle with two edges in G;; so we
only need to worry about triangles with two or three edges from Fjy;. So we define A;4; as the set of pairs
of edges {uw,vw} C F;1; for which uv € G;, and A;41 as the set of triangles in Fj .

A A

We find a maximal edge-disjoint subset of A;11 U A;41 and remove it from F;1q to produce F},,, and set
Giy1 = G; U Ff ;. (Maximality means that we've removed at least one edge from each configuration in
Nit1 U Ay, so adding Fj' | to G; doesn’t create any triangles.)

The intuition is that the construction of E;1; and O;4+1 roughly corresponds to how the triangle-free process
works on the time-interval [yi,y(i + 1)] as described in Subsections 1.2 and 1.3, so we’'d expect the same
heuristics to hold (in fact, it corresponds to our description better than the triangle-free process itself does).
Meanwhile, we’d expect that the alterations used to produce F,; shouldn’t have too much effect — an

~1/2 hile it’ll be in a configuration in Aj4; with

open edge uv will be included in F; with probability yn
probability at most

Yuo(i) - (yn7Y2)? < 2(p; + 89)giv/n - 7Pt < 4Pn71/2
by Property 2.3 (this requires us to choose both wv and the open edge of some configuration in Y, (7)), and
it’ll be in a configuration in A;;; with probability at most

Zuv(l) . (,ynfl/2)3 < ’)/377,71/2.

Since v <« 1, the fraction of edges in Fj;; that we discard should be tiny; this means the same heuristic
(1.2) for independent sets in the triangle-free process should apply to G;y1.

Now we’ll perform the analysis, meaning we’ll prove that Properties 2.2-2.9 all hold with high probability.
(Whenever we refer to an edge as open, closed, or chosen, unless otherwise specified we’re referring to its
status after the ith round, not after the (i 4+ 1)st round.)

§2.3 Probabilities of closing edges

Nearly all the properties are about the density of open edges, so as a first step, we’ll estimate the probability
that any given open edge uv gets closed. First note that intuitively, the probability it’s }-closed should be
substantially larger than the probability it’s X-closed: The probability it’s V-closed is roughly

Yoo (3) - yn Y2 = 29(p; + 87)q;

(there are Yy, (i) configurations in Yy, (i), and uv being Y-closed means that we pick the one open edge in
such a configuration; the union-bound approximation is ‘reasonable’ because 2(p; + 87)g; < 1), while the
probability it’s X'-closed is roughly

Zyo (1) - (’yn_l/2)2 < ’Y2Qz‘2
(which is significantly smaller because «y is small). So when we’re proving upper bounds (i.e., everywhere
except Property 2.8), we’re only going to focus on decreases that come from edges being Y-closed, and we’ll
ignore the effect of edges being X'-closed.

For this reason, it’ll be useful to have the following calculation.
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Claim 2.10 — For every open edge uv, we have

qz‘f — 24~q; < Pluv is not Y-closed] < qi;fl

2 (2

— 87¢i-

(Intuitively, this makes sense because we want to say that our open edge density drops from roughly ¢; to
roughly ¢;+1.)

Proof. By construction, there are exactly 2(p; + 87v)g;v/n edges which would )-close uv, and we pick each
with probability yn~/2. So P[uv is not Y-closed] = (1 — yn~1/2)2Pi+87)4v" which we can bound by
1 —2y(p; + 87)q; < Pluw is not Y-closed] < 1 — 2v(p; + 8v)q; + 2v*(pi + 87)¢>.
We can check that (p; + 8v)%2¢; < 1, so we can simplify this to
1 — 2ypigi — 1672¢? < Pluw is not Y-closed] < 1 — 2ypiqi — 14727 (2.1)
Now, the intuition is that

Qi+17_ g _ i+ 1)3) —v(@) —! (iy) = =2 (i)Y (iv)? ~ —2piq? (22)

(the second-last equality follows from our differential equation for W), which rearranges to

qi+1
1 — 2ypig; = .

4

The formal proof follows from tracking the errors in the above approximations. We can bound the error in
the first approximation of (2.2) by v supsc(iy,i41)y " )| < v+ 4q)(t)%. For the second approximation, we

can bound |V (iy) — p;| < ~. This gives

qi+ < 6y 2.

19

1 —2vpiqi —

7

and plugging this into (2.1) gives the desired bounds. O
§2.4 Preliminaries: concentration bounds
We’ll use the following two concentration bounds.

Lemma 2.11 (Multiplicative Chernoff)
Let X be a sum of independent Bernoulli random variables with E[X] = u. Then for all 8 > 0, we have

PIX > (14 )] < e~ ™Fw/38u/3 and PX < (1 — )] < e~ 172,

Lemma 2.12

Let f:{0,1}" — R be a function with the property that for each j, changing the jth coordinate of
changes f(x) by at most ¢;. Then for X sampled according to the p-biased measure on {0,1}" (i.e.,
with independent Ber(p) coordinates), for all & > 0 we have

g (%

P[|£(X) — E[f(X)]| > o] < 2exp (-é min{ }) .

@’ 2
max;c; py;c;

Lemma 2.12 is essentially a version of the bounded differences inequality for low-probability Bernoullis (and
it can be proved by combining the ideas of the proof of the ordinary bounded differences inequality, or
Azuma-Hoeffding, with the bounds on moment generating functions used to prove multiplicative Chernoff).
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§2.5 Tracking configurations

In this section, we’ll prove Properties 2.2, 2.3, and 2.4. We’re always going to consider a fixed edge uv
and show that the property holds for that edge with probability 1 — n=“(), so we can union-bound over
edges. (In the proofs of concentration, we’ll always have room to spare — we’ll end up with concentration
probabilities that look like 1 — exp(—€2(n®)) for constants a (e.g., 3 or 1) — so factors of p;, ¢;, and v will

not matter, and we’ll typically bound them by factors of n° to avoid carrying them around.)

§2.5.1 Property 2.2: Tracking Xy, (i)

For Property 2.2, the ‘main’ term driving the change in X,,(7) is configurations leaving X,,, (i) because we
YV-closed one of their edges. So we define X, (i + 1) as the set of such configurations, and write X, (i+1) =
| X, (i + 1)|; then we have

Xuw(i+1) < Xyw(1) — X (1 + 1),

We’ll show the right-hand side has expected value a bit under ¢;;1n?, and X, (i+ 1) concentrates well. For
the expected value, we’ll need the following calculation.

Claim 2.13 — For every configuration {uw,vw} € Xy,(7), we have

2

qA

L 8vq:.
q

i

P[neither uw nor vw is Y-closed] <

This makes intuitive sense, since as we saw in Claim 2.10, the probability that a single edge y-survives is a
bit less than qi}#. (The precise error term in this claim isn’t important.)

Proof. There are exactly 2(p; + 87)gi/n edges which would Y-close uw, and the same is true for vw.
Furthermore, if an edge e = wz falls into both cases, then we must have {uz,vz} € Z,,(i). By Property
2.4, this means there are at most i(logn)? < n? such e.

T
{ ]

VN

u v

So there are at least 4(p; + 87)qiv/n — n* > 4(p; + 77)qi/n edges e which would Y-close uw or vw. And
we choose each with probability yn~=1/2, so

2
P[neither uw nor vw is Y-closed] < (1 — yn~Y/2)4pit™avn — ((1 — 7n_1/2)2(pi+7v)qi\/ﬁ)

The same calculation as in the proof of Claim 2.10 shows that (1 — A~/ 2)2(pi+77)qm/ﬁ < qiq% — 67¢;, giving

2

. 2 2
P[neither uw nor vw is Y-closed] < (qH - 6'yqi) < qzzl — 8vq;. O
9

Since X, (i) < ¢?n, this means we have

2
. _ . q;
E[Xuo (i) = Xpp (i +1)] < gfn - ( qZI — 8’YQz‘) < ¢ — 8vgin.

[
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We wanted an upper bound of qi2+1n, so it suffices to prove that X, (i + 1) concentrates within a window
of length n'=%¢. We’ll do so using Lemma 2.12. We’re picking each edge e independently with probability
p = ~yn~Y2; to bound the ¢.’s, we want to bound how many configurations in Xuv(7) each edge can affect.

We’ll assume without loss of generality that e is incident to u; let e = ux.
Then for uz to affect a configuration {uvw,vw} € Xy, (i) (i-e., to Y-close one of its edges), we must have
{uw,zw} € Yy (i); by Property 2.3, this means there are at most /n choices for w. Also, there are at most
2n edges incident to u or v; so this gives at most 2n edges each with ¢, < y/n.

In this case, there’s only one configuration in Xy, (7) that e can affect
(namely, the one corresponding to one of its endpoints). So this gives at most n? edges each with c, < 1.

w

a}o/

< e
]

1-5¢

This means when we apply Lemma 2.12 with 0 =n and p = Vn_l/z < n Y2 we'll have

1—5¢ 2 2-10e
o n _ n
> > pl/27%  and

> o > > p1/2-10e
maxe Ce vn pY .2 " n202n-n+n?-1)

This shows X, (i + 1) concentrates in a window of length n'~% with probability 1 — exp(—Q(n!'/2-10¢))
for each edge uw; this is more than good enough to union-bound over all uv (it would suffice to have any
positive exponent of n).

§2.5.2 Property 2.3: Tracking ),,(7)

There are two ‘main’ terms which should drive the change in Y, (i), corresponding to the two terms in (1.4):
e We define YV, (i + 1) as the set of configurations in Y, (i) that leave because we Y-closed their one
open edge, and Y, (i + 1) as its size.
e We define Y, (i + 1) as the set of configurations in Z,,(i) which enter because we picked one of their
open edges, and Y, (i + 1) as its size.
Then we have

Yio(i+ 1) < Vi (i) — Yo (i + 1) + Y0 (i + 1).

We’ll show the expectation of the right-hand side is a bit under 2(p;+1 + 87v)gi+14/n (our target bound) —
the fact that this computation works out essentially corresponds to (1.4) — and that both Y, (i + 1) and
Y5 (i + 1) concentrate well.
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First, by Claim 2.10 (and Property 2.3) we have

E[You (i) = Vi (i 4+ 1)] < Yo (i) - (qj L 87%-) < 2(p; + 87)gi+1v/n — 128+%¢2 /.

1/2

Meanwhile, each configuration in X, (i) lands in Y} (i + 1) with probability at most 2yn~'/2  so

E[Y, (i +1)] < Zuo(i) - 2fyn71/2 < 2'yq2-2\/ﬁ.
This means in total, we get
E[Yuo (i) = Yo (i + 1) + Yuh (i + )] < 2((pi + 89)gi41 +747)vn — 1284%¢7V/n.

Our goal was to get a bound of 2(p;+1 + 8Y)¢i+1v/n. This is exactly what the first term would be if it had
Yqiqi+1 instead of fyqi2 (since pi+1 = p; + v¢i). We can show that ¢; — gi+1 < 7¢; (since —(t) < ¢'(t) <0
for all t), so we get that

E[Yuy (i) = Yo (i + 1) + Y (i + 1)) < 2(pisr +87)a7 — 1269767 v/n.

Now it’s enough to show Y, (i + 1) and Y,! (i + 1) concentrate in windows of length n'/2=%¢. For Y, (i + 1),
we’ll again use Lemma 2.12, which means we want to estimate the number of configurations in ), (i) each
edge e can affect (meaning that choosing e would )-close that configuration’s open edge).

