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§1 Introduction

§1.1 The problem and history

The triangle-free process is the following random graph process: We start with an empty n-vertex graph
G0. Then at every step, we pick a random edge e. If e can be added to the current graph without creating
a triangle, then we add it; otherwise we discard it. We keep on doing this until no more edges can be added
without creating a triangle; at this point, we’ve produced a random maximal triangle-free graph.

One of the main reasons people initially studied the triangle-free process was the question of determining
the Ramsey number r(3, k), the smallest n for which every n-vertex graph has a triangle or an independent
set of size k. In 1981, Ajtai, Kómlos, and Szemerédi [AKS81] proved that every n-vertex triangle-free graph
G has independence number α(G) = Ω(

√
n logn); this shows

r(3, k) = O

(
k2

log k

)
.

As discussed by Spencer [Spe95], there are heuristic reasons to think that the graph produced by the triangle-
free process should satisfy α(G) = O(

√
n logn), which would provide a matching lower bound on r(3, k).

(We’ll discuss such a heuristic in Subsection 1.2.)

Since the triangle-free process is highly non-independent, it’s difficult to analyze. However, in 1995, Kim
[Kim95] solved the problem of r(3, k) using a ‘semi-random’ modification of the triangle-free process — he
found a way to introduce enough independence into the process to make it easier to analyze (while preserving
these heuristics), and he showed this modified process does produce a graph with α(G) = O(

√
n logn).

Although this solved the problem of r(3, k), studying the triangle-free process continued to be an interesting
problem in its own right. In 2009, Bohman [Boh09] proved that the triangle-free process really does produce
a graph with Θ(n3/2

√
log n) edges and with α(G) = O(

√
n logn). In 2011, Wolfovitz [Wol11] considered

the question of fixed-size subgraphs of the triangle-free process: He showed that when the number of edges
added is cn3/2

√
log n for a small constant c, the counts of certain fixed-size subgraphs behave like they would

in a random graph of the same edge density. In 2020, Bohman and Keevash [BK20] and Fiz Pontiveros,
Griffiths, and Morris [PGM20] found the exact first-order asymptotic for both the number of edges and
independence number of the graph produced by the triangle-free process.

In this writeup, we’ll describe Kim’s semirandom construction and analysis from [Kim95]. We’ll then describe
the ideas Bohman [Boh09] and Wolfovitz [Wol11] use to analyze the actual triangle-free process (we won’t
prove their main theorems because of length, but we’ll see many of the key lemmas and proof techniques).

§1.2 Heuristics

First, here’s a very loose heuristic for how we might expect the triangle-free process to behave, and why we
might expect that it produces a graph with α(G) = O(

√
n logn).

Imagine we embed the triangle-free process into time such that each step takes time 2n−3/2; this roughly
means that in a time-interval of length γ (think of γ as small), we’ve sampled a γn−1/2-fraction of edges (in
some random order) and attempted to add them to the graph. We’ll refer to edges as:

• Chosen if they’ve already been added to the graph.

• Open if they haven’t been added, but could be added without creating a triangle.

• Closed if they haven’t been added, and adding them would create a triangle. (We can essentially
forget about such edges — so in a time-interval of length γ, we can imagine that we’re really sampling
a γn−1/2-fraction of open edges.)
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(In all pictures, we’ll draw chosen edges in light purple and open edges in dark purple.)

Imagine that at time t, our chosen edge density is roughly Ψ(t)n−1/2; we’d like to come up with an equation
that predicts what Ψ should be.

First, what’s the open edge density? An edge uv is open if it’s not in a configuration of the following form
(i.e., there is no w such that uw and vw have both been chosen).

u v

w

There are roughly n choices for w, and the chosen edge density is Ψ(t)n−1/2; so if we imagine that the graph
has nice ‘independence’ properties, we might expect uv to be open with probability

(1−Ψ(t)n−1)n ≈ exp(−Ψ(t)2).

Then in a short time-interval of length γ, we’re sampling and adding each open edge with probability γn−1/2

(this isn’t exactly true — adding one open edge could close another — but if we think of γ as small, this
won’t have much effect), so we’d expect our edge density to increase by roughly exp(−Ψ(t)2) · γn−1/2. This
suggests Ψ(t+ γ) ≈ Ψ(t) + exp(−Ψ(t)2) · γ, giving the differential equation

Ψ′(t) = exp(−Ψ(t)2) (1.1)

(with Ψ(0) = 0). This doesn’t have an explicit solution, but we can write it as
∫ Ψ(t)
0 eξ

2
dξ = t, which means

that Ψ(t) ≈
√
log t (at least, when t is reasonably large). Throughout the rest of this writeup, we’ll use Ψ

to refer to the solution to (1.1), and we’ll write ψ(t) = Ψ′(t). Since Ψ(t) ≈
√
log t (for reasonably large t),

we have ψ(t) = exp(−Ψ(t)2) ≈ t−1.

Now let’s consider independent sets. For any set of k vertices, we’d expect the number of open edges in the
set at time t to be ψ(t)

(
k
2

)
. In a time-interval of length γ, we’re picking each with probability γn−1/2, so

the probability we don’t pick any of them would be

(1− γn−1/2)ψ(t)(
k
2) ≈ exp

(
−γψ(t) · n−1/2

(
k

2

))
.

Then the probability this set remains independent up to time t should be

exp

−
t/γ∑
i=0

γψ(γi) · n−1/2

(
k

2

) ≈ exp

(
−
∫ t

0
ψ(t) dt · n−1/2

(
k

2

))
= exp

(
−Ψ(t) · n−1/2

(
k

2

))
(1.2)

(since we need this event to occur on each time-interval [iγ, (i+ 1)γ] up to t).

Meanwhile, the number of sets of size k is roughly nk = exp(k logn). So if Ψ(t) ·n−1/2
(
k
2

)
is large compared

to k log n, then a union bound should tell us that there are no independent sets of size k.

Since Ψ(t) ≈
√
log t, if we take t = nc and k = C

√
n logn (where c is some small constant, and C is a large

constant relative to c), then this inequality holds. So this suggests that if we can show the triangle-free
process follows this heuristic up to time t = nc, then we’ll be able to prove α(G) = O(

√
n logn).
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§1.3 Tracking configurations and an expected trajectory

The heuristics in Subsection 1.2 give us a guess for how we might expect the triangle-free process to evolve,
but it’s not clear how to use it to get a proof. We’ll now discuss a more refined heuristic which is the starting
point for all the proofs.

We’ll consider three types of ‘configurations’ in the current graph Gi:

• We write Xuv(i) for the set of {uw, vw} such that both uw and vw are open (so Xuv(i) is a set of pairs
of edges). We write Xuv(i) = |Xuv(i)|.

• We write Yuv(i) for the set of {uw, vw} such that one of uw and vw is open, and the other is chosen.
We write Yuv(i) = |Yuv(i)|.

• We write Zuv(i) for the set of {uw, vw} such that both uw and vw are chosen, and Zuv(i) = |Zuv(i)|.

u v

w

Zuv(i)
u v

w

Yuv(i)
u v

w

Xuv(i)

Imagine that at time t, we have that Xuv(i) ≈ φx(t)n and Yuv(i) ≈ φy(t)
√
n for all open edges uv, and

that Zuv(i) is small (where φx and φy are some functions to be determined). The key idea is that this
information alone is enough to determine what φx(t + γ) and φy(t + γ) ‘should’ be (for small γ). First, if
uv is currently open, then the probability it gets closed during [t, t+ γ] should be roughly

Yuv(i) · γn−1/2 ≈ γφy(t)

(since uv gets closed if we add the one open edge in some configuration in Yuv(i) — it could also get closed
if we add both open edges in some configuration in Xuv(i), but if γ is small then this is substantially less
likely). This means that for each of the roughly φx(t)n configurations in Xuv(i), the probability it ‘leaves’
(meaning that one of its edges becomes closed) should be roughly 2γφy(t); this suggests that we should have

φ′
x(t) = −2φx(t)φy(t). (1.3)

(Some configurations will also leave Xuv(i) because we chose one of their edges; but the probability of an
edge becoming closed is much bigger than the probability of it being chosen — they’re roughly γφy(t) (which
we think of as n−ε for small ε) and γn−1/2, respectively — so this can be ignored.)

Meanwhile, there’s two main factors that contribute to changes in Yuv(i). First, some configuration in
Yuv(i) could ‘leave’ because we closed one of its open edges; there are roughly φy(t)

√
n such configurations,

and each leaves with probability roughly γφy(t), so we’d expect to lose γφy(t)
2√n configurations this way.

Meanwhile, configurations in Xuv(i) could ‘enter’ because we chose one of their two open edges; we’d expect
to gain φx(t)n · 2γn−1/2 = 2γφx(t)

√
n configurations this way. This suggests

φ′
y(t) = −φy(t)2 + 2φx(t). (1.4)

The heuristics in Subsection 1.2 give the guess φx(t) = ψ(t)2 and φy(t) = 2Ψ(t)ψ(t), and these functions
indeed satisfy (1.3) and (1.4).
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§1.4 Overview

Subsection 1.3 gives an idea for how we might analyze the triangle-free process: We can try splitting time into
intervals of length γ, assuming thatXuv(i), Yuv(i), and Zuv(i) have roughly followed their expected trajectory
up to some time-interval, and showing that they exhibit good concentration around their expectations for
the next one (in which case they’ll continue to follow the expected trajectory).

However, proving concentration is difficult because of how non-independent the process is. So Kim’s ap-
proach in [Kim95] is to modify the triangle-free process to a semi-random variant where in each time-interval,
edges are essentially independent: In each time-interval, instead of running the triangle-free process (where
we choose a γn−1/2-fraction of the open edges, then go through them in order and only add the ones that
wouldn’t create triangles), we choose a γn−1/2-fraction of the open edges and use all of them to update the
sets Xuv(i), Yuv(i), and Zuv(i), and use the alteration method to get rid of triangles when building Gi. This
has much better independence properties, which makes it possible to use tools like the bounded differences
inequality to prove concentration.

To prove statements about the triangle-free process itself, though, we need some way of handling this non-
independence. Bohman [Boh09] and Wolfovitz [Wol11] take fairly different approaches to this. Wolfovitz’s
idea is to combine a semi-random approach (where we split time into length-γ intervals and try to prove
concentration on each) with branching processes that model how different edges affect each other, in a way
that lets us say there isn’t ‘too much’ dependence within a round (so that tools like the bounded differences
inequality still work).

Meanwhile, instead of splitting time into chunks, Bohman analyzes the process step by step. Of course
we can’t say the process concentrates around its expectation on a single step (that doesn’t really mean
anything). Instead, the key idea is to define martingales that accumulate how much each step differs from
the expected trajectory. We then use martingale concentration inequalities to show that these martingales
remain small with high probability, which means the process always remains close to its expected trajectory.
(This technique is called the differential equation method, and it’s really powerful — in particular, [BK20]
and [PGM20] both use a much more intricate version of the differential equation method to analyze the
triangle-free process all the way to its end.)

In Section 2, we’ll explain Kim’s construction and its full analysis (in particular, we’ll prove it produces a
graph with α(G) = O(

√
n logn)). In Section 3, we’ll explain the portion of Wolfovitz’s argument that proves

the triangle-free process follows its expected trajectory (as described in Subsection 1.3), and in Section 4,
we’ll explain the portion of Bohman’s argument that proves this. (Bohman uses a slightly different, and
probably more natural, parametrization of the triangle-free process where at each step we choose an open
edge and add it (rather than choosing an edge and adding it if it’s open). This is equivalent in terms of
the final graph produced, but the trajectory and differential equations for how it evolves over time are a bit
different. I’ll describe a version of his analysis for the parametrization described here (so that the process
still has the trajectory described in Subsection 1.3) to make the similarities with the other two arguments
easier to see.)

§2 Kim 1995: A semi-random construction for r(3, k)

In this section, we’ll describe Kim’s proof of the following theorem from [Kim95] (which uses a semi-random
modification of the triangle-free process).

Theorem 2.1 (Kim 1995)

For all (sufficiently large) n, there exists a n-vertex graph G with α(G) = O(
√
n logn).
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§2.1 Setup

Let ε > 0 and c > 0 be small constants (we’ll assume c is small with respect to ε for convenience, but this
isn’t necessary), let C be a large constant with respect to c, and let γ = n−ε. We’re going to construct a
sequence of graphs G0, G1, . . . , where we think of Gi as a semi-random modification of the triangle-free
process up to time γi. We’ll run up to time nc, which means i goes up to nc/γ, and our target bound on
α(G) will be C

√
n logn.

We’ll maintain the following objects, for each i:

• A collection of edges Ei (which may contain some triangles), which we’ll call the chosen edges.

• A triangle-free graph Gi ⊆ Ei.

• A collection of edges Oi, which we’ll call the open edges, such that there are no triangles consisting of
one edge in Oi and two in Ei.

We define Xuv(i), Yuv(i), and Zuv(i) as in Subsection 1.3 with respect to these chosen and open edges. (The
idea is that we’ll construct Ei with nice independence properties, and we’ll construct Gi by deleting triangles
from Ei using the alteration method. This means we want to work with Ei instead of Gi when defining the
tracked sets — these nice independence properties will let us prove concentration.)

For convenience, we define qi = ψ(γi) and pi =
∑i−1

j=0 γqi (so pi is a discrete approximation to Ψ(γi) — in
particular, we have Ψ(γi) ≤ pi ≤ Ψ(γi) + γ). Intuitively, the way to think about how these scale is that
n−ε ≤ qi ≤ 1 and n−ε ≤ pi ≤ c

√
log n, and piqi and p2i qi are bounded (e.g., they’re at most 1

2 — this is

because ψ(t) = exp(−Ψ(t)2), and xe−x
2
is bounded).

We’ll want these objects to satisfy the following eight properties. The first three properties correspond to
saying that the construction follows the trajectory described in Subsection 1.3 (except that we only state
upper bounds), and will be used to prove each other.

Property 2.2. For all edges uv ̸∈ Ei, we have Xuv(i) ≤ q2i n.

Property 2.3. For all edges uv ̸∈ Ei, we have Yuv(i) ≤ 2(pi + 8γ)qi
√
n.

Property 2.4. For all edges uv, we have Zuv(i) ≤ i(log n)2.

We’ll also need two more properties saying that the degrees of individual vertices are roughly what we’d
expect, which will be used for the analysis of independent sets.

Property 2.5. For all vertices v, we have degOi
(v) ≤ qin.

Property 2.6. For all vertices v, we have degEi
(v) ≤ pi

√
n+ in1/3.

Next, we’ll need two properties about the number of open edges in big sets.

Property 2.7. Let k0 = γ2q2i
√
n. Then the number of open edges between any two disjoint sets of sizes

(exactly) k0 is at most qik
2
0.

Property 2.8. Let k = C
√
n logn. Then the number of open edges inside every set of size k is at least

qi(1− 64piγ)
(
k
2

)
− 16piqik

√
n.

