
Approximation Algorithms for Prize-Collecting Steiner Tree

Sanjana Das

December 2024

§1 Introduction

In the Steiner tree problem, we’re given a weighted graph and a subset of vertices designated as terminals;
we want to find the minimum-weight tree that contains all terminals. This problem is NP-hard, so our goal
is to get good approximation algorithms for it. There’s a classic 2-approximation algorithm by [6]. Since
then, the approximation factor has seen a number of improvements; most recently, in 2010 [3] obtained a
(ln(4) + ε)-approximation for arbitrary ε > 0, using a LP relaxation and randomized rounding.

The prize-collecting Steiner tree problem (PCST) is a generalization where instead of having some vertices
we’re required to include and others we don’t care about, we have one special vertex (the root) which we’re
required to include, and every other vertex has a penalty ; we can either include it or pay its penalty.

We can think of the ordinary Steiner tree problem as a special case of PCST where terminals have penalty
∞, and non-terminals have penalty 0. But the additional flexibility in PCST (compared to ordinary Steiner
tree) can be useful for modelling real-life situations. For example, [5] studied PCST in relation to the real-life
problem of access network design: we have a street map and various buildings, and we’d like to create a
network — by laying cable across streets — that provides Internet to some (but not necessarily all) of the
buildings. We can model this by PCST, where the penalty associated to each building corresponds to how
profitable it would be to connect that building to the network.

In 1995, [4] found a 2-approximation algorithm for PCST. But unlike with the ordinary Steiner tree problem,
for a long time this was the best we could do. Finally, [2] broke this barrier in 2011 by finding a 1.97-
approximation; then in 2024, [1] substantially improved the approximation ratio to 1.79.

In this paper, we’ll first explain the algorithm of [4]. We’ll then explain the ideas of [2] that allow us to get
some improvement over 2, and the ideas of [1] that allow us to get a more sizeable improvement.

To fix some notation, we’ll use G = (V,E) to denote the input graph, r to denote the root vertex, w(e) to
denote the weight of an edge e, and π(v) to denote the penalty associated to a vertex v; all weights and
penalties are nonnegative. For any algorithm A, we use TA to denote the tree it produces, Incl(A) to denote
the set of non-root vertices that A includes in its tree, and Excl(A) to denote the set of vertices A excludes;
so its total cost is

cost(A) = w(TA) + π(Excl(A))

(where for a set of vertices S ⊆ V , we write π(S) to mean
∑

v∈S π(v)).

There’s also one definition that will be useful in the analyses: for a set S ⊆ V , we say S cuts an edge e if e
has one endpoint in S and the other outside S; we define the boundary of S, denoted ∂S, as the set of edges
S cuts. In other words, ∂S = {uv ∈ E | u ∈ S, v 6∈ S}.

§2 A 2-approximation for PCST

In this section, we’ll describe the 2-approximation algorithm of [4].

Page 1 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

§2.1 A starting point — the 2-approximation for Steiner tree

For motivation, we’ll start by considering the classic 2-approximation for the ordinary Steiner tree problem.
In this algorithm, we compute the shortest path between every pair of terminals, build a graph on just the
terminals with these shortest path distances as edge weights, and take its minimum spanning tree.

It’ll be useful to think of this algorithm as a dynamic process that looks at the original graph and in effect
runs Kruskal’s algorithm on the new graph: This process will gradually build up a forest F , which starts
out empty and eventually becomes a tree. At any snapshot in time, we say a connected component of F is
active if it contains a terminal, and inactive otherwise. Each active component S simultaneously ‘paints’
all the edges on its boundary at a constant rate (where we think of w(e) as the length of the edge e — so if
e is being painted by one component, then it’ll take w(e) time to be fully painted).

Figure 1: If we start with the situation on the top — where F consists of the black edges, the blue and purple sets
represent active components, and the shading on the edges represents parts which have already been painted
— then after a short time we’ll get the situation on the bottom.

When an edge between two components (either active or inactive) becomes fully painted, we add it to F ,
merging these components. Note that F always remains a forest, since we only ever add edges between
different components. We let this process run until F spans all terminals (meaning there’s only one active
component).

For the most part, this process directly implements Kruskal’s minimum spanning tree algorithm — for any
path between two terminals, the time it would take for the path to be fully painted is half its weight (the
factor of half is because it’s being painted from both ends), so we’re adding the same paths between terminals
that Kruskal’s algorithm would. However, this process also might introduce a bunch of extraneous edges
that aren’t on paths between terminals. To fix this, we have a pruning step where we repeatedly remove all
leaves which are non-terminals. After pruning, all the non-terminals left in the tree really are part of one of
the shortest paths between terminals chosen by Kruskal’s algorithm; so this accurately captures the classic
2-approximation algorithm.

Page 2 of 16

Sanjana Das (December 2024) Approximation Algorithms for Prize-Collecting Steiner Tree

Figure 2: If we start with the tree on the left, with terminals highlighted in purple and non-terminals in gray, then
pruning will result in the tree on the right.

§2.2 Incorporating the penalties

To turn this into an algorithm for PCST, we need a way to incorporate the penalties. The intuition is that
the amount of time a set spends painting roughly corresponds to how much it costs us to include it in the
tree. So if a set spends a long time painting compared to the penalties of its vertices, then it’s better to give
up on trying to include it, and just pay these penalties instead.