Without loss of generality let e = ux. Then for e to affect some configuration
{uw,vw} € Vyup(i), we must have {vw,zw} € Z,,(i). By Property 2.4 there are at most i(logn)? < n?
choices for w. So this gives at most 2n edges e with ¢, < n?.

w
[

Then e affects at most one configuration {uw,vw} € Yy, (i). Further-
more, for e to affect one configuration, we must have the picture below, where e = wz with w € ), (i) and
T € Yuw(i) (or Vyw(i) — whichever of uw or vw is the open edge in {uw,vw}). By Property 2.3, there are
at most /n choices for w, and then at most /n choices for x. So this gives at most n edges with ¢, < 1.

w
xo/.

So when we apply Lemma 2.12 with o = nt/2=5¢ and p = ’yn*1/2 < n Y2 we'll have
1/2-5 2 1-10
7 _> o > nl/277 and ‘ > n > pl/2715e,
maxe Ce n2e pPY.c2 T nl/2(2n - nfe 40 1)

This means we get a concentration probability of 1 — exp(—Q(n!/2715¢)), which is certainly good enough.
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Now we’ll prove concentration for Y, (i +1). Here we're considering all configurations in Z;(uv) and seeing
whether we choose one of its edges. Since these configurations are edge-disjoint, this means these events
for different configurations are independent. This means Y,! (i + 1) is a sum of independent Bernoullis, so
it concentrates well by multiplicative Chernoff bounds — we’ve shown its mean is at most 27qi2\/ﬁ, so it
concentrates within a window of length n'/275¢ with very high probability.

So we’ve shown that Y, (i + 1) and Y, (i + 1) both concentrate well, which finishes the proof.

§2.5.3 Property 2.4: Bounding Z,,(7)

We want to show that Z,,(i) grows by at most (logn)? on this round. There are two ways in which a
configuration can move into Z,,(i + 1) — either it started in ), (i) and we picked its one open edge, or
it started in Xy, (i) and we picked both of its open edges. Then letting Z;, (i + 1) be the number of such
configurations, we have

E[Z5 (i +1)] < Yo () - yn Y2 4+ X (i) - 20 < V- Y2 42072 <1
(we're using Property 2.3 for the first term). And Z}, (i + 1) is a sum of independent Bernoullis, since the

configurations we're considering are edge-disjoint; so by multiplicative Chernoff, it’s at most (logn)? with

probability 1 — n=«(1),

§2.6 Additional bounds on degrees

Next, we’ll prove Properties 2.5 and 2.6. (Again we’ll imagine fixing v, and we’ll show the desired statements
hold with probability 1 —n~*(), so that we can union-bound.)

§2.6.1 Property 2.5: Open degrees

We can run a very similar argument to the proof of Property 2.2 — fix some vertex v. We start the round
with at most ¢;n open edges incident to v, so by Claim 2.10, the expected number of them which are not
Y-closed this round (which is an upper bound on degp, ,, (v)) is at most

)

di+1
gin - < A 8’ti> = gir1n — 8ygin.

So to prove that this number is at most g;+1n (with high probability), it suffices to show that the number
of edges incident to v which get Y-closed concentrates in a window of length n'=%. As usual, we’ll do so
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using Lemma 2.12, which means we want to understand, for every edge e, how many edges incident to v get
Y-closed as a result of choosing e.

Then letting e = vz, for e to affect an edge vw we need to have {vw, zw} € Yy, (7).
By Property 2.3 there are at most y/n such choices for w, so this gives at most n edges with ¢, < /n.

x

/U
®
v

Then e affects at most one edge incident to v (since we must have the below
picture); so this gives at most n? edges e, each with ¢, < 1.

x e
w
[}
v
Then when we apply Lemma 2.12, we’ll have
—4 2 2-8
o T et g T s - > pl/27%,
maxe Ce NLD Py .2 " n 2020 -n+n?-1)

So we get good concentration in the desired window, which finishes the proof.

§2.6.2 Property 2.6: Chosen degrees

We want to show that on this round, we choose at most vg;\/n + n'/3 new edges incident to v (this is how
much the bound in Property 2.6 increases by when we go from i to i + 1, since pj+1 = p; + vg;). First,
we're choosing each open edge with probability yn_l/ 2 so by Property 2.5, the expected number of edges
incident to v we choose is at most yn=1/2. ¢n = ~vgiv/n. And these edges are independent, so we get good
concentration in a window of length n'/3 by multiplicative Chernoff bounds.

§2.7 Open edge densities in big sets

Next, we’ll prove Properties 2.7 and 2.8.

§2.7.1 Property 2.7: Upper bound on open edge densities

First we’ll illustrate an attempt that doesn’t work, to motivate the actual proof.

Consider two disjoint sets A and B of size kg. We begin the round with at most qik:g open edges between
them. As with the previous arguments, Claim 2.10 tells us that each edge is not )-closed with probability a
bit under q"q%, so we expect slightly under ¢;41 k:% open edges to remain. Since kg is roughly y/n, we need to
prove concentration in a window of size roughly n. Furthermore, we need to union-bound over all possible
sets A and B; there are roughly n*0 = exp(kglogn) sets of size ko, so for the union bound to work, we want
a concentration probability of the form 1 — exp(n®) for some a > 1.

Let’s attempt to use Lemma 2.12 and see what it gives us. To do so, we want to understand, for each edge
e, how many edges between A and B picking e this round would Y-close.
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If e = vw (where v ¢ AU B and w € A), then this is essentially controlled by degy, (v, B) (the number of
chosen edges from v into B). However, this could potentially be as large as kg =~ y/n. And there’s potentially
kon ~ n3/? relevant edges. So if we try using Lemma 2.12 with o ~ n and max, c. ~ \/n, we’ll have

g n
e, = sV

which means the best concentration probability we can hope for is roughly 1 — exp(y/n); this isn’t good
enough to union-bound. (We'’re suppressing all the ‘small’ terms in this calculation — e.g., the ¢;’s and 7’s
— but they work against us.)

But although this fails, it just barely fails. Here we only looked at the first term in Lemma 2.12, but it turns
out the second term only barely fails too. To handle that second term, it’s hard to deal with ), c2, but we
can bound this by maxe cc- >, ce. And as seen in the above picture, > c. essentially counts configurations
of the following shape (where e is the edge vw, and ¢, is the number of choices for ).

If we instead count such configurations by first choosing w and x, then there are ky ~ /n choices for w,
ko =~ /n choices for x, and at most Yy, (i) = \/n choices for v; this tells us >, c. is at most roughly n3/2.
So we get a bound of 3, 2 < max,c. - Y., ce < /n-n%? =n?, giving

77,2

o
P> 2 nl2.p2 Vi

Again, we’d have been happy with any exponent of n strictly greater than %, but we got %

The way we'll fix this is by ignoring vertices v for which degg, (v, A) or degg, (v, B) is too large. We'll show
that there aren’t too many such vertices (specifically, much fewer than /n), so that ignoring them doesn’t
hurt our probabilities of getting )-closed (as computed in Claim 2.10) by much; and with this, we’ll be able
to get good enough concentration.

To prove there aren’t too many high-degree vertices, we’ll use the following fact.
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Fact 2.14 — Suppose that > 4v/st, and suppose that A, ..., A, are subsets of a set of size s such
that |A;| > = for all 4, and |A; N A;| <t for all ¢ # j. Then we must have £ < 27,—8 and Zle |A;| < 2s.

Intuitively, if we have £ disjoint subsets of a set of size s, and each has size at least r, then there’s at most 2
of them and their sizes sum to at most s. Fact 2.14 essentially says that these statements continue to hold
(up to a factor of 2) as long as the sets have small pairwise intersections. (We only need the first statement
right now, but we’ll use the second in the proof of Property 2.8.)

Proof. To prove that ¢ < %, assume not, and consider the first ¢/ = % sets. By the principle of inclusion-

exclusion, we have

Z/
v 25t
el 2 - Sz - (§)rzas- 255
i=1 i#j
which is a contradiction (since these sets live in a universe of size s).

Now to prove the second statement, for each ¢ we have

2st
r

r 1
> |4 - 5 > 5 |4,

Al = 31400 4] 2 14d - ;

JFi
which means we can find a portion consisting of at least half of A; which is disjoint from all the other sets A;.
Since these portions (over all 7) are disjoint and live in a universe of size s, we get that %Ele |A;| <s. O

Now we say a vertex v is safe with respect to A if degp, (v, A) < n'/3 and unsafe otherwise; we define the
same notions with respect to B. (The choice of % is fairly arbitrary; any exponent strictly between % and %
would work for this argument.)

Claim 2.15 — The number of unsafe vertices with respect to A is at most n'/4.

Proof. For every unsafe vertex v, we can define the set A, = Ng,(v) N A. These sets A, have size at least
n'/3 (by definition) and are subsets of A, which has size kg < \/n. Furthermore, for any two unsafe vertices
u # v, vertices in A, N A, correspond to configurations in Z,,(i), so by Property 2.4 we have

|A, N A,| <i(logn)?.

[
u v

We have n'/3 > 4,/kq - i(logn)2, so Fact 2.14 applies and gives that the number of sets A, we have (and

therefore the number of unsafe vertices) is at most mgg% 2 < nt/4, O
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Similarly, at most nl/* vertices are unsafe with respect to B.

Now we say an edge wx between A and B gets safely V-closed if it gets YV-closed by a configuration whose
tip is safe with respect to both A and B. In other words, this means wx is open at the start of the round,
and there is some v such that v is safe with respect to A and B, we have {vw,vz} € Vy.(i), and the one
open edge in {vw, vz} gets chosen this round.

Let Y be the number of open edges between A and B which don’t get safely V-closed. Then Y is an upper
bound on the number of open edges we’ll have between A and B after this round; we’ll show that it has the
right mean and concentrates well.

First, for each open edge wx between A and B, we’ve seen that the probability that wz doesn’t get V-closed

by any vertex is
_1/2)2(pi+8’Y)Qi\/ﬁ < di+1 8v¢

2

(1—9n i
(this was the computation we ran in Claim 2.10). At most 2n'/* vertices v are unsafe with respect to A
or B, so to bound the probability wz doesn’t get safely V-closed, we need to replace 2(p; + 87v)gi/n with
2(p; + 87)qi/n — 2n'/%. The effect of this is tiny, so we still get

2

E[Y] < gik{ - (qz‘q“ - qu-) = qir1kg — Ty kg,

Now it suffices to show concentration within a window of length n'=1%¢ (this is smaller than 7vq¢?k3). And
now that we’ve removed high-degree vertices v from consideration, the failed concentration argument from

earlier now works — we have max, c. < n'/3 and

Zcz < max ce Zce <n'B k2 2(p; + 87)qiv/n < nt/O
[ e

(by the same argument as we gave earlier). So when we apply Lemma 2.12, we’ll have

1-16e 2 2-32¢
n n
> e
max, Ce nt/3

g

g — p2/3-32
p>, 2 = n1/2.p11/6

So we get a concentration probability of 1 — exp(—Q(n?/3-32)), which is good enough to union-bound over
all exp(2kglogn) < exp(n'/?+¢) pairs of sets of size kq.

§2.7.2 Property 2.8: Lower bound on open edge densities

Fix some set A of size k; as in the proof of Property 2.7, our goal is to show that it satisfies the desired
bound with probability 1 — exp(n®) for some « > %, so that we can union-bound over all such sets.