These bounds make sense because our heuristic (based on Subsection 1.2) is that the density of open
edges should be roughly qi. Note that the error terms in Property 2.8 are ‘reasonable’ — we always have
pi ≤ c

√
log n and we set γ = n−ε, so piγ ≪ 1 and pik

√
n goes up to a tiny constant fraction of

(
k
2

)
.
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Since we care about independent sets, we only really care about a lower bound on the number of open edges
in big sets; but Property 2.7 will be needed for technical reasons when proving Property 2.8. (The choice of
k0 in Property 2.7 is not super important for the proof — the proof would work for anything on the scale
of

√
n — and it’s there just because that’s what we’ll need for Property 2.8.)

Finally, the last property is about independent sets and roughly corresponds to (1.2), up to constants (this
is the only property that looks at Gi).

Property 2.9. The number of independent sets in Gi of size k = C
√
n logn is at most

nk · exp
(
− 1

64
pin

−1/2

(
k

2

))
.

To prove Theorem 2.1, we’ll show that given (Ei, Gi, Oi) which satisfy these properties, we can construct
(Ei+1, Gi+1, Oi+1) which still satisfy these properties (with i replaced by i+ 1), as long as i ≤ nc/γ. Once
we reach i = nc/γ, Property 2.9 says that the number of size-k independent sets is at most

exp

(
C
√
n logn · logn− 1

64
· c
√

log n · n−1/2 ·
(
C
√
n logn

2

))
< 1,

which means none exist (proving Theorem 2.1).

§2.2 The construction

We’ll now describe how to construct (Ei+1, Gi+1, Oi+1) from (Ei, Gi, Oi).

We first perform a ‘regularization’ step to make Property 2.3 an equality: For every uv ̸∈ Ei, we introduce
some dummy vertices w and add dummy edges uw to Oi and vw to Ei so that equality holds in Property
2.3. (We’re not going to include these in the output; their purpose is only so that we have two-sided control
on the probability that uv gets closed.)

u v

Then we sample a subset of Oi where we include each edge independently with probability γn−1/2. We’ll
refer to these edges as new , and we’ll depict them by highlighting them in blue. We let Fi+1 be the set of
real (i.e., non-dummy) edges which we picked, and we set Ei+1 = Ei ∪ Fi+1.

Next, we need to define Oi+1 by removing edges which got closed this round from Oi. We say that uv gets
Y-closed if there is some configuration in Yuv(i) (either real or dummy) for which we picked its open edge
this round, and X -closed if there is some configuration in Xuv(i) for which we picked both its open edges
this round. We define Oi+1 by removing all such edges from Oi.

u v

w

uv is X -closed
u v

w

uv is Y-closed
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Finally, we’ll define a subset F ∗
i+1 ⊆ Fi+1 to add to Gi by using the alteration method to get rid of triangles.

First, since Fi+1 ⊆ Oi, there are no edges in Fi+1 which would form a triangle with two edges in Gi; so we
only need to worry about triangles with two or three edges from Fi+1. So we define ∧i+1 as the set of pairs
of edges {uw, vw} ⊆ Fi+1 for which uv ∈ Gi, and △i+1 as the set of triangles in Fi+1.

u v

w

{uw, vw} ∈ ∧i+1

u v

w

{uv, uw, vw} ∈ △i+1

We find a maximal edge-disjoint subset of ∧i+1 ∪ △i+1 and remove it from Fi+1 to produce F ∗
i+1, and set

Gi+1 = Gi ∪ F ∗
i+1. (Maximality means that we’ve removed at least one edge from each configuration in

∧i+1 ∪△i+1, so adding F ∗
i+1 to Gi doesn’t create any triangles.)

The intuition is that the construction of Ei+1 and Oi+1 roughly corresponds to how the triangle-free process
works on the time-interval [γi, γ(i + 1)] as described in Subsections 1.2 and 1.3, so we’d expect the same
heuristics to hold (in fact, it corresponds to our description better than the triangle-free process itself does).
Meanwhile, we’d expect that the alterations used to produce F ∗

i+1 shouldn’t have too much effect — an

open edge uv will be included in Fi with probability γn−1/2, while it’ll be in a configuration in ∧i+1 with
probability at most

Yuv(i) · (γn−1/2)2 ≤ 2(pi + 8γ)qi
√
n · γ2n−1 ≤ γ2n−1/2

by Property 2.3 (this requires us to choose both uv and the open edge of some configuration in Yuv(i)), and
it’ll be in a configuration in △i+1 with probability at most

Zuv(i) · (γn−1/2)3 ≤ γ3n−1/2.

Since γ ≪ 1, the fraction of edges in Fi+1 that we discard should be tiny; this means the same heuristic
(1.2) for independent sets in the triangle-free process should apply to Gi+1.

Now we’ll perform the analysis, meaning we’ll prove that Properties 2.2–2.9 all hold with high probability.
(Whenever we refer to an edge as open, closed, or chosen, unless otherwise specified we’re referring to its
status after the ith round, not after the (i+ 1)st round.)

§2.3 Probabilities of closing edges

Nearly all the properties are about the density of open edges, so as a first step, we’ll estimate the probability
that any given open edge uv gets closed. First note that intuitively, the probability it’s Y-closed should be
substantially larger than the probability it’s X -closed: The probability it’s Y-closed is roughly

Yuv(i) · γn−1/2 = 2γ(pi + 8γ)qi

(there are Yuv(i) configurations in Yuv(i), and uv being Y-closed means that we pick the one open edge in
such a configuration; the union-bound approximation is ‘reasonable’ because 2γ(pi + 8γ)qi ≪ 1), while the
probability it’s X -closed is roughly

Zuv(i) · (γn−1/2)2 ≤ γ2q2i

(which is significantly smaller because γ is small). So when we’re proving upper bounds (i.e., everywhere
except Property 2.8), we’re only going to focus on decreases that come from edges being Y-closed, and we’ll
ignore the effect of edges being X -closed.

For this reason, it’ll be useful to have the following calculation.
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Claim 2.10 — For every open edge uv, we have

qi+1

qi
− 24γqi ≤ P[uv is not Y-closed] ≤ qi+1

qi
− 8γqi.

(Intuitively, this makes sense because we want to say that our open edge density drops from roughly qi to
roughly qi+1.)

Proof. By construction, there are exactly 2(pi + 8γ)qi
√
n edges which would Y-close uv, and we pick each

with probability γn−1/2. So P[uv is not Y-closed] = (1− γn−1/2)2(pi+8γ)qi
√
n, which we can bound by

1− 2γ(pi + 8γ)qi ≤ P[uv is not Y-closed] ≤ 1− 2γ(pi + 8γ)qi + 2γ2(pi + 8γ)2q2i .

We can check that (pi + 8γ)2qi ≤ 1, so we can simplify this to

1− 2γpiqi − 16γ2q2i ≤ P[uv is not Y-closed] ≤ 1− 2γpiqi − 14γ2q2i . (2.1)

Now, the intuition is that

qi+1 − qi
γ

=
ψ((i+ 1)γ)− ψ(iγ)

γ
≈ −ψ′(iγ) = −2Ψ(iγ)ψ(iγ)2 ≈ −2piq

2
i (2.2)

(the second-last equality follows from our differential equation for Ψ), which rearranges to

1− 2γpiqi ≈
qi+1

qi
.

The formal proof follows from tracking the errors in the above approximations. We can bound the error in
the first approximation of (2.2) by γ supt∈[iγ,(i+1)γ]|ψ′′(t)| ≤ γ · 4ψ(t)2. For the second approximation, we
can bound |Ψ(iγ)− pi| ≤ γ. This gives ∣∣∣∣1− 2γpiqi −

qi+1

qi

∣∣∣∣ ≤ 6γq2i ;

and plugging this into (2.1) gives the desired bounds.

§2.4 Preliminaries: concentration bounds

We’ll use the following two concentration bounds.

Lemma 2.11 (Multiplicative Chernoff)

Let X be a sum of independent Bernoulli random variables with E[X] = µ. Then for all β > 0, we have

P[X ≥ (1 + β)µ] ≤ e−min{β2µ/3,βµ/3} and P[X ≤ (1− β)µ] ≤ e−β
2µ/2.

Lemma 2.12

Let f : {0, 1}n → R be a function with the property that for each j, changing the jth coordinate of x
changes f(x) by at most cj . Then for X sampled according to the p-biased measure on {0, 1}n (i.e.,
with independent Ber(p) coordinates), for all σ > 0 we have

P[|f(X)− E[f(X)]| ≥ σ] ≤ 2 exp

(
−1

8
min

{
σ

maxj cj
,

σ2

p
∑

j c
2
j

})
.

Lemma 2.12 is essentially a version of the bounded differences inequality for low-probability Bernoullis (and
it can be proved by combining the ideas of the proof of the ordinary bounded differences inequality, or
Azuma–Hoeffding, with the bounds on moment generating functions used to prove multiplicative Chernoff).
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§2.5 Tracking configurations

In this section, we’ll prove Properties 2.2, 2.3, and 2.4. We’re always going to consider a fixed edge uv
and show that the property holds for that edge with probability 1 − n−ω(1), so we can union-bound over
edges. (In the proofs of concentration, we’ll always have room to spare — we’ll end up with concentration
probabilities that look like 1− exp(−Ω(na)) for constants a (e.g., 1

2 or 1
4) — so factors of pi, qi, and γ will

not matter, and we’ll typically bound them by factors of nε to avoid carrying them around.)

§2.5.1 Property 2.2: Tracking Xuv(i)

For Property 2.2, the ‘main’ term driving the change in Xuv(i) is configurations leaving Xuv(i) because we
Y-closed one of their edges. So we define X−

uv(i+1) as the set of such configurations, and write X−
uv(i+1) =

|X−
uv(i+ 1)|; then we have

Xuv(i+ 1) ≤ Xuv(i)−X−
uv(i+ 1).

We’ll show the right-hand side has expected value a bit under qi+1n
2, and X−

uv(i+1) concentrates well. For
the expected value, we’ll need the following calculation.

Claim 2.13 — For every configuration {uw, vw} ∈ Xuv(i), we have

P[neither uw nor vw is Y-closed] ≤
q2i+1

q2i
− 8γqi.

This makes intuitive sense, since as we saw in Claim 2.10, the probability that a single edge y-survives is a
bit less than qi+1

qi
. (The precise error term in this claim isn’t important.)

Proof. There are exactly 2(pi + 8γ)qi
√
n edges which would Y-close uw, and the same is true for vw.

Furthermore, if an edge e = wx falls into both cases, then we must have {ux, vx} ∈ Zuv(i). By Property
2.4, this means there are at most i(log n)2 ≤ n2ε such e.

u v

w

x

So there are at least 4(pi + 8γ)qi
√
n − n2ε ≥ 4(pi + 7γ)qi

√
n edges e which would Y-close uw or vw. And

we choose each with probability γn−1/2, so

P[neither uw nor vw is Y-closed] ≤ (1− γn−1/2)4(pi+7γ)qi
√
n =

(
(1− γn−1/2)2(pi+7γ)qi

√
n
)2
.

The same calculation as in the proof of Claim 2.10 shows that (1− γn−1/2)2(pi+7γ)qi
√
n ≤ qi+1

qi
− 6γqi, giving

P[neither uw nor vw is Y-closed] ≤
(
qi+1

qi
− 6γqi

)2

≤
q2i+1

q2i
− 8γqi.

Since Xuv(i) ≤ q2i n, this means we have

E[Xuv(i)−X−
uv(i+ 1)] ≤ q2i n ·

(
q2i+1

q2i
− 8γqi

)
≤ q2i+1n− 8γq3i n.
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We wanted an upper bound of q2i+1n, so it suffices to prove that X−
uv(i + 1) concentrates within a window

of length n1−5ε. We’ll do so using Lemma 2.12. We’re picking each edge e independently with probability
p = γn−1/2; to bound the ce’s, we want to bound how many configurations in Xuv(i) each edge can affect.

Case 1 (e is incident to u or v). We’ll assume without loss of generality that e is incident to u; let e = ux.
Then for ux to affect a configuration {uw, vw} ∈ Xuv(i) (i.e., to Y-close one of its edges), we must have
{uw, xw} ∈ Yux(i); by Property 2.3, this means there are at most

√
n choices for w. Also, there are at most

2n edges incident to u or v; so this gives at most 2n edges each with ce ≤
√
n.

u v

w

x

Case 2 (e is not incident to u or v). In this case, there’s only one configuration in Xuv(i) that e can affect
(namely, the one corresponding to one of its endpoints). So this gives at most n2 edges each with ce ≤ 1.

u v

w

x

This means when we apply Lemma 2.12 with σ = n1−5ε and p = γn−1/2 ≤ n−1/2, we’ll have

σ

maxe ce
≥ n1−5ε

√
n

≥ n1/2−5ε and
σ2

p
∑

e c
2
e

≥ n2−10ε

n−1/2(2n · n+ n2 · 1)
≥ n1/2−10ε.

This shows X−
uv(i + 1) concentrates in a window of length n1−5ε with probability 1 − exp(−Ω(n1/2−10ε))

for each edge uv; this is more than good enough to union-bound over all uv (it would suffice to have any
positive exponent of n).

§2.5.2 Property 2.3: Tracking Yuv(i)

There are two ‘main’ terms which should drive the change in Yuv(i), corresponding to the two terms in (1.4):

• We define Y−
uv(i + 1) as the set of configurations in Yuv(i) that leave because we Y-closed their one

open edge, and Y −
uv(i+ 1) as its size.

• We define Y+
uv(i+ 1) as the set of configurations in Zuv(i) which enter because we picked one of their

open edges, and Y +
uv(i+ 1) as its size.

Then we have
Yuv(i+ 1) ≤ Yuv(i)− Y −

uv(i+ 1) + Y +
uv(i+ 1).

We’ll show the expectation of the right-hand side is a bit under 2(pi+1 + 8γ)qi+1
√
n (our target bound) —

the fact that this computation works out essentially corresponds to (1.4) — and that both Y −
uv(i + 1) and

Y +
uv(i+ 1) concentrate well.
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First, by Claim 2.10 (and Property 2.3) we have

E[Yuv(i)− Y −
uv(i+ 1)] ≤ Yuv(i) ·

(
qi+1

qi
− 8γqi

)
≤ 2(pi + 8γ)qi+1

√
n− 128γ2q2i

√
n.

Meanwhile, each configuration in Xuv(i) lands in Y+
uv(i+ 1) with probability at most 2γn−1/2, so

E[Y +
uv(i+ 1)] ≤ Zuv(i) · 2γn−1/2 ≤ 2γq2i

√
n.

This means in total, we get

E[Yuv(i)− Y −
uv(i+ 1) + Y +

uv(i+ 1)] ≤ 2((pi + 8γ)qi+1 + γq2i )
√
n− 128γ2q2i

√
n.

Our goal was to get a bound of 2(pi+1 + 8γ)qi+1
√
n. This is exactly what the first term would be if it had

γqiqi+1 instead of γq2i (since pi+1 = pi + γqi). We can show that qi − qi+1 ≤ γqi (since −ψ(t) ≤ ψ′(t) ≤ 0
for all t), so we get that

E[Yuv(i)− Y −
uv(i+ 1) + Y +

uv(i+ 1)] ≤ 2(pi+1 + 8γ)q2i+1 − 126γ2q2i
√
n.