To formalize this, instead of thinking of painting as being done by the component themselves, we’ll think
of it as being done by a vertex in that set — so at any time, for each active component S, there will be a
representative vertex v ∈ S painting all the edges in ∂S. We’ll say that the component containing the root
r always has representative r. For the other components, it doesn’t matter who their representative is; we
can choose arbitrarily (among the vertices which are ‘allowed’ to be painting — we’ll elaborate on what this
means shortly).

We also initialize each vertex v 6= r with a painting potential equal to its penalty π(v), and r with painting
potential ∞. This represents the total amount of time it’s allowed to spend painting — only vertices which
still have leftover potential are allowed to be the representative of their set. If an active component S runs
out of painting potential, meaning that all its vertices have completely used up their potential, then we
inactivate it, and it stops painting its boundary.

With this modification, the growth phase of the process works in nearly the same way as before — when
an edge becomes fully painted, we add it to F and merge its two components. (We say the new component
is active, since at least one of the two original components must have been active.) We start with F being
the empty forest, and run until it becomes a tree spanning all vertices.

To describe the pruning phase, we say a set S ⊆ V is a dead set if there’s any time during the process at
which it’s a component that gets inactivated. Intuitively, dead sets are the generalization of non-terminals
from before — they’re things that we’ve given up on including in our tree. So in the pruning phase, we
simply prune out all the dead sets that we can — if there’s any dead set such that deleting its vertices from
our tree wouldn’t disconnect the tree, then we do so (repeatedly, until there are no such dead sets left). (See
Figure 3 for an illustration.)

This provides an algorithm for PCST, called the Goemans–Williamson algorithm (which we’ll denote by
GW). We’ll now show that this is a 2-approximation, meaning that cost(GW) ≤ 2 · cost(OPT).

§2.3 The analysis

For the analysis, we’ll need a bit more notation: for every vertex v ∈ V , we use t(v) to denote the total time
it spends painting. For a set of vertices S ⊆ V , we write t(S) =

∑
v∈S t(v). We say v is dead if it is in any

dead set, and alive otherwise. We must have t(v) ≤ π(v) for all v, and equality holds for all dead vertices
(since dead vertices must have used up all their painting potential).

We’ll first upper-bound the cost of GW; we’ll start by considering its tree weight.

Page 3 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

Figure 3: If we start with the tree on the left, with dead sets drawn in purple and blue, then we’ll end up deleting the
blue dead sets but not the purple ones (as shown on the right) — deleting the purple ones would disconnect
the tree.

Lemma 2.1

We have w(TGW) ≤ 2 · t(Incl(GW)) — in words, the weight of TGW is at most twice the total painting
time of all non-root vertices that GW includes.

Proof. First, every edge e ∈ TGW receives w(e) units of paint, since we only add edges to our forest F when
they’ve been fully painted. This means the amount of paint placed on TGW is exactly w(TGW); so in order
to upper-bound w(TGW), it suffices to upper-bound the total amount of paint that gets placed on TGW. For
this, we’ll use the following claim.

Claim 2.2 — At every time during the process, the rate at which TGW is being painted is at most twice
the number of vertices v ∈ Incl(GW) which are currently painting.

(When we say v is ‘currently painting,’ we mean it’s currently the representative of its component. The
‘rate’ at which TGW is being painted is the number of vertex-edge pairs (v, e) with e ∈ TGW such that v is
currently painting e.)

Proof. Let A and I be the set of active and inactive components which intersect TGW, respectively (note
that TGW is fixed — it’s the final tree the process ends up with — but A and I depend on the moment
in time we’re considering). Then the edges of TGW form a tree structure on these components — this is
because TGW is formed by adding more edges to our current forest, which links up its components in a tree
structure, and then pruning, which doesn’t affect this tree structure. (The pruning step might delete some
of our current components entirely, but such components wouldn’t be in A or I.)

And for every active component S, the number of edges in TGW that it’s painting is precisely its degree
in this tree structure, which we denote by deg(S). This means the rate at which TGW is being painted is
precisely

∑
S∈A deg(S). (See Figure 4.)

Now we need to lower-bound the number of vertices v ∈ Incl(GW) which are currently painting. For this,
we claim that for every component S ∈ A other than the one containing r, its representative is in Incl(GW).
Assume this is not the case, i.e., for some S ∈ A, its current representative v doesn’t get included in TGW.
This means v must get pruned out during the pruning step, so at the end of the process, it must belong to a
dead set S′ that gets pruned out. But at the current moment in time, since v is currently painting, it hasn’t
died yet; and since components only expand as the process goes on, this means S′ ⊇ S (since S′ is the set
it’s in when it dies, which occurs at some point after the current moment). So when S′ gets pruned out of
the tree at the end of the process, so does S. This is a contradiction, because we assumed that S intersects
TGW (in the definition of A).

Page 4 of 16

Sanjana Das (December 2024) Approximation Algorithms for Prize-Collecting Steiner Tree

Figure 4: A possible snapshot in time, where the purple components form I, the blue components form A, and the
edges of TGW between components are shown in black. Every blue component S is currently painting the
black edges incident to it (as shown in green).

This means the number of vertices v ∈ Incl(GW) which are currently painting is |A| − 1 (since we have one
such vertex for every component in A except the one containing r). This means our goal is to show that∑

S∈A
deg(S) ≤ 2(|A| − 1).

