
Introduction Search-MCSP Sparse NP Languages References

Hardness magnification

Sanjana Das

18.405

May 14, 2024

1 / 15

Introduction Search-MCSP Sparse NP Languages References

What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower
bounds on certain problems imply much stronger lower bounds.

Theorem (McKay–Murray–Williams 2019)

If there is ε > 0 and arbitrarily small β > 0 such that

? MCSP[nβ] doesn’t have circuits of size n1+ε (on inputs of length
n = 2m),

? then NP 6⊆ Circuit[poly].

We believe MCSP[nβ] is ‘hard,’ so a lower bound of n1+ε looks very weak
— but it would be enough to imply NP 6⊆ Circuit[poly]!

2 / 15

Introduction Search-MCSP Sparse NP Languages References

What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower
bounds on certain problems imply much stronger lower bounds.

Theorem (McKay–Murray–Williams 2019)

If there is ε > 0 and arbitrarily small β > 0 such that

? MCSP[nβ] doesn’t have circuits of size n1+ε (on inputs of length
n = 2m),

? then NP 6⊆ Circuit[poly].

We believe MCSP[nβ] is ‘hard,’ so a lower bound of n1+ε looks very weak
— but it would be enough to imply NP 6⊆ Circuit[poly]!

2 / 15

Introduction Search-MCSP Sparse NP Languages References

The high-level idea

We argue by contrapositive: e.g., we assume NP ⊆ Circuit[poly] and use
this to get super efficient circuits for MCSP[nβ].

Main idea

Reduce to a problem on much smaller input size (e.g., nβ instead of n).

I Given an oracle O for a specific problem, we can solve MCSP[nβ]
with a circuit of size n1+β and oracle calls of size nβ .

I Under the assumption NP ⊆ Circuit[poly], we can solve O with a
decently efficient circuit (e.g., polynomial in its input length).

I The input length to O is so tiny that even a decently efficient circuit
for O in terms of its input length is super efficient in terms of n.

3 / 15

Introduction Search-MCSP Sparse NP Languages References

The high-level idea

We argue by contrapositive: e.g., we assume NP ⊆ Circuit[poly] and use
this to get super efficient circuits for MCSP[nβ].

Main idea

Reduce to a problem on much smaller input size (e.g., nβ instead of n).

I Given an oracle O for a specific problem, we can solve MCSP[nβ]
with a circuit of size n1+β and oracle calls of size nβ .

I Under the assumption NP ⊆ Circuit[poly], we can solve O with a
decently efficient circuit (e.g., polynomial in its input length).

I The input length to O is so tiny that even a decently efficient circuit
for O in terms of its input length is super efficient in terms of n.

3 / 15

Introduction Search-MCSP Sparse NP Languages References

Magnification for Search-MCSP

Definition (Search-MCSP[s])

I Input: f : {0, 1}m → {0, 1}, as a truth table of length n = 2m.

I Output: a circuit of size at most s that computes f , or the all-0’s
string if no such circuit exists.

Theorem (McKay–Murray–Williams 2019)

If there is ε > 0 and arbitrarily small β > 0 such that Search-MCSP[nβ]
doesn’t have circuits of size n1+ε and depth nε, then NP 6⊆ Circuit[poly].

Theorem (‘Contrapositive’ of MMW19)

If NP ⊆ Circuit[poly], then Search-MCSP[s] has circuits of size n · poly(s)
and depth poly(s). (Think of s as nβ .)

4 / 15

Introduction Search-MCSP Sparse NP Languages References

Magnification for Search-MCSP

Definition (Search-MCSP[s])

I Input: f : {0, 1}m → {0, 1}, as a truth table of length n = 2m.

I Output: a circuit of size at most s that computes f , or the all-0’s
string if no such circuit exists.

Theorem (McKay–Murray–Williams 2019)

If there is ε > 0 and arbitrarily small β > 0 such that Search-MCSP[nβ]
doesn’t have circuits of size n1+ε and depth nε, then NP 6⊆ Circuit[poly].

