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§1 Introduction

Hardness magnification is the surprising phenomenon where weak-looking lower bounds against certain
computational problems — e.g., bounds of the form n1+ε for any ε > 0 (for problems we believe should
satisfy much better bounds) — would imply much stronger-looking lower bounds — e.g., separations such
as NP 6⊆ Circuit[poly]. Several theorems along these lines have been proven in recent years. In this survey,
we explain the proofs of some subset of these theorems.

§1.1 Overview of results

In this subsection, we describe the results we’ll prove in this survey. We’ll use the following notation:
• For a function t:N → N, we use Circuit[t(n)] to denote the class of problems which can be solved by

a circuit family {Cn} (where Cn is the circuit corresponding to inputs of length n) with size(Cn) =
O(t(n)). (We work with circuits using AND and OR gates of fan-in 2 and NOT gates of fan-in 1; we
measure the size of a circuit by the number of gates.) We use Circuit[poly] to denote ⋃k Circuit[nk].

• We define Formula[t(n)] and Formula[poly] similarly for Boolean formulas — we work with De Morgan
formulas consisting of AND and OR gates of fan-in 2, where the leaves are all literals (i.e., xi or xi) or
constants, and we measure the size of a formula by its number of leaves. For example,

x1 ∨ ((x2 ∧ 0) ∨ (x3 ∧ x1))

is a Boolean formula of size 5.
• We’ll also work with a slightly extended formula model — we say a XOR-formula is a formula again

consisting of AND and OR gates of fan-in 2, but where the leaves are allowed to be arbitrary parity
functions (i.e., functions of the form xi1 ⊕ · · · ⊕ xik ⊕ b for some indices i1, . . . , ik ∈ [n] and some bit
b ∈ {0, 1}). We still measure the size of such a formula by its number of leaves — for example,

(x1 ⊕ x2) ∧ ((x1 ⊕ x5 ⊕ x8 ⊕ x10) ∨ (x2 ⊕ x4 ⊕ 1))

is a XOR-formula of size 3 (the leaves are x1 ⊕ x2, x1 ⊕ x5 ⊕ x8 ⊕ x10, and x2 ⊕ x4 ⊕ 1). We define the
classes Formula-XOR[t(n)] and Formula-XOR[poly] similarly for this formula model.
Note that Formula-XOR[t(n)] ⊆ Formula[t(n) ·n2], since any parity function on n bits can be computed
by a De Morgan formula of size O(n2). But it turns out that several hardness magnification results
work especially nicely with this formula model, which is why we use it.

Oliveira and Santhanam (who coined the term ‘hardness magnification’) first prove several hardness magni-
fication theorems in [OS18], especially for variants of the ‘meta-computational’ problems MCSP and MKtP.
Roughly speaking, MCSP is the problem of determining whether a function can be computed by a small
circuit, and MKtP is the problem of determining whether a string has low Kt-complexity, i.e., it can be
computed reasonably quickly by a Turing machine with a short description. (The precise definitions of these
problems are given in Section 2.)
For example, they consider an ‘average-case’ variant of MCSP, denoted by (1, 1−δ)-MCSP[s] — the promise
problem where we’re given a function f : {0, 1}m → {0, 1}, presented as a truth table of length n = 2m, and
we wish to distinguish between the case where f can be computed by a circuit of size s and the case where
it cannot even be (1− δ)-approximated by a circuit of size s (where δ and s may depend on n). They prove
several hardness magnification theorems for this problem; here is one such statement, whose proof we will
discuss in Subsection 3.1.

Theorem 1.1 ([OS18, Theorem 17])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 with (1, 1 − n−β)-MCSP[nβ] 6∈
Formula[n1+ε]. Then NP 6⊆ Formula[poly].
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In a later paper, Oliveira, Pich, and Santhanam [OPS19] prove a hardness magnification theorem for a ‘gap’
variant of MCSP — Gap-MCSP[s1, s2] is the promise problem where we want to distinguish between the case
where f can be (exactly) computed by a circuit of size at most s1 and the case where it cannot be computed
by a circuit of size at most s2 (for s1 ≤ s2). We’ll explain this proof in Section 4.

Theorem 1.2 ([OPS19, Theorem 4])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 with Gap-MCSP[nβ, nβ logn] 6∈
Circuit[n1+ε]. Then NP 6⊆ Circuit[poly].

Oliveira and Santhanam [OS18] and Oliveira, Pich, and Santhanam [OPS19] also proved several hardness
magnification theorems for a gap variant of MKtP — Gap-MKtP[p1, p2] is the promise problem where we
want to distinguish between the cases Kt(x) ≤ p1 and Kt(x) > p2. (We’ll define Kt-complexity in Subsection
2.2.) One such theorem, which we’ll explain in Subsection 3.2, is the following.

Theorem 1.3 ([OPS19, Theorem 1])
There is an absolute constant c > 0 such that the following holds: suppose that there is ε > 0 for
which there are arbitrarily small β > 0 with Gap-MKtP[nβ, nβ + c logn] 6∈ Formula-XOR[n1+ε]. Then
EXP 6⊆ Formula[poly].

Remark 1.4. For several of the magnification theorems we’ll discuss, including Theorem 1.3, the authors
considered a variety of computational models — for example, circuits, formulas over various different
bases, AC0 circuits, and branching programs (where the bound needed for magnification typically de-
pends on the model).
For simplicity, throughout this survey we’ll focus on formula models for all such results. Specifically,
we state Theorem 1.1 just in the case of Formula, and for the remainder of such results (Theorems 1.3,
1.9, 1.11, and 1.12), we state them just in the case of Formula-XOR. (For these theorems, we can also
prove magnification results with ordinary formulas, but from lower bounds of n3+ε rather than n1+ε;
one reason Oliveira, Pich, and Santhanam [OPS19] consider Formula-XOR is that there exist problems
for which we know how to prove n2−ε lower bounds in this model (e.g., see [Tal16]), providing some
hope of actually being able to use such magnification theorems to prove strong lower bounds.)

McKay, Murray, and Williams [MMW19] then consider the exact versions of MCSP and MKtP, rather than
‘average-case’ or ‘gap’ variants. In fact, they even consider search versions of MCSP and MKtP, where
we need to find the small circuit or Turing machine (respectively) that computes the given input, rather
than just checking whether one exists. (We’d expect that these changes make the problems harder, therefore
making the hypotheses needed for magnification easier to prove.) They prove several magnification theorems
for Circuit models; we’ll explain the proofs of the following ones in Subsections 5.1 and 5.3, respectively.

Theorem 1.5 ([MMW19, Theorem 1.4])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 such that Search-MCSP[nβ] does
not have circuits of size n1+ε and depth nε. Then NP 6⊆ Circuit[poly].

Theorem 1.6 ([MMW19, Theorem 1.7])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 such that Search-MKtP[nβ] does
not have circuits of size n1+ε and depth nε. Then EXP 6⊆ Circuit[poly].

They also prove magnification theorems from lower bounds against low-space (deterministic) streaming
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algorithms; we’ll explain the proof of the following theorem for MCSP in Subsection 5.2.

Theorem 1.7 ([MMW19, Theorem 1.3])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 such that Search-MCSP[nβ]
cannot be solved by a nε-space streaming algorithm with nε update time. Then P 6= NP.

This statement is perhaps illustrative of why hardness magnification is surprising — we don’t believe that
MCSP[nβ] is even in P, and the statement that it can’t be solved by a nε-space nε-update time streaming
algorithm is much weaker than this. But even this extremely weak-looking statement is enough to separate
P from NP.
So far, all the results we’ve discussed involve the ‘meta-computational’ problems MCSP and MKtP (Oliveira
and Santhanam also consider a few other problems, such as Vertex-Cover, in [OS18], but most hardness
magnification results up to this point considered these meta-computational problems). It’s natural to wonder
what’s special about these problems — can we prove hardness magnification for other, more general, classes
of problems? One property of MCSP[nβ] and MKtP[nβ] is that they are sparse — for example, there are
only roughly 2nβ logn circuits of size nβ, and therefore only this many YES instances to MCSP[nβ] of length
n. It turns out that this sparsity alone is enough to get hardness magnification — Chen, Jin, and Williams
[CJW19] prove hardness magnification results for any NP language of similar sparsity. In some sense, this
is quite surprising — for example, the proofs in [MMW19] use the fact that MCSP and MKtP are in some
sense about string compression in a crucial way.

Definition 1.8. We say a language L ⊆ {0, 1}∗ is ψ(n)-sparse if for all n, the number of YES instances
to L of length n is at most ψ(n).

Theorem 1.9 ([CJW19, Theorem 1.1])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 such that there is a 2nβ -sparse
language L ∈ NP with L 6∈ Formula-XOR[n1+ε]. Then NP 6⊆ Formula[nk] for all k ∈ N.

We’ll prove this in Subsection 6.1.
(The conclusion here is slightly different from the conclusions of the previous theorems, in that we get that
for every k there is some problem in NP that does not have nk-sized formulas, rather than that there is
some problem in NP that does not have nk-sized formulas for any k — but this would still be a very strong
result. We’ll touch on the reasons for the difference in Subsubsection 1.2.4.)
Chen, Jin, and Williams [CJW19] also prove several magnification results for such languages from bounds
against uniform models with a small amount of advice. One such result, which we’ll prove in Subsection
6.2, is the following.

Theorem 1.10 ([CJW19, Theorem 1.2])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 such that there is a 2nβ -sparse
language L ∈ NP that cannot be computed by a n1+ε-time nε-space deterministic algorithm with nε

bits of advice. Then NP 6⊆ Circuit[nk] for all k ∈ N.

Chen, Jin, and Williams [CJW19] also use the ideas behind Theorem 1.9 to extend magnification results for
Search-MCSP and Search-MKtP (such as Theorems 1.5 and 1.6) to many more computational models. For
example, they prove the following theorems, which we’ll explain in Subsections 6.4 and 6.3 (respectively).
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Theorem 1.11 ([CJW19, Theorem 1.6])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 for which Search-MCSP[nβ] 6∈
Formula-XOR[n1+ε]. Then PSPACE 6⊆ Formula[poly].

In fact, [CJW19] proves that we can replace PSPACE with either ⊕P or PP; this strengthening requires
additional technical ingredients, so we will only prove it for PSPACE for simplicity.

Theorem 1.12 ([CJW19, Theorem 1.6])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 for which Search-MKtP[nβ] 6∈
Formula-XOR[n1+ε]. Then EXP 6⊆ Formula[poly].

These theorems in some sense combine the best features of Theorems 1.1 and 1.3 (which apply to more
restricted models — in which we have a better chance of being able to prove lower bounds — but for more
relaxed variants of MCSP and MKtP for which it’s probably harder to prove lower bounds) and Theorems
1.5 and 1.6 (which apply to the harder problems Search-MCSP and Search-MKtP, but require bounds on the
more powerful model of Circuit).