For this, first note that since we’ve got a tree structure on A ∪ I (which has |A|+ |I| − 1 edges), we have∑
S∈A∪I

deg(S) = 2(|A|+ |I| − 1). (2.1)

Furthermore, no S ∈ I can be a leaf in the tree structure — this is because any such S is a dead set, and if
S is a leaf in the tree structure then we can delete it without disconnecting TGW, so we would have pruned
it out in the pruning step (at the end of the process), contradicting the assumption that it intersects TGW.

This means deg(S) ≥ 2 for every S ∈ I, so the total contribution of such sets to the left-hand side of (2.1)
is at least 2 |I|. Removing this contribution, we get that

∑
S∈A deg(S) ≤ 2(|A| − 1), as desired.

So we’ve shown that at any time, the rate at which TGW is being painted is at most twice the number of
vertices v ∈ Incl(GW) which are currently painting. Accumulating this over all moments in time, we get
that the total amount of paint that ends up on TGW is at most twice the total painting time of all vertices
v ∈ Incl(GW). And since this total amount of paint is w(TGW), we get w(TGW) ≤ 2 · t(Incl(GW)).

Lemma 2.1 deals with the tree weight of GW; now we’ll deal with its penalty.

Claim 2.3 — We have π(Excl(GW)) = t(Excl(GW)) — in words, the total penalty GW pays, for all the
vertices it excludes, is exactly the total painting time of those vertices.

Proof. Every vertex that GW excludes is dead (since we only prune out dead sets), which means π(v) = t(v)
for all such vertices.

Putting these together, we get

cost(GW) ≤ 2 · t(Incl(GW)) + 1 · t(Excl(GW)) ≤ 2 · t(V \ {r}) (2.2)

(where Incl(GW) accounts for the tree weight and Excl(GW) accounts for the penalty, and these two sets
partition V \ {r}).

Now we’ll try to prove a corresponding lower bound on OPT. Again, we’ll start with its tree weight.

Page 5 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

Lemma 2.4

We have w(TOPT) ≥ t(Incl(OPT)) — in words, the weight of TOPT is at least the total painting time of
all non-root vertices that it includes.

Proof. First, we claim that whenever a vertex v ∈ Incl(OPT) is painting, it’s painting at least one edge of
TOPT. To see this, suppose that v is currently the representative of some component S. Then S contains
v but not r (if S contained r, then r would be its representative instead). And since both v and r are in
TOPT, this means S must cut at least one edge of TOPT; then v is painting that edge.

r

v

Figure 5: If TOPT is as shown in black and S is as shown in blue, then S cuts the edge of TOPT highlighted in purple,
so v is painting it.

So the total amount of paint ending up on TOPT is at least the total amount of time vertices v ∈ Incl(OPT)
spend painting, i.e., t(Incl(OPT)). But every edge is painted at most once, so this total amount of paint is
at most w(TOPT), giving the desired bound.

Next, we’ll deal with OPT’s penalty.

Claim 2.5 — We have π(Excl(OPT)) ≥ t(Excl(OPT)).

Proof. For every vertex v, we have t(v) ≤ π(v) by definition.

Putting these together, we get

cost(OPT) ≥ t(Incl(OPT)) + t(Excl(OPT)) = t(V \ {r}) (2.3)

(similarly to (2.2), vertices that get included account for the tree cost, and vertices that don’t get included
account for their own penalties). Combining this with (2.2), we get

cost(GW) ≤ 2 · t(V \ {r}) ≤ 2 · cost(OPT),

showing that GW is a 2-approximation.

§3 A first improvement

In this section, we’ll explain the ideas of [2] used to break the barrier of 2. When describing the approach,
we’ll imagine that we’re trying to end up with a (2− δ)-approximation for some δ > 0, and we’ll compute
what value of δ we end up with in the end.

Page 6 of 16

Sanjana Das (December 2024) Approximation Algorithms for Prize-Collecting Steiner Tree

§3.1 The high-penalty case

The first idea for how to improve over GW is that (2.2) is a bit lossy. There, we showed that w(TGW) ≤
2 · t(Incl(GW)) and π(Excl(GW)) = t(Excl(GW)), and put these together to get cost(GW) ≤ 2 · t(V \ {r}).
But we only need the factor of 2 in our bound on tree weights, not penalties; this means we can actually say

cost(GW) ≤ 2 · t(V \ {r})− π(Excl(GW)).

In particular, if π(Excl(GW)) is a substantial fraction of cost(GW) (in words, a substantial portion of our
cost comes from penalties), then GW already gets an approximation ratio better than 2. So it suffices to
figure out how to beat 2 in the case where only a tiny fraction of our cost comes from penalties.

Unfortunately, this assumption doesn’t turn out to be particularly helpful. But a slight modification of it
does — it turns out that it is helpful if we can make this assumption about OPT instead (i.e., assume that
only a tiny fraction of OPT’s cost comes from penalties), as we’ll see in the following subsection.

In order to modify the above argument so that it lets us assume that OPT’s penalty is small (rather than
our own penalty), we’ll define a version of GW with scaled potentials: for any parameter γ > 0, we define
GW[γ] as the algorithm which works in the same way as GW, except that it initializes each vertex with
painting potential γ−1π(v) rather than π(v).