Theorem (‘Contrapositive’ of MMW19)

If NP ⊆ Circuit[poly], then Search-MCSP[s] has circuits of size n · poly(s)
and depth poly(s). (Think of s as nβ .)

4 / 15

Introduction Search-MCSP Sparse NP Languages References

Magnification for Search-MCSP

Definition (Search-MCSP[s])

I Input: f : {0, 1}m → {0, 1}, as a truth table of length n = 2m.

I Output: a circuit of size at most s that computes f , or the all-0’s
string if no such circuit exists.

Theorem (McKay–Murray–Williams 2019)

If there is ε > 0 and arbitrarily small β > 0 such that Search-MCSP[nβ]
doesn’t have circuits of size n1+ε and depth nε, then NP 6⊆ Circuit[poly].

Theorem (‘Contrapositive’ of MMW19)

If NP ⊆ Circuit[poly], then Search-MCSP[s] has circuits of size n · poly(s)
and depth poly(s). (Think of s as nβ .)

4 / 15

Introduction Search-MCSP Sparse NP Languages References

Main idea — compression using small circuits

Main Idea

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

· · · · · ·0 0 1 0 1 0 1 1

I Imagine we have some interval Z = [z1, z2] ⊆ {0, 1}m. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can’t be
computed by a small circuit.

I If we’ve got two such circuits, to ‘merge’ them we only need their
descriptions and the endpoints of their intervals — this is a problem
with input length poly(s).

5 / 15

Introduction Search-MCSP Sparse NP Languages References

Main idea — compression using small circuits

Main Idea

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

· · · · · ·0 0 1 0 1 0 1 1

C
Z

I Imagine we have some interval Z = [z1, z2] ⊆ {0, 1}m. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can’t be
computed by a small circuit.

I If we’ve got two such circuits, to ‘merge’ them we only need their
descriptions and the endpoints of their intervals — this is a problem
with input length poly(s).

5 / 15

Introduction Search-MCSP Sparse NP Languages References

Main idea — compression using small circuits

Main Idea

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

· · · · · ·0 0 1 0 1 0 1 1

C1

Z1

C2

Z2

Merge C1 on Z1 and C2 on Z2

I Imagine we have some interval Z = [z1, z2] ⊆ {0, 1}m. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can’t be
computed by a small circuit.

I If we’ve got two such circuits, to ‘merge’ them we only need their
descriptions and the endpoints of their intervals — this is a problem
with input length poly(s).

5 / 15

Introduction Search-MCSP Sparse NP Languages References

The smaller problem

Definition (Circuit-Merge)

I Input: 〈1s ,C1,C2,Z1,Z2, j〉 where j ∈ N, C1 and C2 are circuits of
size at most s, and Z1,Z2 ⊆ {0, 1}m are adjacent intervals.

I Output: 〈C 〉j where C is the lexicographically first circuit C of size
at most s such that C (z) = C1(z) for all z ∈ Z1 and C (z) = C2(z)
for all z ∈ Z2, or 0 if no such circuit exists.

Claim

Circuit-Merge ∈ Σ3P.

Proof.

Existentially guess C . To check it works, universally guess z and check
C (z) is correct. To check it’s lexicographically first, universally guess
C ′ ≺ C , then existentially guess z ′ and check C ′(z ′) is incorrect.

6 / 15

Introduction Search-MCSP Sparse NP Languages References

The smaller problem

Definition (Circuit-Merge)

I Input: 〈1s ,C1,C2,Z1,Z2, j〉 where j ∈ N, C1 and C2 are circuits of
size at most s, and Z1,Z2 ⊆ {0, 1}m are adjacent intervals.

I Output: 〈C 〉j where C is the lexicographically first circuit C of size
at most s such that C (z) = C1(z) for all z ∈ Z1 and C (z) = C2(z)
for all z ∈ Z2, or 0 if no such circuit exists.

Claim

Circuit-Merge ∈ Σ3P.

Proof.

Existentially guess C . To check it works, universally guess z and check
C (z) is correct. To check it’s lexicographically first, universally guess
C ′ ≺ C , then existentially guess z ′ and check C ′(z ′) is incorrect.