§1.2 Overview of ideas

Before we get into the details of the proofs, we’ll explain the main ideas. All these theorems are proven by
contrapositive — we assume that the strong lower bound in the theorem statement doesn’t hold (e.g., NP ⊆
Formula[poly]), and we use this assumption to obtain an extremely efficient algorithm (in the relevant model
of computation) for the problem at hand, contradicting the weak lower bound in the theorem hypothesis.
At a very high level, the idea behind obtaining this extremely efficient algorithm is to reduce to a problem
on a much smaller input. Specifically, we’ll show unconditionally that there exists an extremely efficient
algorithm for our problem that makes queries to an oracle solving some auxiliary problem, where the length
of each query is tiny compared to n (e.g., poly(nβ)). Then we’ll show that under the given assumption, we
can implement this oracle with a decently efficient algorithm (for example, if the oracle problem is in NP, then
the assumption NP ⊆ Formula[poly] allows us to implement the oracle with a polynomial-sized formula). But
since each input to the oracle is tiny, even a decently efficient algorithm for the oracle is extremely efficient
compared to n (e.g., if we have an oracle query with input length poly(nβ) and we implement the oracle
with a polynomial-sized formula, this formula only has size poly(poly(nβ)) = poly(nβ)), so this gives us an
extremely efficient algorithm for the original problem.
We’ll now discuss the ideas that go into producing such a reduction (or oracle algorithm), which vary across
the different theorems.

§1.2.1 Magnification via random sampling

The first idea (from [OS18]), used to prove Theorem 1.1 (regarding (1, 1− δ)-MCSP), is randomly sampling
the input — given the truth table of a function f , instead of trying to figure out whether there’s a small
circuit computing the entire truth table of f , we’ll imagine taking a small random sample of input-output
pairs (z1, f(z1)), . . . , (zt, f(zt)) and trying to figure out whether there’s a small circuit computing just these
input-output pairs. This is a problem on a much shorter input length, and it’s what we’ll use as our oracle
— note that it’s in NP, since we can solve it by nondeterministically guessing a circuit and then computing
it on all the given inputs.
If f is a YES instance of (1, 1− δ)-MCSP, then there’s a small circuit C that computes f , and of course the
same circuit computes any sample of input-output pairs from f . On the other hand, if f is a NO instance,
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then each small circuit C fails to compute f on at least a δ-fraction of inputs, so with probability at least
(1 − δ)t it fails to compute f on one of the input-output pairs in the sample. And since there aren’t too
many small circuits, if we choose t appropriately, then we can union-bound over all such circuits to get that
with high probability, every small circuit fails to compute f on the sample.
Right now, this gives us a randomized oracle algorithm for (1, 1− δ)-MCSP[s], rather than a formula. But
to turn it into a formula, we can first imagine performing n independent trials of this form, and finding the
AND of their results. This makes our error probability (over the randomness used to produce the sample) so
small that we can union-bound over all inputs to find a choice of samples that works for all inputs, and then
hardcode these samples into our formula — so in the end, our formula is a AND of n short oracle calls (where
to obtain the inputs (z1, f(z1)), . . . , (zt, f(zt)) to each oracle call, we hardcode each zi into the formula, and
each f(zi) is a bit of the given input).
The idea of random sampling, together with one more ingredient, can be used to prove Theorem 1.3 (re-
garding Gap-MKtP) as well. Given an input x, we can’t randomly sample from x directly — unlike with
(1, 1− δ)-MCSP, it’s no longer true that all YES and NO instances of Gap-MKtP differ in a constant fraction
of indices (which was the crucial property that allowed the above proof to work for (1, 1−δ)-MCSP). But we
can get such a property by using error-correcting codes — if x has low Kt-complexity and E is an efficient
error-correcting code, then E(x) must also have low Kt-complexity (since a Turing machine can produce
E(x) by first producing x and then encoding it). Meanwhile, if x has high Kt-complexity, then E(x) can’t
even be close to a string y with low Kt-complexity (because we could produce x by first producing y and
then decoding it to x). (This is what we need the gap for.)
Now in order to decide Gap-MKtP on x, we can imagine first computing E(x), and then taking a random
sample of indices (d1, E(x)d1), . . . , (dt, E(x)dt) and checking whether this sample is consistent with a string
of low Kt-complexity — this is again a problem on a much smaller input size (and it’s in EXP, since we
can enumerate over low Kt-complexity strings by enumerating over short Turing machine descriptions and
running each for the appropriate amount of time), and the rest of the proof is very similar to that of
Theorem 1.1. The place where working with the model Formula-XOR becomes convenient is that if E is also
linear, then each bit E(x)d is a fixed parity function of the bits of x, which means we don’t have to do any
computation to obtain E(x)d (for any fixed d) — we can simply take it to be a leaf of the formula.

§1.2.2 Magnification via anticheckers

The next idea (from [OPS19]), used to prove Theorem 1.2 (regarding Gap-MCSP), is that of anticheckers.
Informally, if a function f : {0, 1}m → {0, 1} can’t be computed by a circuit of size s, then an antichecker
for f against circuits of size s is a collection of strings S ⊆ {0, 1}m such that every circuit of size s in fact
fails to compute f on one of those strings.
Using a combinatorial argument, it’s possible to show that if f can’t be computed by a circuit of size sm,
then there exists a ‘small’ antichecker for f against circuits of size s. (Here s is nβ and m is logn, and
this is what we need the gap for.) Furthermore, a ‘greedy’ construction works — specifically, we’ll imagine
constructing S one string at a time, and the combinatorial argument will show that at every step, there
exists some string z such that adding z to S would substantially shrink the number of ‘surviving’ circuits
(i.e., small circuits that correctly compute f on S).
In order to prove Theorem 1.2, we’ll show that we can implement this construction using an efficient circuit
that makes short queries to a NP oracle. The main idea behind this is that if we’ve placed strings z1, . . . , zt
into S so far, then finding a good string z to choose next in the greedy combinatorial construction amounts
to going through all possible strings z, counting the number of surviving circuits that would result from
adding each to S, and choosing the one that minimizes this number. But this is an approximate counting
problem — we really only need to approximate this number of surviving circuits, and the quantity we’re
trying to count is essentially the number of witnesses to a NP-verifier (specifically, the verifier checking that
a circuit C (which is the witness) computes f on S ∪ {z}). And approximately counting such a quantity
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can be done with a NP oracle (where the input to the oracle is the input-output pairs of f corresponding to
S ∪ {z}, which does have short length).
This allows us to turn the combinatorial proof of the existence of an antichecker into an efficient circuit (with
a NP oracle) for constructing one. And if this circuit successfully constructs an antichecker, we immediately
know f is not a YES instance to Gap-MCSP (if there exists an antichecker for f , then f certainly doesn’t
have a circuit of size s), while if it fails, then we know f is not a NO instance (since the circuit is guaranteed
to work if f doesn’t have a circuit of size sm).

§1.2.3 Magnification via compression

The next idea (from [MMW19]), used to prove Theorems 1.5, 1.6, and 1.7 (regarding Search-MCSP and
Search-MKtP), is that MCSP and MKtP are essentially problems about string compression — for example,
in MCSP[nβ], we’re given a truth table of length n and we’re trying to figure out whether we can describe it
by a circuit of the much smaller size nβ — and we can use this to compress the input we feed to our oracle.
For now, we’ll explain the idea in the context of Theorem 1.7 (on an efficient streaming algorithm for
Search-MCSP); the remaining theorems use the same idea, but implemented by a circuit rather than a
streaming algorithm. (For simplicity, we’ll implement this idea in a way that’s a bit less efficient than the
actual argument in [MMW19].)
Imagine that we’re a streaming algorithm being fed one entry in the truth table of f at a time (in order),
and we’re trying to space-efficiently figure out whether there’s a small circuit computing f . We certainly
don’t have enough space to store all the entries of the truth table we’ve seen so far directly. Instead, we store
them using a small circuit — if there is a small circuit computing f , then there’s certainly a small circuit
computing the portion of the truth table we’ve seen so far. More precisely, once we’ve read the entries of f
corresponding to the interval of strings [0m, z] ⊆ {0, 1}m (by ‘interval’ we mean the lexicographical order on
{0, 1}m, which we assume is the order our truth table is presented in), we store z and the lexicographically
minimal small circuit C that computes f correctly on this interval (or that no such circuit exists). Then
when we read the entry of f corresponding to the next string z′, we use an oracle to ‘merge’ this new
information into C — specifically, we give the oracle z, C, z′, and f(z′) (this input has short length), and
it gives us a small circuit C ′ that matches C on [0m, z] and matches f(z′) on z′ (or tells us that no such
circuit exists, in which case we immediately know f is a NO instance). Then once we’ve read through the
entire input, we automatically have a small circuit for f , which means we’ve solved Search-MCSP.
Unlike in the previous arguments, this oracle isn’t necessarily in NP, but we can show that it’s in the
polynomial hierarchy — and if P = NP then the polynomial hierarchy collapses, so it’s still true that the
assumption P = NP (in the contrapositive of Theorem 1.7) allows us to efficiently implement the oracle.
(To be more precise, for the statement that the oracle is in PH to make sense, we need it to only output a
single bit. So we actually define the oracle so that we also give it an index j, and it returns the jth bit of
the lexicographically first circuit matching our specifications.)

§1.2.4 Magnification via hashing

The final idea we’ll discuss (from [CJW19]), used to prove Theorems 1.9 and 1.10 (on hardness magnification
for arbitrary sparse NP languages) and Theorems 1.11 and 1.12 (on Search-MCSP and Search-MKtP in
more restrictive models), is hashing. Specifically, [CJW19] construct a family of linear hash functions
hv: {0, 1}n → {0, 1}t, with outputs and seeds of length t = Θ(nβ), such that for any 2nβ -sparse language L,
there exists some seed v for which hv hashes all YES instances of L to different values.
We’ll first explain the idea behind the proof of Theorem 1.9 (which we again implement in a slightly less
efficient way than [CJW19] does for simplicity.) We first fix such a seed v (which we’ll hardcode into our
formula). Then on an input x, imagine that we first compute hv(x). Then we go through the indices of x one
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at a time, and for each index i ∈ [n], we ask our oracle, is there a string y ∈ {0, 1}n such that hv(y) = hv(x),
yi = xi, and y ∈ L? If x is itself in L, then the oracle will answer yes for every i (as we can take y = x).
Meanwhile, if x is not in L, then there’s at most one string y ∈ L whose hash agrees with that of x, and
this string y won’t agree with x on all indices i ∈ [n], so the oracle will answer no for some i.
Finally, the fact that hv is linear means that we can implement this with an efficient XOR-formula.
Note that the information we need to give the oracle is essentially just v, hv(x), i, and xi, so as usual,
the input to the oracle is short (specifically, of length Θ(nβ)). Also note that the problem we’re asking
the oracle to solve is in NP (we could solve it by nondeterministically guessing y, computing hv(y), and
nondeterministically checking that y ∈ L). So the assumption NP ⊆ Formula[nk] allows us to implement
this oracle efficiently, as usual.

Remark 1.13. The reason we need a fixed-polynomial bound (e.g., NP ⊆ Formula[nk]) rather than an
arbitrary-polynomial bound (e.g., NP ⊆ Formula[poly]) is that unlike in all the previous arguments, here
our oracle depends on L — in particular, different values of β correspond to different oracles — and we
need the same upper bound on all of these oracles (or at least, bounds with the same exponent). In
contrast, in the previous arguments we used the same oracle for all values of β, so this followed even
from arbitrary-polynomial bounds.