This scaling doesn’t affect our analysis of tree weights — in particular, Lemmas 2.1 and 2.4 (regarding
w(TGW) and w(TOPT), respectively) remain true as written. Meanwhile, when we’re dealing with penalties,
we now have π(v) ≥ γ · t(v) for all vertices v, and equality holds for all dead vertices. This means Claim 2.3
now becomes

π(Excl(GW[2])) = γ · t(Excl(GW[2])), (3.1)

while Claim 2.5 becomes

π(Excl(OPT)) ≥ γ · t(Excl(OPT)). (3.2)

Then it turns out that setting γ = 2 gives us a good approximation when OPT’s penalty is a substantial
fraction of its cost, as stated in the following lemma. (The point is essentially that setting γ = 2 fixes the
loss in (2.2) that motivated this subsection, but in a more useful way than our first attempt.)

Lemma 3.1

If π(Excl(OPT)) ≥ δ · cost(OPT), then GW[2] achieves a (2− δ)-approximation.

Proof. Combining Lemma 2.1 with (3.1) gives

cost(GW[2]) ≤ 2 · t(Incl(GW[2])) + 2 · t(Excl(GW[2])) = 2t(V \ {r}).

We’re roughly trying to compare this with 2 · cost(OPT). For this, we have

2 · cost(OPT) = 2 · w(TOPT) + 2 · π(OPT).

If we apply Lemma 2.4 to replace 2 · w(TOPT) with 2 · t(Incl(OPT)), and use (3.2) to replace one of the two
π(OPT) terms with 2 · t(Excl(OPT)) (but leave the second one as it is), we get

2 · cost(OPT) ≥ 2 · t(V \ {r}) + π(Excl(OPT)),

and combining this with our upper bound on cost(GW[2]) gives

cost(GW[2]) ≤ 2 · cost(OPT)− π(Excl(OPT)) ≤ (2− δ) · cost(OPT).

Page 7 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

This means it suffices to figure out how to get a good approximatio in the case where OPT’s penalty is at
most a tiny fraction of its total cost. (When we’re actually running the algorithm, we won’t know whether
we’re in the high-penalty or low-penalty case, because we don’t know OPT. But we don’t need to — we’ll
simply run both GW[2] and the algorithm for the low-penalty case, and take whichever of the two outputs
is better.)

§3.2 The low-penalty case

Now we suppose that OPT’s penalty is a tiny fraction of its cost (specifically, π(Excl(OPT)) ≤ δ · cost(OPT)
— we can assume δ is as small as we want, and this will dictate the improvement over 2 we end up with).
Then GW[2] isn’t guaranteed to get an approximation ratio substantially better than 2, so we need a different
candidate solution.

The idea is to make use of the fact that we have better-than-2-approximations for the ordinary Steiner tree
problem. We’ll use such an approximation algorithm as a black box, and we’ll let ρ denote its approximation
ratio. This approach will work with any ρ < 2, with better values of ρ giving better bounds. The best ratio
we currently have is essentially ln(4) ≈ 1.39, due to [3], so we’ll set ρ = 1.4 in the final computations.

So we’d like to find a ‘good’ set of vertices to designate as terminals, give up on trying to include the
non-terminals (and pay their penalties instead), and find a good Steiner tree on the terminals; we’ll call this
candidate solution ST.

For a set of terminals to be ‘good,’ we want it to satisfy two properties:

(1) The total penalty of all the non-terminals should be small.

(2) The weight of the optimal Steiner tree on the terminals isn’t much more than w(TOPT).

If we can attain these two goals, then we’ll win. To see why, for concreteness, suppose that the total penalty
of all non-terminals is at most 0.1 · cost(OPT), the weight of the optimal Steiner tree on the terminals is at
most 1.1 · w(TOPT), and we have a 1.4-approximation for ordinary Steiner tree. Then ST pays a penalty of
at most 0.1 · cost(OPT). Meanwhile, its tree is at most a 1.4-factor off from the optimal Steiner tree on the
terminals, which means

w(TST) ≤ 1.4 · 1.1 · w(TOPT) ≤ 1.4 · 1.1 · cost(OPT).

Together, cost(ST) ≤ (1.4 · 1.1 + 0.1) · cost(OPT), and we’re happy because 1.4 · 1.1 + 0.1 < 2.

So it remains to figure out how to find a good set of terminals. For this, the idea is to run GW[γ] for a very
small scaling parameter γ, and take its live and dead vertices as terminals and non-terminals. Why is this
a reasonable thing to do? In GW[γ], we’re giving each vertex painting potential γ−1π(v); if γ is small, then
γ−1 is huge. And dead vertices run out of potential, so we’d expect their penalties π(v) to be small; so this
choice makes sense from the perspective of (1).

Now we’ll show that this actually works. We’ll use Live and Dead to denote the sets of live and dead vertices
under GW[γ] (and t(v) to denote the total painting time of v under GW[γ]).

First we’ll show that (1) holds — i.e., that the total penalty of dead vertices is small.

Lemma 3.2

We have π(Dead) ≤ γ · w(TOPT) + π(Excl(OPT)).

Note that we’re working with the case where OPT’s penalty is low (at most a δ-fraction of its cost), so the
right-hand side is at most (γ + δ) · cost(OPT); so as long as γ and δ are both small, we do get (1).