6 / 15

Introduction Search-MCSP Sparse NP Languages References

An oracle circuit

Lemma

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size
n · poly(s), queries of length poly(s), and depth log n.

Proof.

I We start out with one circuit representing each bit of the input (e.g.,
the all-0’s or all-1’s circuit).

I Then we repeatedly merge two consecutive circuits (in a binary tree)
to get circuits representing larger and larger chunks of the input.

I If we ever get ‘stuck’ (i.e., there’s no small circuit merging C1 and
C2), then we know f itself doesn’t have a small circuit.

I Otherwise, we eventually get a small circuit representing f .

7 / 15

Introduction Search-MCSP Sparse NP Languages References

An oracle circuit

Lemma

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size
n · poly(s), queries of length poly(s), and depth log n.

Proof.

I We start out with one circuit representing each bit of the input (e.g.,
the all-0’s or all-1’s circuit).

I Then we repeatedly merge two consecutive circuits (in a binary tree)
to get circuits representing larger and larger chunks of the input.

I If we ever get ‘stuck’ (i.e., there’s no small circuit merging C1 and
C2), then we know f itself doesn’t have a small circuit.

I Otherwise, we eventually get a small circuit representing f .

7 / 15

Introduction Search-MCSP Sparse NP Languages References

An oracle circuit

000

0

C000

001

0

C001

010

1

C010

011

0

C011

100

1

C100

101

0

C101

110

1

C110

111

1

C111

Merge

C00

Merge

C01

Merge

C10

Merge

C11

Merge

C0

Merge

C1

Merge

C

(We hardcode 1s and all the values of Z1 and Z2.)

8 / 15

Introduction Search-MCSP Sparse NP Languages References

Finishing the proof

Theorem (‘Contrapositive’ of MMW19)

If NP ⊆ Circuit[poly], then Search-MCSP[s] has circuits of size n · poly(s)
and depth poly(s).

Proof.

I We’ve made a Circuit-Merge-oracle circuit of size n · poly(s) and
depth log n, making queries of length ` = poly(s).

I If NP ⊆ Circuit[poly], then Σ3P ⊆ Circuit[poly].

I So we can implement all the oracle queries with circuits of size
poly(`) = poly(s) to get an actual circuit for Search-MCSP[s] of size
n · poly(s) and depth poly(s).

9 / 15

Introduction Search-MCSP Sparse NP Languages References

Magnification for more general languages

Question

What’s special about MCSP[nβ]?

I One property of MCSP[nβ] is that it’s sparse — MCSP[s] only has
2s log s YES instances (out of 2n possible inputs).

I Surprisingly, this is enough to get a hardness magnification result!

Theorem (Chen–Jin–Williams 2019)

Suppose there is some ε > 0 and a family of languages {Lβ} ⊆ NP (with

arbitrarily small values of β) such that each Lβ is 2nβ -sparse and doesn’t
have circuits of size n1+ε. Then NP 6⊆ Circuit[nk] for all k.

Theorem (Contrapositive of CJW19)

Suppose that NP ⊆ Circuit[nk]. Then every 2nβ -sparse language
Lβ ∈ NP has circuits of size O(n1+kβ) (for all β).

10 / 15

Introduction Search-MCSP Sparse NP Languages References

Magnification for more general languages

Question

What’s special about MCSP[nβ]?

I One property of MCSP[nβ] is that it’s sparse — MCSP[s] only has
2s log s YES instances (out of 2n possible inputs).

I Surprisingly, this is enough to get a hardness magnification result!

Theorem (Chen–Jin–Williams 2019)

Suppose there is some ε > 0 and a family of languages {Lβ} ⊆ NP (with

arbitrarily small values of β) such that each Lβ is 2nβ -sparse and doesn’t
have circuits of size n1+ε. Then NP 6⊆ Circuit[nk] for all k.

Theorem (Contrapositive of CJW19)

Suppose that NP ⊆ Circuit[nk]. Then every 2nβ -sparse language
Lβ ∈ NP has circuits of size O(n1+kβ) (for all β).

10 / 15

Introduction Search-MCSP Sparse NP Languages References

Magnification for more general languages

Question

What’s special about MCSP[nβ]?