For Theorem 1.10, the assumption that NP ⊆ Circuit[nk] allows us to implement the above oracle with a
small circuit, and we take our nε bits of advice to consist of this circuit together with the good seed v as
above. Then our algorithm does the same thing as the above formula — we go through each index i ∈ [n]
one at a time, run the circuit for our oracle on v, hv(x), i, and xi, and accept if and only if the circuit
accepts on all i. (The only difference is that we now need hv to be computable with low space, but this is
true of the construction of [CJW19].)
The proofs of Theorems 1.11 and 1.12 are also similar to that of Theorem 1.9, but in order to get arbitrary-
polynomial rather than fixed-polynomial bounds, we need to set up the oracle so that it doesn’t depend on
β. In particular, we can’t show that the oracle is in NP by simply guessing y and checking that y is in our
language anymore — |y| = n is polynomial in the input length Θ(nβ) if we fix β, but not if we allow β to
go to 0.
For Theorem 1.12 (for MKtP), this modification isn’t difficult — we can show that the oracle is in EXP by
enumerating over all low Kt-complexity strings y (by enumerating over short descriptions of Turing machines
and running them for the appropriate amount of time, as with the oracle for Theorem 1.3).
For Theorem 1.11 (for MCSP), the modification is harder — we can enumerate over all small circuits C in
PSPACE, but we can’t write down the entire truth table that the circuit computes (which is y in this case),
which means we can’t directly compute hv(y). Instead, we note that hv is linear, so for each index i, there
is some string wv,i such that hv(y)i can be written as 〈y, wv,i〉. We think of y as a truth table of a function
{0, 1}m → {0, 1}, so y is indexed by strings z ∈ {0, 1}m; we think of wv,i as being indexed by such strings
too, and we write wv,i(z) to denote the zth coordinate of wv,i. Then we can write this as

〈y, wv,i〉 = #{z ∈ {0, 1}m | C(z) = wv,i(z) = 1} (mod 2).

And [CJW19] give a construction of the hash family such that wv,i(z) is efficiently computable given v, i,
and z, which lets us compute 〈y, wv,i〉 in PSPACE (by enumerating over all z, computing C(z) and wv,i(z)
for each, and keeping a running count of the above quantity mod 2).
(In both cases, to solve the search versions, we also need the oracle to output the good Turing machine or
circuit that it finds (rather than just accepting if it finds one), but this can be done in a similar way to the
oracles for Theorems 1.5 and 1.6 — we also give the oracle an index j, and we instead ask it for the jth bit
of the lexicographically smallest Turing machine or circuit meeting our specifications.)
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§2 Preliminaries

Throughout this paper, we use log to denote the base-2 logarithm. We also omit floors and ceilings for
notational simplicity. For x, y ∈ {0, 1}n, we use 〈x, y〉 to mean ∑n

i=1 xiyi (mod 2). We assume a RAM
model when we describe algorithms unless otherwise specified.
As described in Subsection 1.2, the proofs of most of the theorems in Subsection 1.1 will involve (uncondi-
tionally) constructing oracle circuits or formulas for the relevant problems, where the length of each oracle
query is tiny. To formalize this, we’ll always work with oracles that output a single bit. We say an A-oracle
circuit is a circuit whose gates are AND, OR, NOT, and calls to A (on inputs of a fixed length, determined
by the number of wires feeding into the gate); we refer to this fixed length as the fan-in of the A-oracle
gate. We define A-oracle formulas similarly (for both ordinary formulas and XOR-formulas); we say that an
A-oracle formula makes nonadaptive queries if there are no nested A’s. For example,

A(x1 ⊕ x2, x3) ∧ ((x1 ⊕ x5) ∨ A(x2 ⊕ x4, x8, x10))

is an A-oracle XOR-formula of size 6 (with leaves x1 ⊕ x2, x3, x1 ⊕ x5, x2 ⊕ x4, x8, and x10) which makes
nonadaptive queries of fan-in at most 3; in contrast,

A(x1 ⊕ x2, x3) ∧ A((x1 ⊕ x5),A(x2 ⊕ x4, x8, x10))

makes adaptive queries, since it contains nested A’s. (Nonadaptiveness matters in the formula setting
because to prove the magnification theorems, we’ll replace the oracle gates with polynomial-sized formulas;
if the formula makes nonadaptive queries then this only blows up its size by a polynomial in the fan-in (which
will be tiny by construction), but if it made adaptive queries then we’d have to compose these polynomials,
which could potentially result in much greater blowup.)

§2.1 Preliminaries regarding MCSP

In this subsection, we’ll define and establish a few conventions regarding MCSP and the variants we’ll
work with. Roughly speaking, MCSP (which stands for ‘minimum circuit size problem’) is the problem of
determining whether a given function can be computed by a small circuit. The input to MCSP is a function
f : {0, 1}m → {0, 1}, given as a truth table consisting of n = 2m bits (the values of f on all strings {0, 1}m,
listed in lexicographical order). When referring to MCSP, we’ll always use m to refer to the input length of
f and n to refer to the input length to the instance of MCSP (so n = 2m).
We work with a parametrized version of MCSP, where s:N→ N is a parameter depending on n that defines
what we mean by a ‘small’ circuit. (We think of s as a function of n, not of m — in particular, we use s(n)
to denote the size bound for inputs f : {0, 1}m → {0, 1} of length n = 2m (though we write s rather than
s(n) in most places for notational simplicity). This is mainly for consistency with the notation we’ll use for
MKtP, where there is no analog of m.)
The ordinary version of MCSP is defined as follows.

Definition 2.1 (MCSP[s])
• Input: a function f : {0, 1}m → {0, 1}, presented as a truth table of length n = 2m.
• Decide: whether there exists a circuit C (on m inputs) with size(C) ≤ s that computes f .

We’ll always assume that s ≥ m = logn. We typically think of s as nβ for arbitrarily small β; in Subsection
1.1 we stated all magnification theorems in this regime for concreteness, but we’ll prove them for general
values of s (the results are meaningful for any s = no(1)).

Page 9 of 30



A survey on hardness magnification Sanjana Das (May 6, 2024)

We’ll also work with a few variants of MCSP. Specifically, for Theorem 1.1 we consider a promise version of
MCSP where we’re promised that f is either computable by a small circuit or δ-far fom being computable
by a small circuit (in some sense, this is a variant about the ‘average-case circuit complexity’ of f , while
ordinary MCSP is about the ‘worst-case circuit complexity’).

Definition 2.2 ((1, 1− δ)-MCSP[s])
• Input: a function f : {0, 1}m → {0, 1}, presented as a truth table of length n = 2m.
• Yes case: there exists a circuit C (on m inputs) with size(C) ≤ s that computes f .
• No case: for every circuit C (on m inputs) with size(C) ≤ s, we have C(z) 6= f(z) for more than

a δ-fraction of inputs z ∈ {0, 1}m.

Here δ:N → (0, 1) is another parameter that may depend on n (and again, we view δ as a function of n
rather than m).

Remark 2.3. When we say an algorithm (or formula or circuit) decides a promise problem, we mean
that it accepts all YES instances and rejects all NO instances; it doesn’t matter what it does on the
remaining inputs. By a statement such as (1, 1 − δ)-MCSP[s] ∈ Formula[n1+ε] (in the statement of
Theorem 1.1), we mean that there exists a formula of size n1+ε that decides the problem in this sense.

For Theorem 1.2, we’ll work with a different promise version of MCSP, where we return to ‘worst-case circuit
complexity’ but have a gap between the circuit size bounds for YES and NO instances.

Definition 2.4 (Gap-MCSP[s1, s2])
• Input: a function f : {0, 1}m → {0, 1}, presented as a truth table of length n = 2m.
• Yes case: there exists a circuit C (on m inputs) with size(C) ≤ s1 that computes f .
• No case: there does not exist a circuit C (on m inputs) with size(C) ≤ s2 that computes f .

Here s1 and s2 are parameters depending on n, with m ≤ s1 < s2.
Throughout our discussion of MCSP, we’ll frequently make use of the following fact.

Fact 2.5 — If s ≥ m, we can encode any m-input circuit C with size(C) ≤ s using a string of 64s log s
bits. In particular, the number of such circuits is at most 264s log s.

(The value of 64 is not important; it’s just a sufficiently large constant that we use for concreteness.)
Finally, for Theorems 1.5, 1.7, and 1.11, we’ll work with a search version of MCSP, where instead of asking
the algorithm to decide whether a small circuit computing f exists, we ask it to output such a circuit. For
convenience, we use an encoding of circuits such that the all-0’s string does not correspond to any circuit,
and we use this string to represent that no circuit exists.

Definition 2.6 (Search-MCSP[s])
• Input: a function f : {0, 1}m → {0, 1}, presented as a truth table of length n = 2m.
• Output: a string of length 64s log s encoding a circuit C (on m inputs) with size(C) ≤ s that

computes f , or the all-0’s string if no such C exists.
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§2.2 Preliminaries regarding MKtP

In this subsection, we’ll define MKtP and the variant we’ll work with. Roughly speaking, MKtP (which stands
for ‘minimum Kt problem’) is the problem of determining whether a given string has low Kt-complexity.
We’ll use the following definition of Kt-complexity (following [CJW19]; some of the other papers we discuss
use slightly different definitions, but the details of the definition are not important).

Definition 2.7. For x ∈ {0, 1}∗, we define Kt(x) = min |〈M〉| + log time(M), where the minimum is
taken over all Turing machines M that, when run on empty input, eventually halt and output x. (We
use |〈M〉| to denote the description length of M , and time(M) to refer to its runtime.)

As with MCSP, we work with a parametrized version of MKtP, where p:N → N is a parameter depending
on n that defines what we mean by ‘low’ Kt-complexity. The ordinary version of MKtP is defined as follows.

Definition 2.8 (MKtP[p])
• Input: a string x ∈ {0, 1}n.
• Decide: whether Kt(x) ≤ p — i.e., whether there exists a Turing machine M such that |〈M〉|+

log time(M) ≤ p that outputs x.

As with the parameter s in MCSP, we always assume that p ≥ logn, and we typically think of p as nβ for
arbitrarily small β.
For Theorem 1.3, we’ll work with the following promise version of MKtP (where p1 and p2 are parameters
depending on n, with logn ≤ p1 ≤ p2).

Definition 2.9 (Gap-MKtP[p1, p2])
• Input: a string x ∈ {0, 1}n.
• Yes case: Kt(x) ≤ p1 — i.e., there is a Turing machine M such that |〈M〉| + log time(M) ≤ p1

that outputs x.
• No case: Kt(x) > p2 — i.e., there is no Turing machine M such that |〈M〉|+ log time(M) ≤ p2

that outputs x.

Finally, for Theorems 1.6 and 1.12, we’ll work with a search variant of MKtP, where we ask the algorithm to
output such a Turing machine M (instead of just deciding whether one exists). As with MCSP, we use the
all-0’s string to denote that no Turing machine exists. We also assume an encoding of Turing machines such
that 〈M〉 always ends with a 1, and when defining Search-MKtP, we pad the output with 0’s to have length
exactly p. (This is because we’ll be trying to solve Search-MKtP with circuits or formulas, whose output is
always of a fixed size.)

Definition 2.10 (Search-MKtP[p])
• Input: a string x ∈ {0, 1}n.
• Output: a string of length exactly p which is the zero-padded description of a Turing machine
M such that |〈M〉|+ log time(M) ≤ p and M outputs x, or 0p if no such Turing machine exists.

§3 Magnification via random sampling

In this section, we’ll prove Theorems 1.1 and 1.3, following the outline described in Subsubsection 1.2.1.
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§3.1 Magnification for (1, 1− δ)-MCSP

In this subsection, we’ll prove the following slight generalization of Theorem 1.1.

Theorem 3.1 ([OS18, Theorem 17])
Suppose that there exist parameters s:N → N and δ:N → (0, 1) with s(n) ≥ logn for all n such that
(1, 1− δ)-MCSP[s] 6∈ Formula[n · poly(s, δ−1)]. Then NP 6⊆ Formula[poly].