Page 8 of 16

Sanjana Das (December 2024) Approximation Algorithms for Prize-Collecting Steiner Tree

Proof. Split the dead vertices into two sets based on whether OPT uses them or not — i.e., let

X = Dead ∩ Incl(OPT) and Y = Dead ∩ Excl(OPT),

so that π(Dead) = π(X) + π(Y).

For the latter, we have π(Y) ≤ π(Excl(OPT)). For the former, we have π(X) = γ · t(X) (since all v ∈ X are
dead, so π(v) = γ · t(v)). Meanwhile, Lemma 2.4 lower-bounds the weight of TOPT in terms of the painting
times of the vertices OPT includes, giving

w(TOPT) ≥ t(Incl(OPT)) ≥ t(X).

Putting these together, we get π(X) ≤ γ · w(TOPT), as desired.

Next we’ll show (2) — i.e., that the best Steiner tree on the live vertices isn’t much worse than TOPT.

Lemma 3.3

There is a tree T containing all vertices in Live such that

w(T) ≤ w(TOPT) + 2γ−1 · π(Excl(OPT)).

Again, we’re working with the case where OPT’s penalty is low, so the second term is at most 2γ−1δ ·
cost(OPT), which we can make small by taking δ � γ. So this does achieve (2).

Proof. We’ll ‘construct’ T in the following way: imagine that we run GW[γ], except that instead of starting
with the empty forest, we start with TOPT.

r r

Figure 6: The original and modified processes at the beginning (on the left and right, respectively), with TOPT shown
in purple.

More explicitly, at the beginning of the process, we have one component consisting of TOPT (this is the
root’s component), and every other vertex is in its own component. Other than this, the process works the
same way as before — active components paint their boundaries, we add edges to our forest when they get
fully painted and inactivate components when they run out of painting potential, and in the end we get a
spanning tree, which we prune to obtain T . We’ll use t′(v) to refer to the painting time of a vertex v in this
modified process.

Then for every vertex v, its ‘experience’ in the modified process is the exact same as its experience in the
original process until it comes into contact with the root’s component; and this happens at least as early as

Page 9 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

r r

Figure 7: The original and modified processes after several steps, with TOPT in purple (on the right), the additional
edges added to our forest in black, active components in blue, and inactive components in gray. All compo-
nents on the right other than the one containing r are the same as their counterparts on the left.

it did in the original. (This is because the configuration at the beginning of the process is the same as the
original except that we’ve enlarged the root’s component, and this will remain true throughout the process.)

Also, once v comes into contact with the root’s component, it stops painting (since r always represents its
own component). In particular, if it hasn’t died yet, then it never will. This means all live vertices for
the original process are also live for the modified one. And since the final pruning step can only prune out
vertices which are dead for the modified process, it won’t prune out any vertices in Live (the vertices which
were live for the original process); so T indeed contains all vertices in Live.

To bound w(T), applying Lemma 2.1 (which upper-bounds the weight of the tree produced by GW, or more
generally GW[γ]) to the modified process gives that

w(T) ≤ w(TOPT) + 2 · t′(V \ {r}).

(The term of w(TOPT) is because we’re starting with TOPT; the term of 2 · t′(V \ {r}) comes from bounding
the weight of the additional edges that get added, in the same manner as Lemma 2.1. Lemma 2.1 actually
lets us refine V \ {r} to only the non-root vertices that end up in T , but we don’t need this refinement.)

Finally, we have t′(v) ≤ t(v) for all v (since v has the same experience until it comes into contact with the
root’s component, at which point it stops painting); and t′(v) = 0 for all v ∈ Incl(OPT) (since these vertices
are in the root’s component to begin with). Plugging this into t′(V \ {r}) in the above bound gives

w(T) ≤ w(TOPT) + 2 · t(Excl(OPT)).

And since t(v) ≤ γ−1 · π(v) for all v, we have t(Excl(OPT)) ≤ γ−1 · π(Excl(OPT)), completing the proof.

So we’ve shown that setting Live and Dead as terminals and non-terminals satisfies the two properties (1)
and (2) that we wanted — Dead has low penalties, and the best Steiner tree on Live isn’t too much worse
than TOPT. This means for an appropriate choice of parameters, ST really is a better-than-2-approximation.

§3.3 Calculating the approximation ratio

To finish, we’ll give a loose estimate on what value of δ we end up with (i.e., how much we can beat 2 by).
First, the bound on penalties we get from Lemma 3.2 is

π(Excl(ST)) ≤ (γ + δ) · cost(OPT).

Page 10 of 16

Sanjana Das (December 2024) Approximation Algorithms for Prize-Collecting Steiner Tree

Meanwhile, the bound on tree weight we get from Lemma 3.3 is

w(TST) ≤ ρ(1 + 2γ−1δ) · cost(OPT)

(since the optimal Steiner tree on Live has weight at most (1 + 2γ−1δ) · cost(OPT), and our approximation
algorithm for Steiner tree is at most a factor of ρ off). Putting these together, we get a bound of

cost(ST) ≤ (ρ(1 + 2γ−1δ) + γ + δ) · cost(OPT),

so we successfully get a (2− δ)-approximation as long as

ρ(1 + 2γ−1δ) + γ + δ ≤ 2− δ.

For this to hold, we want γ and 2γ−1δ to both be small. With ρ = 1.4, taking γ = 0.1 and δ = 0.01 works;
so this gives a 1.99-approximation. By doing computations more carefully, [2] shows this actually gives a
1.97-approximation. But the point is that we’ve broken the barrier of 2, but by a tiny amount.