I One property of MCSP[nβ] is that it’s sparse — MCSP[s] only has
2s log s YES instances (out of 2n possible inputs).

I Surprisingly, this is enough to get a hardness magnification result!

Theorem (Chen–Jin–Williams 2019)

Suppose there is some ε > 0 and a family of languages {Lβ} ⊆ NP (with

arbitrarily small values of β) such that each Lβ is 2nβ -sparse and doesn’t
have circuits of size n1+ε. Then NP 6⊆ Circuit[nk] for all k.

Theorem (Contrapositive of CJW19)

Suppose that NP ⊆ Circuit[nk]. Then every 2nβ -sparse language
Lβ ∈ NP has circuits of size O(n1+kβ) (for all β).

10 / 15

Introduction Search-MCSP Sparse NP Languages References

Magnification for more general languages

Question

What’s special about MCSP[nβ]?

I One property of MCSP[nβ] is that it’s sparse — MCSP[s] only has
2s log s YES instances (out of 2n possible inputs).

I Surprisingly, this is enough to get a hardness magnification result!

Theorem (Chen–Jin–Williams 2019)

Suppose there is some ε > 0 and a family of languages {Lβ} ⊆ NP (with

arbitrarily small values of β) such that each Lβ is 2nβ -sparse and doesn’t
have circuits of size n1+ε. Then NP 6⊆ Circuit[nk] for all k.

Theorem (Contrapositive of CJW19)

Suppose that NP ⊆ Circuit[nk]. Then every 2nβ -sparse language
Lβ ∈ NP has circuits of size O(n1+kβ) (for all β).

10 / 15

Introduction Search-MCSP Sparse NP Languages References

Main idea — hashing

Lemma

Given β, there is a hash family {hv : {0, 1}n → {0, 1}t} such that:

I For any S ⊆ {0, 1}n of size |S | ≤ 2nβ , there is some ‘good seed’ v
such that hv hashes all x ∈ S to different values.

I The output length t and seed lengths |v | are both O(nβ).

I Given n, β, v , and x , we can very efficiently compute hv (x).

Main idea

On input x , we hash x ; then instead of checking whether x ∈ Lβ , we
check whether there’s some y ∈ Lβ with hv (y) = hv (x).

This is a problem on much smaller input length — hv (x) only has length
O(nβ) (as opposed to x , which has length n).

11 / 15

Introduction Search-MCSP Sparse NP Languages References

Main idea — hashing

Lemma

Given β, there is a hash family {hv : {0, 1}n → {0, 1}t} such that:

I For any S ⊆ {0, 1}n of size |S | ≤ 2nβ , there is some ‘good seed’ v
such that hv hashes all x ∈ S to different values.

I The output length t and seed lengths |v | are both O(nβ).

I Given n, β, v , and x , we can very efficiently compute hv (x).

Main idea

On input x , we hash x ; then instead of checking whether x ∈ Lβ , we
check whether there’s some y ∈ Lβ with hv (y) = hv (x).

This is a problem on much smaller input length — hv (x) only has length
O(nβ) (as opposed to x , which has length n).

11 / 15

Introduction Search-MCSP Sparse NP Languages References

The smaller problem

Definition (Lβ-Hash-Match)

I Input: 〈n, v , x∗, i , b〉 (where |x∗| = cnβ , i ∈ [n] and b ∈ {0, 1}).

I Decide: is there some y ∈ {0, 1}n such that y ∈ Lβ , hv (y) = x∗,
and yi = b?

Claim

Lβ-Hash-Match ∈ NP.

Proof.

I Guess y (of length n), check that hv (y) = x∗ and yi = b, and
nondeterministically check y ∈ Lβ .

I This takes poly(n) time; the input length is at least nβ , and n is a
polynomial in nβ for fixed β.

12 / 15

Introduction Search-MCSP Sparse NP Languages References

The smaller problem

Definition (Lβ-Hash-Match)

I Input: 〈n, v , x∗, i , b〉 (where |x∗| = cnβ , i ∈ [n] and b ∈ {0, 1}).