Remark 3.2. When we write (1, 1 − δ)-MCSP[s] 6∈ Formula[n · poly(s, δ−1)], we mean that there is no
k ∈ N such that (1, 1− δ)-MCSP[s] has formulas of size ns(n)kδ(n)−k on inputs of length n.

Remark 3.3. To see that the more general version of [OS18, Theorem 17] stated here implies the
version in Theorem 1.1, assume that the hypothesis of Theorem 3.1 is not satisfied, so that there is
some k ∈ N such that for all s:N → N and δ:N → (0, 1) as described, (1, 1− δ)-MCSP[s] has formulas
of size ns(n)kδ(n)−k. Then given any ε > 0, for all β < ε

2k , plugging in s(n) = nβ and δ(n) = n−β

gives that (1, 1− n−β)-MCSP[nβ] has formulas of size n1+2kβ ≤ kn1+ε, which means the hypothesis of
Theorem 1.1 is not satisfied either.

To prove Theorem 1.1, we define the following auxiliary problem to serve as our oracle.

Definition 3.4 (Succinct-MCSP)
• Input: 〈1s, (z1, b1), . . . , (zt, bt)〉, where z1, . . . , zt ∈ {0, 1}m for some m ≤ s and b1, . . . , bt ∈ {0, 1}.
• Decide: whether there exists a circuit C with size(C) ≤ s such that C(zi) = bi for all i ∈ [t].

Claim 3.5 — We have Succinct-MCSP ∈ NP.

Proof. We can decide Succinct-MCSP using the following nondeterministic algorithm:
• Nondeterministically guess a circuit C of size at most s (as a 64s log s-bit string).
• Loop through all i ∈ [t]. For each, run C on zi and check whether it outputs bi.
• If C(zi) = bi for all i, then accept; otherwise reject.

This algorithm runs in polynomial time (its input length is at least s + m + t, and running C on a single
string z can be done in poly(s) time), showing that Succinct-MCSP ∈ NP.

We’ll then (unconditionally) construct an oracle formula for (1, 1 − δ)-MCSP[s] with the following bounds,
from which Theorem 3.1 immediately follows — the assumption NP ⊆ Formula[poly] allows us to replace the
oracle queries with poly(s, δ−1)-size formulas.

Lemma 3.6
For any s, δ, and n with s ≥ logn, there is a Succinct-MCSP-oracle formula of size n ·poly(s, δ−1) making
nonadaptive queries of fan-in poly(s, δ−1) that decides (1, 1− δ)-MCSP[s] on length-n inputs.

Explicitly, Lemma 3.6 means that there exists k ∈ N such that there is a Succinct-MCSP-oracle formula for
(1, 1− δ)-MCSP[s] on length-n inputs with size nskδ−k and where all queries have fan-in at most skδ−k (the
construction gives an explicit and small value of k, but the exact value is not important).
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Remark 3.7. To see why this implies Theorem 3.1, if we assume NP ⊆ Formula[poly] (in proving Theorem
3.1 by contrapositive), then since Succinct-MCSP ∈ NP, there is some ` such that Succinct-MCSP ∈
Formula[n`], which means we can replace each oracle queries with a (skδ−k)`-sized formulas in its inputs.
This multiplies the size of our resulting formula by a factor of at most (skδ−k)`, giving an ordinary
formula for (1, 1− δ)-MCSP[s] of size nsk(1+`)δ−k(1+`).

As stated in Subsubsection 1.2.1, the main idea is to randomly sample a small number of input-output pairs
from f and run the Succinct-MCSP oracle on this small sample; the following claim allows us to do so.

Claim 3.8 — Let t = 128δ−1s log s, and suppose that we choose z1, . . . , zt ∈ {0, 1}m uniformly and
independently at random.

• If f is a YES instance of (1, 1 − δ)-MCSP[s], then 〈1s, (z1, f(z1)), . . . , (zt, f(zt))〉 is always a YES
instance of Succinct-MCSP.

• If f is a NO instance of (1, 1− δ)-MCSP[s], then 〈1s, (z1, f(z1)), . . . , (zt, f(zt))〉 is a NO instance of
Succinct-MCSP with probability at least 3

4 .

Proof. The first statement is clear — if there is a circuit C with size(C) ≤ s that correctly computes the
full truth table of f , then C certainly computes all the input-output pairs (zi, f(zi)).
For the second statement, first consider any fixed circuit C with size(C) ≤ s. Then Pz[C(z) = f(z)] < 1− δ
for z ∈ {0, 1}m chosen uniformly at random (by the definition of (1, 1− δ)-MCSP[s]), so

P[C(zi) = f(zi) for all i] < (1− δ)t ≤ e−δt ≤ 2−128s log s.

But there are at most 264s log s circuits of size at most s, so union-bounding over all such circuits, we get

P[exists C with C(zi) = f(zi) for all i] ≤ 264s log s · 2−128s log s ≤ 1
4 .

Proof of Lemma 3.6. Imagine that we perform n independent trials of the form described in Claim 3.8 — for
each j ∈ [n], we choose zj1, . . . , zjt ∈ {0, 1}m uniformly at random and feed 〈1s, (zj1, f(zj1)), . . . , (zjt, f(zjt))〉
into a Succinct-MCSP-oracle gate — and take the AND of their results. By Claim 3.8, on any fixed input
f , this gives the correct answer with probability 1 if f is a YES instance of (1, 1− δ)-MCSP[s], and at least
1 − 2−2n if f is a NO instance. So union-bounding over all 2n possible inputs, this construction gives the
correct answer on all inputs f with probability at least 1 − 2n · 2−2n (over the random choices of all nt
strings zji). This probability is positive, so we can find some choice of strings for which this is the case.
We then hardcode these strings into our formula — we take the oracle formula∧

j∈[n]
Succinct-MCSP(〈1s, (zj1, f(zj1)), . . . , (zjt, f(zjt))〉),

where 1s and all the strings zji are hardcoded constants, and each f(zji) is a specific bit of the input. (Each
oracle query has fan-in O(s+mt) = poly(s, δ−1), and we have n such queries in parallel.)

§3.2 Magnification for Gap-MKtP

In this subsection, we’ll prove the following slightly more general version of Theorem 1.3.

Page 13 of 30



A survey on hardness magnification Sanjana Das (May 6, 2024)

Theorem 3.9 ([OPS19, Theorem 1])
There is an absolute constant c > 0 such that the following holds: suppose that there exists p:N → N
with p(n) ≥ logn for all n and such that Gap-MKtP[p, p + c logn] 6∈ Formula-XOR[n · poly(p)]. Then
EXP 6⊆ Formula[poly].

We’ll define the following auxiliary problem (which is an analog of Succinct-MCSP) to serve as our oracle.

Definition 3.10 (Succinct-MKtP)
• Input: 〈1p, n, (d1, b1), . . . , (dt, bt)〉, where n and d1, . . . , dt ∈ [n] are integers written in binary,
p ≥ logn, and b1, . . . , bt ∈ {0, 1}.

• Decide: whether there exists a string y ∈ {0, 1}n with Kt(y) ≤ p such that ydi = bi for all i ∈ [t].

(We use the somewhat nonstandard letter d for indices so that we can use letters such as i and j in the
same way as in the proofs for MCSP.)

Claim 3.11 — We have Succinct-MKtP ∈ EXP.

Proof. To solve Succinct-MKtP, we can simply enumerate over all possible Turing machine descriptions 〈M〉
of length at most p (of which there are at most 2p), run each such Turing machine M for 2p steps, and check
that |〈M〉|+ log time(M) ≤ p (if M has not halted within 2p steps, we automatically know this is not true)
and that its output y meets the given specifications. (If we find some M that passes all these checks, then
we accept; otherwise we reject.)

We’ll then construct an oracle formula with the following bounds; this immediately implies Theorem 3.9 (in
the same way as described in Remark 3.7).

Lemma 3.12
There is an absolute constant c > 0 such that for any p and n with p ≥ logn, there is a Succinct-MKtP-
oracle XOR-formula of size n · poly(p) and making nonadaptive queries of fan-in poly(p) that decides
Gap-MKtP[p, p+ c logn] on length-n inputs.

In order to prove Lemma 3.12, as stated in Subsubsection 1.2.1, we’ll combine the ideas from Subsection 3.1
with error-correcting codes. We’ll need codes with the following properties. There are several constructions
of such codes, often with much stronger guarantees; for example, see [Spi96].

Theorem 3.13
There exist linear error-correcting codes with constant rate and relative distance that can be encoded
and decoded by polynomial-time algorithms. More precisely, there are constants a ∈ N and γ ∈ (0, 1

2)
and a function E: {0, 1}∗ → {0, 1}∗ such that:

• The restriction of E to inputs of length n is a linear map {0, 1}n → {0, 1}an for each n (i.e., for
each index d ∈ [an], we can write E(x)d as 〈x,wd〉 for some wd ∈ {0, 1}n).

• There is a polynomial-time algorithm that, given x, computes E(x).
• For all n and all y ∈ {0, 1}an, there is at most one x ∈ {0, 1}n such that E(x) and y differ in at

most a γ-fraction of indices. Furthermore, there is a polynomial-time algorithm that, given y (of
length an for any n), computes the string x with this property (if one exists).
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The main new observation is that applying such an error-correcting code doesn’t affect the Kt-complexity of
a string too much, and it allows us to get the ‘distance’ property we need for a random sampling argument
to work (i.e., that ‘good’ and ‘bad’ inputs differ on a constant fraction of indices).

Claim 3.14 — There is an absolute constant c for which the following statements hold (where n = |x|):
(i) Kt(E(x)) ≤ Kt(x) + 1

2c logn.
(ii) For all y which differ from E(x) in at most a γ-fraction of indices, Kt(y) ≥ Kt(x)− 1

2c logn.

Proof. For (i), if we have a Turing machine that prints x, then we can obtain one that prints E(x) by first
running the original machine and then the polynomial-time encoder for E. This increases the description
length of the machine by a constant (since the encoder is a fixed algorithm) and the runtime by poly(n), so
it increases Kt-complexity by O(logn).
Similarly for (ii), if we have a Turing machine that prints y, then we can obtain one that prints x by first
running the original machine and then the polynomial-time decoder for E (which increases Kt-complexity
by O(logn) for the same reason).

Using this, we can get an analog of Claim 3.8 for Gap-MKtP.

Claim 3.15 — Let q = p + 1
2c logn and t = 4γ−1q, and suppose we choose indices d1, . . . , dt ∈ [an]

uniformly and independently at random.
• If x is a YES instance of Gap-MKtP[p, p + c logn], then 〈1q, an, (d1, E(x)d1), . . . , (dt, E(x)dt)〉 is a

YES instance of Succinct-MKtP.
• If x is a NO instance of Gap-MKtP[p, p + c logn], then 〈1q, an, (d1, E(x)d1), . . . , (dt, E(x)dt)〉 is a

NO instance of Succinct-MKtP with probability at least 3
4 .

The proof is essentially the same as that of Claim 3.8, except that for the second statement, we use the fact
that there are at most 2q strings y with Kt(y) ≤ q (as there are only 2q possible Turing machine descriptions
of length at most q) to union-bound over all such strings (in place of the fact that there are at most 264s log s

circuits of size at most s). We omit the details.
With this, we can prove Lemma 3.12 in a way very similar to the proof of Lemma 3.6.