Now it’s enough to show Y −
uv(i+1) and Y +

uv(i+1) concentrate in windows of length n1/2−5ε. For Y −
uv(i+1),

we’ll again use Lemma 2.12, which means we want to estimate the number of configurations in Yuv(i) each
edge e can affect (meaning that choosing e would Y-close that configuration’s open edge).

Case 1 (e is incident to u or v). Without loss of generality let e = ux. Then for e to affect some configuration
{uw, vw} ∈ Yuv(i), we must have {vw, xw} ∈ Zvx(i). By Property 2.4 there are at most i(logn)2 ≤ n2ε

choices for w. So this gives at most 2n edges e with ce ≤ n2ε.

u v

w

x

Case 2 (e is not incident to u or v). Then e affects at most one configuration {uw, vw} ∈ Yuv(i). Further-
more, for e to affect one configuration, we must have the picture below, where e = wx with w ∈ Yuv(i) and
x ∈ Yuw(i) (or Yvw(i) — whichever of uw or vw is the open edge in {uw, vw}). By Property 2.3, there are
at most

√
n choices for w, and then at most

√
n choices for x. So this gives at most n edges with ce ≤ 1.

u v

w

x

So when we apply Lemma 2.12 with σ = n1/2−5ε and p = γn−1/2 ≤ n−1/2, we’ll have

σ

maxe ce
≥ n1/2−5ε

n2ε
≥ n1/2−7ε and

σ2

p
∑

e c
2
e

≥ n1−10ε

n−1/2(2n · n4ε + n · 1)
≥ n1/2−15ε.

This means we get a concentration probability of 1− exp(−Ω(n1/2−15ε)), which is certainly good enough.
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Now we’ll prove concentration for Y +
uv(i+1). Here we’re considering all configurations in Zi(uv) and seeing

whether we choose one of its edges. Since these configurations are edge-disjoint, this means these events
for different configurations are independent. This means Y +

uv(i + 1) is a sum of independent Bernoullis, so
it concentrates well by multiplicative Chernoff bounds — we’ve shown its mean is at most 2γq2i

√
n, so it

concentrates within a window of length n1/2−5ε with very high probability.

u v

So we’ve shown that Y −
uv(i+ 1) and Y +

uv(i+ 1) both concentrate well, which finishes the proof.

§2.5.3 Property 2.4: Bounding Zuv(i)

We want to show that Zuv(i) grows by at most (log n)2 on this round. There are two ways in which a
configuration can move into Zuv(i + 1) — either it started in Yuv(i) and we picked its one open edge, or
it started in Xuv(i) and we picked both of its open edges. Then letting Z+

uv(i + 1) be the number of such
configurations, we have

E[Z+
uv(i+ 1)] ≤ Yuv(i) · γn−1/2 +Xuv(i) · γ2n−1 ≤

√
n · γn−1/2 + n · γ2n−1/2 ≤ 1

(we’re using Property 2.3 for the first term). And Z+
uv(i+ 1) is a sum of independent Bernoullis, since the

configurations we’re considering are edge-disjoint; so by multiplicative Chernoff, it’s at most (log n)2 with
probability 1− n−ω(1).

u v

§2.6 Additional bounds on degrees

Next, we’ll prove Properties 2.5 and 2.6. (Again we’ll imagine fixing v, and we’ll show the desired statements
hold with probability 1− n−ω(1), so that we can union-bound.)

§2.6.1 Property 2.5: Open degrees

We can run a very similar argument to the proof of Property 2.2 — fix some vertex v. We start the round
with at most qin open edges incident to v, so by Claim 2.10, the expected number of them which are not
Y-closed this round (which is an upper bound on degOi+1

(v)) is at most

qin ·
(
qi+1

qi
− 8γqi

)
= qi+1n− 8γq2i n.

So to prove that this number is at most qi+1n (with high probability), it suffices to show that the number
of edges incident to v which get Y-closed concentrates in a window of length n1−4ε. As usual, we’ll do so
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using Lemma 2.12, which means we want to understand, for every edge e, how many edges incident to v get
Y-closed as a result of choosing e.

Case 1 (e is incident to v). Then letting e = vx, for e to affect an edge vw we need to have {vw, xw} ∈ Yvx(i).
By Property 2.3 there are at most

√
n such choices for w, so this gives at most n edges with ce ≤

√
n.

v

w

x

Case 2 (e is not incident to v). Then e affects at most one edge incident to v (since we must have the below
picture); so this gives at most n2 edges e, each with ce ≤ 1.

v

w

x

Then when we apply Lemma 2.12, we’ll have

σ

maxe ce
≥ n1−4ε

√
n

≥ n1/2−4ε and
σ2

p
∑

e c
2
e

≥ n2−8ε

n−1/2(2n · n+ n2 · 1)
≥ n1/2−9ε.

So we get good concentration in the desired window, which finishes the proof.

§2.6.2 Property 2.6: Chosen degrees

We want to show that on this round, we choose at most γqi
√
n+ n1/3 new edges incident to v (this is how

much the bound in Property 2.6 increases by when we go from i to i + 1, since pi+1 = pi + γqi). First,
we’re choosing each open edge with probability γn−1/2, so by Property 2.5, the expected number of edges
incident to v we choose is at most γn−1/2 · qin = γqi

√
n. And these edges are independent, so we get good

concentration in a window of length n1/3 by multiplicative Chernoff bounds.

§2.7 Open edge densities in big sets

Next, we’ll prove Properties 2.7 and 2.8.

§2.7.1 Property 2.7: Upper bound on open edge densities

First we’ll illustrate an attempt that doesn’t work, to motivate the actual proof.

Consider two disjoint sets A and B of size k0. We begin the round with at most qik
2
0 open edges between

them. As with the previous arguments, Claim 2.10 tells us that each edge is not Y-closed with probability a
bit under qi+1

qi
, so we expect slightly under qi+1k

2
0 open edges to remain. Since k0 is roughly

√
n, we need to

prove concentration in a window of size roughly n. Furthermore, we need to union-bound over all possible
sets A and B; there are roughly nk0 = exp(k0 log n) sets of size k0, so for the union bound to work, we want
a concentration probability of the form 1− exp(nα) for some α > 1

2 .

Let’s attempt to use Lemma 2.12 and see what it gives us. To do so, we want to understand, for each edge
e, how many edges between A and B picking e this round would Y-close.
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A B

v

w

If e = vw (where v ̸∈ A ∪B and w ∈ A), then this is essentially controlled by degFi+1
(v,B) (the number of

chosen edges from v into B). However, this could potentially be as large as k0 ≈
√
n. And there’s potentially

k0n ≈ n3/2 relevant edges. So if we try using Lemma 2.12 with σ ≈ n and maxe ce ≈
√
n, we’ll have

σ

maxe ce
≈ n√

n
=

√
n

which means the best concentration probability we can hope for is roughly 1 − exp(
√
n); this isn’t good

enough to union-bound. (We’re suppressing all the ‘small’ terms in this calculation — e.g., the qi’s and γ’s
— but they work against us.)

But although this fails, it just barely fails. Here we only looked at the first term in Lemma 2.12, but it turns
out the second term only barely fails too. To handle that second term, it’s hard to deal with

∑
e c

2
e, but we

can bound this by maxe ce ·
∑

e ce. And as seen in the above picture,
∑

e ce essentially counts configurations
of the following shape (where e is the edge vw, and ce is the number of choices for x).

A B

v

w x

If we instead count such configurations by first choosing w and x, then there are k0 ≈
√
n choices for w,

k0 ≈
√
n choices for x, and at most Ywx(i) ≈

√
n choices for v; this tells us

∑
e ce is at most roughly n3/2.

So we get a bound of
∑

e c
2
e ≤ maxe ce ·

∑
e ce ≤

√
n · n3/2 = n2, giving

σ

p
∑

e c
2
e

≈ n2

n−1/2 · n2
=

√
n.

Again, we’d have been happy with any exponent of n strictly greater than 1
2 , but we got 1

2 .

The way we’ll fix this is by ignoring vertices v for which degEi
(v,A) or degEi

(v,B) is too large. We’ll show
that there aren’t too many such vertices (specifically, much fewer than

√
n), so that ignoring them doesn’t

hurt our probabilities of getting Y-closed (as computed in Claim 2.10) by much; and with this, we’ll be able
to get good enough concentration.

To prove there aren’t too many high-degree vertices, we’ll use the following fact.
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Fact 2.14 — Suppose that r ≥ 4
√
st, and suppose that A1, . . . , Aℓ are subsets of a set of size s such

that |Ai| ≥ r for all i, and |Ai ∩Aj | ≤ t for all i ̸= j. Then we must have ℓ ≤ 2s
r and

∑ℓ
i=1 |Ai| ≤ 2s.

Intuitively, if we have ℓ disjoint subsets of a set of size s, and each has size at least r, then there’s at most s
r

of them and their sizes sum to at most s. Fact 2.14 essentially says that these statements continue to hold
(up to a factor of 2) as long as the sets have small pairwise intersections. (We only need the first statement
right now, but we’ll use the second in the proof of Property 2.8.)

Proof. To prove that ℓ ≤ 2s
r , assume not, and consider the first ℓ′ = 2s

r sets. By the principle of inclusion-
exclusion, we have

|A1 ∪ · · · ∪Aℓ′ | ≥
ℓ′∑
i=1

|Ai| −
∑
i̸=j

|Ai ∩Aj | ≥ ℓ′r −
(
ℓ′

2

)
t ≥ 2s− 2s2t

r2
> s,

which is a contradiction (since these sets live in a universe of size s).

Now to prove the second statement, for each i we have

|Ai| −
∑
j ̸=i

|Ai ∩Aj | ≥ |Ai| −
2st

r
≥ |Ai| −

r

2
≥ 1

2
|Ai| ,

which means we can find a portion consisting of at least half of Ai which is disjoint from all the other sets Aj .

Since these portions (over all i) are disjoint and live in a universe of size s, we get that 1
2

∑ℓ
i=1 |Ai| ≤ s.

Now we say a vertex v is safe with respect to A if degEi
(v,A) ≤ n1/3 and unsafe otherwise; we define the

same notions with respect to B. (The choice of 1
3 is fairly arbitrary; any exponent strictly between 1

4 and 1
2

would work for this argument.)

Claim 2.15 — The number of unsafe vertices with respect to A is at most n1/4.

Proof. For every unsafe vertex v, we can define the set Av = NEi(v) ∩ A. These sets Av have size at least
n1/3 (by definition) and are subsets of A, which has size k0 ≤

√
n. Furthermore, for any two unsafe vertices

u ̸= v, vertices in Au ∩Av correspond to configurations in Zuv(i), so by Property 2.4 we have

|Au ∩Av| ≤ i(logn)2.

u v

We have n1/3 ≥ 4
√
k0 · i(log n)2, so Fact 2.14 applies and gives that the number of sets Av we have (and

therefore the number of unsafe vertices) is at most 2k0
i(logn)2

≤ n1/4.

Page 17 of 47



The triangle-free process and lower bounds for r(3, k) Sanjana Das (May 12, 2025)

Similarly, at most n1/4 vertices are unsafe with respect to B.

Now we say an edge wx between A and B gets safely Y-closed if it gets Y-closed by a configuration whose
tip is safe with respect to both A and B. In other words, this means wx is open at the start of the round,
and there is some v such that v is safe with respect to A and B, we have {vw, vx} ∈ Ywx(i), and the one
open edge in {vw, vx} gets chosen this round.

A B

v

w x

Let Y be the number of open edges between A and B which don’t get safely Y-closed. Then Y is an upper
bound on the number of open edges we’ll have between A and B after this round; we’ll show that it has the
right mean and concentrates well.

First, for each open edge wx between A and B, we’ve seen that the probability that wx doesn’t get Y-closed
by any vertex is

(1− γn−1/2)2(pi+8γ)qi
√
n ≤ qi+1

qi
− 8γqi

(this was the computation we ran in Claim 2.10). At most 2n1/4 vertices v are unsafe with respect to A
or B, so to bound the probability wx doesn’t get safely Y-closed, we need to replace 2(pi + 8γ)qi

√
n with

2(pi + 8γ)qi
√
n− 2n1/4. The effect of this is tiny, so we still get

E[Y ] ≤ qik
2
0 ·
(
qi+1

qi
− 7γqi

)
= qi+1k

2
0 − 7γq2i k

2
0.

Now it suffices to show concentration within a window of length n1−16ε (this is smaller than 7γq2i k
2
0). And

now that we’ve removed high-degree vertices v from consideration, the failed concentration argument from
earlier now works — we have maxe ce ≤ n1/3 and∑

e

c2e ≤ max
e
ce ·
∑
e

ce ≤ n1/3 · k20 · 2(pi + 8γ)qi
√
n ≤ n11/6

(by the same argument as we gave earlier). So when we apply Lemma 2.12, we’ll have

σ

maxe ce
≥ n1−16ε

n1/3
≥ n2/3−16ε and

σ2

p
∑

e c
2
e

≥ n2−32ε

n−1/2 · n11/6
= n2/3−32ε.

So we get a concentration probability of 1− exp(−Ω(n2/3−32ε)), which is good enough to union-bound over
all exp(2k0 log n) ≤ exp(n1/2+ε) pairs of sets of size k0.

§2.7.2 Property 2.8: Lower bound on open edge densities

Fix some set A of size k; as in the proof of Property 2.7, our goal is to show that it satisfies the desired
bound with probability 1− exp(nα) for some α > 1

2 , so that we can union-bound over all such sets.

There are two main difficulties in this proof that we haven’t encountered in the previous ones. The first
difficulty is that up to now, we’ve only cared about upper bounds on open edges, so it sufficed to only
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consider edges being Y-closed (and not worry about edges being X -closed). Now we want a lower bound, so
we do need to worry about edges being X -closed. We’d expect this to have substantially smaller contribution
(in particular, we’d still expect edges being Y-closed to control the ‘main term,’ and we’d like to absorb the
effect of edges being X -closed into the 64piγ error term) for the reasons discussed in Subsection 2.3; but
now we have to figure out how to prove concentration for it. (Some open edges will also leave due to being
chosen, but that’s a much lower-order term and concentrates well — it’s a sum of independent Bernoullis
— so can be ignored.)

Furthermore, even with edges being Y-closed, we saw when proving Property 2.7 that concentration breaks
down unless we exclude high-degree vertices. When proving Property 2.7, we only wanted an upper bound,
so we could just ignore those high-degree vertices. But here we’ll have to deal with them.

So the argument will have three main steps. As in the proof of Property 2.7, we’ll set h = n1/3 and say an
edge is safely Y-closed if it’s Y-closed by a vertex v with degEi

(v,A) ≤ h. We’ll also say an edge is safely
X -closed if it’s X -closed by a vertex v such that degFi+1

(v,A) ≤ h.

A

v

w x

wx safely Y-closed if degEi
(v,A) ≤ h

A

v

w x

wx safely X -closed if degFi+1
(v,A) ≤ h

(1) First, we’ll consider the effect of edges being safely Y-closed. We can deal with this in the same way
as we did when proving Property 2.7, and this will give our ‘main term.’

