Introduction
00

Search-MCSP Sparse NP Languages
000000 00000

References

o

Hardness magnification

Sanjana Das
18.405

May 14, 2024

1/15



Introduction Search-MCSP Sparse NP Languages References

o0 000000 00000 o
:

What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower
bounds on certain problems imply much stronger lower bounds.
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What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower
bounds on certain problems imply much stronger lower bounds.

If there is € > 0 and arbitrarily small 5 > 0 such that
x MCSP[n”] doesn't have circuits of size n**¢ (on inputs of length
n=2m),
* then NP & Circuit[poly].

We believe MCSP[n”] is ‘hard,’ so a lower bound of n'*¢ looks very weak
— but it would be enough to imply NP € Circuit[poly]!
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The high-level idea

We argue by contrapositive: e.g., we assume NP C Circuit[poly] and use
this to get super efficient circuits for MCSP[n”].

Reduce to a problem on much smaller input size (e.g., n® instead of n).
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The high-level idea

We argue by contrapositive: e.g., we assume NP C Circuit[poly] and use
this to get super efficient circuits for MCSP[n”].

Reduce to a problem on much smaller input size (e.g., n” instead of n).

> Given an oracle O for a specific problem, we can solve MCSP[n”]
with a circuit of size n'*7 and oracle calls of size n”.

» Under the assumption NP C Circuit[poly], we can solve O with a
decently efficient circuit (e.g., polynomial in its input length).

» The input length to O is so tiny that even a decently efficient circuit
for O in terms of its input length is super efficient in terms of n.
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» Input: f: {0,1}™ — {0,1}, as a truth table of length n = 2™.

» Qutput: a circuit of size at most s that computes f, or the all-0’s
string if no such circuit exists.
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Magnification for Search-MCSP

» Input: f: {0,1}™ — {0,1}, as a truth table of length n = 2™.

» Qutput: a circuit of size at most s that computes f, or the all-0’s
string if no such circuit exists.

If there is € > 0 and arbitrarily small 3 > 0 such that Search-MCSP[n”]
doesn't have circuits of size n'*¢ and depth n®, then NP ¢ Circuit[poly].



Introduction Search-MCSP Sparse NP Languages References
Q0 @00000 00000 [e]

Magnification for Search-MCSP

» Input: f: {0,1}™ — {0,1}, as a truth table of length n = 2™.

» Qutput: a circuit of size at most s that computes f, or the all-0’s
string if no such circuit exists.

If there is € > 0 and arbitrarily small 3 > 0 such that Search-MCSP[n”]
doesn't have circuits of size n'*¢ and depth n®, then NP ¢ Circuit[poly].

If NP C Circuit[poly], then Search-MCSP[s] has circuits of size n - poly(s)
and depth poly(s). (Think of s as n”.)
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Main idea — compression using small circuits

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.
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Main idea — compression using small circuits

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

0 0 1 0 1 0 1 1
Z
» Imagine we have some interval Z = [z, 2] C {0,1}™. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can't be
computed by a small circuit.
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Main idea — compression using small circuits

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

0 0 1 0 1 0 1 1
Z Z>

o] G ]

Merge C; on Z; and G, on Z;

» Imagine we have some interval Z = [z1, 2] C {0,1}™. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can't be
computed by a small circuit.

» If we've got two such circuits, to ‘merge’ them we only need their
descriptions and the endpoints of their intervals — this is a problem
with input length poly(s).
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The smaller problem

» Input: (1°, Gy, Gy, Z1, 2, ) where j € N, G and G, are circuits of
size at most s, and Z;, Z, C {0,1}™ are adjacent intervals.

» Output: (C); where C is the lexicographically first circuit C of size
at most s such that C(z) = Ci(z) for all z € Z; and C(z) = Gy(2)
for all z € Z5, or 0 if no such circuit exists.
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The smaller problem

» Input: (1°, Gy, Gy, Z1, 2, ) where j € N, G and G, are circuits of
size at most s, and Z;, Z, C {0,1}™ are adjacent intervals.

» Output: (C); where C is the lexicographically first circuit C of size
at most s such that C(z) = Ci(z) for all z € Z; and C(z) = Gy(2)
for all z € Z5, or 0 if no such circuit exists.

Circuit-Merge € 23P.

Existentially guess C. To check it works, universally guess z and check
C(z) is correct. To check it's lexicographically first, universally guess
C’ < C, then existentially guess z’ and check C’(z’) is incorrect. O
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An oracle circuit

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size
n - poly(s), queries of length poly(s), and depth log n.
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An oracle circuit

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size
n - poly(s), queries of length poly(s), and depth log n.

» \We start out with one circuit representing each bit of the input (e.g.,
the all-0's or all-1's circuit).

» Then we repeatedly merge two consecutive circuits (in a binary tree)
to get circuits representing larger and larger chunks of the input.

» If we ever get ‘stuck’ (i.e., there's no small circuit merging C; and
(), then we know f itself doesn't have a small circuit.

» Otherwise, we eventually get a small circuit representing f. O
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An oracle circuit

000 001 010 011 100 101 110 111
0 0 1 0 1 0 1 1

‘ Cooo ‘ ‘ Coot ‘ ‘ Co1o ‘ ‘ Co11 ‘ ‘ Cioo ‘ ‘ Giot ‘ ‘ Ciio ‘ ‘ G ‘

Merge Merge Merge Merge
Coo Co1 Gio G
Merge Merge
Merge

(We hardcode 1° and all the values of Z; and Z,.)
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Finishing the proof

If NP C Circuit[poly], then Search-MCSP[s] has circuits of size n - poly(s)
and depth poly(s).