§4 A more sizeable improvement

In this section, we’ll explain the ideas of [1] that get a more substantial improvement over 2. As in the
previous section, we’ll imagine that we’re trying to obtain a (2 − δ)-approximation for some δ, and only
compute δ in the end; but this time, we’ll hope δ is less tiny than before. (They obtain a ratio of 1.79; we’ll
present a slightly modified version of their algorithm where the computations are more intuitive, which ends
up with 1.84.)

§4.1 Motivation and overview

We’re still going to use the high-level framework of [2] where we split into a high-penalty case (where OPT’s
cost is at least a δ-fraction of its penalty, in which case GW[2] is a good approximation) and a low-penalty
case (where OPT’s cost is at most a δ-fraction of its penalty), but this time, we want our low-penalty case
to be able to handle less tiny values of δ.

For motivation, let’s think about why the low-penalty case of [2] forced δ to be tiny. There, we got our
solution by running GW[γ] to partition the vertices into Live and Dead, giving up on trying to include the
vertices in Dead (instead paying their penalties), and finding a good Steiner tree on Live. We showed that:

(1) The penalty π(Dead) is small, so paying it doesn’t hurt us too much. This came from Lemma 3.2, and
required γ to be small.

(2) The optimal Steiner tree on Live isn’t much worse than TOPT, so the one that our algorithm found
isn’t much worse than a ρ-factor off TOPT. This came from Lemma 3.3, and required γ−1δ to be small.

Combining these gave that our solution isn’t much worse than a ρ-factor off OPT; in particular, it beats 2
fairly substantially. But the bottleneck was that for this to work, we need both γ and γ−1δ to be moderately
small, and that forces δ to be really small.

The idea of [1] is to give up on (1) — we’ll use the same approach to get a candidate solution ST, but
instead of taking γ to be small, we’ll take γ = 1. In other words, we’ll run GW with no scaling, let Live
and Dead be the sets of live and dead vertices it produces, and obtain a candidate solution ST by running
a ρ-approximation algorithm for ordinary Steiner tree on Live.

Then making (2) work — i.e., making sure the optimal Steiner tree on Live isn’t much worse than TOPT,
so w(TST) isn’t much worse than a ρ-factor off — only requires δ to be moderately small, which is great.
And it’s still true that ST is a good solution when π(Dead) is small (we can no longer say that (1) is always

Page 11 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

true, but when it is true, ST is a good solution for the same reason as before). But we need new candidate
solutions to handle the case where π(Dead) is substantial.

The main idea of [1] is to imagine we pay the penalties of all the dead vertices, and consider the reduced
problem where we set these penalties to 0. We run our algorithm recursively on this reduced problem, and
this gives us a third candidate solution IT.

This might seem counterintuitive — if π(Dead) is large, why would it be a good idea to pay it? But the main
insight is that we might hope that moving from the original to the reduced problem substantially improves
the value of the optimal solution. Before we get to why we might expect this, let’s see why this would make
us happy. Suppose we can guarantee a decrease of ∆, so the new optimum is at most cost(OPT)−∆. When
we’re trying to prove that our algorithm is a (2 − δ)-approximation, we can inductively assume that it’s a
(2− δ)-approximation on the reduced problem; this means it’ll return a solution whose cost in the reduced
problem is at most (2− δ)(cost(OPT)−∆), and therefore whose cost in the actual problem (where we pay
the penalties of the dead vertices) is at most

(2− δ) cost(OPT)− (2− δ)∆ + π(Dead).

So if we can guarantee a decrease of ∆ = 1
2−δ · π(Dead), then IT will really be a (2 − δ)-approximation.

For some intuition, the maximum decrease we could possibly hope for is π(Dead) (we’re decreasing the
total penalties by π(Dead), so we can’t possibly decrease the optimum value by more than that); and this
argument shows that as long as we can guarantee a decrease somewhat close to this, we’ll win.

Now, why might we expect that when π(Dead) is large, moving to the reduced problem substantially improves
the optimum? The main idea is that π(Dead) = t(Dead) (since every dead vertex v runs out of potential,
meaning π(v) = t(v)), so if π(Dead) is large, then dead vertices spend a long time painting; and intuitively,
this means they ‘account’ for a large portion of the weight of TOPT. (We’ll formalize what this means in the
analysis.) And when we move to the reduced problem, now that we’ve set their penalties to 0, we can try to
improve OPT by pruning out dead vertices; and we might hope this substantially decreases its tree weight.

However, this isn’t exactly true — it’s possible that TOPT has lots of dead vertices which account for lots
of its weight, but they’re embedded somewhere in the center of the tree where they can’t be pruned out.
But it turns out that in this case, we can actually improve the bound in Lemma 2.4, our lower bound on
w(TOPT). (Roughly, the way we obtained this lower bound originally was by saying that for every vertex
v that ends up in TOPT, whenever v is painting, it’s painting at least one edge of TOPT; this bad case will
correspond to vertices that are painting at least two edges of TOPT, which will improve the bound.) Using
this improvement, we can conclude that GW itself is a good approximation (i.e., its ratio is substantially
better than 2). So we win in this case as well.