(2) Next, we’ll consider the number of edges which are safely X -closed (we want to prove this is small). We
won’t be able to prove concentration for this number itself, but we’ll define a proxy which upper-bounds
it and whose expectation is small for similar reasons. And this proxy will be a sum of independent
random variables, so we will be able to prove concentration for it.

(3) Finally, we need to deal with high-degree vertices. We’ll actually show that deterministically, there
can’t be too many edges that are Y-closed or X -closed by high-degree vertices, as long as the chosen
edges satisfy certain simple conditions (which will hold with high probability).

Step 1 (The effect of edges being safely Y-closed). Let Y be the number of edges which are not safely
Y-closed. Using the lower bound from Claim 2.10 (a lower bound on the probability of not being Y-closed
is also a lower bound on the probability of not being safely Y-closed), we get

E[Y ] ≥
(
qi(1− 64piγ)

(
k

2

)
− 16piqik

√
n

)(
qi+1

qi
− 24γqi

)
≥ qi+1(1− 64piγ)

(
k

2

)
− 24γq2i

(
k

2

)
− 16piqi+1k

√
n.

The same argument as in the proof of Property 2.7 shows that Y concentrates within a window of length
n1−4ε (which is smaller than γq2i

(
k
2

)
) with probability exp(−Ω(n2/3−20ε)), which is more than good enough

to union-bound.
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We’re aiming for a final upper bound of

qi+1(1− 64pi+1γ)

(
k

2

)
− 16pi+1qi+1k

√
n.

Since pi+1 = pi + γqi and qi+1 ≥ 1
2qi, we get to accumulate a total error of

(32− 25)γ2q2i

(
k

2

)
+ 8γq2i k

√
n = 7γ2q2i

(
k

2

)
+ 8γq2i k

√
n (2.3)

in Steps (2) and (3) (we’ve replaced 24 with 25 to account for the concentration window of Y ).

Step 2 (The effect of edges being safely x-closed). For this step, the key insight is that when we argued in
Subsection 2.3 that the effect of edges being X -closed should be small, when we said that every edge uv has
probability at most

Xuv(i) · γ2n−1 ≤ q2i γ
2

of being X -closed, we just used a union bound over all configurations in Xuv(i); this means the expected
number of vertices w which X -close uv is also at most q2i γ

2. And if we switch this sum — instead of looking
at all open edges uv inside A and then all vertices w which could X -close them, we look at all vertices w
and see how many edges inside A they X -close — then we’ll essentially get a sum of independent random
variables (with one for each w), since for each w, this number only depends on edges incident to w.

More formally, for each vertex w, we define a random variable

Xw =

(
min{degFi+1

(w,A), h}
2

)
.

Then
∑

wXw is an upper bound on the number of edges in A that get safely X -closed — we’re essentially
going through all vertices w and counting pairs of their neighbors in A among the edges picked this round,
and if uv is safely X -closed by w then it’ll be counted by Xw. (This overcounts, and it’ll also count pairs of
neighbors of w where the edge between them had already been closed; but we can afford this.)

w1

w2

w3

If we imagine computing E[
∑

wXw] by first summing over pairs uv in A, then each uv has at most Xuv(i) ≤
q2i n vertices w for which it could possibly be counted by Xw (by Property 2.2), and the probability that it
is counted by Xw is at most γ2n−1; this shows E[

∑
wXw] ≤ γ2q2i

(
k
2

)
. This fits our target error in (2.3), so

it suffices to prove that
∑

wXw concentrates well (e.g., within a window of length n1−4ε).

First, there’s one slight issue — the random variables Xw aren’t actually independent if w ∈ A. To deal
with this, we’ll split this sum into two parts — we’ll define Xin =

∑
w∈AXw and Xout =

∑
w ̸∈AXw — and

we’ll prove concentration for each part separately.
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Step 2a (Concentration for Xin). To prove concentration for Xin, we’ll use Lemma 2.12 again. Note that
Xin only depends on edges inside A, of which there are at most

(
k
2

)
≤ n1+ε. Furthermore, for each edge

e = vw inside A, changing whether we pick vw changes Xv and Xw by at most h each (since we’ve changed
min{degFi+1

(v,A), h} by at most 1), so we have ce ≤ h for every e. This means when we apply Lemma 2.12

with σ = n1−4ε, we’ll have

σ

maxe ce
≥ n1−4ε

n1/3
≥ n2/3−4ε and

σ2

p
∑

e ce
≥ n2−8ε

n−1/2 · n1+ε · n2/3
≥ n5/6−9ε.

So we get a concentration probability of 1− exp(−Ω(n2/3−4ε)), which is good enough to union-bound.

Step 2b (Concentration for Xout). The idea is that Xout is a sum of independent random variables with fairly
simple distributions, so we can prove concentration by directly estimating its moment generating function.
To do so, for each w ̸∈ A, let fw(s) = E[esXw ].

Claim 2.16 — For all vertices w and all 0 ≤ s ≤ h−1, we have 0 ≤ f ′′w(s) ≤ 1.

Proof. Suppose that degOi
(w) = d. Then we have degFi+1

(w) ∼ Ber(p, d) where p = γn−1/2, which means

that Xw ∼
(
min{i,h}

2

)
for i ∼ Ber(p, d). So we can explicitly write out

f ′′w(s) = E[X2
we

sXw ] =
d∑
i=0

(
d

i

)
pi(1− p)d−i ·

(
min{i, h}

2

)
· es(

min{i,h}
2 ).

Now since we assumed s ≤ h−1, we have s
(
min{i,h}

2

)
≤ i for all i. We can also drop the (1− p)d−i terms and

bound
(
d
i

)(
min{i,h}

2

)
≤ di for i ≥ 2 (and this term is 0 for i ≤ 1). Then we get

f ′′w(s) ≤
d∑
i=2

(epd)i ≤
∞∑
i=2

(epd)i.

But we have d ≤ k = C
√
n logn and p = γn−1/2 (where we chose γ to be n−ε), so epd≪ 1.

Then for each w, by Taylor expansion at 0 we can write

E[esXw ] ≤ 1 + E[Xw] · s+
1

2
· 1 · s2 ≤ exp

(
sE[Xw] +

s2

2

)
for all 0 ≤ s ≤ h−1. Multiplying over all w ̸∈ A (of which there are at most n), we get that

E[esXout ] =
∏
w ̸∈A

E[esXw ] ≤ exp

s∑
w ̸∈A

E[Xw] +
ns2

2

 = esE[Xout]+ns2/2.

Then by Markov’s inequality, for all σ > 0 we get that

P[Xout − E[Xout] ≥ σ] ≤ E[esXout ]

esE[Xout]+sσ
≤ ens

2/2−sσ.

We wanted concentration within a window of length σ = n1−4ε, so we can set s = n−1/3 (which does satisfy
s ≤ h−1) to get a concentration probability of 1− exp(−Ω(n2/3−4ε)), which is good enough.

Step 3 (High-degree vertices). Finally, we’ll deal with edges closed by high-degree vertices — we’ll show
that as long as the edges picked this round satisfy certain properties (which hold with high probability),
there cannot be too many such edges. Specifically, we’ll assume the following conditions:
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(i) For all vertices v, we have degFi+1
(v) ≤ γqi

√
n+ n1/3 ≤ 2γqi

√
n.

(ii) For all u ̸= v, we have |NEi(u) ∩NFi+1(v)| ≤ (log n)2.

(iii) For all u ̸= v, we have |NFi+1(u) ∩NFi+1(v)| ≤ (log n)2.

These conditions all can be shown to hold with high probability using multiplicative Chernoff bounds, since
the quantities of interest are all sums of independent Bernoullis; in fact, we proved them when proving
Properties 2.4 and 2.6.

Let S be the set of vertices u such that either degEi
(u,A) ≥ h or degFi+1

(u,A) ≥ h. All the closed edges
we haven’t accounted for yet go between either NEi(u) ∩ A and NFi+1(u) ∩ A (if they were Y-closed) or
NFi+1(u) ∩A and NFi+1(u) ∩A (if they were X -closed) for some u ∈ S. Now define

Au = (NEi(u) ∪NFi+1(u)) ∩A

for each u ∈ S. Then the definition of S means that |Au| ≥ h for all u. Meanwhile, for all u ̸= v, we have

|Au ∩Av| ≤ i(logn)2 + 3(log n)2 ≤ n2ε

by Property 2.4 (which bounds NEi(u,A) ∩NEi(v,A), corresponding to the first term) and the conditions
(ii) and (iii). So we can apply Fact 2.14 (since h ≥ 4

√
k · n2ε) to say that

∑
u∈S |Au| ≤ 2k.

Now we claim that for every u ∈ S, the number of open edges between NFi+1(u) ∩ A and Au was at most
2γq2i

√
n · |Au| (at the start of the round).

Case 1 (We have degFi+1
(u,A) ≤ 2γ2q2i

√
n). Then this claim is immediate, as the number of edges between

NFi+1(u) ∩A and Au is certainly at most |NFi+1(u) ∩A| · |Au| = degFi+1
(u,A) · |Au|.

Case 2 (We have degFi+1
(u,A) ≥ 2γ2q2i

√
n). In this case, we also have |Au| ≥ 2γ2q2i

√
n (since Au contains

NFi+1(u) ∩ A), so we can apply Property 2.7 to say that the open edge density between them (at the start
of the round) is at most qi. (Property 2.7 was written for disjoint sets of size exactly γ2q2i

√
n, but by an

averaging argument, the same density bound holds for any two sets of size at least 2γ2q2i
√
n.) Furthermore,

(i) gives that degFi+1
(u) ≤ 2γqi

√
n. So the number of edges between NFi+1(u) ∩A and Au is at most

qi · degFi+1
(u,A) · |Au| ≤ qi · 2γqi

√
n · |Au| .

Finally, summing over all u ∈ S, we get that the total number of edges which got closed by some u ∈ S this
round is at most

2γq2i
√
n ·
∑
u

|Au| ≤ 4γq2i k
√
n.

This fits the second term in our target error in (2.3), so we’re done.

§2.8 Property 2.9: Independent sets

We’ll show that for every set A of size k, the probability we don’t add any of its edges to Gi+1 is at
most exp(− 1

32γqin
−1/2

(
k
2

)
). This means the expected number of independent sets remaining will drop by a

factor of exp(− 1
32γqin

−1/2
(
k
2

)
), so the actual number will drop by a factor of exp(− 1

64γqin
−1/2

(
k
2

)
) with high

probability (which is what we need in order to preserve Property 2.9, since pi+1 = pi + γqi).

First, by Property 2.8, the number of open edges in A at the start of the round is at least 1
2qi
(
k
2

)
. We’re

picking each with probability γn−1/2, so by multiplicative Chernoff bounds, the probability that we pick
less than 1

4γqin
−1/2

(
k
2

)
of these edges (to place in Fi+1) is at most

exp

(
− 1

12
γqin

−1/2

(
k

2

))
.
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Meanwhile, we want to show that the probability we discard at least this many edges in A during the
alteration step (meaning that we chose them but didn’t place them in Gi+1) is similarly small. For this, as
discussed in Subsection 2.2, the intuition is that there’s at most qi

(
k
2

)
open edges inside A by Property 2.7.

For such an edge uv to get chosen and discarded, either we must choose both uv and the one open edge of
some configuration in Yuv(i), or we must choose uv and both edges of some configuration in Xuv(i). The
probability this occurs is at most

2(pi + 8γ)qi
√
n · γn−1/2 + q2i n · γ2n−1 = 2γ(pi + 8γ)qi + γ2q2i ≪ 1

(because γ is small); so the expected number of edges we discard is much less than 1
8γqik

2n−1/2. To turn
this into a statement saying that it’s exponentially unlikely that we discard this many edges, we’ll use the
following fact.

Fact 2.17 — Let A1, . . . , Ar be events such that
∑r

i=1 P[Ai] ≤ η. Then the probability that there is

some size-ℓ collection of mutually independent Ai’s for which all occur is at most ηℓ

ℓ! .

Proof. Imagine we expand out (
∑r

i=1 P[Ai])ℓ = ηℓ. For every such collection {Ai1 , . . . ,Aiℓ}, we’ll have ℓ!
terms P[Ai1 ] · · ·P[Aiℓ ] in this sum (one for each order of the indices). And because Ai1 , . . . , Aiℓ are mutually
independent, we have P[Ai1 ] · · ·P[Aiℓ ] = P[Ai1 ∧ · · · ∧ Aiℓ ].

So the expansion of (
∑r

i=1 P[Ai])
ℓ has ℓ! copies of the probability corresponding to each such size-ℓ collection

(along with possibly some other terms), giving the desired result.

In our setting, for each open edge uv in A, we define an event Ai for each configuration in Yuv(i) (saying
that we choose uv and the one open edge in that configuration) and an event Ai for each configuration in
Xuv(i) (saying that we choose uv and both open edges in that configuration). As seen above, we have∑

i

P[Ai] ≤ qi

(
k

2

)
· γn−1/2 ·

(
2γ(pi + 8γ)qi + γ2q2i

)
≤ 1

960
γqin

−1/2

(
k

2

)
.

And for us to discard m chosen edges from A, at least 1
3m events of this form whose associated 2 or 3

open edges are disjoint (which means these events are independent) must occur — this is because when we
perform alterations, we do so by removing a maximal edge-disjoint subset of ∧i+1 ∪△i+1.

So using Fact 2.17 (and bounding ηℓ

ℓ! ≤ (4ηℓ )
ℓ) gives that the probability we discard at least 1

4γqin
−1/2

(
k
2

)
edges from A is at most(

4 · 1
960γqin

−1/2
(
k
2

)
1
12γqin

−1/2
(
k
2

) ) 1
12
γqin

−1/2(k2)

≤ exp

(
− 1

12
γqin

−1/2

(
k

2

))
.
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Combining these two statements, we get that the probability A remains independent is at most

exp

(
− 1

12
γqin

−1/2

(
k

2

))
+ exp

(
− 1

12
γqin

−1/2

(
k

2

))
≤ exp

(
− 1

32
γqin

−1/2

(
k

2

))
.

By Markov’s inequality (on the total number of independent sets), this means that the total number of
independent sets multiplies by a factor of exp(− 1

64γqin
−1/2

(
k
2

)
) with high probability, as desired.

§3 Wolfovitz 2011: An analysis via branching processes

In this section, we’ll explain Wolfovitz’s approach to analyzing the triangle-free process from [Wol11], based
on the semi-random method and branching processes. In particular, we’ll give his proof that the process
follows the trajectory described in Subsection 1.3 up to time nc (for small c).

§3.1 Overview

Let ε > 0 be a very small constant, let c > 0 be reasonably small with respect to ε, and let γ = n−ε.

Similarly to Kim’s approach, we’d like to analyze the triangle-free process in ‘rounds’ which roughly corre-
spond to time-intervals [γi, γ(i + 1)]. We can reparametrize the process in this framework as follows: We
begin with G0 being the empty graph. On the ith round (where we begin with a graph Gi), we sample a
subset Fi+1 of the currently open edges, including each with probability γn−1/2. For each of these edges, we
also generate a birthtime, which is uniform in [0, γ]. We then go through these edges in order of birthtime;
for each, we add it to Gi if it’s still open at the time we attempt to do so, and discard it if it has become
closed. We’ll run this process up to i = nc/γ.