There are two main difficulties in this proof that we haven’t encountered in the previous ones. The first
difficulty is that up to now, we’ve only cared about upper bounds on open edges, so it sufficed to only
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consider edges being Y-closed (and not worry about edges being X'-closed). Now we want a lower bound, so
we do need to worry about edges being X'-closed. We’d expect this to have substantially smaller contribution
(in particular, we'd still expect edges being Y-closed to control the ‘main term,” and we’d like to absorb the
effect of edges being X-closed into the 64p;y error term) for the reasons discussed in Subsection 2.3; but
now we have to figure out how to prove concentration for it. (Some open edges will also leave due to being
chosen, but that’s a much lower-order term and concentrates well — it’s a sum of independent Bernoullis
— so can be ignored.)

Furthermore, even with edges being )Y-closed, we saw when proving Property 2.7 that concentration breaks
down unless we exclude high-degree vertices. When proving Property 2.7, we only wanted an upper bound,
so we could just ignore those high-degree vertices. But here we’ll have to deal with them.

So the argument will have three main steps. As in the proof of Property 2.7, we’ll set h = n'/? and say an
edge is safely V-closed if it’s Y-closed by a vertex v with degp, (v, A) < h. We'll also say an edge is safely
X-closed if it’s X-closed by a vertex v such that degp, (v, A) < h.

(1) First, we'll consider the effect of edges being safely )-closed. We can deal with this in the same way
as we did when proving Property 2.7, and this will give our ‘main term.’

(2) Next, we'll consider the number of edges which are safely X'-closed (we want to prove this is small). We
won’t be able to prove concentration for this number itself, but we’ll define a proxy which upper-bounds
it and whose expectation is small for similar reasons. And this proxy will be a sum of independent
random variables, so we will be able to prove concentration for it.

(3) Finally, we need to deal with high-degree vertices. We’ll actually show that deterministically, there
can’t be too many edges that are )-closed or X-closed by high-degree vertices, as long as the chosen
edges satisfy certain simple conditions (which will hold with high probability).

Step 1 (The effect of edges being safely V-closed). Let Y be the number of edges which are not safely
Y-closed. Using the lower bound from Claim 2.10 (a lower bound on the probability of not being Y-closed
is also a lower bound on the probability of not being safely Y-closed), we get

E[Y] > (Qi(l — 64p;7) <§> - 16piqik\/ﬁ> (%;1 - 247%)

)

k k
> gi+1(1 — 64piy) <2> — 24yq; <2> — 16pigi+1kv/n.

The same argument as in the proof of Property 2.7 shows that Y concentrates within a window of length
nl=4¢ (which is smaller than ~yg? (’2“)) with probability exp(—Q(n?/3-20¢)), which is more than good enough
to union-bound.
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We’re aiming for a final upper bound of
k
Gi+1(1 — 64pi17) o)~ 16piy1qit1kv/n.

Since p;11 = p; + v¢; and ¢41 > %qi, we get to accumulate a total error of

k
P

k
2) + 8v2kv/n = T3¢} <2> + 8vq7kv/n (2.3)

in Steps (2) and (3) (we’ve replaced 24 with 25 to account for the concentration window of Y).

Step 2 (The effect of edges being safely z-closed). For this step, the key insight is that when we argued in
Subsection 2.3 that the effect of edges being X'-closed should be small, when we said that every edge uv has
probability at most

Xuw(i) -7*n~" < gf?

of being X-closed, we just used a union bound over all configurations in Xy, (7); this means the expected
number of vertices w which X-close uv is also at most ¢?v?. And if we switch this sum — instead of looking
at all open edges uv inside A and then all vertices w which could X-close them, we look at all vertices w
and see how many edges inside A they X-close — then we’ll essentially get a sum of independent random
variables (with one for each w), since for each w, this number only depends on edges incident to w.

More formally, for each vertex w, we define a random variable

X, — (min{degE_+1 (w, A), h}) .
2

Then ), X, is an upper bound on the number of edges in A that get safely X-closed — we’re essentially
going through all vertices w and counting pairs of their neighbors in A among the edges picked this round,
and if uv is safely X-closed by w then it’ll be counted by X,,. (This overcounts, and it’ll also count pairs of
neighbors of w where the edge between them had already been closed; but we can afford this.)

°
w3
w9 —* °
. |
w1

If we imagine computing E[> ", X, by first summing over pairs uv in A, then each uv has at most X, (i) <
q?n vertices w for which it could possibly be counted by X,, (by Property 2.2), and the probability that it
is counted by X,, is at most v?n~1; this shows E[>"  X,] < 7?¢? (g) This fits our target error in (2.3), so
it suffices to prove that Y. X, concentrates well (e.g., within a window of length n'=4¢).

First, there’s one slight issue — the random variables X,, aren’t actually independent if w € A. To deal
with this, we’ll split this sum into two parts — we’ll define X, = > o4 Xy and Xoys = ngA Xuw — and
we’ll prove concentration for each part separately.
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Step 2a (Concentration for Xj,). To prove concentration for Xj,, we’ll use Lemma 2.12 again. Note that
Xin only depends on edges inside A, of which there are at most (’;) < n'*e. Furthermore, for each edge
e = vw inside A, changing whether we pick vw changes X, and X,, by at most h each (since we’ve changed
min{degp, (v, A),h} by at most 1), so we have c. < h for every e. This means when we apply Lemma 2.12

with o = n'~%, we’ll have
1—de 2 2-8¢
g S St gq 2 S " > 5/6-9
maxe.c. ~ nl/3 — Py, ce — m1/2.plte . 23 =

So we get a concentration probability of 1 — exp(—Q(n?/3=%)), which is good enough to union-bound.

Step 2b (Concentration for X,,). The idea is that Xoy¢ is a sum of independent random variables with fairly
simple distributions, so we can prove concentration by directly estimating its moment generating function.
To do so, for each w & A, let f,(s) = E[e3X].

Claim 2.16 — For all vertices w and all 0 < s < h™1, we have 0 < f(s) < 1.

Proof. Suppose that degp,(w) = d. Then we have degp,  (w) ~ Ber(p,d) where p = yn~1/2, which means
that X, ~ (ming’h}) for i ~ Ber(p,d). So we can explicitly write out

Ny (T )

d
(s =BlxzeX = 3 ¢ g

1=0

Now since we assumed s < h™!, we have s(minéi’h}) < i for all i. We can also drop the (1 — p)¢~% terms and
bound (f) (ming’h}) < d' for i > 2 (and this term is 0 for 4 < 1). Then we get

d oo
w(8) < Z(epd)i < Z(epd)i.
=2

=2

But we have d < k = C'y/nlogn and p = yn~/2 (where we chose 7 to be n=%), so epd < 1. O

Then for each w, by Taylor expansion at 0 we can write

1 2
Ele’*"] <1+ E[X,]-s+ 3 1-5% <exp <3E[Xw] + 52>

for all 0 < s < h~!. Multiplying over all w ¢ A (of which there are at most n), we get that

2
E[esXout] = H E[eXv] < exp [ s Z E[X,] + % = SElXou+ns®/2
wgA wgA

Then by Markov’s inequality, for all o > 0 we get that

]E[esxout] 9 o
P[Xow — ElXou] 2 0] £ g < e /27,

We wanted concentration within a window of length o = n!=%, so we can set s = n~1/3 (which does satisfy

s < h™1) to get a concentration probability of 1 — exp(—Q(n?/3-%)), which is good enough.

Step 3 (High-degree vertices). Finally, we’ll deal with edges closed by high-degree vertices — we’ll show
that as long as the edges picked this round satisfy certain properties (which hold with high probability),
there cannot be too many such edges. Specifically, we’ll assume the following conditions:
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(i) For all vertices v, we have degp,  (v) <~vgiv/n + n/? < 2vqi/n.
(ii) For all u # v, we have |[Ng, (u) N Ng,,, (v)| < (logn)?.
(iii) For all u # v, we have |Np,,, (v) N Np,,, (v)| < (logn)?.

These conditions all can be shown to hold with high probability using multiplicative Chernoff bounds, since
the quantities of interest are all sums of independent Bernoullis; in fact, we proved them when proving
Properties 2.4 and 2.6.

Let S be the set of vertices u such that either degp, (u, A) > h or degp,,, (u, A) > h. All the closed edges
we haven’t accounted for yet go between either Ng,(u) N A and N, (u) N A (if they were Y-closed) or
Np, ,(u)N A and Np,, (u) N A (if they were X-closed) for some u € S. Now define

Ay = (Ng;(u)UNp_ (u))NA
for each u € S. Then the definition of S means that |A,| > h for all u. Meanwhile, for all u # v, we have
|A, N A,| <i(logn)? + 3(logn)* < n*
by Property 2.4 (which bounds Ng,(u, A) N Ng, (v, A), corresponding to the first term) and the conditions

(ii) and (iii). So we can apply Fact 2.14 (since h > 4V'k - n%) to say that ) o |Ay| < 2F.

Now we claim that for every u € S, the number of open edges between Np,,, (u) N A and A, was at most
2vg2\/n - |Ay| (at the start of the round).

Then this claim is immediate, as the number of edges between
Np;,, (u) N A and Ay is certainly at most |[Np,,, (u) N Al - [Ay| = degp,,, (u, A) - [Ay.

In this case, we also have |A,| > 272¢?\/n (since A, contains
Nr,,,(u) M A), so we can apply Property 2.7 to say that the open edge density between them (at the start
of the round) is at most ¢;. (Property 2.7 was written for disjoint sets of size ezactly VQq?\/ﬁ, but by an
averaging argument, the same density bound holds for any two sets of size at least 2y2¢?\/n.) Furthermore,

(i) gives that degp,,, (u) < 27giv/n. So the number of edges between N, (u) N A and A, is at most
gi - degp,,, (u, A) - |Au| < qi - 2vgivn - |Au|.
Finally, summing over all u € S, we get that the total number of edges which got closed by some u € S this

round is at most
2vg7v/n - Y |Au| < 4ygiky/n.
u

This fits the second term in our target error in (2.3), so we're done.

§2.8 Property 2.9: Independent sets

We’'ll show that for every set A of size k, the probability we don’t add any of its edges to G;41 is at

most exp(—3—12’qu_1/ 2 (g)) This means the expected number of independent sets remaining will drop by a
factor of exp(—%wqm‘l/2 (g)), so the actual number will drop by a factor of exp(—é'qu_l/2 (’5)) with high

probability (which is what we need in order to preserve Property 2.9, since p;+1 = p; + 74)-

First, by Property 2.8, the number of open edges in A at the start of the round is at least %qi (g) We're

picking each with probability 'ynfl/ 2 so by multiplicative Chernoff bounds, the probability that we pick

less than ifqu_lﬂ (g) of these edges (to place in Fj11) is at most

1 _ k
exp <—127qm 1/2 <2>> :
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Meanwhile, we want to show that the probability we discard at least this many edges in A during the
alteration step (meaning that we chose them but didn’t place them in G;41) is similarly small. For this, as
discussed in Subsection 2.2, the intuition is that there’s at most g; (g) open edges inside A by Property 2.7.
For such an edge uv to get chosen and discarded, either we must choose both uv and the one open edge of
some configuration in Y, (i), or we must choose uv and both edges of some configuration in X, (7). The
probability this occurs is at most

2p; + 87)qivn -y V2 @2n Pt = 2y(ps + 87)gi + 2 < 1

(because + is small); so the expected number of edges we discard is much less than %yqikzn_l/ 2. To turn
this into a statement saying that it’s exponentially unlikely that we discard this many edges, we’ll use the
following fact.

Fact 2.17 — Let A;, ..., A, be events such that > .. ; P[4;] <n. Then the probability that there is

4
some size-¢ collection of mutually independent A;’s for which all occur is at most 7.