§4.2 The analysis

To summarize the previous subsection, our final algorithm works as follows:

• Run GW[2]; this gives one candidate solution, which we denote by GW[2].

• Run GW; this gives a second candidate solution, which we denote by GW, as well as a partition of the
vertices into two sets Live and Dead.

• Run a ρ-approximation algorithm for ordinary Steiner tree on the live vertices; this gives a third
candidate solution ST.

• Consider the reduced problem where we modify all the penalties of dead vertices to 0, and run our
algorithm recursively on this reduced problem; this gives a fourth candidate solution IT. (If all dead
vertices already had penalty 0, then we skip this step.)

Page 12 of 16

Sanjana Das (December 2024) Approximation Algorithms for Prize-Collecting Steiner Tree

Our goal is to show that in all cases, one of these four candidates is a (2 − δ)-approximation (for some
hopefully not too small δ that we’ll compute in the end).

First, we’ve seen that GW[2] is good when OPT’s penalty is large, and that ST is good when OPT’s penalty
is small and π(Dead) (the penalty of the dead vertices) is also small. So it suffices to consider the case where
π(Dead) is large; and in this case, we’ll show that either GW or IT is good.

For the analysis, we partition the dead vertices X and Y into two sets, depending on whether OPT includes
them or not — i.e., we define

X = Dead ∩ Incl(OPT) and Y = Dead ∩ Excl(OPT).

We say a set S ⊆ V is a single-cut set if S cuts TOPT in exactly one edge, and a multi-cut set if S cuts TOPT

in at least two edges.

rr

Figure 8: A single-cut set on the left, and a multi-cut set on the right (where only the edges and vertices of TOPT are
shown, and the cut edges are in purple).

We’ll split t(X) (the total time all vertices v ∈ X spend painting under GW) into two parts: we define t1(X)
as the total time vertices v ∈ X spend painting as the representative of a single-cut set, and t2(X) as the
total time they spend painting as the representative of a multi-cut set. Note that for any v ∈ Incl(OPT),
whenever v is painting as the representative of some set S, this set has to cut TOPT in at least one edge (we
used this in the proof of Lemma 2.4; it’s true because S contains v but can’t contain r, and both are in
TOPT), meaning it’s either a single-cut or multi-cut set; so t(X) = t1(X) + t2(X).

We’re trying to handle the case where t(Dead) = t1(X) + t2(X) + t(Y) is large. We’ll show that when t2(X)
is large, GW is good (this corresponds to the last case discussed in the previous subsection), while when
t1(X) + t(Y) is large, IT is good (this corresponds to the second-last case discussed there).

First we’ll consider the case where t2(X) is large. The main idea is that we can improve the lower bound
on w(TOPT) from Lemma 2.4 (by adding an extra term of t2(X) to it).

Claim 4.1 — We have w(TOPT) ≥ t(Incl(OPT)) + t2(X).

Proof. As mentioned above, whenever any vertex v ∈ Incl(OPT) is painting, it’s painting at least one edge
in TOPT; and t2(X) captures the time when vertices are painting at least two edges in TOPT. So the total
amount of paint that gets placed on TOPT is at least t(Incl(OPT)) + t2(X). Meanwhile, this total amount of
paint is at most w(TOPT), because each edge gets painted at most once.

The original bound of Lemma 2.4 implied that GW was a 2-approximation; using this improved bound, we
can show that it does substantially better when t2(X) is large.

Claim 4.2 — If t2(X) ≥ 1
2δ · cost(OPT), then GW is a (2− δ)-approximation.

Page 13 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

Proof. In our original analysis of GW, we saw that cost(GW) ≤ 2 · t(V \ {r}). Meanwhile, we have

t(Incl(OPT)) ≤ w(TOPT)− t2(X) and t(Excl(OPT)) ≤ π(Excl(OPT))

(the first statement is Claim 4.1, and the second is the fact that t(v) ≤ π(v) for all v), and adding these
together gives t(V \ {r}) ≤ cost(OPT)− t2(X). So

cost(GW) ≤ 2 · cost(OPT)− 2 · t2(X) ≤ (2− δ) · cost(OPT).

So we’ve handled the case where t2(X) is large; all that’s left is the case where t1(X) + t(Y) is large and
t2(X) is small. In this case, we want to show that IT — the solution obtained by paying the penalties of
all the dead vertices, setting their penalties to 0, and running our algorithm recursively on the resulting
problem (which we call the reduced problem). And the key insight is that in this case, the optimum value
substantially drops when we move from the original to the reduced problem.

Lemma 4.3

The optimum value for the reduced problem is at most cost(OPT)− t1(X)− t(Y).

We saw in the previous subsection that if we could get our drop to be at least a 1
2−δ -fraction of π(Dead),

we’d be happy (i.e., we could guarantee IT is a (2 − δ)-approximation). When t1(X) + t(Y) is large and
t2(X) is small, then this bound accomplishes that — our drop is t1(X) + t(Y), while

π(Dead) = t1(X) + t2(X) + t(Y).

Proof. First, the penalty of OPT itself drops by t(Y) when we move from the original to the reduced problem,
simply because OPT was originally paying penalties for all the vertices in Y , and we’ve now zeroed out those
penalties. Now imagine that we take OPT, and obtain a new tree T ′OPT by repeatedly pruning out dead
vertices — we delete any dead vertices at leaves of TOPT repeatedly, until there are none left.

r r

Figure 9: If we start with TOPT as shown on the left (with dead vertices circled), we’ll end up pruning out the blue
dead vertices but not the purple ones (pruning the purple ones would disconnect the tree), giving the tree
on the right.