Proof of Lemma 3.12. Imagine performing n independent trials sd in Claim 3.15 — for each j ∈ [n], we
sample dj1, . . . , djt ∈ [an] uniformly at random and feed 〈1q, an, (dj1, E(x)dj1), . . . , (djt, E(x)djt)〉 into a
Succinct-MKtP oracle gate — and taking the AND of their results. By Claim 3.15, this gives the correct
answer on any fixed input x with probability 1 if x is a YES instance of Gap-MKtP[p, p+ c logn] and at least
1− 2−2n if x is a NO instance. So by union-bounding over all 2n possible inputs, it gives the correct answer
on all inputs x with probability at least 1 − 2−2n · 2n > 0, which means there is some choice of nt indices
dji for which this is the case. We then fix these indices and hardcode them into our formula — so the final
formula we take is ∧

j∈[n]
Succinct-MKtP(〈1q, an, (dj1, E(x)dj1), . . . , (djt, E(x)djt)〉),

where 1q, an, and all the indices dji are hardcoded constants, and each E(x)dji is a parity function of x (by
the fact that E is linear) and therefore a valid leaf of a XOR-formula. (So this formula consists of n parallel
oracle queries, where each query directly takes in O(q + t log an) = poly(p) leaves.)
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§4 Magnification via anticheckers

In this section, we’ll prove the following slightly more general version of Theorem 1.2, following the outline
described in Subsubsection 1.2.2.

Theorem 4.1 ([OPS19, Theorem 4])
Suppose that there exists s:N → N with s(n) ≥ logn for all n and such that Gap-MCSP[s, s logn] 6∈
Circuit[n · poly(s)]. Then NP 6⊆ Circuit[poly].

The main idea behind the proof is the concept of anticheckers.

Definition 4.2. An antichecker for a function f : {0, 1}m → {0, 1} against circuits of size s is a collection
of strings S ⊆ {0, 1}m such that for every circuit C with size(C) ≤ s, there is some string z ∈ S for
which C(z) 6= f(z).

Of course, if an antichecker for f against circuits of size s exists, then f can’t be computed by a circuit of
size (at most) s.
In Subsection 4.1, we’ll prove the following lemma on the existence of small anticheckers.

Lemma 4.3
Let s ≥ m, and suppose that f : {0, 1}m → {0, 1} cannot be computed by a circuit of size (at most)
sm. Then there exists S ⊆ {0, 1}m of size |S| = O(s log s) such that S is an antichecker for f against
circuits of size s.

Specifically, we’ll give a combinatorial proof of Lemma 4.3 via a ‘greedy’ construction — we’ll show that if
we construct S one string at a time, at every step we can find a new string z such that adding z to S would
eliminate a constant fraction of the ‘surviving’ circuits (circuits of size at most s that compute f on the set
S we’ve built so far), which means it takes O(s log s) steps to eliminate all circuits.
In Subsections 4.2 and 4.3, we’ll then show how to turn this existence proof into an efficient NP-oracle
circuit for Gap-MCSP[s, sm] (note that m = logn). Intuitively, our oracle circuit will try to compute such
an antichecker for f ; if it succeeds then we immediately know f can’t be computed by a circuit of size at
most s, while if it fails then we’ll know f can be computed by a circuit of size at most sm. Implementing the
greedy construction essentially amounts to repeatedly running an approximate counting problem on short
inputs; in Subsection 4.2 we’ll describe the specifics of this approximate counting problem and show how
to solve it with a small (i.e., poly(s)-sized) NP-oracle circuit. In Subsection 4.3 we’ll use these poly(s)-sized
approximate counting oracle circuits to build a n · poly(s)-sized oracle circuit that implements the greedy
construction, which will imply Theorem 1.2.
As a technical note, throughout this section, whenever we talk about counting a ‘number of circuits’ of size
at most s (with some property), we really mean that we’re counting the number of circuit descriptions (i.e.,
264s log s-bit strings) — even if two strings represent the same circuit, we’ll count them separately.

§4.1 The existence of anticheckers

In this subsection, we’ll prove the following lemma, which immediately implies Lemma 4.3 (on the existence
of small anticheckers).

Page 16 of 30



Sanjana Das (May 6, 2024) A survey on hardness magnification

Lemma 4.4
Suppose that s ≥ m and f : {0, 1}m → {0, 1} does not have circuits of size at most sm, and C is a
collection of circuits each with size at most s. Then there exists some z ∈ {0, 1}m such that C(z) 6= f(z)
for at least a 1

128 -fraction of the circuits C in C.

Proof. Let ` = 1
2m. The key observation is that for any ` circuits C1, . . . , C` ∈ C (possibly with repetition),

there must exist some z ∈ {0, 1}m such that at least half of C1, . . . , C` fail to compute f on z — otherwise
we would have f(z) = Majority(C1(z), . . . , C`(z)) for all z ∈ {0, 1}m, so we could obtain a circuit C that
computes f by first computing C1, . . . , C` and then taking their majority. It’s known that the Majority
function on ` inputs can be computed by a circuit of size O(`) (for example, see [DKKY10] for a reference),
so the size of C would be at most s` + O(`) ≤ sm, contradicting the fact that f does not have circuits of
size at most sm.
Now let |C| = k, and assume for contradiction that for every z ∈ {0, 1}m, there are at most 1

128k circuits C
in C for which C(z) 6= f(z). We’ll obtain a contradiction by counting the quantity

(∗) =
{

(z, C1, . . . , C`) | Ci(z) 6= f(z) for at least 1
2` indices i ∈ [`]

}
in two different ways. On one hand, there are k` ways to choose C1, . . . , C`, and for each such choice there
is at least one way to choose z (by the above observation); this means (∗) ≥ k`. On the other hand, suppose
that we instead choose z first; this can be done in 2m ways. Then there are at most 2` ways to choose a set
of indices i ∈ [`] (of size at least 1

2`) for which to have Ci(z) 6= f(z). Finally, for each index i in this set,
there are at most 1

128k choices for Ci, while for each of the remaining indices i, there are at most k. So

(∗) ≤ 2m · 2` ·
(
k

128

)`/2
· k`/2 = k` · 2m+m/2−7m/4 < k`

(plugging in ` = 1
2m), which is a contradiction.

Proof of Lemma 4.3. We’ll build S one string at a time, keeping track of the collection C of ‘surviving’
circuits (i.e., circuits that compute f correctly on S) as we go along. We initialize S as ∅ and C as the
collection of all circuits of size at most s, so that |C| ≤ 264s log s. Then at each step, by Lemma 4.4 there
exists some z ∈ {0, 1}m such that adding z to S shrinks C by a factor of at most 1− 1

128 . If we do this for
128 · 64s log s steps, then in the end C will have shrunk by a factor of at most(

1− 1
128

)128·64s log s
≤ e−64s log s < 2−64s log s,

which means it must be empty (as its size is less than 1). This means every circuit C of size at most s
disagrees with f on some z ∈ S (or else C would be in C), so S is an antichecker for f .

§4.2 Estimating the number of surviving circuits

In this subsection, we’ll prove the following lemma, which essentially solves, using a NP oracle, the approx-
imate counting problem that we need to implement the greedy construction in Subsection 4.1.
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Lemma 4.5
There is some problem Succinct-MCSP-with-Hash ∈ NP such that the following holds: let s ≥ m, t ∈ N,
ε > 0, and 0 ≤ k < 264s log s. Then there is a Succinct-MCSP-with-Hash-oracle circuit of size poly(s, t, ε−1)
that takes in inputs z1, . . . , zt ∈ {0, 1}m and b1, . . . , bt ∈ {0, 1} and:

• Accepts if the number of circuits of size at most s with C(zi) = bi for all i ∈ [t] is at most k.
• Rejects if this number is at least k(1 + ε).

(When we apply Lemma 4.5 to produce our antichecker-constructing circuit, the quantities s, t, ε, and k
will always be fixed values (not depending on the input), so it’s fine for this circuit to depend on them.)
We’ll prove Lemma 4.5 via pairwise independent hash families — for all r, ` ∈ N, let Hr,` = {hv: {0, 1}r →
{0, 1}`} be an (efficiently computable) pairwise independent hash family, meaning that:

• If we choose h ∈ Hr,` uniformly at random, then for all distinct x, y ∈ {0, 1}r, the distribution of
(h(x), h(y)) is uniform in {0, 1}` × {0, 1}`.

• The elements of H`,r are given by seeds v of length poly(r, `).
• There is a polynomial-time algorithm to compute hv(x) given r, `, v, and x ∈ {0, 1}r.

There are several standard constructions of such families — for example, taking hM,w(x) = Mx+w, where
the seed v consists of a matrix M ∈ F`×r2 and vector w ∈ F`2 chosen uniformly at random, works.
The main point is that if a set S ⊆ {0, 1}r has size on the same ‘order of magnitude’ as 2`, then we can
estimate |S| by the probability (over a randomly chosen h ∈ Hr,`) that some element of S hashes to 0`.

Claim 4.6 — Let S ⊆ {0, 1}r. Then for h ∈ Hr,` chosen uniformly at random, we have

|S|
2`
(

1− |S|2`+1

)
≤ Ph[exists x ∈ S with h(x) = 0`] ≤ |S|2` .

Proof. For the upper bound, by a union bound we have

Ph[exists x ∈ S with h(x) = 0`] ≤
∑
x∈S

Ph[h(x) = 0`] = |S|2` .

For the lower bound, by the principle of inclusion-exclusion and the pairwise independence of Hr,` we have

Ph[exists x ∈ S with h(x) = 0`] ≥
∑
x∈S

Ph[h(x) = 0`]−
∑

{x,y}∈(S2)
Ph[h(x) = h(y) = 0`]

≥ |S|2`
(

1− |S|2`+1

)
.

We then define our oracle in the following way.

Definition 4.7 (Succinct-MCSP-with-Hash)
• Input: 〈1s, 1`, v, (z1, b1), . . . , (zt, bt)〉, where z1, . . . , zt ∈ {0, 1}m for some m ≤ s and b1, . . . , bt ∈
{0, 1}, and v is the seed to a hash function hv: {0, 1}64s log s → {0, 1}` (from H64s log s,`).

• Decide: whether there exists a circuit C with size(C) ≤ s such that C(zi) = bi for all i ∈ [t] and
hv(〈C〉) = 0`.

It’s clear that Succinct-MCSP-with-Hash ∈ NP, as we can simply guess C and check that it works.

Page 18 of 30



Sanjana Das (May 6, 2024) A survey on hardness magnification

Proof of Lemma 4.5. We can assume without loss of generality that ε ≤ 1 (by replacing it with 1 otherwise).
Let r = 64s log s and choose ` ∈ N such that ε

8 ≤
k
2` ≤

ε
4 (note that ` = poly(s, log ε−1)).

Now imagine performing 4096ε−4t(m + 1) = poly(s, t, ε−1) trials where in each trial, we choose hv ∈ Hr,`
uniformly at random and feed 〈1s, 1`, v, (z1, b1), . . . , (zt, bt)〉 to the Succinct-MCSP-with-Hash oracle. We then
compute the fraction p of trials on which the oracle accepts; we accept if p ≤ k

2` (1 + ε
4) and reject otherwise.

We’ll show (using a Chernoff bound) that this works (i.e., outputs the correct answer) with extremely high
probability, so that we can union-bound over all 2t(m+1) possible inputs to find a choice of randomness for
which it works for all inputs (then we can hardcode these random strings v into our circuit). To do so, let
p∗ be the probability that the oracle accepts on a single trial. Let

S = {〈C〉 | size(S) ≤ s and C(zi) = bi for all i ∈ [t]} ⊆ {0, 1}64s log s

be the set whose size we are trying to estimate, so that

p∗ = Ph[exists x ∈ S with h(x) = 0`]

(essentially by definition). By Claim 4.6, if |S| ≤ k then p∗ ≤ k
2` , while if |S| ≥ k(1 + ε) then

p∗ ≥ k(1 + ε)
2`

(
1− k(1 + ε)

2`+1

)
≥ k(1 + ε)

2`
(

1− k

2`
)
≥ k(1 + ε)

2`
(

1− ε

4

)
≥ k

2`
(

1 + ε

2

)
.