Proof. Imagine we expand out (3_I_; P[A;])* = n°. For every such collection {A;,,...,A;}, we'll have /!
terms P[A;, ] - - - P[A;,] in this sum (one for each order of the indices). And because A;,, ..., A;, are mutually
independent, we have P[A;,]---P[A;,] = P[A;; A--- A A, ]

So the expansion of (3°}_; P[.A;])* has ¢! copies of the probability corresponding to each such size-¢ collection
(along with possibly some other terms), giving the desired result. O

In our setting, for each open edge uv in A, we define an event A; for each configuration in Y, (i) (saying
that we choose uv and the one open edge in that configuration) and an event A; for each configuration in
Xuw (i) (saying that we choose uv and both open edges in that configuration). As seen above, we have

A 1 ik
> PlA] <g (2) 2 (2 (0 + 87)a +77a) < gesvam <2>

And for us to discard m chosen edges from A, at least %m events of this form whose associated 2 or 3
open edges are disjoint (which means these events are independent) must occur — this is because when we
perform alterations, we do so by removing a maximal edge-disjoint subset of A; 11 U A;4q.

>

o\.
/

So using Fact 2.17 (and bounding %f < (4777)Z) gives that the probability we discard at least i’qu_l/ 2 (g)
edges from A is at most

1 m—1/2(k
C1 o —1/2(k 1279 (2)
(4 960 /4i" (2)) < exp <—1’qu1/2 (k>> .

wan "/ (5) 12 2
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Combining these two statements, we get that the probability A remains independent is at most

1 [k 1 [k 1 . (k
exp <—127qm 1/2 <2>> + exp <—127qm 1/2 <2>> < exp <—327qm 1/2 <2>> :

By Markov’s inequality (on the total number of independent sets), this means that the total number of
independent sets multiplies by a factor of exp(—G—Z’qu_l/ 2 (’;)) with high probability, as desired.

§3 Wolfovitz 2011: An analysis via branching processes

In this section, we’ll explain Wolfovitz’s approach to analyzing the triangle-free process from [Wolll], based
on the semi-random method and branching processes. In particular, we’ll give his proof that the process
follows the trajectory described in Subsection 1.3 up to time n¢ (for small c).

§3.1 Overview

Let € > 0 be a very small constant, let ¢ > 0 be reasonably small with respect to ¢, and let v = n~°.

Similarly to Kim’s approach, we’d like to analyze the triangle-free process in ‘rounds’ which roughly corre-
spond to time-intervals [yi,v(i + 1)]. We can reparametrize the process in this framework as follows: We
begin with Gy being the empty graph. On the ith round (where we begin with a graph G;), we sample a
subset Fj, of the currently open edges, including each with probability yn~1/2. For each of these edges, we
also generate a birthtime, which is uniform in [0,~]. We then go through these edges in order of birthtime;
for each, we add it to G; if it’s still open at the time we attempt to do so, and discard it if it has become
closed. We'll run this process up to i = n/~.

Our goal is to show that Xy, (7), Vup(7), and Zy, (i) follow the trajectory described in Subsection 1.3, up to
some slowly deteriorating error terms. To describe these error terms, we write p; = ¥(vi) and ¢; = ¥(vi),

and we define d; = yp;q; + vg; and
i—1

A =n"T](1 +605))
j=0

so A;11 = A; +60A;0;). Note that these errors remain ‘reasonable’ up to time n® — we have
( + p

i—1 i—1
[1(1+608;) < exp | 60 (pigi + ai)v
j=0 Jj=0

Y
/R ex s)(s s))ds | =ex i)? )
A exp (60/0 (W(s)v(s) +v(s))d ) p(30W(yi)” + 60 (vi)),

and since ¥(t) ~ y/logt and we’re running up to time yi = n® (where c is small relative to ), this will be
small compared to n3%, so A; will remain small (e.g., at most n~20¢).

We'll consider the following properties.

Property 3.1. For all edges uv € G;, we have X, (i) = ¢2(1 & A)n.
Property 3.2. For all edges uv ¢ G;, we have Y, (1) = 2¢;(p; = (1 + pi)Ai)/n.

Property 3.3. For all edges uv, we have Z,,(i) < i(logn)?.

Page 24 of 47



Sanjana Das (May 12, 2025) The triangle-free process and lower bounds for (3, k)

Theorem 3.4
With probability 1 — n=*(), Properties 3.1-3.3 hold for all i < n¢/~.

More specifically, we’ll show that assuming these properties hold up to the ith round, then they hold after
the ith round (with i replaced by i + 1) with probability 1 —n=<(),

First, Property 3.3 follows easily from multiplicative Chernoff, using the same argument as Property 2.4 in
Kim’s argument (since we only want an upper bound). But there are several challenges that arise when we
try to adapt the proofs of Properties 2.2 and 2.3 to the actual triangle-free process.

(1) Most importantly, there can be complicated dependencies between the edges we try to add this round
— maybe the first edge e; we add closes the second edge ey (so we don’t actually add e3); and adding
eo would have closed es, but this didn’t happen because we didn’t add es; and so on. This makes it
unclear how to use concentration inequalities, since a single edge could potentially affect lots of others.

(2) There’s also the fact that unlike in Kim’s semi-random construction, we don’t get to perform a reg-
ularization step, and this means errors accumulate — errors in X, (i) and Yy, (i) are going to result
in bigger errors in Xy, (i + 1) and Y, (i + 1). So we need to control these errors carefully enough that
they don’t blow up — in particular, we need more careful estimates on the expectations of the tracked
variables (meaning we need careful estimates on the probabilities that edges in Fj;; really get added
to Git1, as well as that edges not in Fj;1 remain open).

The way Wolfovitz deals with both of these challenges is through an approach based on branching processes.
As a high-level overview, we first sample a collection of ‘candidate’ edges, including each with probability
An~1/2 where A = n2"¢ (then we’ll decide which edges to add this round by sampling these candidates with
probability ¥). Then for every edge, in order to estimate the probability it gets added to G;41 or remains
open, we produce a ‘dependency tree’ that keeps track of how the candidate edges could affect it.

Each individual dependency tree basically corresponds to a branching process. By analyzing this branching
process, we can show that it exhibits good ‘correlation decay,” so that we can cut it off after a constant
number of levels without affecting its outcome by too much. We can also show that it’s reasonably resilient
to errors, in that a 1+ A; error in its input only results in a 1+ A;d; error in its outcome. (This is important
for dealing with (2) — it’s the reason our errors don’t blow up.)

Then when we'’re considering X, (i + 1) or Y, (i + 1), we can use these truncated dependency trees to get
upper and lower bounds which are very close to each other in expectation. And the truncations substantially
reduce the amount of dependencies, so that we can actually use the bounded differences inequality to prove
concentration; this deals with (1).

§3.2 Sampling candidates

Let A = n2’¢. The first step of the argument is to sample a set of candidates F'*, where we include each
open edge with probability An~/2. (We’ll draw candidate edges by highlighting them in blue.)

We'll define the following sets of configurations based on these candidate edges:

e We define ), as the set of configurations {uw,vw} € Yy, (i) whose one open edge was selected as a
candidate, and Y}, as its size.

o We define X7, as the set of configurations {uw,vw} € X, (i) for which both their open edges were
selected as candidates, and X as its size.

e We define X as the set of configurations {uw,vw} € Xy, (i) for which exactly one of their open edges
was selected as a candidate, and X as its size.
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w w w

Claim 3.5 — With probability 1 — n=“(1) the following statements hold for all uv & G;:
(1) Yy =2X6(pi £ (14 pi) (A + Aidy)).
(i) X7, = N2q2(1 £ (A + A5)).
(i) Xy = 20q7 (1 £ (A + 4i6;))v/n.

Proof. These statements all follow from multiplicative Chernoff.
For (i), there are 2¢;(p; £ (1 + pi)Ai)y/n configurations in YV, (i) by Property 3.2, and for each, we pick its
one open edge with probability An~1/2, so the ezpected number of them that will land in Vi, 1s

E[Y,] = A2 2:(p; £+ (14 pi) Ai)vn = 2Xq; (ps £ (1 + i) Ay).

And these configurations are all edge-disjoint and therefore independent. So |Y;*(uv)] is a sum of independent
Bernoullis, which means it concentrates well. (Note that when we apply multiplicative Chernoff, we’ll have
mean p = 2Ap;q; and error § = %Aiéi; the fact that A = n2”’¢ while all other quantities are ‘reasonable’
powers of n° means that 32y will be large — for example, it’s much greater than n® — so we’ll get a
1 —n~*® concentration probability.)

Similarly, for (i), there are ¢?(1+ A;)n configurations in Xy, (i) by Property 3.1, and each lands in X, with
probability A>n~! (since we have to pick both its edges). So

EX:] =Nt (1 £ A)n = M@ (1L A)).

And again, these configurations are edge-disjoint and therefore independent, so multiplicative Chernoff gives
good concentration. Finally, for (iii), each configuration in X, (i) lands in X with probability 2An=1/2,
since we have to pick one of its edges (technically, we need to subtract 2A\?n~! to remove the ones where we
pick both edges, but this is a much lower-order term and can be absorbed into the error). So

E[X;5] = 2A¢7 (1 £ Aq)v/n,

and again we get good concentration by multiplicative Chernoff. O
We'll also need bounds on certain small structures (we’ll use these when proving concentration).

Claim 3.6 — With probability 1 — n=“®)_ for all vertices u, v, and w with ww, vw & Gy
(i) The number of = such that uz, vz € G; and wxr € F* is at most (logn)?.
(ii) The number of z such that uz € G; and vz, wz € FF is at most (logn)?.
Also, for all vertices u and v with uv € Gj:
(iii) The number of x such that uz € G; and vz € F* is at most 4.

(iv) The number of z such that uz, vz € F* is at most 2\?.
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Proof. For (i), we must have {uz,vz} € Z,,(i). Property 3.3 says that there are at most i(logn)? such
vertices x, and for each we include wx in F* with probability An~1/2. So the ezpected number of valid z is
at most

i(logn)? - an~Y? <« 1.
And different vertices x are independent, so multiplicative Chernoff says the actual number of such x is at
most (logn)? with probability 1 — n=«(),
Similarly, for (ii), we must have {ux,vax} € Yy, (7). Property 3.2 says there are at most 2/n such choices of
x; and for each, the probability that we include both wz and vz in F* is A>n~!. So the ezpected number of
valid x is at most

2v/n - Ant <« 1.

And different vertices z are independent, so we can again use multiplicative Chernoff to conclude.

For (iii), we must have {ux,vx} € Yy, (i), and again by Property 3.2 there are at most 2y/n such choices of
z; and for each, the probability we include vz in F* is An~'/2. So the ezpected number of valid z is at most

2v/n - An"H2 =2,
and since different vertices x are independent (and A = w(logn)), multiplicative Chernoff tells us that the
actual number is at most 4\ with probability 1 — n~«@).

Similarly, for (iv), there are at most n choices for z, and for each, the probability we include both ux and
ve in F* is A2n~!. So the expected number of valid z is at most

n-Nn"t=)\2

and by multiplicative Chernoff, the actual number is at most 2A% with probability 1 — n=<(1), O

Claim 3.7 — With probability 1 — n=“(1), for all v we have degp-(v) < 2\y/7.

Proof. This again follows from multiplicative Chernoff — for each v, there are at most n open edges incident
to v, and we’re picking each with probability An~1/2. So the expected number of candidate edges incident to v
is at most Ay/n, and by multiplicative Chernoff, the actual number is at most 2\/n with high probability. [J

In the rest of the analysis, we’ll assume that F'* has already been chosen, and that it satisfies the properties
described in Claims 3.5-3.7.