Our goal is to show that Xuv(i), Yuv(i), and Zuv(i) follow the trajectory described in Subsection 1.3, up to
some slowly deteriorating error terms. To describe these error terms, we write pi = Ψ(γi) and qi = ψ(γi),
and we define δi = γpiqi + γqi and

∆i = n−30ε
i−1∏
j=0

(1 + 60δj)

(so ∆i+1 = ∆i + 60∆iδi). Note that these errors remain ‘reasonable’ up to time nc — we have

i−1∏
j=0

(1 + 60δj) ≤ exp

60
i−1∑
j=0

(piqi + qi)γ


≈ exp

(
60

∫ γi

0
(Ψ(s)ψ(s) + ψ(s)) ds

)
= exp(30Ψ(γi)2 + 60Ψ(γi)),

and since Ψ(t) ≈
√
log t and we’re running up to time γi = nc (where c is small relative to ε), this will be

small compared to n30ε, so ∆i will remain small (e.g., at most n−20ε).

We’ll consider the following properties.

Property 3.1. For all edges uv ̸∈ Gi, we have Xuv(i) = q2i (1±∆i)n.

Property 3.2. For all edges uv ̸∈ Gi, we have Yuv(i) = 2qi(pi ± (1 + pi)∆i)
√
n.

Property 3.3. For all edges uv, we have Zuv(i) ≤ i(log n)2.
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Theorem 3.4

With probability 1− n−ω(1), Properties 3.1–3.3 hold for all i ≤ nc/γ.

More specifically, we’ll show that assuming these properties hold up to the ith round, then they hold after
the ith round (with i replaced by i+ 1) with probability 1− n−ω(1).

First, Property 3.3 follows easily from multiplicative Chernoff, using the same argument as Property 2.4 in
Kim’s argument (since we only want an upper bound). But there are several challenges that arise when we
try to adapt the proofs of Properties 2.2 and 2.3 to the actual triangle-free process.

(1) Most importantly, there can be complicated dependencies between the edges we try to add this round
— maybe the first edge e1 we add closes the second edge e2 (so we don’t actually add e2); and adding
e2 would have closed e3, but this didn’t happen because we didn’t add e2; and so on. This makes it
unclear how to use concentration inequalities, since a single edge could potentially affect lots of others.

(2) There’s also the fact that unlike in Kim’s semi-random construction, we don’t get to perform a reg-
ularization step, and this means errors accumulate — errors in Xuv(i) and Yuv(i) are going to result
in bigger errors in Xuv(i+ 1) and Yuv(i+ 1). So we need to control these errors carefully enough that
they don’t blow up — in particular, we need more careful estimates on the expectations of the tracked
variables (meaning we need careful estimates on the probabilities that edges in Fi+1 really get added
to Gi+1, as well as that edges not in Fi+1 remain open).

The way Wolfovitz deals with both of these challenges is through an approach based on branching processes.
As a high-level overview, we first sample a collection of ‘candidate’ edges, including each with probability
λn−1/2 where λ = n2

20ε (then we’ll decide which edges to add this round by sampling these candidates with
probability γ

λ). Then for every edge, in order to estimate the probability it gets added to Gi+1 or remains
open, we produce a ‘dependency tree’ that keeps track of how the candidate edges could affect it.

Each individual dependency tree basically corresponds to a branching process. By analyzing this branching
process, we can show that it exhibits good ‘correlation decay,’ so that we can cut it off after a constant
number of levels without affecting its outcome by too much. We can also show that it’s reasonably resilient
to errors, in that a 1±∆i error in its input only results in a 1±∆iδi error in its outcome. (This is important
for dealing with (2) — it’s the reason our errors don’t blow up.)

Then when we’re considering Xuv(i+ 1) or Yuv(i+ 1), we can use these truncated dependency trees to get
upper and lower bounds which are very close to each other in expectation. And the truncations substantially
reduce the amount of dependencies, so that we can actually use the bounded differences inequality to prove
concentration; this deals with (1).

§3.2 Sampling candidates

Let λ = n2
20ε. The first step of the argument is to sample a set of candidates F ∗, where we include each

open edge with probability λn−1/2. (We’ll draw candidate edges by highlighting them in blue.)

We’ll define the following sets of configurations based on these candidate edges:

• We define Y∗
uv as the set of configurations {uw, vw} ∈ Yuv(i) whose one open edge was selected as a

candidate, and Y ∗
uv as its size.

• We define X ∗
uv as the set of configurations {uw, vw} ∈ Xuv(i) for which both their open edges were

selected as candidates, and X∗
uv as its size.

• We define X ∗∗
uv as the set of configurations {uw, vw} ∈ Xuv(i) for which exactly one of their open edges

was selected as a candidate, and X∗
uv as its size.

Page 25 of 47



The triangle-free process and lower bounds for r(3, k) Sanjana Das (May 12, 2025)

u v

w

X ∗
uv

u v

w

Y∗
uv

u v

w

X ∗∗
uv

Claim 3.5 — With probability 1− n−ω(1), the following statements hold for all uv ̸∈ Gi:

(i) Y ∗
uv = 2λqi(pi ± (1 + pi)(∆i +∆iδi)).

(ii) X∗
uv = λ2q2i (1± (∆i +∆iδi)).

(iii) X∗∗
uv = 2λq2i (1± (∆i +∆iδi))

√
n.

Proof. These statements all follow from multiplicative Chernoff.

For (i), there are 2qi(pi ± (1 + pi)∆i)
√
n configurations in Yuv(i) by Property 3.2, and for each, we pick its

one open edge with probability λn−1/2, so the expected number of them that will land in Y∗
uv is

E[Y ∗
uv] = λn−1/2 · 2qi(pi ± (1 + pi)∆i)

√
n = 2λqi(pi ± (1 + pi)∆i).

And these configurations are all edge-disjoint and therefore independent. So |Y ⋆
i (uv)| is a sum of independent

Bernoullis, which means it concentrates well. (Note that when we apply multiplicative Chernoff, we’ll have
mean µ ≈ 2λpiqi and error β ≈ 1

2∆iδi; the fact that λ = n2
20ε while all other quantities are ‘reasonable’

powers of nε means that β2µ will be large — for example, it’s much greater than nε — so we’ll get a
1− n−ω(1) concentration probability.)

Similarly, for (ii), there are q2i (1±∆i)n configurations in Xuv(i) by Property 3.1, and each lands in X ∗
uv with

probability λ2n−1 (since we have to pick both its edges). So

E[X∗
uv] = λ2n−1 · q2i (1±∆i)n = λ2q2i (1±∆i).

And again, these configurations are edge-disjoint and therefore independent, so multiplicative Chernoff gives
good concentration. Finally, for (iii), each configuration in Xuv(i) lands in X ∗∗

uv with probability 2λn−1/2,
since we have to pick one of its edges (technically, we need to subtract 2λ2n−1 to remove the ones where we
pick both edges, but this is a much lower-order term and can be absorbed into the error). So

E[X∗∗
uv] = 2λq2i (1±∆i)

√
n,

and again we get good concentration by multiplicative Chernoff.

We’ll also need bounds on certain small structures (we’ll use these when proving concentration).

Claim 3.6 — With probability 1− n−ω(1), for all vertices u, v, and w with uw, vw ̸∈ Gi:

(i) The number of x such that ux, vx ∈ Gi and wx ∈ F ∗ is at most (log n)2.

(ii) The number of x such that ux ∈ Gi and vx,wx ∈ F ⋆i is at most (log n)2.

Also, for all vertices u and v with uv ̸∈ Gi:

(iii) The number of x such that ux ∈ Gi and vx ∈ F ∗ is at most 4λ.

(iv) The number of x such that ux, vx ∈ F ∗ is at most 2λ2.
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u v

w
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u v
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Proof. For (i), we must have {ux, vx} ∈ Zuv(i). Property 3.3 says that there are at most i(logn)2 such
vertices x, and for each we include wx in F ∗ with probability λn−1/2. So the expected number of valid x is
at most

i(logn)2 · λn−1/2 ≪ 1.

And different vertices x are independent, so multiplicative Chernoff says the actual number of such x is at
most (log n)2 with probability 1− n−ω(1).

Similarly, for (ii), we must have {ux, vx} ∈ Yuv(i). Property 3.2 says there are at most 2
√
n such choices of

x; and for each, the probability that we include both wx and vx in F ∗ is λ2n−1. So the expected number of
valid x is at most

2
√
n · λ2n−1 ≪ 1.

And different vertices x are independent, so we can again use multiplicative Chernoff to conclude.

For (iii), we must have {ux, vx} ∈ Yuv(i), and again by Property 3.2 there are at most 2
√
n such choices of

x; and for each, the probability we include vx in F ∗ is λn−1/2. So the expected number of valid x is at most

2
√
n · λn−1/2 = 2λ,

and since different vertices x are independent (and λ = ω(log n)), multiplicative Chernoff tells us that the
actual number is at most 4λ with probability 1− n−ω(1).

Similarly, for (iv), there are at most n choices for x, and for each, the probability we include both ux and
vx in F ∗ is λ2n−1. So the expected number of valid x is at most

n · λ2n−1 = λ2,

and by multiplicative Chernoff, the actual number is at most 2λ2 with probability 1− n−ω(1).

Claim 3.7 — With probability 1− n−ω(1), for all v we have degF ∗(v) ≤ 2λ
√
n.

Proof. This again follows from multiplicative Chernoff — for each v, there are at most n open edges incident
to v, and we’re picking each with probability λn−1/2. So the expected number of candidate edges incident to v
is at most λ

√
n, and by multiplicative Chernoff, the actual number is at most 2λ

√
n with high probability.

In the rest of the analysis, we’ll assume that F ∗ has already been chosen, and that it satisfies the properties
described in Claims 3.5–3.7.

§3.3 Dependency trees

We’ll now describe how to construct dependency trees that track how the candidate edges can affect each
edge e. We define a dependency walk started from e as follows: At each step, if we’re currently at an edge
uv, we move to a configuration in either Y∗

uv or X ∗
uv, and then we move to one of the candidate edges of

that configuration. (For convenience, we’ll sometimes refer to such configurations as Y-type and X -type,
respectively; so there’s one possible step from a Y-type configuration, and two from an X -type configuration.)

In particular, the starting edge e of the dependency walk may or may not be a candidate edge, but all the
other edges on the walk are candidates.
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u1 u2

u3u4

u5

u6

For example, the above picture represents the dependency walk

u1u2 → {u1u3, u2u3} → u1u3 → {u1u4, u3u4} → u1u4 → {u1u5, u4u5} → u4u5 → {u4u6, u5u6} → u5u6.

We allow a dependency walk to revisit vertices or edges. However, we do not allow it to stay on the same
triple of vertices for two consecutive configurations — for example, we can’t have

{u1u5, u4u5} → u4u5 → {u1u4, u1u5}.

For each edge e, we also construct a dependency tree T (e) that records all possible dependency walks started
from e, which will look something like the following picture.

u1 u2

u1 u3 u1 u4 u1 u5 u2 u5

u4 u6 u1 u7 u4 u7

u3

u1 u2

u4

u1 u2

u6

u4 u1

u5

u1 u2

u7

u1 u4

...
...

...

...
...

...

(Note that the same edge is allowed to appear in multiple places in the same tree, and the tree may be
infinite.) We measure heights in the tree based on only the nodes representing edges: for example, in the
above tree we’d say u1u2 is at level 0, u1u3 and u2u3 are at level 1, and so on. We also define truncated
versions of T (e) — we define Th(e) to consist of only the nodes up to level h. (In particular, T0(e) consists
of just e itself; T1(e) consists of e at level 0, then the configurations in Y∗

e and X ∗
e as its children, and then

their candidate edges at level 1.)

We can then use these trees to model the triangle-free process as follows: First, for each candidate edge e,
we generate a birthtime in [0, λ] uniformly at random. We say e is born if its birthtime is at most γ; these
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are the edges we’ll be attempting to add during the triangle-free process. We say a configuration is fully
born if all its candidate edges (one for a Y-type configuration and two for an X -type configuration) are born;
we say it is fully born by time x (for x ∈ [0, γ]) if all its candidate edges have birthtimes at most x.

Now, given a finite dependency tree T , we compute with it as follows: We say all its leaves (which are nodes
representing edges) survive. For each intermediate node representing a configuration, we say it fully survives
if all its candidate edges survive. For each intermediate node representing an edge, if its birthtime is x, we
say it survives if and only if none of its children configurations has been fully born by time min{x, γ} and
fully survives.

We say an edge e survives at depth h if it survives in Th(e). The intuition is that we think of surviving as a
proxy for not getting closed; if some child configuration of e is fully born before time x and both its edges
are still open at the time we add them to Gi, then this will close e. More precisely, when h is even, this
will give an overestimate for whether e remains open (if its birthtime is above γ) or gets added to Gi (if
its birthtime is below γ); when h is odd, it’ll give an underestimate. (This is because e always survives if
h = 0, and if we have overestimates at all children of the root, then we have an underestimate at the root.)

We’re later going to run a branching process analysis of these dependency trees, which will give the following
result — that for any constant-sized collection of edges, working with these truncated dependency trees
genuinely give very good estimates for what happens during the triangle-free process.

Lemma 3.8

Let H ⊆ Kn \ Gi be a constant-sized collection of edges such that H ∪ Gi is triangle-free. Then if we
condition on whether or not each edge of H gets born, then for each h ∈ {40, 41}, the probability that
every e ∈ H survives at depth h is(

pi+1 − pi
γqi

)a1 (qi+1

qi

)a2
(1± 12∆iδi)

a1+a2 .

(In particular, since h = 40 gives an overestimate and h = 41 gives an underestimate for the actual process,
we get that the same statement is true for the corresponding probability in the actual process.)

The intuition behind why this is the right probability is that for a single edge e, if e doesn’t get born, then
surviving should correspond to remaining open at the end of this round; and we’d expect the density of
open edges to drop from qi to qi+1, which means we’d expect each edge to survive with probability roughly
qi+1

qi
. Meanwhile, if e does get born at a time t ∈ [0, γ], then surviving should correspond to being open at

the time we tried to add it. And this time essentially corresponds to the time γi+ t in the full triangle-free
process, at which point our heuristic from Subsection 1.2 says we’d expect the open edge density to be
ψ(γt+ i); so we’d expect e to be open at that time with probability ψ(γt+i)

qi
. Averaging over all times, this

means if we just condition on e being born, the probability it’s open when we try to add it should be

1

γ

∫ γ

0

ψ(γt+ i)

qi
dt =

pi+1 − pi
γqi

.

This explains why Lemma 3.8 makes sense if H consists of a single edge. And we’d expect different edges to
behave independently, so it makes sense that when H has multiple edges, we just multiply their probabilities.

§3.4 Tracking configurations

We’ll prove Lemma 3.8 in Subsection 3.5; for now, we’ll see how to use it to prove Properties 3.1 and 3.2.
(As usual, we’ll fix an edge uv and show that these properties hold with probability 1 − n−ω(1), which is
good enough to union-bound.) Our tool for proving concentration will be the (ordinary) bounded differences
inequality.
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Lemma 3.9 (Bounded differences inequality)

Let f : Rn → R be a function with the property that for each j, changing the jth coordinate of x
changes f(x) by at most cj . Then for X sampled according to a distribution on Rn with independent
coordinates, for all σ > 0 we have

P[|f(X)− E[f(X)]| ≥ σ] ≤ 2 exp

(
−1

2
· σ2∑

j c
2
j

)
.