This means that for the algorithm to make an error in either direction, we must have

|p∗ − p| ≥ k

2` ·
ε

4 ≥
ε

8 ·
ε

4 = ε2

32 .

By a Chernoff bound (since we’re performing 4096ε−4t(m+ 1) independent trials), the probability that this
occurs is much less than 2t(m+1), allowing us to union-bound over all possible inputs and find a choice of
randomness for which this algorithm works for all inputs. We then hardcode this choice of randomness into
our circuit; this gives us a circuit of size poly(s, t, ε−1).

§4.3 An oracle circuit for Gap-MCSP

Finally, we’ll use the approximate counting circuit of Lemma 4.5 to implement the greedy construction of
Lemma 4.3 with an efficient Succinct-MCSP-with-Hash-oracle circuit making short queries; this will give the
following lemma, which immediately implies Theorem 4.1.

Lemma 4.8
For any s and n with s ≥ logn, there is a Succinct-MCSP-with-Hash-oracle circuit of size n · poly(s)
making queries of fan-in poly(s) that decides Gap-MCSP[s, s logn] on length-n inputs.

Proof. Fix ε > 0 to be a constant with (1− 1
128)(1 + ε) ≤ 1− 1

256 . Let t = 256 · 64s log s and k0 = 264s log s,
and for each 1 ≤ i ≤ t, let ki = (1− 1

256)ki−1.
Our circuit now works as follows. We attempt to construct an antichecker S for f one string at a time. To
do so, on the ith step (for 1 ≤ i ≤ t), suppose that we’ve already chosen z1, . . . , zi−1. We then loop through
all z ∈ {0, 1}m one at a time. For each, we run the oracle circuit from Lemma 4.5 on z1, . . . , zi−1, z and
f(z1), . . . , f(zi−1), f(z) with t replaced by i and k replaced by (1− 1

128)ki−1. If this oracle circuit accepts
on any z, then we set zi to be the lexicographically first such z; otherwise, if no such z exists (i.e., the oracle
rejects on all z), then we accept. Finally, after t steps, if we haven’t yet accepted (so we’ve successfully
constructed z1, . . . , zt), then we reject.
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We’ll first check that this procedure works. First, we claim that if the procedure rejects, then f cannot be
computed by a circuit of size s. To see this, on the last step the circuit from Lemma 4.5 accepts z1, . . . , zt,
f(z1), . . . , f(zt), which means we must have

#{C | size(C) ≤ s and C(zi) = f(zi) for all i ∈ [t]} <
(

1− 1
128

)
kt−1(1 + ε) ≤ kt.

But we chose t in such a way that kt < 1, which means there cannot exist any such circuits. (In other words,
we’ve successfully constructed an antichecker for f , which means f certainly cannot have a small circuit.)
On the other hand, we claim that if f cannot be computed by a circuit of size s logn = sm, then this
procedure necessarily rejects (intuitively, this corresponds to the procedure successfully running the greedy
construction of Lemma 4.3 without getting stuck, eventually producing an antichecker S = {z1, . . . , zt}). To
see this, for each 0 ≤ i ≤ t, let Ci be the collection of ‘surviving’ circuits once we’ve chosen z1, . . . , zi. Let
(I)i be the statement that |Ci| ≤ ki (for each 0 ≤ i ≤ t), and let (II)i be the statement that the procedure
successfully chooses some string zi (for each 1 ≤ i ≤ t). Then:

• (I)0 is true because |C0| ≤ 264s log s = k0.
• If (I)i−1 is true, then (II)i is true by Lemma 4.4 — explicitly, on the ith step, for each z the circuit

from Lemma 4.5 is trying to approximately count the quantity

#{C ∈ Ci−1 | C(z) = f(z)}

(with k = (1 − 1
128)ki−1), and by Lemma 4.4 there exists some z for which this quantity is at most

(1− 1
128) |Ci−1|, which by (I)i−1 is at most (1− 1

128)ki−1; this means the circuit from Lemma 4.5 must
accept on this choice of z (by the first guarantee of Lemma 4.5).

• If (II)i is true, then (I)i must be true by the second guarantee of Lemma 4.5 — the fact that the circuit
from Lemma 4.5 accepted on z = zi means that

|Ci| = #{C | size(C) ≤ s and C(zj) = f(zj) for all j ∈ [i]} <
(

1− 1
128

)
ki−1(1 + ε) ≤ ki.

So by induction, both statements are true for all i, which in particular means the procedure successfully
runs to completion.
Finally, this procedure can be implemented by a n · poly(s)-size circuit — we essentially have t = poly(s)
‘layers’ where the ith layer ends up producing (zi, f(zi)) (or a Failure message telling the circuit to accept).
At each layer, for every z ∈ {0, 1}m we have a poly(s)-sized oracle circuit from Lemma 4.5 where z1, . . . ,
zi−1 and f(z1), . . . , f(zi−1) are wired in from the previous layers, z is hardcoded, and f(z) (which is a
specific bit of our input f) is taken straight from the appropriate input wire. This oracle circuit at each z
eventually produces a single bit (either accept or reject), and we can find the lexicographically first z for
which this bit is accept and take the corresponding (z, f(z)) to be the output of the layer.

§5 Magnification via compression

In this section, we’ll prove Theorems 1.5, 1.6, and 1.7, following the outline in Subsubsection 1.2.3.

§5.1 Magnification for Search-MCSP with circuits

In this subsection, we prove the following slightly more general version of Theorem 1.5.
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Theorem 5.1 ([MMW19, Theorem 1.4])
Suppose there exists s:N → N such that Search-MCSP[s] cannot be solved (on inputs of length n) by
circuits of size n · poly(s) and depth poly(s). Then NP 6⊆ Circuit[poly].

For this, we’ll define the following auxiliary problem to serve as our oracle. Intuitively (following the sketch
in Subsubsection 1.2.3), we want an oracle that takes in a collection of small circuits corresponding to
disjoint intervals, and finds a small circuit C that ‘merges’ them (i.e., that matches each circuit Ci on its
specified interval) or tells us that no such circuit exists. But we need the oracle to output only a single bit,
so we instead have it output the jth bit of the description of the lexicographically first such circuit C (where
we give the oracle j as well), so that running the oracle over all indices j gives us a full description of such
a circuit C.

Definition 5.2 (Circuit-Merge)
• Input: 〈1s, C1, . . . , Ct, [z1, z

′
1], . . . , [zt, z′t], j〉, where:

– C1, . . . , Ct are m-input circuits of size at most s (for some m ≤ s).
– [z1, z

′
1], . . . , [zt, z′t] are disjoint intervals in {0, 1}m under the lexicographical order (with each

interval specified by its two endpoints zi, z′i ∈ {0, 1}m).
– j is an integer with 1 ≤ j ≤ 64s log s.

• Output: 〈C〉j , where C is the lexicographically first circuit with the properties that size(C) ≤ s
and C(x) = Ci(x) for all i ∈ [t] and x ∈ [zi, z′i], or 0 if no such C exists.

(We allow some of C1, . . . , Ct to be the all-0’s string as well, in which case the oracle should output 0.)

Claim 5.3 — We have Circuit-Merge ∈ Σ3P.

Proof. We can solve Circuit-Merge using the following Σ3 algorithm:
• Existentially guess a circuit C of size at most s (as a 64s log s-bit string) with 〈C〉j = 1.
• To check that C itself merges C1, . . . , Ct successfully, we universally guess x ∈ {0, 1}m. Then checking

that C(x) is what it should be can be done in polynomial time — we first find the index i such that
x ∈ [zi, z′i] (if such i exists), then compute C(x) and Ci(x) (which can be done in poly(s) time) and
check that they match.

• To check that there is no lexicographically smaller circuit that merges C1, . . . , Ct, we universally guess
a circuit C ′ of size at most s which is lexicographically smaller than C. We then existentially guess
an input x′ ∈ {0, 1}m. Then we can check that C ′(x′) is not what it should be in polynomial time —
we first find i such that x′ ∈ [zi, z′i], then compute C ′(x′) and Ci(x′) and check that they don’t match.

(This can be quantified as (∃C)(∀x,C ′)(∃x′)[· · ·], where [· · ·] is a polynomial-time checkable predicate.)

We’ll then construct the following oracle circuit for Search-MCSP.

Lemma 5.4
For any s and n with s ≥ logn, there exists a Circuit-Merge-oracle circuit of size n · poly(s) and depth
O(logn) where all oracle gates have fan-in poly(s) that solves Search-MCSP[s] on length-n inputs.

This implies Theorem 5.1 because if NP ⊆ Circuit[poly] then PH ⊆ Circuit[poly], which lets us implement
each Circuit-Merge-oracle gate with a poly(s)-sized circuit (this increases the size and depth of our circuit
by a factor of poly(s)).
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Proof. We imagine building a binary tree with n leaves, each corresponding to a string z ∈ {0, 1}m (with
these leaves arranged in lexicographical order), and each node in the tree represents an interval in {0, 1}m
— specifically, the interval obtained by combining those of its children. We’ll build our circuit so that for
every node [z, z′] in the tree, the circuit contains 64s log s nodes (in parallel) that together make up the
description of a circuit C of size at most s that computes f on [z, z′] (or the all-0’s string if no such circuit
exists); then we can output the 64s log s nodes corresponding to the root.
For the leaves of the tree, each leaf corresponds to an interval consisting of just one string z, so we can
simply get f(z) from the appropriate input wire and then produce (a description of) the constant circuit C
that outputs f(z) on all inputs.
Meanwhile, for each non-leaf node, suppose that its children correspond to the intervals [z1, z

′
1] and [z2, z

′
2],

and that we’ve built the portions of our Search-MCSP circuit corresponding to these nodes (i.e., the 64s log s-
node stretches storing circuits C1 and C2 that compute f on these intervals). Then to build the portion
corresponding to the current node, we can simply call Circuit-Merge(〈1s, C1, C2, [z1, z

′
1], [z2, z

′
2], j〉) for all

1 ≤ j ≤ 64s log s in parallel (where we hardcode everything except C1 and C2).
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0
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0

C001
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1

C010
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C011
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1
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1
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1
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Merge
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Merge

C01

Merge

C10

Merge

C11

Merge

C0

Merge

C1

Merge

C

(This works because if f can be computed by a circuit of size at most s, then it can certainly be computed
by a circuit of size at most s on every interval [z, z′].)

§5.2 Magnification for Search-MCSP with streaming algorithms

We can prove Theorem 1.7 (which we restate in the more general form) in almost the same way.

Theorem 5.5 ([MMW19, Theorem 1.3])
Suppose that there is a poly(s)-time constructible s:N → N such that s(n) ≥ logn for all n ∈ N and
such that Search-MCSP[s] cannot be solved by a poly(s)-space streaming algorithm with poly(s) update
time. Then P 6= NP.

A streaming algorithm is only allowed to read its input once from left to right, and its update time is the
maximum amount of time it spends between reading two consecutive bits of the input. We include the time
spent before reading the first bit or reading the last bit of the input, so that an algorithm with poly(s)
update time automatically runs in time n · poly(s). We also assume that the algorithm is given m (or n) at
the start of its input.
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We’ll use the same auxiliary problem Circuit-Merge as our oracle, and we’ll construct an oracle streaming
algorithm with the following properties.