§3.3 Dependency trees

We’ll now describe how to construct dependency trees that track how the candidate edges can affect each
edge e. We define a dependency walk started from e as follows: At each step, if we're currently at an edge
uv, we move to a configuration in either )V, or X, , and then we move to one of the candidate edges of
that configuration. (For convenience, we’ll sometimes refer to such configurations as Y-type and X-type,

respectively; so there’s one possible step from a Y-type configuration, and two from an X-type configuration.)

In particular, the starting edge e of the dependency walk may or may not be a candidate edge, but all the
other edges on the walk are candidates.
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For example, the above picture represents the dependency walk

uiLuy — {U1U3,UQU3} — uiruz — {U1U4, U3’LL4} — U1U4 — {U1U5,U4U5} — UqUs — {U4u6, U5u6} — U5UG.

We allow a dependency walk to revisit vertices or edges. However, we do not allow it to stay on the same
triple of vertices for two consecutive configurations — for example, we can’t have

{U1U5, U4U5} — Uqus — {U1U4,U1U5}.

For each edge e, we also construct a dependency tree T (e) that records all possible dependency walks started
from e, which will look something like the following picture.

(5 )
[ { ]
us Uy us
up U2 up U2 up U2
uyp us Uy U4 uyp U5 U2 U
[ ] L ] o0 [ ] L ] @ { ]
U ur
/ . /\
Uqg Ul up U4
Ug  Up Uy Uy U4 Uy
[ ] L ] [ J L ] [ J L ]

(Note that the same edge is allowed to appear in multiple places in the same tree, and the tree may be
infinite.) We measure heights in the tree based on only the nodes representing edges: for example, in the
above tree we’'d say ujus is at level 0, ujus and usus are at level 1, and so on. We also define truncated
versions of 7 (e) — we define T, (e) to consist of only the nodes up to level h. (In particular, 7p(e) consists
of just e itself; 71 (e) consists of e at level 0, then the configurations in V) and A7 as its children, and then
their candidate edges at level 1.)

We can then use these trees to model the triangle-free process as follows: First, for each candidate edge e,
we generate a birthtime in [0, A] uniformly at random. We say e is born if its birthtime is at most 7; these
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are the edges we’ll be attempting to add during the triangle-free process. We say a configuration is fully
born if all its candidate edges (one for a Y-type configuration and two for an X-type configuration) are born;
we say it is fully born by time z (for x € [0,~]) if all its candidate edges have birthtimes at most x.

Now, given a finite dependency tree 7, we compute with it as follows: We say all its leaves (which are nodes
representing edges) survive. For each intermediate node representing a configuration, we say it fully survives
if all its candidate edges survive. For each intermediate node representing an edge, if its birthtime is x, we
say it survives if and only if none of its children configurations has been fully born by time min{z,~} and
fully survives.

We say an edge e survives at depth h if it survives in T, (e). The intuition is that we think of surviving as a
proxy for not getting closed; if some child configuration of e is fully born before time x and both its edges
are still open at the time we add them to G;, then this will close e. More precisely, when h is even, this
will give an overestimate for whether e remains open (if its birthtime is above «) or gets added to G; (if
its birthtime is below 7); when h is odd, it’ll give an underestimate. (This is because e always survives if
h = 0, and if we have overestimates at all children of the root, then we have an underestimate at the root.)

We're later going to run a branching process analysis of these dependency trees, which will give the following
result — that for any constant-sized collection of edges, working with these truncated dependency trees
genuinely give very good estimates for what happens during the triangle-free process.

Lemma 3.8

Let H C K, \ G; be a constant-sized collection of edges such that H U G; is triangle-free. Then if we
condition on whether or not each edge of H gets born, then for each h € {40,41}, the probability that
every e € H survives at depth h is

(pi+1 _pi>a1 <Qi+1)a2 (1 4+ 12A.5.)a1+a2
105 .

V4 q;

(In particular, since h = 40 gives an overestimate and h = 41 gives an underestimate for the actual process,
we get that the same statement is true for the corresponding probability in the actual process.)

The intuition behind why this is the right probability is that for a single edge e, if e doesn’t get born, then
surviving should correspond to remaining open at the end of this round; and we’d expect the density of
open edges to drop from ¢; to g;11, which means we’d expect each edge to survive with probability roughly
%itl “Meanwhile, if e does get born at a time t € [0,], then surviving should correspond to being open at
the time we tried to add it. And this time essentially corresponds to the time i + ¢ in the full triangle-free
process, at which point our heuristic from Subsection 1.2 says we’d expect the open edge density to be
Y(vyt 4 1); so we'd expect e to be open at that time with probability W. Averaging over all times, this
means if we just condition on e being born, the probability it’s open when we try to add it should be

1/V Yyt + 1) gt = Pitl — Pi
7 Jo qi Y4i

This explains why Lemma 3.8 makes sense if H consists of a single edge. And we’d expect different edges to
behave independently, so it makes sense that when H has multiple edges, we just multiply their probabilities.

§3.4 Tracking configurations

We'll prove Lemma 3.8 in Subsection 3.5; for now, we’ll see how to use it to prove Properties 3.1 and 3.2.
(As usual, we’ll fix an edge uv and show that these properties hold with probability 1 — n~“M which is
good enough to union-bound.) Our tool for proving concentration will be the (ordinary) bounded differences
inequality.
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Lemma 3.9 (Bounded differences inequality)

Let f : R® — R be a function with the property that for each j, changing the jth coordinate of z
changes f(z) by at most ¢;. Then for X sampled according to a distribution on R™ with independent
coordinates, for all o > 0 we have

0_2
P[[f(X) — E[f(X)]| > o] < 2exp <—; - ZQ> .
J

(One could use a low-probability version similar to Lemma 2.12, but here our probabilities will be ¥, which
is some power of n¢; and powers of n® will not matter in the concentration bounds.)

Note that Claim 3.5 gives control on degrees in our dependency trees — in any dependency walk, if we’re
currently at uwv, we must step to either a configuration in Y, or &};,, so Claim 3.5 means we have at most
2)\? choices per step. This is what we’ll use to control the c.’s when applying the bounded differences
inequality.

§3.4.1 Property 3.1: Tracking Xy, (i)

For convenience, let X, (i) = Xy (i) \ (X, (1) U X5 (7)), and let X, (i) be its size. (We can afford to ignore
configurations in X, (i) or X} (i) because they’'re much smaller — by Claim 3.5 they scale like /n, while
Xuv(7) scales like n — so whatever happens to them can be absorbed into our error term.)

For each h € {40,41}, let X" (i + 1) be the set of configurations in X’ (i) both of whose edges survive at
depth h, and let X" (i + 1) be its size. Then we have

X i+ 1) < X (i 4 1) < Xy i + 1) + X5, + X7
So our goal is to show that both X10(i 4+ 1) and X (i + 1) have the correct mean and concentrate well.

Fix h € {40,41}. Then we can estimate E[X/

uv

Xo(i) = qF (1 £ (A + Aidi))n

(1 4+ 1)] using Lemma 3.8. We have

by Property 3.1 (the extra A;0; is there just to account for the removal of configurations in X\, and X\"),
and by Lemma 3.8, for each configuration in X, (i), the probability both its edges survive at depth h is

uv
4di ?
( ”1> (14 120:6)2.
di
(We don’t have to worry about the conditioning in Lemma 3.8 because we excluded configurations in X},

and X5 so no edges of configurations in X7, (i) can possibly be born this round.) So we get that

2
E[X0, (i + 1)] = ¢ (1 + (Ai + Aidi))n - (q;l) S(1£12406:)% = 71 (1 £ (A + 26A:6;))n.
1
We wanted a bound of
G (1 £ Aip1)n = g7 (1 £ (A + 602:6,))n,

S0 it just remains to prove that X/ (i + 1) concentrates well (e.g., within a window of length n!=8%¢). We’ll
do this by the bounded differences inequality. So we want to understand, for each candidate edge e, how
many configurations {uw,vw} € X, (i) can be affected by e (meaning that changing the birthtime of e could
change whether or not uw or vw survives at depth h).

First, if e affects {uw, vw}, then there must be some dependency walk from ww (or vw, but we’ll work with
just ww for convenience) to e of length at most h. Let f be the edge immediately after uw on this walk.
We'll split into cases based on whether f is incident to w or not.

This means we have one of the two following pictures.
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NVAVANEER VAVAN

First, to bound the number of edges e which fall into this case (over all possible w), note that by Claim 3.7
there are at most 2\/n choices for f (since it must be a candidate edge incident to u). Then at each step
of the dependency walk, we have at most 2\? choices; we're taking h steps, so in total there are at most

22/n - (2AHh < A3/

edges e which fall into this case.

Then to bound the number of configurations {uw,vw} that a fixed edge e in this case can affect, we can
first imagine running the dependency walk backwards from e to f; this shows there’s at most (2A2)" choices
for f. Then given f = ux, we have that {uw,zw} must be in either ), (i) (as in the first picture) or X**
(as in the second). So by Property 3.2 and Claim 3.5, there are at most 2A?y/n choices for w. So this case
gives A3 /n edges with c. < (2A%)"-2A2/n < A3"/n.

This means we have a picture like the following.

e

—N
w
./f/

u 0

First, to estimate the number of edges e which fall into this case, there are at most n choices for w. Then
there’s at most 22 choices at each step of the dependency walk, and we’re taking h steps. So in total, there
are at most (2A2)"n < A3 choices for e.

To bound the number of configurations {uw,vw} each such e can affect, we can again imagine walking
backwards from e to f, so there’s at most (2A?)" choices for f. Then given f, there’s at most 2 choices for
w (it has to be one of the two endpoints of f).

So this case gives A3"n edges with c. < (2A2)" -2 < A3,

1-80¢ " we’ll have

So when we apply the bounded differences inequality with ¢ =n
2 n2—160€

o
> >
o2 T A3hy/m X6hp 4 \3hp o \6h

530
pl/2-2%%

So we get a concentration probability of 1 — exp(—Q(n!/ 2_2308)), which is good enough (all we needed was
for the exponent of n to be positive).
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§3.4.2 Property 3.2: Tracking Yy, (7)

Based on (1.4), we'd expect the primary driving forces behind the change in Y, (i) to be configurations
leaving through their open edge becoming closed, and configurations coming in from X5 (which means
their one candidate edge has to be born and survive, meaning that it gets added to the graph, and their one
non-candidate edge has to survive, meaning that it remains open). So we’ll define the following sets:

o Let V(i) = Vuo(i) \ V¥,, and for h € {40,41}, let V" (i + 1) be the set of configurations in V., (i)
whose open edge survives at depth h. (We write Y/, (i) and Y;? (i + 1) for their sizes.)

e For h € {40,41}, let Y™+ (i + 1) be the set of configurations in A;** such that their one candidate
edge is born and survives at depth A, and their one non-candidate edge survives at depth h. We write
Yok (i + 1) for its size.

(We're ignoring Yy, and X, because they’re tiny by Claim 3.5, so can be absorbed into our error term.)

Then we have

YAG+ D)+ Y G +1) < V(i 4+ 1) < YOG4+ D)+ Y96+ 1) + V75 + X

uv?

so it suffices to show that both Y,” (i 4+ 1) and Y5t (i + 1) have the right means and concentrate well.