(One could use a low-probability version similar to Lemma 2.12, but here our probabilities will be γ
λ , which

is some power of nε; and powers of nε will not matter in the concentration bounds.)

Note that Claim 3.5 gives control on degrees in our dependency trees — in any dependency walk, if we’re
currently at uv, we must step to either a configuration in Y∗

uv or X ∗
uv, so Claim 3.5 means we have at most

2λ2 choices per step. This is what we’ll use to control the ce’s when applying the bounded differences
inequality.

§3.4.1 Property 3.1: Tracking Xuv(i)

For convenience, let X ′
uv(i) = Xuv(i) \ (X ∗

uv(i)∪X ∗∗
uv (i)), and let X ′

uv(i) be its size. (We can afford to ignore
configurations in X ∗

uv(i) or X ∗∗
uv (i) because they’re much smaller — by Claim 3.5 they scale like

√
n, while

Xuv(i) scales like n — so whatever happens to them can be absorbed into our error term.)

For each h ∈ {40, 41}, let X h
uv(i + 1) be the set of configurations in X ′

uv(i) both of whose edges survive at
depth h, and let Xh

uv(i+ 1) be its size. Then we have

X41
uv(i+ 1) ≤ Xuv(i+ 1) ≤ X40

uv(i+ 1) +X∗
uv +X∗∗

uv.

So our goal is to show that both X40
uv(i+ 1) and X41

uv(i+ 1) have the correct mean and concentrate well.

Fix h ∈ {40, 41}. Then we can estimate E[Xh
uv(i+ 1)] using Lemma 3.8. We have

X ′
uv(i) = q2i (1± (∆i +∆iδi))n

by Property 3.1 (the extra ∆iδi is there just to account for the removal of configurations in X ∗
uv and X ∗∗

uv ),
and by Lemma 3.8, for each configuration in X ′

uv(i), the probability both its edges survive at depth h is(
qi+1

qi

)2

· (1± 12∆iδi)
2.

(We don’t have to worry about the conditioning in Lemma 3.8 because we excluded configurations in X ∗
uv

and X ∗∗
uv , so no edges of configurations in X ′

uv(i) can possibly be born this round.) So we get that

E[Xh
uv(i+ 1)] = q2i (1± (∆i +∆iδi))n ·

(
qi+1

qi

)2

· (1± 12∆iδi)
2 = q2i+1(1± (∆i + 26∆iδi))n.

We wanted a bound of
q2i+1(1±∆i+1)n = q2i+1(1± (∆i + 60∆iδi))n,

so it just remains to prove that Xh
uv(i+1) concentrates well (e.g., within a window of length n1−80ε). We’ll

do this by the bounded differences inequality. So we want to understand, for each candidate edge e, how
many configurations {uw, vw} ∈ X ′

uv(i) can be affected by e (meaning that changing the birthtime of e could
change whether or not uw or vw survives at depth h).

First, if e affects {uw, vw}, then there must be some dependency walk from uw (or vw, but we’ll work with
just uw for convenience) to e of length at most h. Let f be the edge immediately after uw on this walk.
We’ll split into cases based on whether f is incident to u or not.

Case 1 (f = ux for some x). This means we have one of the two following pictures.
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First, to bound the number of edges e which fall into this case (over all possible w), note that by Claim 3.7
there are at most 2λ

√
n choices for f (since it must be a candidate edge incident to u). Then at each step

of the dependency walk, we have at most 2λ2 choices; we’re taking h steps, so in total there are at most

2λ
√
n · (2λ2)h ≤ λ3h

√
n

edges e which fall into this case.

Then to bound the number of configurations {uw, vw} that a fixed edge e in this case can affect, we can
first imagine running the dependency walk backwards from e to f ; this shows there’s at most (2λ2)h choices
for f . Then given f = ux, we have that {uw, xw} must be in either Yux(i) (as in the first picture) or X ∗∗

ux

(as in the second). So by Property 3.2 and Claim 3.5, there are at most 2λ2
√
n choices for w. So this case

gives λ3h
√
n edges with ce ≤ (2λ2)h · 2λ2

√
n ≤ λ3h

√
n.

Case 2 (f is not incident to u). This means we have a picture like the following.

u v

w

e

f

First, to estimate the number of edges e which fall into this case, there are at most n choices for w. Then
there’s at most 2λ2 choices at each step of the dependency walk, and we’re taking h steps. So in total, there
are at most (2λ2)hn ≤ λ3hn choices for e.

To bound the number of configurations {uw, vw} each such e can affect, we can again imagine walking
backwards from e to f , so there’s at most (2λ2)h choices for f . Then given f , there’s at most 2 choices for
w (it has to be one of the two endpoints of f).

So this case gives λ3hn edges with ce ≤ (2λ2)h · 2 ≤ λ3h.

So when we apply the bounded differences inequality with σ = n1−80ε, we’ll have

σ2∑
e c

2
e

≥ n2−160ε

λ3h
√
n · λ6hn+ λ3hn · λ6h

≥ n1/2−230ε.

So we get a concentration probability of 1− exp(−Ω(n1/2−230ε)), which is good enough (all we needed was
for the exponent of n to be positive).
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§3.4.2 Property 3.2: Tracking Yuv(i)

Based on (1.4), we’d expect the primary driving forces behind the change in Yuv(i) to be configurations
leaving through their open edge becoming closed, and configurations coming in from X ∗∗

uv (which means
their one candidate edge has to be born and survive, meaning that it gets added to the graph, and their one
non-candidate edge has to survive, meaning that it remains open). So we’ll define the following sets:

• Let Y ′
uv(i) = Yuv(i) \ Y∗

uv, and for h ∈ {40, 41}, let Yhuv(i + 1) be the set of configurations in Y ′
uv(i)

whose open edge survives at depth h. (We write Y ′
uv(i) and Y

h
uv(i+ 1) for their sizes.)

• For h ∈ {40, 41}, let Yh+uv (i + 1) be the set of configurations in X ∗∗
uv such that their one candidate

edge is born and survives at depth h, and their one non-candidate edge survives at depth h. We write
Y h+
uv (i+ 1) for its size.

(We’re ignoring Y∗
uv and X ∗

uv because they’re tiny by Claim 3.5, so can be absorbed into our error term.)
Then we have

Y 41
uv (i+ 1) + Y 41+

uv (i+ 1) ≤ Yuv(i+ 1) ≤ Y 40
uv (i+ 1) + Y 40+

uv (i+ 1) + Y ∗
uv +X∗

uv,

so it suffices to show that both Y h
uv(i+ 1) and Y h+

uv (i+ 1) have the right means and concentrate well.

To compute E[Y h
uv(i+1)], by Property 3.2 we have Y ′

uv(i+1) = 2qi(pi±(1+pi)(∆i+∆iδi))
√
n, and by Lemma

3.8, for each configuration in Y ′
uv(i+1), the probability that its one open edge survives is qi+1

qi
· (1±12∆iδi).

This means we have

E[Y h
uv(i+ 1)] = 2qi(pi ± (1 + pi)(∆i +∆iδi))

√
n · qi+1

qi
· (1± 12∆iδi)

= 2qi+1(pi ± (1 + pi)(∆i + 14∆iδi))
√
n.

To compute E[Y h+
uv (i+ 1)], by Claim 3.5 we have

X∗∗
uv = 2λq2i (1± (∆i +∆iδi))

√
n.

And Lemma 3.8 says that for each configuration in X ∗∗
uv , the probability it lands in Yh+uv (i+ 1) is

γ

λ
·
(
pi+1 − pi
qiγ

)(
qi+1

qi

)
· (1± 12∆iδi)

2 =
1

λ
· (pi+1 − pi)qi+1

q2i
· (1± 12∆iδi)

2

(the γ
λ corresponds to the probability that the one candidate edge gets born). So we get

E[Y h+
uv (i+ 1)] = 2λq2i (1± (∆i +∆iδi))

√
n · 1

λ
· (pi+1 − pi)qi+1

q2i
· (1± 12∆iδi)

2

= 2(pi+1 − pi)qi+1(1± (∆i + 26∆iδi))
√
n.

When we add these together, we’ll get that the main term in E[Y h
uv(i+ 1) + Y h+

uv (i+ 1)] is

2piqi+1

√
n+ 2(pi+1 − pi)qi+1

√
n = 2pi+1qi+1

√
n,

which is exactly what we wanted (the fact that the calculation works out corresponds to (1.4)). We do have
to be a bit careful about how the errors interact, but they do work out: our new error becomes

2(1 + pi)qi+1(∆i + 14∆iδi) + 2(pi+1 − pi)qi+1(∆i + 26∆iδi)

2qi+1
,

and using the fact that pi+1 − pi ≤ γqi ≤ δi, we get that this is at most

(1 + pi)(∆i + 14∆iδi) + 27∆iδi ≤ (1 + pi+1)(∆i + 42∆iδi).
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So we’ve shown that Y h
uv(i+ 1) and Y h+

uv (i+ 1) have the right expectations, i.e.,

E[Y h
uv(i+ 1) + Y h+

uv (i+ 1)] = 2qi+1(pi+1 ± (1 + pi+1)(∆i + 42∆iδi))
√
n.

And now it remains to prove that they concentrate well (e.g., within a window of length n1/2−80ε).

We’ll start by proving concentration for Y h
uv(i+ 1). We’ll again use the bounded differences inequality; this

means we want to understand the number of configurations {uw, vw} in Yuv(i) that each edge e affects
(meaning that the birthtime of e could change whether or not the configuration survives at depth h).

First, if an edge e affects a configuration {uw, vw} ∈ Yuv(i), then there must be a dependency walk from
the open edge in this configuration (which we’ll assume is uw) to e of length at most h.

First, to bound the number of relevant edges e, there are at most 2
√
n choices for w by Property 3.2; then

there’s at most 2λ2 choices for each step of the dependency walk, so there’s at most (2λ2)h · 2
√
n ≤ λ3h

√
n

relevant edges e.

To bound the number of configurations that each affects, we can imagine taking a dependency walk back-
wards from e to the edge f which originally came right after uw on the dependency walk; there are again
2λ2 choices at each step. If f is not incident to u, then there are at most 2 choices for w (it has to be one
of the endpoints of f).

u v

w

e

f

Meanwhile, if f = ux is incident to u, then we have one of the following two pictures.

u v

w
x

e

u v

w
x

e

In the first picture, Property 3.3 tells us there are at most i(log n)2 choices for w, since we must have
{wx, vw} ∈ Zvx(i). In the second, Claim 3.6(iii) tells us there are at most 4λ choices for w.

So in total, there are at most λ3h
√
n edges, each with ce ≤ (2λ2)h(i(logn)2 + 4λ) ≤ λ3h. We wanted a

concentration window of length σ = n1/2−80ε; when we apply the bounded differences inequality, we’ll have

σ2∑
e c

2
e

≥ n1−160ε

λ3h
√
n · λ6h

≥ n1/2−230ε,

giving a concentration probability of 1− exp(−Ω(n1/2−230ε)).

The proof of concentration for Y h+
uv (i+1) is very similar. To bound the number of relevant edges, this time

we use Claim 3.5(iii) to say there are at most 2λ
√
n choices for w, and then there’s again 2λ2 choices for

each step of the dependency walk.
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To bound the number of configurations that each edge e affects, this time there’s two cases — uw (which
we’re assuming is the edge of the configuration that e affects) could either be the candidate edge or the
non-candidate edge of {uw, vw}.

First, if uw is the candidate edge, then we can run the dependency walk backwards from e all the way to
uw; this shows there are at most (2λ2)h choices for w.

u v

w

e

Meanwhile, if uw is not the candidate edge, then we again run the dependency walk backwards from e to
the edge f that originally came right after uw. If f is not incident to u, there’s at most 2 choices for w
(namely, the two endpoints of f). If f = ux, then we have one of the following two pictures.

u v

w
x

e

u v

w
x

e

Then Claim 3.6(iii) (in the first case) or Claim 3.6(iv) (in the second) tells us that there are at most 2λ2

choices for w.

So we again get that there are at most λ3h
√
n relevant edges e, each with ce ≤ λ3h; this means we get the

same concentration bound for Y h+
uv (i+ 1).

§3.5 Lemma 3.8: Survival probabilities in dependency trees

In this section, we’ll prove Lemma 3.8 by using branching processes to analyze our dependency trees.
(Throughout this section, we think of H and h ∈ {40, 41} as fixed.)

§3.5.1 Making the trees independent

The first step of the argument is that it’s not great that the dependency trees Th(e) are allowed to contain
repeated edges — we’d really like to analyze these trees as branching processes, and to do so we’d want
their nodes to have independent birthtimes (which isn’t the case if an edge appears in multiple places).
Fortunately, it turns out that we can fix this by running a second round of sampling.

Set ν = n2
10ε. We define a subset F ′ ⊆ F ∗ by including each edge with probability ν

λ ; we call the edges in
F ′ refined candidates. When generating the birthtimes for edges, we’ll only work with the edges in F ′ — so
for each e ∈ F ′ we generate a birthtime in [0, ν] uniformly at random (and it gets born if its birthtime is at
most γ), while we ignore edges e ̸∈ F ′.

Once we’ve fixed F ′, only the edges in F ′ matter for the analysis of our dependency trees. So we define
sets Y ′

uv and X ′
uv analogously to Y∗

uv and X ∗
uv, but with F

′ in place of F ∗ (so Y ′
uv consists of configurations

Page 34 of 47



Sanjana Das (May 12, 2025) The triangle-free process and lower bounds for r(3, k)

{uw, vw} ∈ Y∗
uv whose one open edge is a refined candidate, and X ′

uv consists of configurations in X ∗
uv whose

two open edges are refined candidates). As usual, we write Y ′
uv and X ′

uv for the sizes of these sets. We
also define refined dependency trees T ′

h(e) analogously to Th(e), by restricting to the edges in F ′ and the
configurations in Y ′

uv and X ′
uv.

Claim 3.10 — With probability 1− n−ω(1), the following statements hold for all uv ̸∈ Gi:

(i) Y ′
uv = 2νqi(pi ± 2(1 + pi)∆i).

(ii) X ′
uv = ν2q2i (1± 2∆i).

These statements both follow from Claim 3.5 (which means the expected values of Y ′
uv and X ′

uv are roughly

2λqipi · νλ and λ2q2i · ν
2

λ2
, respectively) and multiplicative Chernoff (which gives good concentration).

Claim 3.11 — With probability at least 1− n−64ε, none of the trees T ′
h(e) for e ∈ H contain repeated

edges, and no two of these trees share edges.