Lemma 5.6
Let s:N → N be any poly(s)-time constructible function such that s(n) ≥ logn for all n ∈ N. Then
Search-MCSP[s] can be solved by a poly(s)-space streaming algorithm with poly(s) update time making
poly(s)-length queries to a Circuit-Merge oracle.

This implies Theorem 5.5 because if P = NP then P = PH, allowing us to implement the Circuit-Merge oracle
with a polynomial-time algorithm (which contributes only poly(s) to our update time and space usage).

Proof. As we read through the input, we’ll store the string z that we’ve read up to so far (meaning that
we’ve read the truth table of f on the interval [0m, z]) and a circuit C of size at most s computing f on
[0m, z] (or that no such circuit exists) — this information takes poly(s) space. To maintain this property,
suppose we currently have z and C in our storage, and the next input bit we read is b — so we now know
that f(x) = C(x) for all x ∈ [0m, z] and f(z′) = b, where z′ is the string immediately lexicographically
after z. We then construct the circuit C ′ that always outputs b, and for each 1 ≤ j ≤ 64s log s we run the
Circuit-Merge oracle on 〈1s, C, C ′, [0m, z], [z′, z′], j〉. Finally, we update z to z′ and C to the output of the
oracle (or more precisely, the concatenation of its outputs over all j), which is now a circuit of size at most
s computing f on [0m, z′] (or the all-0’s string if no such circuit exists). Finally, once we’ve read through
the entire input, we output the circuit we’re storing (which computes f on all inputs by construction).

§5.3 Magnification for Search-MKtP with circuits

Finally, we’ll sketch the proof of the following general version of Theorem 1.6.

Theorem 5.7 ([MMW19, Theorem 1.7])
Suppose there exists p:N → N such that Search-MKtP[p] cannot be solved (on inputs of length n) by
circuits of size n · poly(s) and depth poly(s). Then EXP 6⊆ Circuit[poly].

To prove this, instead of Circuit-Merge, we define the obvious analog for MKtP.

Definition 5.8 (TM-Merge)
• Input: 〈1p, n,M1, . . . ,Mt, [d1, d

′
1], . . . , [dt, d′t], j〉, where:

– n is written in binary, [d1, d
′
1], . . . , [dt, d′t] are disjoint intervals in [n] (given by their endpoints

di, d
′
i ∈ [n], which are also written in binary), and p ≥ logn.

– M1, . . . , Mt are Turing machines with |〈Mi〉|+ log time(Mi) ≤ p.
– j is an integer with 1 ≤ j ≤ p.

• Output: 〈M〉j , where M is the lexicographically first Turing machine with the properties that
|〈M〉| + log time(M) ≤ p and that the output of M has length n and agrees with the output of
Mi on all indices in [di, d′i] for all i ∈ [t], or 0 if no such M exists (or if the lexicographically first
M has |〈M〉| < j).

Note that the conditions on the input can all be checked in exponential time.

Claim 5.9 — We have TM-Merge ∈ EXP.
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Proof. We first run each of M1, . . . , Mt for 2p steps, to make sure they satisfy |〈Mi〉| + log time(Mi) ≤ p
and to get their outputs. Then we enumerate over all Turing machines M with description length at most
p (of which there are at most 2p); for each, we check whether |〈M〉|+ log time(M) ≤ p and its output meets
the given specifications. If we find some M which works, then we output 〈M〉j for the lexicographically first
such M ; otherwise we output 0.

Given this, the proof of Theorem 1.6 is essentially identical to that of Theorem 1.5 (we prove an analog of
Lemma 5.4 with a TM-Merge oracle instead of a Circuit-Merge one), so we omit the rest of the details.

§6 Magnification via hashing

In this section, we’ll prove Theorems 1.9, 1.10, 1.11, and 1.12, following the outline in Subsubsection 1.2.4.
All of these proofs rely on the existence of ‘nice’ hash functions that hash all YES instances of our sparse
language to different values. Chen, Jin, and Williams construct such hash functions in [CJW19, Section 3]
using various tools from pseudorandomness. We won’t discuss this construction; instead, we’ll just state its
relevant properties in the following lemma.

Lemma 6.1 ([CJW19, Lemma 3.3])
For all p, n ∈ N with logn ≤ p ≤ n1/2, there exists a hash family Hn,p = {hv: {0, 1}n → {0, 1}q} with
the following properties:

(i) The output length and seed length of each hv are both q = ap (for a constant a ∈ N).
(ii) For every S ⊆ {0, 1}n with |S| ≤ 2p, there exists a seed v such that the values of hv(x) over all

x ∈ S are all distinct. (We say such a v is a good seed for S.)
(iii) Each hash function hv is linear — for each seed v and index i ∈ [q], we can write hv(x)i as 〈x,wv,i〉

for some wv,i ∈ {0, 1}n.
(iv) There is an algorithm that, given n, p, v, i, and j (for indices i ∈ [q] and j ∈ [n]), computes the

jth bit of wv,i in p · polylog(n) time and space.

Note that (iv) means that given n, p, and v, we (i.e., an algorithm) can compute the entire length-q string
hv(x) in np2 · polylog(n) time and p · polylog(n) space.

Remark 6.2. The construction of [CJW19] actually works for p all the way up to n/polylog(n). But for
our purposes, p will always be a parameter representing the sparsity of our language (e.g., it’ll be nβ for
Theorems 1.9 and 1.10), so we only really need the case where p is a small power of n (or potentially
even smaller, for the theorems regarding MCSP and MKtP).

§6.1 Magnification for sparse NP languages with formulas

In this subsection, we prove Theorem 1.9.

Theorem 1.9 ([CJW19, Theorem 1.1])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 such that there is a 2nβ -sparse
language L ∈ NP with L 6∈ Formula-XOR[n1+ε]. Then NP 6⊆ Formula[nk] for all k ∈ N.

For this proof, given any language L ∈ NP and any β ∈ (0, 1
2), we define the following auxiliary problem as

our oracle (note that here we’re defining a whole family of oracles, rather than just one).
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Definition 6.3 ((L, β)-Hash-Match)
• Input: 〈n, 1p, v, x∗, i, b〉 where p = nβ, v is a seed to a hash function hv ∈ Hn,p as in Lemma 6.1

(we’ll use q to denote ap, so v ∈ {0, 1}q), x∗ ∈ {0, 1}q, i ∈ [n], and b ∈ {0, 1} (n and i are given in
binary, with i padded with leading 0’s to have the same length as n).

• Decide: whether there exists y ∈ {0, 1}n such that y ∈ L, hv(y) = x∗, and yi = b.

Claim 6.4 — For any L ∈ NP and β ∈ (0, 1
2), we have (L, β)-Hash-Match ∈ NP.

Proof. We can decide (L, β)-Hash-Match by nondeterministically guessing y ∈ {0, 1}n and then nondetermin-
istically checking that y ∈ L (which we can do because L ∈ NP), computing hv(y) using the polynomial-time
algorithm given by Lemma 6.1(iv) to check that hv(y) = x∗, and checking that yi = b.
This algorithm clearly takes time poly(n). And the length of our input is at least nβ (and β > 0 is fixed, so
n is a fixed polynomial in nβ), so this algorithm takes polynomial time in its input length.

We’ll then construct oracle formulas with the following parameters.

Lemma 6.5
Let β ∈ (0, 1

2), and suppose that L ∈ NP is 2nβ -sparse. Then for each n, there is a (L, β)-Hash-Match-
oracle XOR-formula of size O(n1+β) making nonadaptive queries of fan-in O(nβ) that decides L on inputs
of length n.

Remark 6.6. The exact bounds in the following lemma are not very important — for Theorem 1.9 it’s
enough to bound the size of the formula by n · poly(nβ) and the fan-in by poly(nβ) (in the style of the
bounds we’ve stated for the previous oracle algorithms) — but we state specific bounds in this case
because this makes the proof of Theorem 1.9 notationally simpler.

Proof. First, we let p = nβ and fix a good seed v (for a hash function hv ∈ Hn,p) for the set of YES instances
to L of length n (as in Lemma 6.1(ii)). We then take the formula∧

i∈[n]
(L, β)-Hash-Match(〈n, 1p, v, hv(x), i, xi〉).

Here n, 1p, v, and i are all hardcoded; hv is a linear function {0, 1}n → {0, 1}q (where q = ap, as in Lemma
6.1), so each of the q bits of hv(x) is a parity function of x and therefore is a valid leaf of a XOR-formula;
and xi is a single bit of x and therefore also a valid leaf. So the input to each oracle query consists of
O(logn+ p+ q + q + logn+ 1) = O(nβ) leaves, and we have n such oracle queries.
We’ll now explain why this formula works. In words, what we’re doing is first hashing x and then asking,
for each index i ∈ [n], whether there is some y ∈ {0, 1}n such that y ∈ L, hv(y) = hv(x), and yi = xi. If
x is in L, then the answer is certainly yes for all indices i, as we can take y = x. Meanwhile if x is not in
L, then there’s at most one y ∈ L with hv(y) = hv(x). If there is no such y, then the answer will be no for
every i ∈ [n]. Meanwhile, if there is such a y, then it has to disagree with x on at least one index (i.e., there
must exist some i ∈ [n] with yi 6= xi), and the answer will be no for this index i.

Finally, we’ll deduce Theorem 1.9 from this construction.
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Proof of Theorem 1.9. Assume that NP ⊆ Formula[nk] for some k ∈ N. We’ll show that for every ε > 0, for
every β ∈ (0, ε2k ) and every 2nβ -sparse L ∈ NP, we have L ∈ Formula-XOR[n1+ε].
Fix β and L, and for each n, consider the (L, β)-Hash-Match-oracle XOR-formula for L (on inputs of length
n) given by Lemma 6.5. Since the problem (L, β)-Hash-Match is in NP, the assumption NP ⊆ Formula[nk]
allows us to replace each oracle query with a formula of size O(nβk) in its O(nβ) inputs. This multiplies
the size of our formula by a factor of at most O(nβk), so the resulting formula is a XOR-formula of size
O(n1+β+βk) ≤ O(nε) for L, showing that L ∈ Formula-XOR[n1+ε].

§6.2 Magnification for sparse NP languages with small-advice algorithms

In this subsection, we prove Theorem 1.10.

Theorem 1.10 ([CJW19, Theorem 1.2])
Suppose that there is ε > 0 for which there are arbitrarily small β > 0 such that there is a 2nβ -sparse
language L ∈ NP that cannot be computed by a n1+ε-time nε-space deterministic algorithm with nε

bits of advice. Then NP 6⊆ Circuit[nk] for all k ∈ N.