To compute E[Y,? (i+1)], by Property 3.2 we have Y, (i+1) = 2¢;(p; £ (1+p;) (A;+A:6;))y/n, and by Lemma
3.8, for each configuration in )., (i + 1), the probability that its one open edge survives is qz’q—:l (1+£12A;9;).
This means we have

)

= 2¢i1(pi £ (14 pi) (A 4 144:6:))v/n.

E[Y,, (i + 1)] = 2qi(pi = (1+ pi) (Ai + Aidi))v/n - qiq* (1 £ 1206)

To compute E[Y"F (i 4 1)], by Claim 3.5 we have
Xow = 22Aq7 (1 % (A + Ai))V/n.

And Lemma 3.8 says that for each configuration in X**, the probability it lands in Y+ (i + 1) is

uv

v Piv1—Di\ [ Qi+t o 1 (pitv1 —pi)ait 9
- (14£120:0;)° = — - —— 22— . (1 £ 12A6;
A < a4y ) < gi ) ( "= @’ ( )

(the % corresponds to the probability that the one candidate edge gets born). So we get

L (piv1 — pi)qit1 N2
R (1+12A:6;)

= 2(piy1 — Pi)qi+1(1 £ (As + 26A:0;))v/n.

E[Yof (i +1)] = 2A¢7 (1 £ (A + Aiy))v/n

When we add these together, we’ll get that the main term in E[Y,2 (i + 1) + Y,/H (i 4+ 1)] is

20iGi+1V 1 + 2(Piv1 — i) @1V = 2pit1Giy1Vn,

which is exactly what we wanted (the fact that the calculation works out corresponds to (1.4)). We do have
to be a bit careful about how the errors interact, but they do work out: our new error becomes

2(1 4 pi)qiv1 (Di 4 140:6;) + 2(piy1 — pi)qiv1(Aq + 264,0;)
2¢i+1

I

and using the fact that p;11 — p; < vyq; < 6;, we get that this is at most
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So we've shown that Y2 (i + 1) and Y,%F(i + 1) have the right expectations, i.e.,

E[Y) (i 4+ 1) + Y2 (i + 1)] = 2gi01 (pi1 £ (1 + pis1)(Aq + 420:8;)) /7.

And now it remains to prove that they concentrate well (e.g., within a window of length n!/2-80¢),

We'll start by proving concentration for Y (i + 1). We’ll again use the bounded differences inequality; this
means we want to understand the number of configurations {uw,vw} in Yy, (i) that each edge e affects
(meaning that the birthtime of e could change whether or not the configuration survives at depth h).

First, if an edge e affects a configuration {uw,vw} € Yy, (i), then there must be a dependency walk from
the open edge in this configuration (which we’ll assume is uw) to e of length at most h.

First, to bound the number of relevant edges e, there are at most 2,/n choices for w by Property 3.2; then
there’s at most 2A\? choices for each step of the dependency walk, so there’s at most (2)\2)h -2y/n < X3hy/n
relevant edges e.

To bound the number of configurations that each affects, we can imagine taking a dependency walk back-
wards from e to the edge f which originally came right after uw on the dependency walk; there are again
22 choices at each step. If f is not incident to u, then there are at most 2 choices for w (it has to be one
of the endpoints of f).

—P
w
./?/
u v

Meanwhile, if f = ux is incident to u, then we have one of the following two pictures.

VAVARERVAVAS

In the first picture, Property 3.3 tells us there are at most i(logn)? choices for w, since we must have
{wz,vw} € Z,;(i). In the second, Claim 3.6(iii) tells us there are at most 4\ choices for w.

So in total, there are at most A*"\/n edges, each with c. < (2A?)"(i(logn)? + 4)\) < A3, We wanted a
concentration window of length o = n'/2-80¢; when we apply the bounded differences inequality, we’ll have

2 1-160e )
n S ,1/2-2%%

o
> n
IRV

giving a concentration probability of 1 — exp(—Q(n!/2-2")).

The proof of concentration for Y+ (i + 1) is very similar. To bound the number of relevant edges, this time
we use Claim 3.5(iii) to say there are at most 2\y/n choices for w, and then there’s again 2A? choices for
each step of the dependency walk.
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To bound the number of configurations that each edge e affects, this time there’s two cases — ww (which
we're assuming is the edge of the configuration that e affects) could either be the candidate edge or the
non-candidate edge of {uw,vw}.

First, if uw is the candidate edge, then we can run the dependency walk backwards from e all the way to
uw; this shows there are at most (2A%)" choices for w.

VAVAS

Meanwhile, if uw is not the candidate edge, then we again run the dependency walk backwards from e to
the edge f that originally came right after uw. If f is not incident to u, there’s at most 2 choices for w
(namely, the two endpoints of f). If f = uz, then we have one of the following two pictures.

w w
x x
[ ] [ ]
VAN 6
) o )
u v u v
Then Claim 3.6(iii) (in the first case) or Claim 3.6(iv) (in the second) tells us that there are at most 2\
choices for w.

So we again get that there are at most A\3"\/n relevant edges e, each with ¢, < A3"; this means we get the
same concentration bound for Y+ (i 4 1).

§3.5 Lemma 3.8: Survival probabilities in dependency trees

In this section, we’ll prove Lemma 3.8 by using branching processes to analyze our dependency trees.
(Throughout this section, we think of H and h € {40,41} as fixed.)

§3.5.1 Making the trees independent

The first step of the argument is that it’s not great that the dependency trees T (e) are allowed to contain
repeated edges — we’d really like to analyze these trees as branching processes, and to do so we’d want
their nodes to have independent birthtimes (which isn’t the case if an edge appears in multiple places).
Fortunately, it turns out that we can fix this by running a second round of sampling.

Set v = n?'"¢. We define a subset F’ C F* by including each edge with probability 3; we call the edges in
F' refined candidates. When generating the birthtimes for edges, we’ll only work with the edges in I’ — so
for each e € F’ we generate a birthtime in [0, v] uniformly at random (and it gets born if its birthtime is at
most ), while we ignore edges e & F’.

Once we've fixed F’, only the edges in F’ matter for the analysis of our dependency trees. So we define

sets V!, and X/, analogously to Vi and X, but with F’ in place of F* (so )., consists of configurations
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{uw,vw} € Vi, whose one open edge is a refined candidate, and X, consists of configurations in X}, whose
two open edges are refined candidates). As usual, we write Y, and X, for the sizes of these sets. We
also define refined dependency trees 7/ (e) analogously to Tj(e), by restricting to the edges in F’ and the
configurations in )/, and X, .

Claim 3.10 — With probability 1 — n=“() the following statements hold for all uv & G;:
(i) Yqiv = 2vqi(pi + 2(1 —i—pZ)Az)
(i) X., =v2g2 (1 £24A,).
These statements both follow from Claim 3.5 (which means the expected values of Y, and X, are roughly
2Agipi - 5 and )\qu . K—z, respectively) and multiplicative Chernoff (which gives good concentration).

Claim 3.11 — With probability at least 1 — n =%, none of the trees T/ (e) for e € H contain repeated
edges, and no two of these trees share edges.

Proof sketch. The intuition is as follows: Imagine we consider the expected number of dependency walks
(of length at most 2h) that start at an edge in H and either return to an edge they’ve already visited, or
reach some other edge in H. At every step, there are roughly A or A\? configurations we could possibly move
to (among the original candidate edges) of V-type and X-type, respectively, and each appears among the
refined candidate edges with probability 5 or K—;, respectively; this means the expected number of steps we
could take is roughly v + 202 < 3v2. And on the last step, in order to return to an already visited edge or
an edge in H, we’ll no longer have the factor of A or A? for the next step (now there’s a constant number
of steps), but we’ll still have at least one factor of ¥ (corresponding to some edge needing to be picked). So
we’ll get that the expected number of such walks is at most roughly a constant times (3v2)2" . %; and since
X is a much bigger power of n° than v is, this is at most n =64,

Formalizing this intuition takes a bit of care, because we need to worry about our dependency walk possibly
repeating edges (in which case we wouldn’t get a § factor for that edge the second time we used it). One
way to do so is as follows: Consider a shortest dependency walk that starts from an edge in H, and returns
to a vertex that either had been previously visited by the walk or is an endpoint of an edge in H. (When
we take a dependency walk, every edge shares exactly one vertex with the previous one. We don’t count
that shared vertex — the ‘previously visited’ case means there’s some vertex w that the walk visits, then
leaves, and then returns to.)

[ ]
[
\/ \/ u |
(For example, the above picture shows a walk that starts at an edge uv, takes 8 steps, and revisits u.)

First, apart from the final step, the configurations we see on this walk can’t share any edges (if they did,
we'd get a shorter walk that revisited a vertex). If the final step is a X-type configuration (as in the above
picture), then it can’t be the case that we've used both of its edges already (again, this would give a shorter
walk that revisited a vertex). So the above argument does still work — we do have an expected number of
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at most 312 choices for all but the last step, and an expected number of at most % choices for the last step
(up to constants), since there’s a constant number of choices for the revisited vertex and some new edge has
to be picked (which occurs with probability %).

If the final step is a V-type configuration and we hadn’t used its one candidate edge already, then the above
argument still works (for the same reason).

The only ‘bad’ case (where the above argument doesn’t work) is if the final step is a Y-type configuration
and we have used its one candidate edge already, as in the below pictures.

JAVAVANERNAVAVAN
VoIV

Y
Let the reused edge be uw (where u is the revisited vertex), the third vertex of that configuration be y, and
the third vertex of our previous configuration be x (as shown above). Then given z, w, and u, by either
Claim 3.6(i) or Claim 3.6(ii) there’s at most (logn)? choices for y, as opposed to the bound of A or A\? we
used earlier. So this again lets us get an extra factor of A in the denominator. O

Y

Since n~%4¢ is much smaller than our target error in Lemma 3.8 (which is roughly A;d;), we can afford to

ignore the case where Claim 3.11 fails. So from now on, we’ll assume that we’ve fixed F’ such that Claims
3.10 and 3.11 hold. Then the dependency trees 7, (e) across different edges e € H are independent, so to
prove Lemma 3.8, it suffices to consider just a single tree (with no repeated edges).

§3.5.2 A branching process problem

Now we’ve reduced Lemma 3.8 to the following branching process problem: We're given a tree T of height
h (whose nodes represent edges in our graph). Each node has 2vq;(p; £ 2(1 + p;)A;) V-type children, each
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leading to one node on the next level, and 1/2q1-2(1 +2A,;) X-type children, each leading to two nodes on the
next level. (These quantities come from Claim 3.10.)

.o /. VAN
Jo A

Every node receives a birthtime in [0, v] uniformly at random; it’s born if its birthtime is in [0,7]. A node
with birthtime ¢ survives if it does not have any child configuration which is fully born by time min{¢, v}
and fully survives. Our goal is to understand the probability that the root survives. So we’ll let p(7) be
the probability that the root survives, given that its birthtime is ¢.

Claim 3.12 — For all ¢ € [0,~], we have

P(yi+1)

1045,
Y(vi)

pt(T) =

As discussed after the statement of Lemma 3.8, the reason we’d intuitively expect this to be the right answer
is that py(7T) is supposed to model the probability that in the triangle-free process, an edge e which was
open at time ¢ remains open at time i 4+ ¢, and we’d heuristically expect the density of open edges to drop
from 1(yi) to 1 (yi + t) between these two times (based on Subsection 1.2).