Proof sketch. The intuition is as follows: Imagine we consider the expected number of dependency walks
(of length at most 2h) that start at an edge in H and either return to an edge they’ve already visited, or
reach some other edge in H. At every step, there are roughly λ or λ2 configurations we could possibly move
to (among the original candidate edges) of Y-type and X -type, respectively, and each appears among the

refined candidate edges with probability ν
λ or ν2

λ2
, respectively; this means the expected number of steps we

could take is roughly ν + 2ν2 ≤ 3ν2. And on the last step, in order to return to an already visited edge or
an edge in H, we’ll no longer have the factor of λ or λ2 for the next step (now there’s a constant number
of steps), but we’ll still have at least one factor of νλ (corresponding to some edge needing to be picked). So
we’ll get that the expected number of such walks is at most roughly a constant times (3ν2)2h · νλ ; and since
λ is a much bigger power of nε than ν is, this is at most n−64ε.

Formalizing this intuition takes a bit of care, because we need to worry about our dependency walk possibly
repeating edges (in which case we wouldn’t get a ν

λ factor for that edge the second time we used it). One
way to do so is as follows: Consider a shortest dependency walk that starts from an edge in H, and returns
to a vertex that either had been previously visited by the walk or is an endpoint of an edge in H. (When
we take a dependency walk, every edge shares exactly one vertex with the previous one. We don’t count
that shared vertex — the ‘previously visited’ case means there’s some vertex u that the walk visits, then
leaves, and then returns to.)

u v

(For example, the above picture shows a walk that starts at an edge uv, takes 8 steps, and revisits u.)

First, apart from the final step, the configurations we see on this walk can’t share any edges (if they did,
we’d get a shorter walk that revisited a vertex). If the final step is a X -type configuration (as in the above
picture), then it can’t be the case that we’ve used both of its edges already (again, this would give a shorter
walk that revisited a vertex). So the above argument does still work — we do have an expected number of
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at most 3ν2 choices for all but the last step, and an expected number of at most ν
λ choices for the last step

(up to constants), since there’s a constant number of choices for the revisited vertex and some new edge has
to be picked (which occurs with probability ν

λ).

If the final step is a Y-type configuration and we hadn’t used its one candidate edge already, then the above
argument still works (for the same reason).

u
v

The only ‘bad’ case (where the above argument doesn’t work) is if the final step is a Y-type configuration
and we have used its one candidate edge already, as in the below pictures.

u v

w

x y

u v

w

x y

Let the reused edge be uw (where u is the revisited vertex), the third vertex of that configuration be y, and
the third vertex of our previous configuration be x (as shown above). Then given x, w, and u, by either
Claim 3.6(i) or Claim 3.6(ii) there’s at most (logn)2 choices for y, as opposed to the bound of λ or λ2 we
used earlier. So this again lets us get an extra factor of λ in the denominator.

Since n−64ε is much smaller than our target error in Lemma 3.8 (which is roughly ∆iδi), we can afford to
ignore the case where Claim 3.11 fails. So from now on, we’ll assume that we’ve fixed F ′ such that Claims
3.10 and 3.11 hold. Then the dependency trees T ′

h(e) across different edges e ∈ H are independent, so to
prove Lemma 3.8, it suffices to consider just a single tree (with no repeated edges).

§3.5.2 A branching process problem

Now we’ve reduced Lemma 3.8 to the following branching process problem: We’re given a tree T of height
h (whose nodes represent edges in our graph). Each node has 2νqi(pi ± 2(1 + pi)∆i) Y-type children, each
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leading to one node on the next level, and ν2q2i (1± 2∆i) X -type children, each leading to two nodes on the
next level. (These quantities come from Claim 3.10.)

...
...

...

...
...

...

...
...

≈ 2νiqipi ≈ ν2q2i

Every node receives a birthtime in [0, ν] uniformly at random; it’s born if its birthtime is in [0, γ]. A node
with birthtime t survives if it does not have any child configuration which is fully born by time min{t, γ}
and fully survives. Our goal is to understand the probability that the root survives. So we’ll let pt(T ) be
the probability that the root survives, given that its birthtime is t.

Claim 3.12 — For all t ∈ [0, γ], we have

pt(T ) =
ψ(γi+ t)

ψ(γi)
± 10∆iδi.

As discussed after the statement of Lemma 3.8, the reason we’d intuitively expect this to be the right answer
is that pt(T ) is supposed to model the probability that in the triangle-free process, an edge e which was
open at time γi remains open at time γi+ t, and we’d heuristically expect the density of open edges to drop
from ψ(γi) to ψ(γi+ t) between these two times (based on Subsection 1.2).

Claim 3.12 implies Lemma 3.8 for one edge e— the case where we condition on e not being born corresponds
to taking pγ(T ) (note that pt(T ) = pγ(T ) if t ≥ γ), where we get

ψ(γi+ γ)

ψ(γi)
=
qi+1

qi
,

and the case where we condition on e being born corresponds to averaging over x ∈ [0, γ], where we get

1

γ

∫ γ

0

ψ(γi+ t)

ψ(γi)
dt =

pi+1 − pi
γqi

.

(Lemma 3.8 is written with multiplicative rather than additive error, but these probabilities are very close
to 1, so this doesn’t matter.) And since Claim 3.11 means that different edges e ∈ H are independent, this
also implies Lemma 3.8 for multiple edges. So now it just remains to prove this claim, which we’ll do in the
next sections (we’ll be a bit sketchy with the proof, but it can be made rigorous).

§3.5.3 An infinite idealized branching process

Consider an infinite tree T∞ of the same form as in our problem, where every node has exactly 2νqipi Y-type
children and ν2q2i X -type children. We’re first going to show that Claim 3.12 holds for this infinite tree.

First, it’s not immediately clear that our process is even well-defined for such an infinite tree. However, it
turns out that the process has good correlation decay, so that it is well-defined.
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Claim 3.13 — Let T ℓ→τ
∞ be the tree where we cut T∞ off at height ℓ, sample birthtimes for all nodes

as normal, and declare whether the nodes at level h survive based on some assignment τ . Then∣∣∣pt(T ℓ→τ1
∞ )− pt(T ℓ→τ2

∞ )
∣∣∣ ≤ (6γ)ℓ

for all t and all assignments τ1 and τ2.

Proof. Imagine we take T ℓ→τ1
∞ and T ℓ→τ2

∞ , and we couple them by assigning the same birthtimes to all nodes.
Then the only way that they could possibly have different outcomes for the root is if there’s a path from
the root to level ℓ along which all ℓ configurations are fully born. (If there’s a configuration somewhere in
the tree that isn’t fully born, then it doesn’t affect whether its parent survives, so its subtree is irrelevant.)

But we claim that the expected number of such paths is at most (6γ)ℓ. To see this, every node in the tree
representing an edge has at most 2ν Y-type children, each of which is born with probability γ

ν (and offers
one edge to step to), and at most 2ν2 X -type children, each of which is fully born with probability (γν )

2

(and offers two edges to step to). This means if we’re trying to walk down such a path from the root, the
expected number of choices we have at each step is at most

2ν · γ
ν
· 1 + 2ν2 · γ

2

ν2
· 2 ≤ 6γ.

And we’re doing this ℓ times, so the expected number of paths we end up with is at most (6γ)ℓ. Then by
Markov’s inequality, the probability there exists some such path is at most (6γ)ℓ.

Now, we say a node follows the target survival distribution if conditioned on its birthtime being t ∈ [0, γ],

the probability it survives is ψ(γi+t)
ψ(γi) .

Claim 3.14 — Suppose that for some node e, all edges in its children follow the target survival distri-
bution. Then e follows the target survival distribution as well.

Remark 3.15. Technically, this is only true up to an error on the order of 1
ν = n−210ε, but this won’t

matter for our purposes — this is tiny compared to our target error, and we can deal with it in the
same way as we’ll deal with the error terms in the number of children when proving Claim 3.16.

Proof. Suppose we condition on e having birthtime t ∈ [0, γ].

Then for e to survive, we need it to not be the case that any of its children configurations gets fully born at
some time 0 ≤ s ≤ t and fully survives. For each of its Y-type children, the probability that its one edge is
born at some time 0 ≤ s ≤ t and survives is

1

ν

∫ s

0

ψ(iγ + s)

ψ(iγ)
ds =

1

ν
· Ψ(iγ + t)−Ψ(iγ)

ψ(iγ)

(since we assumed it follows the target survival distribution). For each of its X -type children, we’re asking
this to happen for two edges (which are independent); so the corresponding probability is

1

ν2
· (Ψ(iγ + t)−Ψ(iγ))2

ψ(iγ)2
.

Since our node e has 2νΨ(iγ)ψ(iγ) Y-type children and ν2ψ(iγ)2 X -type children, this means the probability
it survives — meaning that none of these events occur across all its children — is

P[e survives] =

(
1− 1

ν
· Ψ(iγ + t)−Ψ(iγ)

ψ(iγ)

)2νΨ(iγ)ψ(iγ)(
1− 1

ν2
· (Ψ(iγ + t)−Ψ(iγ))2

ψ(iγ)2

)ν2ψ(iγ)2
.
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Using the approximation 1− x ≈ e−x (we can afford to do so because ν = n2
10ε much larger than the error

we want in Lemma 3.8; see Remark 3.15), we get that

P[e survives] = exp

(
1

ν
· Ψ(iγ + t)−Ψ(iγ)

ψ(iγ)
· 2νΨ(iγ)ψ(iγ)− 1

ν2
· (Ψ(iγ + t)−Ψ(iγ))2

ψ(iγ)2
· ν2ψ(iγ)2

)
= exp

(
Ψ(iγ)2 −Ψ(iγ + t)2

)
.

And because exp(−Ψ(t)2) = ψ(t), this is precisely ψ(iγ+t)
ψ(iγ) .

This essentially shows that Claim 3.12 holds for T∞ (with a much smaller error term) — we can imagine
cutting T∞ off at a sufficiently low level and initializing the leaves with the target survival distribution
(which we’re allowed to do by Claim 3.13), and Claim 3.14 shows that all intermediate nodes will also have
this distribution.

§3.5.4 Comparison to the idealized process

Finally, it remains to show that moving from T∞ to our given tree T — which has errors in the number of
children — doesn’t introduce too much error.

Claim 3.16 — For all t, we have |pt(T∞)− pt(T )| ≤ 8∆iδi.

Proof. Imagine we create a sequence of trees T0, T1, . . . , Th as follows: We take Tℓ to match our tree T up
to height ℓ, and at each node of height ℓ, we place an infinite tree T∞ rooted at that node. In particular,
we have T0 = T∞, and Th is the same as T except that we’ve added infinite trees rooted at each leaf of Th.

We already saw in Claim 3.13 that |pt(Th)− pt(T )| ≤ (6γ)h (which is much smaller than ∆iδi), so it suffices
to show that pt(Tℓ) and pt(Tℓ+1) are similar for all ℓ.

To do so, we’ll use coupling. Note that Tℓ and Tℓ+1 look the same up to level ℓ, and only differ in the
number of children that each node at level ℓ has (for Tℓ these numbers are exactly νqipi, and for Tℓ+1 they’re
given by T ). These numbers can differ by up to 4ν(1+ pi)qi∆i for Y-type children, and 2ν2q2i∆i for X -type
children. We can imagine matching up the children of each level-ℓ node in Tℓ and Tℓ+1, so each node has at
most this many unmatched children of each type.

Then we can couple Tℓ and Tℓ+1 by assigning the same birthtimes to all nodes up to level ℓ, and also coupling
the infinite trees rooted at matched children of the nodes at level ℓ.

In this coupling, the only way the outcomes at the root can be different in the two trees is if there is a path
from the root to one of the unmatched children along which all configurations, including that unmatched
child, are fully born — this is because otherwise we can cut off the unmatched children without affecting
the survival of the root (and the two trees are identical apart from these unmatched children).

And we can show the expected number of such paths is small, by the same argument as in Claim 3.13 —
imagine we compute the expected number of such paths by seeing the expected number of steps we can
take from every node (starting with the root). For each step but the last, the current node has at most
2ν possible steps to Y-type children, each of which is born with probability γ

ν (and gives one edge to step

to) and at most 2ν2 possible steps to X -type children, each of which is born with probability γ2

ν2
(and gives

two edges to step to); so the expected number of steps we can take is at most 6γ. For the last step, since
we need to step to an unmatched child, we instead have at most 4ν(1 + pi)qi∆i possible steps to Y-type

children and 2ν2q2i∆i possible steps to X -type children (which again come with probabilities γ
ν and γ2

ν2
), so

the expected number of steps we can take is at most

4γ(1 + pi)qi∆i + 4γ2q2i∆i ≤ 8∆iδi
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(by how we defined δi). So in total, the expected number of paths — and therefore the probability there
exists one — is at most (6γ)ℓ · 8∆iδi.

Finally, we’ve shown that |pt(Tℓ)− pt(Tℓ+1)| ≤ (6γ)ℓ · 8∆iδi for all ℓ; this shows that

|pt(T0)− pt(Th)| ≤ 8∆iδi

h−1∑
ℓ=0

(6γ)ℓ ≤ 9∆iδi

(since 6γ is much smaller than 1). And T0 = T∞, while we’ve seen |pt(Th)− pt(T )| ≤ (6γ)h (which is much
smaller than ∆iδi), which proves the claim.

§4 Bohman 2009: An analysis via the differential equation method

Finally, in this section we’ll explain Bohman’s analysis of the triangle-free process from [Boh09], based on
the differential equation method. We’ll give his proof that the process follows the trajectory from Subsection
1.3 up to time nc, which illustrates a different approach to analyzing the process than the one in Section 3.

§4.1 Overview

In this analysis, we’ll work with the triangle-free process step by step. So we begin with the graph G0.
Given Gi, we choose a random edge ei+1; if it’s open, we add it to Gi to produce Gi+1 (and otherwise we
discard it). We’ll think of step i as corresponding to time t = 2n−3/2i.

Let ε > 0 be a somewhat small constant, and let c be small with respect to ε. As in Subsection 1.3, we write

φx(t) = ψ(t)2 and φy(t) = 2Ψ(t)ψ(t).

We also define slowly deteriorating error terms

gx(t) = n−ε · ψ(t)e40Ψ(t)2+40Ψ(t) and gy(t) = n−ε · e40Ψ(t)2+40Ψ(t).

Note that Ψ(t) ≈
√
log t, so as long as c is small relative to ε, we’ll have that e40Ψ(t)2+40Ψ(t) ≈ e40c logn ≪ nε,

which means these error terms remain small. (The place these error terms come from is that when we try
to run the argument, we’ll see that we need precisely the conditions in Fact 4.6 (up to constants), and then
we try to engineer error terms satisfying them.)

The statement we’ll prove is the following (where t = 2n−3/2i).

Property 4.1. For all edges uv ̸∈ Gi, we have Xuv(i) = (φx(t)± gx(t))n.

Property 4.2. For all edges uv ̸∈ Gi, we have Yuv(i) = (φy(t)± gy(t))
√
n.

Property 4.3. For all edges uv, we have Zuv(i) ≤ nε.

Theorem 4.4

With probability 1− n−ω(1), Properties 4.1–4.2 hold for all i ≤ n3/2+c (where t = 2n−3/2i).

In the analysis we saw in Sections 2 and 3, we split the process into large chunks of time and showed that
on each chunk, the changes in these random variables concentrated around their expectations (where the
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expected changes correspond to the differential equations (1.3) and (1.4)); we used this to show that they
remain on the expected trajectory from one chunk to the next.