Our goal is to show that the weight of the edges that get pruned out is at least t1(X); we’ll do this by
showing the total amount of paint on those edges is at least t1(X).

Claim 4.4 — At any moment, if a vertex v ∈ X is painting as a representative of a single-cut set S,
then the edge of TOPT that it’s painting gets pruned out.

Proof. First, since v is in X, it eventually dies during the process. But since it’s currently painting, it hasn’t
died yet. So this means it dies at some point in the future. Let S′ be the component it belongs to when it
dies; since components can only grow with time, S′ must contain S.

Page 14 of 16

Sanjana Das (December 2024) Approximation Algorithms for Prize-Collecting Steiner Tree

r

v

Figure 10: Here S (the single-cut set v is currently painting for) is shown in purple, and S′ (the set v is in when it
dies) is shown in blue; we have S′ ⊇ S. The edge of TOPT that v is painting is drawn in purple.

But when S′ dies, all the vertices inside it die (unless they were already dead); and since S′ ⊇ S, this means
all the vertices in S end up dead.

And since S is a single-cut set, it can be pruned out of TOPT without disconnecting TOPT; so we will do so
when pruning TOPT, which will delete the one edge of TOPT that v is painting.

And since t1(X) is the total amount of painting time of the form this claim describes, we get that the total
amount of paint placed on pruned edges is at least t1(X); and therefore pruning removes at least t1(X)
weight from TOPT.

So this completes the (qualitative) analysis — in all cases, we’ve shown that one of our four candidate
solutions is good.

§4.3 Calculating the approximation ratio

Finally, we’ll estimate the value of δ we end up with from this approach.

First, we’ve seen that GW[2] handles the case where π(Excl(OPT)) ≥ δ · cost(OPT), so from now on we can
assume not.

Next, we’ve seen that GW handles the case where t2(X) ≥ 1
2δ · cost(OPT) (by Claim 4.2). Meanwhile, IT

handles the case where moving to the reduced problem gets a drop of at least 1
2−δ ·π(Dead), and by Lemma

4.3 this occurs when
t1(X) + t(Y)

π(Dead)
=
π(Dead)− t2(X)

π(Dead)
≥ 1

2− δ
.

To avoid computations, we’ll assume δ ≤ 1
4 and replace 1

2−δ with 4
7 ; then this says IT is good as long as

π(Dead) ≥ 7
3 t2(X). Combining these two cases, either GW or IT is good as long as

π(Dead) ≥ 7

6
δ · cost(OPT),

so from now on we can assume not.

Finally, we’re left with the case where both OPT’s penalty and the penalty of the dead vertices are small, and
in this case we want to show that ST is good. Lemma 3.3, together with the fact that ST is a ρ-approximation
of the optimal Steiner tree, bounds the tree weight of ST by

w(TST) ≤ ρ(w(TOPT) + 2 · π(Excl(OPT))) ≤ ρ(1 + δ) · cost(OPT)

Page 15 of 16

Approximation Algorithms for Prize-Collecting Steiner Tree Sanjana Das (December 2024)

(in the last equality, we’re adding the bounds w(TOPT) + π(Excl(OPT)) = cost(OPT) and π(Excl(OPT)) ≤
δ · cost(OPT)). Meanwhile, the total penalty of ST is at most π(Dead) ≤ 7

6δ · cost(OPT), so in total

cost(ST) ≤
(
ρ(1 + δ) +

7

6
δ

)
· cost(OPT).

For ST to be a (2 − δ)-approximation, we want to have ρ(1 + δ) + 7
6δ ≤ 2 − δ. Plugging in ρ = 1.4 (it’s

our approximation factor for ordinary Steiner tree) and solving for δ gives δ ≈ 0.16. This is much more
substantial than our value of δ = 0.01 from the previous algorithm, so we’re happy.

References

[1] Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mah-
davi. Prize-collecting Steiner tree: a 1.79 approximation. In Proceedings of the 56th annual ACM
symposium on theory of computing, STOC 2024, pages 1641–1652, 2024.

[2] Aaron Archer, Mohammadhossein Bateni, MohammadTaghi Hajiaghayi, and Howard Karloff. Improved
approximation algorithms for prize-collecting Steiner tree and TSP. SIAM Journal on Computing,
40(2):309–332, 2011.

[3] Jaros law Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An improved LP-based ap-
proximation for Steiner tree. In Proceedings of the 42nd ACM symposium on theory of computing, STOC
2010, pages 583–592, 2010.

[4] Michel X. Goemans and David P. Williamson. A general approximation technique for constrained forest
problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[5] David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting Steiner tree problem: theory
and practice. In Proceedings of the eleventh annual ACM-SIAM symposium on discrete algorithms,
SODA 2000, pages 760–769, 2000.

[6] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 15:141–145,
1981.

Page 16 of 16

	Introduction
	A 2-approximation for PCST
	A starting point — the 2-approximation for Steiner tree
	Incorporating the penalties
	The analysis

	A first improvement
	The high-penalty case
	The low-penalty case
	Calculating the approximation ratio

	A more sizeable improvement
	Motivation and overview
	The analysis
	Calculating the approximation ratio