Claim 3.12 implies Lemma 3.8 for one edge e — the case where we condition on e not being born corresponds
to taking p,(7) (note that p(7) = py(T) if t > ), where we get
YOt din
¥(71) G
and the case where we condition on e being born corresponds to averaging over z € [0,~], where we get
1/7 Y(vi+1) g = Pl =P
vJo o P(vi) Yqi

(Lemma 3.8 is written with multiplicative rather than additive error, but these probabilities are very close
to 1, so this doesn’t matter.) And since Claim 3.11 means that different edges e € H are independent, this
also implies Lemma 3.8 for multiple edges. So now it just remains to prove this claim, which we’ll do in the
next sections (we’ll be a bit sketchy with the proof, but it can be made rigorous).

§3.5.3 An infinite idealized branching process

Consider an infinite tree 74, of the same form as in our problem, where every node has ezactly 2vq;p; Y-type
children and v2¢? X-type children. We're first going to show that Claim 3.12 holds for this infinite tree.

First, it’s not immediately clear that our process is even well-defined for such an infinite tree. However, it
turns out that the process has good correlation decay, so that it is well-defined.
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Claim 3.13 — Let ’TcﬁfT be the tree where we cut 7o off at height ¢, sample birthtimes for all nodes
as normal, and declare whether the nodes at level h survive based on some assignment 7. Then

pe(TE™™) — pe(T57™)| < (69)°

for all ¢ and all assignments 7 and 7o.

Proof. Imagine we take Tofo—m and TOEO_)TQ, and we couple them by assigning the same birthtimes to all nodes.
Then the only way that they could possibly have different outcomes for the root is if there’s a path from
the root to level ¢ along which all ¢ configurations are fully born. (If there’s a configuration somewhere in
the tree that isn’t fully born, then it doesn’t affect whether its parent survives, so its subtree is irrelevant.)

But we claim that the ezpected number of such paths is at most (67)¢. To see this, every node in the tree
representing an edge has at most 2v Y-type children, each of which is born with probability T (and offers
one edge to step to), and at most 2v% X-type children, each of which is fully born with probability (%)2
(and offers two edges to step to). This means if we're trying to walk down such a path from the root, the
expected number of choices we have at each step is at most
2
. L4222 <6y
v v
And we’re doing this ¢ times, so the expected number of paths we end up with is at most (67)6 . Then by
Markov’s inequality, the probability there exists some such path is at most (67)*. O

Now, we say a node follows the target survival distribution if conditioned on its birthtime being t € [0, 7],
Y(yitt)
Y(vi) -

the probability it survives is

Claim 3.14 — Suppose that for some node e, all edges in its children follow the target survival distri-
bution. Then e follows the target survival distribution as well.

Remark 3.15. Technically, this is only true up to an error on the order of % = n_QIOE, but this won’t
matter for our purposes — this is tiny compared to our target error, and we can deal with it in the
same way as we’ll deal with the error terms in the number of children when proving Claim 3.16.

Proof. Suppose we condition on e having birthtime ¢ € [0, 7].
Then for e to survive, we need it to not be the case that any of its children configurations gets fully born at
some time 0 < s <t and fully survives. For each of its Y-type children, the probability that its one edge is
born at some time 0 < s < ¢ and survives is

1 /5 Py + ) 1 Wiy +t)— V(i)

- ——ds=—- ,

vy (i) v P(iy)
(since we assumed it follows the target survival distribution). For each of its X'-type children, we’re asking
this to happen for two edges (which are independent); so the corresponding probability is

1 (W(iy+1) — ¥(in))?

v? P(iv)? '

Since our node e has 20V (i) (i) V-type children and % (iv)? X-type children, this means the probability
it survives — meaning that none of these events occur across all its children — is

< 1 Wiy +1) - \I,(w))zyqx(mwm) (1 L (Wit 1) — \I/(ify)y)”%(”f

17y o)

Iz P(iv)2

Ple survives| =
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. . . _ 10
Using the approximation 1 — x ~ e~ (we can afford to do so because v = n? ¢

we want in Lemma 3.8; see Remark 3.15), we get that

much larger than the error

Ple survives] = exp <i Yy t/)t()Z’Y_) LG 20V (i)Y (iy) — % iG] ";!}75()27—)2‘1’(27))2 . VQw(i'y)2>
= exp (V(iv)? — V(iy +1)?).
And because exp(—W(t)2) = 1(t), this is precisely wggj)t). O

This essentially shows that Claim 3.12 holds for 75 (with a much smaller error term) — we can imagine
cutting T, off at a sufficiently low level and initializing the leaves with the target survival distribution
(which we'’re allowed to do by Claim 3.13), and Claim 3.14 shows that all intermediate nodes will also have
this distribution.

§3.5.4 Comparison to the idealized process

Finally, it remains to show that moving from 7T, to our given tree 7 — which has errors in the number of
children — doesn’t introduce too much error.

Claim 3.16 — For all ¢, we have |p:(T) — pe(T)| < 8A;6;.

Proof. ITmagine we create a sequence of trees 7o, 71, ..., T as follows: We take 7, to match our tree T up
to height ¢, and at each node of height ¢, we place an infinite tree T, rooted at that node. In particular,
we have Ty = 7o, and 7}, is the same as T except that we’ve added infinite trees rooted at each leaf of 7j.

We already saw in Claim 3.13 that [p;(75) — p¢(7)| < (67)" (which is much smaller than A;6;), so it suffices
to show that p.(7;) and p;(T41) are similar for all 4.

To do so, we’ll use coupling. Note that 7, and 7,1 look the same up to level ¢, and only differ in the
number of children that each node at level £ has (for 7; these numbers are exactly v¢;p;, and for T4 they're
given by 7). These numbers can differ by up to 4v(1 + p;)g;A; for Y-type children, and 212¢?A; for X-type
children. We can imagine matching up the children of each level-£ node in Ty and Ty 1, so each node has at
most this many unmatched children of each type.

Then we can couple 7y and Tyy1 by assigning the same birthtimes to all nodes up to level ¢, and also coupling
the infinite trees rooted at matched children of the nodes at level ¢.

In this coupling, the only way the outcomes at the root can be different in the two trees is if there is a path
from the root to one of the unmatched children along which all configurations, including that unmatched
child, are fully born — this is because otherwise we can cut off the unmatched children without affecting
the survival of the root (and the two trees are identical apart from these unmatched children).

And we can show the expected number of such paths is small, by the same argument as in Claim 3.13 —
imagine we compute the expected number of such paths by seeing the expected number of steps we can
take from every node (starting with the root). For each step but the last, the current node has at most
2v possible steps to V-type children, each of which is born with probability 1 (and gives one edge to step

to) and at most 2v2 possible steps to X-type children, each of which is born with probability Z—z (and gives
two edges to step to); so the expected number of steps we can take is at most 6. For the last step, since
we need to step to an unmatched child, we instead have at most 4v(1 + p;)g;A; possible steps to V-type
children and 2y2qi2Ai possible steps to X-type children (which again come with probabilities 1 and Z—z), SO
the expected number of steps we can take is at most

Ay(1 + p) @i + 492G Ay < 8A6;

)
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(by how we defined §;). So in total, the expected number of paths — and therefore the probability there
exists one — is at most (6)¢ - 8A;5;.

Finally, we’ve shown that |p;(77) — pe(Tes1)| < (67)¢ - 8A;8; for all £; this shows that

h—1

p1(T0) — pe(Th)| < 8Ai6; > (69) < 9A5;
/=0

(since 6 is much smaller than 1). And Ty = 7o, while we've seen |p;(Tr) — pe(T)| < (67)" (which is much
smaller than A;é;), which proves the claim. O

84 Bohman 2009: An analysis via the differential equation method

Finally, in this section we’ll explain Bohman’s analysis of the triangle-free process from [Boh09], based on
the differential equation method. We’ll give his proof that the process follows the trajectory from Subsection
1.3 up to time n¢, which illustrates a different approach to analyzing the process than the one in Section 3.

8§4.1 Overview

In this analysis, we’ll work with the triangle-free process step by step. So we begin with the graph Gj.
Given G;, we choose a random edge e;41; if it’s open, we add it to G; to produce G;41 (and otherwise we
discard it). We’ll think of step ¢ as corresponding to time ¢t = on 3/,

Let € > 0 be a somewhat small constant, and let ¢ be small with respect to €. As in Subsection 1.3, we write
pu(t) =p(1)? and @y (t) = 2W(1)3(1).
We also define slowly deteriorating error terms
g(t) =n° - ¢(t)640\11(t)2+40\11(t) and gy(t) —nc. 640\1}(1&)24—40\1!(16).

Note that W(t) &~ \/Iog, so as long as ¢ is small relative to e, we’ll have that ¢20¥()*+40%()) ~ gd0clogn  pe
which means these error terms remain small. (The place these error terms come from is that when we try
to run the argument, we’ll see that we need precisely the conditions in Fact 4.6 (up to constants), and then
we try to engineer error terms satisfying them.)

The statement we’ll prove is the following (where t = 2n73/27).
Property 4.1. For all edges uv ¢ G;, we have X,,,(i) = (¢z(t) £ gz(¢))n.
Property 4.2. For all edges uv & G;, we have Yy, (7) = (py(t) £ gy(t))v/n.

&

Property 4.3. For all edges uv, we have Z,,(i) < nf.

Theorem 4.4
With probability 1 — n=“(), Properties 4.1-4.2 hold for all i < n3/2+¢ (where t = 2n*3/21').

In the analysis we saw in Sections 2 and 3, we split the process into large chunks of time and showed that
on each chunk, the changes in these random variables concentrated around their expectations (where the
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expected changes correspond to the differential equations (1.3) and (1.4)); we used this to show that they
remain on the expected trajectory from one chunk to the next.

In contrast, here we’ll look at how these random variables change on each individual step of the process. Of
course we can’t say that these one-step changes concentrate around their expectations. Instead, we define
martingales that accumulate how much these one-step changes differ from their expectations over the entire
process. We can use martingale concentration inequalities to show that these martingales remain small
throughout the process with high probability; and if they do, this means our random variables really follow
the expected trajectory. This turns out to result in a very neat proof.

84.2 Preliminaries

We'll use the following martingale concentration inequality.

Lemma 4.5
Let a < b. Then for any martingale Zy, Z1, ...with Zy = 0 such that —a < Z; 11 — Z; < b for all i,

1 o o’
P[|Z;] > o] < 2 ——mindZ, 2\,
[1Zi]| > o] < exp< 8m1n{b mb})

(This is essentially a martingale version of Lemma 2.12, with uniform interval sizes, and it can be proved in
the same way.)

We'll also need the following fact about the error functions g, and g, .

Fact 4.6 — For all t > 0, we have
e g.(t) > 30 fos 9y (8)pz(s) ds and g, (t) > 30 fOS 9z(8)y(s) ds;
e g,(t) > 30 fos gy(8)py(s)ds and g, (t) > 30 fos gz(s) ds.

Proof idea. These can be verified by a straightforward computation — in all, we either pull out the ¢*¥®)

terms (noting that eA0V(t) > (A0¥(s) for all s < ¢, so if the inequality is true without these terms, it’s also
true with them) and substitute u = ¥(s)2, or pull out the e*°¥®? terms and substitute u = ¥(s). O

84.3 Proof of Theorem 4.4

We’ll now describe the structure of the argument (since this is a bit intricate). For each i, we define a ‘bad’
event B; that one of Properties 4.1-4.3 fails to hold for some j < i. We’ll define a bunch of martingales
(which are supposed to follow the process unless 3; occurs, at which point we stop them). We’ll show that
these martingales concentrate well with probability 1 — n~“(") for each i (regardless of whether B; occurs
or not). Let M; be the event that any one of these martingales goes outside its concentration window at
some time j < i; so the probability that any M; occurs is tiny. We’ll also show that if neither B;_1 nor
M, occurs, then B; does not occur either (i.e., Properties 4.1-4.3 all hold for 7). Since of course By does
not occur, this means that as long as no M; occurs (which is true with very high probability), no B; occurs
either (up to i = n3/2+¢),

84.3.1 Property 4.1: Tracking X, (i)

In this section, we’ll run the portion of the argument corresponding to the sets Xy, (7). Specifically, we’ll
define the collection of associated martingales, show that these martingales concentrate (in windows of
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length n with high probability, and show that if B;_; does not occur and the martingale associated
with uv concentrates, then Property 4.1 holds for uv for step i.