In contrast, here we’ll look at how these random variables change on each individual step of the process. Of
course we can’t say that these one-step changes concentrate around their expectations. Instead, we define
martingales that accumulate how much these one-step changes differ from their expectations over the entire
process. We can use martingale concentration inequalities to show that these martingales remain small
throughout the process with high probability; and if they do, this means our random variables really follow
the expected trajectory. This turns out to result in a very neat proof.

§4.2 Preliminaries

We’ll use the following martingale concentration inequality.

Lemma 4.5

Let a ≤ b. Then for any martingale Z0, Z1, . . . with Z0 = 0 such that −a ≤ Zi+1 − Zi ≤ b for all i,

P[|Zi| ≥ σ] ≤ 2 exp

(
−1

8
min

{
σ

b
,
σ2

iab

})
.

(This is essentially a martingale version of Lemma 2.12, with uniform interval sizes, and it can be proved in
the same way.)

We’ll also need the following fact about the error functions gx and gy.

Fact 4.6 — For all t ≥ 0, we have

• gx(t) ≥ 30
∫ s
0 gy(s)φx(s) ds and gx(t) ≥ 30

∫ s
0 gx(s)φy(s) ds;

• gy(t) ≥ 30
∫ s
0 gy(s)φy(s) ds and gy(t) ≥ 30

∫ s
0 gx(s) ds.

Proof idea. These can be verified by a straightforward computation — in all, we either pull out the e40Ψ(t)

terms (noting that e40Ψ(t) ≥ e40Ψ(s) for all s ≤ t, so if the inequality is true without these terms, it’s also
true with them) and substitute u = Ψ(s)2, or pull out the e40Ψ(t)2 terms and substitute u = Ψ(s).

§4.3 Proof of Theorem 4.4

We’ll now describe the structure of the argument (since this is a bit intricate). For each i, we define a ‘bad’
event Bi that one of Properties 4.1–4.3 fails to hold for some j ≤ i. We’ll define a bunch of martingales
(which are supposed to follow the process unless Bi occurs, at which point we stop them). We’ll show that
these martingales concentrate well with probability 1 − n−ω(1) for each i (regardless of whether Bi occurs
or not). Let Mi be the event that any one of these martingales goes outside its concentration window at
some time j ≤ i; so the probability that any Mi occurs is tiny. We’ll also show that if neither Bi−1 nor
Mi occurs, then Bi does not occur either (i.e., Properties 4.1–4.3 all hold for i). Since of course B0 does
not occur, this means that as long as no Mi occurs (which is true with very high probability), no Bi occurs
either (up to i = n3/2+c).

§4.3.1 Property 4.1: Tracking Xuv(i)

In this section, we’ll run the portion of the argument corresponding to the sets Xuv(i). Specifically, we’ll
define the collection of associated martingales, show that these martingales concentrate (in windows of
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length n1−4ε) with high probability, and show that if Bi−1 does not occur and the martingale associated
with uv concentrates, then Property 4.1 holds for uv for step i.

For each step of the process, we define X−
uv(i + 1) as the set of configurations in Xuv(i) that leave because

we either chose or closed one of their open edges on step i+ 1, and X−
uv(i+ 1) as its size; then we have

Xuv(i+ 1) = Xuv(i) \ X−
uv(i+ 1) and Xuv(i+ 1) = Xuv(i)−X−

uv(i+ 1).

We define a martingale Muv(i) by Muv(0) = 0 and

Muv(i+ 1)−Muv(i) =

{
X−
uv(i+ 1)− E[X−

uv(i+ 1) | Gi] off the event Bi
0 on the event Bi.

In words, Muv(i) accumulates how much the one-step changes in Xuv(i) differ from their expectations until
Bi occurs, at which point it stops. In particular, off Bi−1 we have

Xuv(i) = (n− 2)−
i−1∑
j=0

E[X−
uv(j + 1) | Gj ]−Muv(i)

(where n− 2 corresponds to Xuv(0)).

Claim 4.7 — Off the event Bi, we have

E[X−
uv(i+ 1) | Gi] = 4(φx(t)φy(t)± 2gy(t)φx(t)± 2gx(t)φy(t))n

−1/2.

(We always write t to mean 2n−3/2i.)

Proof. Consider some configuration {uw, vw} ∈ Xuv(i). For it to land in X−
uv(i + 1) because we closed one

of its edges, the edge ei+1 we picked must be the open edge of some configuration in Yuw(i) or Yvw(i).

u v

w

x

By Property 4.2, there are (φy(t)± gy(t))
√
n choices for ei+1 that would close uw, and the same is true for

vw. We have to be a bit careful because some edges coud close both. But if choosing an edge wx would
close both, then we must have {ux, vx} ∈ Zuv(i); and by Property 4.3 there are very few such edges. So we
can account for them by slightly enlarging the error terms.

u v

w

x
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There’s also two ways for {uw, vw} to land in Xuv(i) because we chose one of its edges to be ei+1, but we
can account for this by slightly enlarging the error terms as well.

So for each {uw, vw} ∈ Xuv(i), the probability it lands in X−
uv(i+ 1) is roughly

2 · (φy(t)± gy(t))
√
n

1
2n

2
= 4(φy(t)± gy(t))n

−3/2

(since there are roughly 1
2n

2 possible edges we could choose). And there are (φx(t)± gx(t))n configurations
in Xuv(i) by Property 4.1 for i, so multiplying these, we get

E[X−
uv(i+ 1) | Gi] = 4(φx(t)φy(t)± 2gy(t)φx(t)± 2gx(t)φy(t))n

−1/2

(where multiplying the error terms by 2 accounts for the lower-order contributions discussed above).

Claim 4.8 — Off the event Bi, we always have X−
uv(i+ 1) ≤ 2

√
n.

Proof. We want to bound the maximum possible number of configurations in Xuv(i) that choosing a single
edge e could affect.

u v

w

x

u v

w

x

If e is incident to u, then letting e = ux, choosing e can only affect a configuration {uw, vw} if {uw, xw} ∈
Yux(i); by Property 4.1 there are at most 2

√
n such configurations. If e is not incident to u or v, then it

affects at most one configuration.

Claim 4.9 — For all uv and all i ≤ n3/2+c, we have |Muv(i)| ≤ n1−4ε with probability 1− n−ω(1).

(This means we’ll define Mi such that it includes the events that |Muv(j)| > n1−4ε for any j ≤ i.)

Proof. We’ll use Lemma 4.5 — we have

−2n−1/2 ≤Muv(j + 1)−Muv(j) ≤ 2
√
n

for all j (where the lower bound comes from Claim 4.7 and the upper bound from Claim 4.8), so applying
Lemma 4.5 with σ = n1−4ε, we have

σ

b
≥ n1−4ε

2
√
n

≥ n1/2−5ε and
σ2

iab
≥ n2−8ε

n3/2+c · 2n−1/2 · 2
√
n
≥ n1/2−10ε,

which means we get concentration with probability 1− exp(−Ω(n1/2−10ε)).
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Claim 4.10 — Suppose that Bi−1 does not occur and |Muv(i)| ≤ n1−4ε (and i ≤ n3/2+c). Then

Xuv(i) = (φx(t)± gx(t))n.

Proof. Off the event Bi−1, by Claim 4.7 we have

Xuv(i) = Xuv(0)−
i−1∑
j=0

E[X−
uv(j + 1) | Gj ]−Muv(i)

= (n− 2)−
i−1∑
j=0

4(φx(s)φy(s)± 2gy(s)φx(s)± 2gx(s)φy(s))n
−1/2 −Muv(i).

Plugging in |Muv(i)| ≤ n1−4ε and normalizing by n, we get

Xuv(i)

n
= 1−

i−1∑
j=0

2(φx(s)φy(s)± 2gy(s)φx(s)± 2gx(s)φy(s)) · 2n−3/2 ± 2n−4ε

(where s = 2n−3/2j is the time corresponding to j). We can convert this sum into an integral over s (recall
that one step of the process corresponds to a time-interval of length 2n−3/2); this introduces an error of at
most 2n−3/2, which can be absorbed into the ±2n−4ε error term. So we get

Xuv(i)

n
= 1−

∫ t

0
2(φx(s)φy(s)± 2gy(s)φx(s)± 2gy(x)φy(s)) ds± 3n−4ε.

For the main term, (1.3) means that we have

φx(t) = 1−
∫ t

0
2φx(s)φy(s) ds.

To deal with the error terms, Fact 4.6 means their total contribution is at most

4

∫ t

0
gy(s)φx(s) ds+ 4

∫ t

0
gy(s)φy(s) ds ≤

1

3
gx(t)

(and n−4ε ≪ gx(t)). So we get Xuv(i) = (φx(t)± gx(t))n, as desired.

This concludes the part of the argument corresponding to the Xuv(i) terms.

§4.3.2 Property 4.2: Tracking Yuv(i)

In this section, we’ll explain the portion of the argument corresponding to the sets Yuv(i) (we’ll do this more
briefly, since it uses the same ideas). This time, we’ll define two collections of martingales, one to track
configurations entering Yuv(i) and the other to track configurations leaving it:

• First, we define Y−
uv(i + 1) as the set of configurations that leave Yuv(i) because we either chose or

closed their one open edge on step i+1, and Y −
uv(i+1) as its size. (If ei+1 is uv itself, then we instead

define Y−
uv(i+ 1) = ∅.)

• We define Y+
uv(i + 1) as the set of configurations that come in from Xuv(i) because we chose one of

their open edges, and Y +
uv as its size. Note that this is always either 0 or 1, since ei+1 belongs to at

most one configuration in Xuv(i).
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Then as long as uv ̸∈ Gi+1, we have

Yuv(i+ 1) = Yuv(i)− Y −
uv(i+ 1) + Y +

uv(i+ 1).

We define a martingale Muv(i) by Muv(0) = 0 and

Muv(i+ 1)−Muv(i) =

{
Y −
uv(i+ 1)− E[Y −

uv(i+ 1) | Gi] off the event Bi
0 on the event Bi.

Similarly, we define a martingale Nuv(i) by Nuv(0) = 0 and

Nuv(i+ 1)−Nuv(i) =

{
Y +
uv(i+ 1)− E[Y +

uv(i+ 1) | Gi] off the event Bi
0 on the event Bi.

These martingales accumulate how much the stepwise increases and decreases in Y +
uv(i) differ from their

expectations; in particular, as long as uv ̸∈ Gi and Bi−1 doesn’t occur, we have

Yuv(i) = −
i−1∑
j=0

E[Y −
uv(j + 1) | Gj ] +

i−1∑
j=0

E[Y +
uv(j + 1) | Gj ]−Muv(i) +Nuv(i). (4.1)

To compute the expectations of these one-step changes, as long as uv ̸∈ Gi and Bi doesn’t occur, we have

E[Y −
uv(i+ 1) | Gi] =

(φy(t)± 2gy(t))
√
n

1
2n

2
· (φy(t)± 2gy(t))

√
n = 2(φy(t)

2 ± 5gy(t)φy(t))n
−1, (4.2)

where the second factor corresponds to the number of configurations in Yuv(i), and the second corresponds
to the probability, for each, that we close (or choose) its one open edge. We also have

E[Y +
uv(i+ 1) | Gi] =

2
1
2n

2
· (φx(t)± 2gx(t))n = 4(φx(t)± 2gx(t))n

−1, (4.3)

where the second factor corresponds to the number of configurations in Xuv(i), and the first factor to the
probability that we choose one of its two open edges.

To prove that the martingales Muv(i) and Nuv(i) concentrate well, we claim that on the event Bi, we always
have Y −

uv(i + 1) ≤ nε. To see this, if ei+1 is incident to u, then letting ei+1 = ux, for any configuration
{uw, vw} ∈ Yuv(i) that it moves to Y−

uv(i + 1), we must have {vw, xw} ∈ Zvx(i). And the number of such
w is at most nε by Property 4.3 (for i). Meanwhile, if ei+1 isn’t incident to u or v, it affects at most one
configuration.

u v

w

x

u v

w

x

Also, we always have Y +
uv(i+ 1) ≤ 1 (since ei+1 belongs to at most one configuration in Xuv(i)).

So both Muv(i) and Nuv(i) will concentrate well, e.g., within a window of length n1/2−4ε, by Lemma 4.5 —
we’ll have

σ

b
≥ n1/2−4ε

nε
≥ n1/2−5ε and

σ2

iab
≥ n1−8ε

n3/2+c · n−1 · nε
≥ n1/2−10ε
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(where the n−1 bound on a comes from (4.2) and (4.3)).

Finally, we need to show that if Bi−1 doesn’t occur and |Muv(i)| , |Nuv(i)| ≤ n1/2−4ε (and uv ̸∈ Gi), then
Yuv(i) = (φy(t)± gy(t))

√
n. To do so, plugging (4.2) and (4.3) into (4.1) gives

Yuv(i) = −
i−1∑
j=0

E[Y −
uv(j + 1) | Gj ] +

i−1∑
j=0

E[Y +
uv(j + 1) | Gj ]−Muv(i) +Nuv(i)

= −
i−1∑
j=0

2(φy(s)
2 ± 5gy(s)φy(s))n

−1 +

i−1∑
j=0

4(φx(s)± 2gx(s))n
−1 ± 2n1/2−4ε.

Normalizing by
√
n and converting the sums into integrals, we get

Yuv(i)√
n

= −
i−1∑
j=0

(φy(s)± 5gy(s)φy(s)) · 2n−3/2 +
i−1∑
j=0

2(φx(s)± 2gx(s)) · 2n−3/2 ± 2n−4ε

= −
∫ t

0
(φy(s)± 5gy(s)φy(s)) ds+

∫ t

0
2(φx(s)± 2gx(s)) ds± 3n−4ε.

The main terms match because (1.4) means that

φy(t) = −
∫ t

0
φy(s)

2 ds+

∫ t

0
2φx(s) ds,

and for the error terms, Fact 4.6 gives that∫ t

0
5gy(s)φy(s) ds+

∫ t

0
4gx(s) ds ≤

1

3
gy(t)

(and n−4ε ≪ gy(t) as well). So this shows

Yuv(i) = (φy(t)± gy(t))
√
n,

which concludes the portion of the argument corresponding to Yuv(i).

§4.3.3 Property 4.3: Tracking Zuv(i)

Finally, we’ll run the portion of the argument corresponding to Zuv(i). For this, we could use martingale
concentration again if we wanted to, but it’s not necessary. As a simpler argument, for each uv, we have
that Zuv(i) increases by at most 1 every step, and it increases by 1 only if we choose the one open edge of
a configuration in Yuv(i). By Property 4.2, as long as Bi doesn’t occur, there are at most

√
n such edges.

This shows that off the event Bi, conditioned on Gi we have

Zuv(i+ 1)− Zuv(i) ∼ Ber(p) for some p ≤ 2n−3/2.

This means Zuv(i) · 1Bi−1 is stochastically dominated by a sum Suv(i) of i independent Ber(2n
−3/2) random

variables. And we’re running up to i ≤ n3/2+c, so E[Suv(i)] ≤ 2nc, and since c is small relative to ε, we get
that Suv(i) ≤ nε with very high probability (and therefore the same is true of Zuv(i) · 1Bi−1).
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