» \We've made a Circuit-Merge-oracle circuit of size n - poly(s) and
depth log n, making queries of length ¢ = poly(s).

» If NP C Circuit[poly], then X3P C Circuit[poly].

» So we can implement all the oracle queries with circuits of size
poly(¢) = poly(s) to get an actual circuit for Search-MCSP[s] of size
n - poly(s) and depth poly(s). O
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Magnification for more general languages

What's special about MCSP[n®]?
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Magnification for more general languages

What's special about MCSP[n®]?

» One property of MCSP[n”] is that it's sparse — MCSP][s] only has
2slogs YES instances (out of 2" possible inputs).
» Surprisingly, this is enough to get a hardness magnification result!
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Magnification for more general languages

What's special about MCSP[n®]?

» One property of MCSP[n”] is that it's sparse — MCSP][s] only has
2slogs YES instances (out of 2" possible inputs).
» Surprisingly, this is enough to get a hardness magnification result!

Suppose there is some ¢ > 0 and a family of languages {Lz} C NP (with

arbitrarily small values of 3) such that each Lg is 27" sparse and doesn't
have circuits of size n'™¢. Then NP ¢ Circuit[n¥] for all k.
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Magnification for more general languages

What's special about MCSP[n®]?

» One property of MCSP[n”] is that it's sparse — MCSP][s] only has
2slogs YES instances (out of 2" possible inputs).
» Surprisingly, this is enough to get a hardness magnification result!

Suppose there is some ¢ > 0 and a family of languages {Ls} C NP (with

arbitrarily small values of 3) such that each Lg is 2”B—sparse and doesn’t
have circuits of size n'™¢. Then NP ¢ Circuit[n¥] for all k.

Suppose that NP C Circuit[n¥]. Then every 2”ﬂ—sparse language
Lg € NP has circuits of size O(n'*k#) (for all ).
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Main idea — hashing

Given 3, there is a hash family {h,: {0,1}" — {0,1}*} such that:
> For any S C {0,1}" of size |S| < 2", there is some ‘good seed’ v
such that h, hashes all x € S to different values.
» The output length t and seed lengths |v| are both O(n?).

» Given n, 8, v, and x, we can very efficiently compute h,(x).
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Main idea — hashing

Given 3, there is a hash family {h,: {0,1}" — {0,1}*} such that:

> For any S C {0,1}" of size |S| < 2", there is some ‘good seed’ v
such that h, hashes all x € S to different values.
» The output length t and seed lengths |v| are both O(n?).

» Given n, 8, v, and x, we can very efficiently compute h,(x).

On input x, we hash x; then instead of checking whether x € Lg, we
check whether there's some y € Lg with h,(y) = h,(x).

This is a problem on much smaller input length — h,(x) only has length
O(n?) (as opposed to x, which has length n).
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The smaller problem

» Input: (n,v,x*,i,b) (where |x*| = cn®, i € [n] and b € {0,1}).
» Decide: is there some y € {0,1}" such that y € Lg, h,(y) = x*,
and y; = b?
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The smaller problem

» Input: (n,v,x*,i,b) (where |x*| = cn®, i € [n] and b € {0,1}).
» Decide: is there some y € {0,1}" such that y € Lg, h,(y) = x*,
and y; = b?

L 3-Hash-Match € NP.

» Guess y (of length n), check that h,(y) = x* and y; = b, and
nondeterministically check y € Lg.

» This takes poly(n) time; the input length is at least n®, and n is a
polynomial in n? for fixed 3. O
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An oracle circuit

There is a Lg-Hash-Match oracle circuit for Lg with size O(n**#) and
queries of length O(n?).
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An oracle circuit

There is a Lg-Hash-Match oracle circuit for Lg with size O(n**#) and
queries of length O(n?).

» Fix a good seed v for the YES instances of Lz (which we hardcode).
» Given x, compute h,(x) (which we can do with a O(n)-size circuit).
> Output A\;c(, Lg-Hash-Match((n, v, hy(x), 7, x;)).
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An oracle circuit

There is a Lg-Hash-Match oracle circuit for Lz with size O(n*#) and
queries of length O(n?).

» Fix a good seed v for the YES instances of Lz (which we hardcode).
» Given x, compute h,(x) (which we can do with a O(n)-size circuit).
> Output A\;c(, Lg-Hash-Match((n, v, hy(x), 7, x;)).

» For every i, is there some y € Lg with h,(y) = h,(x) and y; = x;?
» If x € Lg, then we can take y = x for all i.

» If x & Lg, then there is at most one y € Lg with h,(y) = h,(x), and
this y must be wrong at some index i. O
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Finishing the proof

Suppose that NP C Circuit[n¥]. Then every 2”ﬂ—sparse language
Lg € NP has circuits of size O(n'**#) (for all 3).

» We take our oracle circuit and replace each call to Lg-Hatch-Match
with an actual circuit.

» The assumption NP C Circuit[n*] means that Lg-Hash-Match has
circuits of size £X on inputs of length ¢.

» Our oracle circuit made n queries of length O(n?), so now we can
solve each query with a circuit of size O(n®*); then our resulting
circuit has size O(n1*+5k). O
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