I Decide: is there some y ∈ {0, 1}n such that y ∈ Lβ , hv (y) = x∗,
and yi = b?

Claim

Lβ-Hash-Match ∈ NP.

Proof.

I Guess y (of length n), check that hv (y) = x∗ and yi = b, and
nondeterministically check y ∈ Lβ .

I This takes poly(n) time; the input length is at least nβ , and n is a
polynomial in nβ for fixed β.

12 / 15

Introduction Search-MCSP Sparse NP Languages References

An oracle circuit

Lemma

There is a Lβ-Hash-Match oracle circuit for Lβ with size O(n1+β) and
queries of length O(nβ).

Construction

I Fix a good seed v for the YES instances of Lβ (which we hardcode).

I Given x , compute hv (x) (which we can do with a O(n)-size circuit).

I Output
∧

i∈[n] Lβ-Hash-Match(〈n, v , hv (x), i , xi 〉).

Proof.

I For every i , is there some y ∈ Lβ with hv (y) = hv (x) and yi = xi?

I If x ∈ Lβ , then we can take y = x for all i .

I If x 6∈ Lβ , then there is at most one y ∈ Lβ with hv (y) = hv (x), and
this y must be wrong at some index i .

13 / 15

Introduction Search-MCSP Sparse NP Languages References

An oracle circuit

Lemma

There is a Lβ-Hash-Match oracle circuit for Lβ with size O(n1+β) and
queries of length O(nβ).

Construction

I Fix a good seed v for the YES instances of Lβ (which we hardcode).

I Given x , compute hv (x) (which we can do with a O(n)-size circuit).

I Output
∧

i∈[n] Lβ-Hash-Match(〈n, v , hv (x), i , xi 〉).

Proof.

I For every i , is there some y ∈ Lβ with hv (y) = hv (x) and yi = xi?

I If x ∈ Lβ , then we can take y = x for all i .

I If x 6∈ Lβ , then there is at most one y ∈ Lβ with hv (y) = hv (x), and
this y must be wrong at some index i .

13 / 15

Introduction Search-MCSP Sparse NP Languages References

An oracle circuit

Lemma

There is a Lβ-Hash-Match oracle circuit for Lβ with size O(n1+β) and
queries of length O(nβ).

Construction

I Fix a good seed v for the YES instances of Lβ (which we hardcode).

I Given x , compute hv (x) (which we can do with a O(n)-size circuit).

I Output
∧

i∈[n] Lβ-Hash-Match(〈n, v , hv (x), i , xi 〉).

Proof.

I For every i , is there some y ∈ Lβ with hv (y) = hv (x) and yi = xi?

I If x ∈ Lβ , then we can take y = x for all i .

I If x 6∈ Lβ , then there is at most one y ∈ Lβ with hv (y) = hv (x), and
this y must be wrong at some index i .

13 / 15

Introduction Search-MCSP Sparse NP Languages References

Finishing the proof

Theorem (Contrapositive of CJW19)

Suppose that NP ⊆ Circuit[nk]. Then every 2nβ -sparse language
Lβ ∈ NP has circuits of size O(n1+kβ) (for all β).

Proof.

I We take our oracle circuit and replace each call to Lβ-Hatch-Match
with an actual circuit.

I The assumption NP ⊆ Circuit[nk] means that Lβ-Hash-Match has
circuits of size `k on inputs of length `.

I Our oracle circuit made n queries of length O(nβ), so now we can
solve each query with a circuit of size O(nβk); then our resulting
circuit has size O(n1+βk).

14 / 15

Introduction Search-MCSP Sparse NP Languages References

References

Thanks for listening!
Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for
all sparse NP languages. 2019.

Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak
lower bounds on resource-bounded compression imply strong
separations of complexity classes. 2019.

Igor C. Oliveira, Ján Pich, and Rahul Santhanam. Hardness
magnification near state-of-the-art lower bounds. 2019.

Igor C. Oliveira and Rahul Santhanam. Hardness magnification for
natural problems. 2018.

15 / 15

	Introduction
	Search-MCSP
	Sparse NP Languages
	References