1—46)

For each step of the process, we define X, (i + 1) as the set of configurations in Xy, (i) that leave because
we either chose or closed one of their open edges on step i + 1, and X, (i + 1) as its size; then we have

Xuw(i +1) = Xy () \ Xy (i +1) and Xy (i + 1) = Xuo(i) — X (i + 1).
We define a martingale My, (i) by My,(0) =0 and

Mo (i 1) — My(i) = {Xu_v(z +1)—E[X,, (i+1)]|G;] off the event B;

0 on the event B;.

In words, My, (i) accumulates how much the one-step changes in X, (i) differ from their expectations until
B; occurs, at which point it stops. In particular, off B;_1 we have

i—1
Xuo(i) = (n=2) = Y E[Xy(j +1) | Gj] = M (i)
j=0
(where n — 2 corresponds to X, (0)).
Claim 4.7 — Off the event B;, we have
E[X (i + 1) | Gi] = 4(0a(t)ey(t) £ 295(8)0(t) £ 292 (t)ipy (1))~ /2.

(We always write t to mean 2n~3/2i.)

Proof. Consider some configuration {uw,vw} € X, (i). For it to land in X, (i + 1) because we closed one
of its edges, the edge e;+1 we picked must be the open edge of some configuration in Yy, (i) or Yy (7).

w

x

By Property 4.2, there are (py(t) & g,(t))y/n choices for e, that would close uw, and the same is true for
vw. We have to be a bit careful because some edges coud close both. But if choosing an edge wz would
close both, then we must have {ux,vx} € Z,,(i); and by Property 4.3 there are very few such edges. So we
can account for them by slightly enlarging the error terms.

X
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There’s also two ways for {uw,vw} to land in X, (i) because we chose one of its edges to be e;1, but we
can account for this by slightly enlarging the error terms as well.

So for each {uw,vw} € Xy (i), the probability it lands in X, (¢ + 1) is roughly

2- ((py(t)lzzzgy(t))\/ﬁ _ 4(90y(t) ﬂ:gy(t))TLiS/Q
2

(since there are roughly 3n? possible edges we could choose). And there are (¢, (t) £ g,(t))n configurations
in X, (7) by Property 4.1 for i, so multiplying these, we get

E[X,, (i + 1) | Gi] = 4(pa(t) oy (t) = 29, (t)pu(t) £ 200(t) @y (t))n /2

(where multiplying the error terms by 2 accounts for the lower-order contributions discussed above). O
Claim 4.8 — Off the event B;, we always have X, (i + 1) < 2y/n.

Proof. We want to bound the maximum possible number of configurations in X, (7) that choosing a single
edge e could affect.

w w

z . x/

If e is incident to u, then letting e = ux, choosing e can only affect a configuration {uw,vw} if {vw,zw} €
Vuz(i); by Property 4.1 there are at most 2,/n such configurations. If e is not incident to u or v, then it
affects at most one configuration. O

Claim 4.9 — For all uv and all i < n%/2%¢, we have |My,(i)| < n'~* with probability 1 — n=«(),
(This means we’ll define M; such that it includes the events that |M,,(j)| > n!=*¢ for any j < i.)

Proof. We’ll use Lemma 4.5 — we have
—2n Y2 < My (j + 1) — Myy(§) < 2v/n

for all j (where the lower bound comes from Claim 4.7 and the upper bound from Claim 4.8), so applying

Lemma 4.5 with ¢ = n' =%, we have
1—4e 2 2-8¢
o_n 1/2—5¢ o n 1/2—10¢
- > >n and — > >n
b~ 2vyn — iab ~ m3/2te.op=1/2. 2. /n ~ ’
which means we get concentration with probability 1 — exp(—Q(n!/2-10¢)). O
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Claim 4.10 — Suppose that B;_; does not occur and | M, (i)| < n'~* (and i < n3/2%¢). Then

Xuw (i) = (@2 (t) £ go(t)).

Proof. Off the event B;_1, by Claim 4.7 we have

|
—

Xuv(l) = Xuv(o) - E[Xu_v(] + 1) | G]] - Muv(z)

J
)

I
= O

=(n—2) =Y 4pa(8)ey(s) £ 29,(5)u(s) £ 200(8) iy (8))n 2 — My ().
j

I
o

Plugging in |M,,(i)| < n'~%¢ and normalizing by n, we get

. i—1
Xvu;;(Z) =1- Z 2(3052(5)90?;(5) + 29y(8)90m(8) + 293:(5)903,(8)) . Qn—3/2 4 2n—45
=0

(where s = 2n3/2j is the time corresponding to j). We can convert this sum into an integral over s (recall
that one step of the process corresponds to a time-interval of length 2n 3/ 2); this introduces an error of at
most 2n3/2, which can be absorbed into the +2n% error term. So we get

Xuw (1)

n

=1- /o 2(p2(8)py(5) £ 294 (8)u(s) £ 29, (x)py () ds £ 3n~ .

For the main term, (1.3) means that we have

wu(t) =1 _/0 2¢.(5)py(s) ds.

To deal with the error terms, Fact 4.6 means their total contribution is at most

t

[ a(eents) ds+4 [ a,(s)ey9)ds < 3.0
(and n™% < g,(t)). So we get Xy (i) = (0 (t) £ go(t))n, as desired. O

This concludes the part of the argument corresponding to the Xy, (i) terms.

84.3.2 Property 4.2: Tracking ), ()

In this section, we’ll explain the portion of the argument corresponding to the sets Yy, (i) (we’ll do this more
briefly, since it uses the same ideas). This time, we’ll define two collections of martingales, one to track
configurations entering Yy, (7) and the other to track configurations leaving it:

e First, we define ), (i + 1) as the set of configurations that leave ), (i) because we either chose or
closed their one open edge on step i+ 1, and Y, (i + 1) as its size. (If e;41 is wv itself, then we instead
define Y, (i+1) =0.)

e We define VI, (i + 1) as the set of configurations that come in from X, (i) because we chose one of
their open edges, and Y, as its size. Note that this is always either 0 or 1, since e;+1 belongs to at
most one configuration in X, (7).
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Then as long as uv € G;+1, we have
Yoo (i 4+ 1) = Yo (i) = Y, (i + 1) + Y1 (i + 1).
We define a martingale My, (i) by My,(0) =0 and

Y, (i+1)—E[Y,,(i+1)| G off the event B;

Myo(t+1) — M, (1) =
uv( ) U”( ) {0 on the event B;.

Similarly, we define a martingale N, (i) by Ny, (0) =0 and

Y (i+1)—E[Y,[(i+1)]| G;] off the event B;

Nuv +1 _Nuv ) =
(i+1) (4) {0 on the event B;.

These martingales accumulate how much the stepwise increases and decreases in Y, (i) differ from their
expectations; in particular, as long as uv € G; and B;_1 doesn’t occur, we have

i—1 i—1
Yuo(i) = =D B[+ 1) | Gil + Y BV (G + 1) | Gyl = Muy (i) + Nuw (i). (4.1)
j=0 Jj=0

To compute the expectations of these one-step changes, as long as uv € G; and B; doesn’t occur, we have

BYoo(i+ 1) | G = O E2BONE (0 ) sog,(0) i = 2y (0?50, (42)
2

where the second factor corresponds to the number of configurations in )y, (i), and the second corresponds
to the probability, for each, that we close (or choose) its one open edge. We also have

2

E[Y, (i +1) | Gi] = 75 - (0a(t) £ 29(t))n = 4(pa(t) £ 292(t))n ", (4.3)

M\H‘

where the second factor corresponds to the number of configurations in A, (7), and the first factor to the
probability that we choose one of its two open edges.

To prove that the martingales M, (i) and N, (i) concentrate well, we claim that on the event B;, we always
have Y, (i + 1) < n®. To see this, if e;41 is incident to w, then letting e;11 = wz, for any configuration
{uw,vw} € Yyup (i) that it moves to YV, (i + 1), we must have {vw,zw} € Z,,(:). And the number of such
w is at most n® by Property 4.3 (for 7). Meanwhile, if e;11 isn’t incident to u or v, it affects at most one
configuration.

Also, we always have Y, (i + 1) < 1 (since e;+1 belongs to at most one configuration in X, (i)).

So both My, (i) and N, (i) will concentrate well, e.g., within a window of length n'/2~%¢, by Lemma 4.5 —
we’ll have /ot ) .

o nt/eTE 1/2—5¢ o n o 1/2—10e

- > —_— > >
b= ne = and iab = m3/tHe . p1.pe =
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(where the n~! bound on a comes from (4.2) and (4.3)).

Finally, we need to show that if B;_1 doesn’t occur and |My,(7)|, | Nuw(i)| < n'/?27% (and uv & G;), then
Yo (1) = (¢y(t) £ gy(t))y/n. To do so, plugging (4.2) and (4.3) into (4.1) gives

i-l i-1
Vi) = = 3BV (4 1) | Gyl + 3BV +1) | 6] = Muli) + Nunli)
Jj=0 =0
1 i1
= _ Q(Sf’y(S)? + 5gy(5)<,0y(5))n*1 + 24(%:(8) + 2%(5))”71 4 opl/2—4e.
Jj= =0

Normalizing by 1/n and converting the sums into integrals, we get

' i1 i—1
Yq:,;g) — _ Z(gpy(s) 4+ 5gy(8)<py(5)) . 2n—3/2 + Z 2(()033(8) + 293;(8)) . 2n—3/2 + 2n—4e
Jj=0 =0
= [l 5ap(ehey o) ds + [ 20ea(s) % 2000 do 307"
0 0

The main terms match because (1.4) means that

ooty == [ oyfods+ [ 2outs) s,

and for the error terms, Fact 4.6 gives that

¢ t
1
| smsresds+ [ agods < 2o,
(and n~4 < g,(¢) as well). So this shows

Yo (i) = (@y(t) :I:gy(t))\/ﬁ’

which concludes the portion of the argument corresponding to V., (7).

84.3.3 Property 4.3: Tracking Z,,(i)

Finally, we’ll run the portion of the argument corresponding to Z,, (7). For this, we could use martingale
concentration again if we wanted to, but it’s not necessary. As a simpler argument, for each uv, we have
that Z,,(7) increases by at most 1 every step, and it increases by 1 only if we choose the one open edge of
a configuration in Yy, (i). By Property 4.2, as long as B; doesn’t occur, there are at most \/n such edges.
This shows that off the event B;, conditioned on G; we have

Zuo(i +1) = Zyy(i) ~ Ber(p) for some p < 2n7 /2,

This means Z,, (i) - 15,_, is stochastically dominated by a sum Sy, (i) of i independent Ber(2n~3/2) random
variables. And we’re running up to i < n%/%¢, s0 E[S,, ()] < 2n°, and since c is small relative to e, we get
that Sy (7) < n® with very high probability (and therefore the same is true of Z,, (%) - 15,_,)-
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