Proof. As usual, we’ll prove this by contrapositive — assume that NP ⊆ Circuit[nk]. Our goal is to show
that for every ε > 0, for all sufficiently small β and all 2nβ -sparse languages L ∈ NP, we can decide L with
a n1+ε-time nε-space deterministic algorithm with nε bits of advice.
The main idea is that to decide L, we’d like to compute the same quantity∧

i∈[n]
(L, β)-Hash-Match(〈n, 1p, v, hv(x), i, xi〉) (?)

from the proof of Lemma 6.5 (where x is our input, n is its length, and p = nβ), but this time with a
low-time low-space algorithm with a small amount of advice instead of an oracle formula. We can include v
in our advice, and if we do so then we can compute all the quantities in 〈n, 1p, v, hv(x), i, xi〉 in low time and
space (using Lemma 6.1(iv) to compute hv(x) efficiently), but then we need a way to implement the oracle
calls. We’ll do so by including a circuit for (L, β)-Hash-Match in our advice — all our oracle calls involve
calling (L, β)-Hash-Match on inputs of a very small, fixed length, so the assumption NP ⊆ Circuit[nk] means
this circuit is small enough to fit into our nε bits of advice (if β is sufficiently small with respect to ε), and
small enough that we can evaluate it (for each of these calls) in low time and space.
To formalize this, let c ∈ N be a constant such that given a circuit C with size(C) ≤ s and with at most s
inputs, we can evaluate C on any given input string in time O(sc). (Such c exists because Circ-Eval ∈ P.)
We’ll take ‘sufficiently small’ to mean that β ∈ (0, ε

4kc) — we’ll show that for any such β and any 2nβ -sparse
L ∈ NP, we can decide L with a n1+ε-time nε-space deterministic algorithm with nε bits of advice.
Fix L and β, let p = nβ and q = ap, and let v ∈ {0, 1}q be a good seed (for a hash function hv ∈ Hn,p) for the
set of YES instances to L of length n (as in Lemma 6.1). Let ` be the common length of 〈n, 1p, v, hv(x), i, xi〉
over all oracle queries in (?) (we defined (L, β)-Hatch-Match so that this length doesn’t depend on i — it’s
always logn+ p+ q + q + logn+ 1, which only depends on n), so that ` = O(nβ).
We’ll then take our advice (for inputs of length n) to consist of v and the description of a circuit of size at
most `k computing (L, β)-Hash-Match on inputs of length `. The size of this circuit is at most nβk, so its
description length is at most nβk logn < nε (ignoring constant factors).
Now our algorithm works as follows: we first compute hv(x) and write it down (this takes n1+2β · polylog(n)
time and nβ ·polylog(n) space by Lemma 6.1(iv); both of these are well within bounds). Then we go through
the indices i ∈ [n] one at a time, and for each, we evaluate the (L, β)-Hash-Match circuit (given in our
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advice) on the appropriate input 〈n, 1p, v, hv(x), i, xi〉 in (?). At each index we’re evaluating a circuit of size
at most nβk, which we can do in time and space nβkc < nε (and of course we can reuse the space across
different oracle calls); so this lets us compute (?) in n1+ε time and nε space.

§6.3 Magnification for Search-MKtP with formulas

We’ll now use the ideas in Subsection 6.1 to prove Theorems 1.11 and 1.12 — magnification results for
MCSP and MKtP for more restrictive models of computation (specifically, Formula-XOR). Note that MCSP[s]
is 264s log s-sparse and MKtP[p] is 2p-sparse, so Theorem 1.9 automatically implies magnification to fixed-
polynomial lower bounds for both languages (in the regime where s and p are of the form nβ). But we’d
ideally like to prove magnification to arbitrary-polynomial lower bounds (as in the previous magnification
theorems we’ve seen for MCSP and MKtP). (We’d also like to consider the search versions of these problems,
and to allow for general parameters s and p.) It turns out that we can do all of these things, by modifying
how we define and implement the auxiliary problem (that we use as an oracle).
We’ll begin with MKtP (because the modifications we need to make to the argument in Subsection 6.1 are
simpler) — in this subsection, we’ll prove the following general version of Theorem 1.12.

Theorem 6.7 ([CJW19, Theorem 1.6])
Suppose there exists p:N→ N with logn ≤ p ≤ n1/2 for all n ∈ N and such that Search-MKtP[p] cannot
be solved by XOR-formulas of size n · poly(p). Then EXP 6⊆ Formula[poly].

In order to prove this, we’ll replace (L, β)-Hash-Match from Subsection 6.1 with the following auxiliary
problem (where we essentially specialize the definition of (L, β)-Hash-Match to the case of MKtP, and adapt
it for a search problem in the same way as in Section 5).

Definition 6.8 (MKtP-Hash-Match)
• Input: 〈n, 1p, v, x∗, i, b, j〉 where:

– n is an integer given in binary, and logn ≤ p ≤ n1/2.
– v is a seed to a hash function hv ∈ Hn,p as in Lemma 6.1 (we’ll use q to denote ap, so
v ∈ {0, 1}q), and x∗ ∈ {0, 1}q.

– i ∈ [n] is also an integer given in binary, and b ∈ {0, 1}.
– j is an integer with 1 ≤ j ≤ p.

• Output: 〈M〉j , where M is the lexicographically first Turing machine such that:
– |〈M〉|+ log time(M) ≤ p, and
– the output y of M has length n and satisfies hv(y) = x∗ and yi = b,

or 0 if no such M exists (or if the lexicographically first M has |〈M〉| < j).

Claim 6.9 — We have MKtP-Hash-Match ∈ EXP.

Proof. As usual, we can simply enumerate over all 2p Turing machines M of description length at most p.
For each M , we run M for 2p steps and check that |〈M〉| + log time(M) ≤ p, and that its output y meets
all the given specifications. Note that for y of length n ≤ 2p, computing hv(y) takes time poly(n) = 2O(p);
so this gives an exponential-time algorithm for MKtP-Hash-Match.
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Then we can construct a MKtP-Hash-Match-oracle XOR-formula, using essentially the same construction as
in Lemma 6.5. (This immediately implies Theorem 6.7.)

Lemma 6.10
For any logn ≤ p ≤ n1/2, there is a MKtP-Hash-Match-oracle XOR-formula of size n · poly(p) making
nonadaptive queries of fan-in poly(p) that solves Search-MKtP[p] on inputs of length n.

Proof. We define our formula so that for each j ∈ [p], the jth bit of its output is∧
i∈[n]

MKtP-Hash-Match(〈n, 1p, v, hv(x), i, xi, j〉)

where v is a good seed for the YES instances of MKtP[p] of length n, the quantities n, p, v, and i are all
hardcoded, and xi and each bit of hv(x) is a leaf of the formula (as in the proof of Lemma 6.5). (This is
essentially the same construction as in Lemma 6.5; the fact that we now have p outputs instead of 1 only
contributes a factor of p to the size of the formula.)
We’ll now check that this formula works. First suppose that x is a YES instance of MKtP[p]. Then there are
no other YES instances y of MKtP[p] with hv(y) = hv(x) (because we chose v to be a good seed for the YES
instances of MKtP[p], so they’re all hashed to different values). This means that for all i and j, the only way
a Turing machine M can meet the two conditions in the definition of MKtP-Hash-Match is if its output is x
(because if M satisfies the first condition, i.e., |〈M〉|+ log time(M) ≤ p, then its output y has Kt-complexity
at most p by definition). Conversely, any M with |〈M〉| + log time(M) ≤ p which outputs x does satisfy
both conditions (and we assumed x is a YES instance of MKtP[p], so such M exists). So for all i and j, the
oracle call MKtP-Hash-Match(〈n, 1p, v, hv(x), i, xi, j〉) will return 〈M〉j where M is the lexicographically first
Turing machine with |〈M〉|+ log time(M) ≤ p that outputs x; and so overall, our formula produces the full
description of M .
On the other hand, suppose that x is a NO instance of MKtP[p]. Then there is at most one possible string
y of length n that a Turing machine M with |〈M〉| + log time(M) ≤ p could possibly output that satisfies
hv(y) = hv(x) (again because any such y is a YES instance of MKtP[p], and all YES instances hash to different
values), and there must exist some index i with xi 6= yi; for this index i, there can’t exist any M meeting
the given specifications, so MKtP-Hash-Match(〈n, 1p, v, hv(x), i, xi, j〉) will return 0 for all j. Since for each
j we’re taking an AND over i, this means we’ll (correctly) output the all-0’s string.

§6.4 Magnification for Search-MCSP with formulas

Finally, we’ll adapt the arguments in Subsection 6.4 to work for MCSP as well, and prove the following
general version of Theorem 1.11.

Theorem 6.11 ([CJW19, Theorem 1.6])
Suppose there exists s:N→ N with logn ≤ s ≤ n1/3 for all n ∈ N and such that Search-MCSP[s] cannot
be solved by XOR-formulas of size n · poly(s). Then PSPACE 6⊆ Formula[poly].

We’ll first define an auxiliary problem very similar to MKtP-Hash-Match.
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Definition 6.12 (MCSP-Hash-Match)
• Input: 〈1s, v, x∗, z, b, j〉, where:

– z ∈ {0, 1}m for some m ≤ s (we’ll use n to denote 2m), and b ∈ {0, 1}.
– v is a length-t seed to a hash function hv ∈ Hn,p with p = 64s log s, as in Lemma 6.1 (we’ll

use q to denote ap), and x∗ ∈ {0, 1}q.
– j is an integer with 1 ≤ j ≤ 64s log s.

• Output: 〈C〉j , where C is the lexicographically first circuit (with m inputs) with size(C) ≤ s
and such that hv(tt(C)) = x∗ and C(z) = b, or 0 if no such circuit exists.

(We use tt(C) to denote the n-bit truth table of the function computed by C.)

Claim 6.13 — We have MCSP-Hash-Match ∈ PSPACE.

Proof. We can enumerate over all circuit descriptions 〈C〉 of length 64s log s in lexicographical order. For
each, we can easily check in polynomial space that C(z) = b, but we can’t write out the entire truth table
tt(C) and hash it — it’s simply too big. Instead, we’ll use Lemma 6.1(iv) in a more careful way.
We’ll compute the bits hv(tt(C))i over all i ∈ [q] one at a time (and compare them to the corresponding
bits of x∗). For each i ∈ [q], we know we can write

hv(tt(C))i = 〈tt(C), wv,i〉

for some wv,i ∈ {0, 1}n. Since tt(C) is indexed by strings x ∈ {0, 1}m, we’ll also think of wv,i as being
indexed by such x (and we’ll write wv,i(x) to denote the xth coordinate of wv,i); then this quantity is

hv(tt(C))i = 〈tt(C), wv,i〉 = #{x ∈ {0, 1}m | C(x) = wv,i(x) = 1} (mod 2). (??)

But by Lemma 6.1(iv), we can compute wv,i(x) (for any given v, i, and x) in poly(p) = poly(s) space, and
we can also compute C(x) in poly(s) space; so by going through the values of x ∈ {0, 1}m one at a time, we
can compute hv(tt(C))i in poly(s) space as well.
This allows us to check all the relevant conditions on C in polynomial space, and therefore to find the
lexicographically first C that satisfies them (or that no such C exists).

Remark 6.14. By a slightly more careful argument, we can in fact see that MCSP-Hash-Match ∈
(Σ2P)⊕P — we existentially guess C and universally guess a lexicographically smaller circuit C ′, and
from (??) we can see that computing each bit of hv(tt(C)) is essentially a ⊕P problem. Chen, Jin,
and Williams [CJW19] use this observation and several facts about relationships between complexity
classes to prove Theorem 1.11 with PSPACE replaced by ⊕P and PP.

Meanwhile, we can construct a MCSP-Hash-Match-oracle XOR-formula using the exact same construction as
in Lemma 6.10; this implies Theorem 6.11.

Lemma 6.15
Let logn ≤ s ≤ n1/3. Then there exists a MCSP-Hash-Match-oracle XOR-formula of size n · poly(s)
making nonadaptive queries of fan-in poly(s) that solves Search-MCSP[s] on inputs of length n.

The proof is essentially identical to the one in Lemma 6.10, so we omit it — here we use the fact that if v
is a good seed for the YES instances of MCSP[s], then there is at most one possibility for tt(C) hashing to
any given value (under the condition that size(C) ≤ s), since any such tt(C) is a YES instance to MCSP[s].
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