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What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower
bounds on certain problems imply much stronger lower bounds.

Theorem (McKay–Murray–Williams 2019)

If there is ε > 0 and arbitrarily small β > 0 such that

? MCSP[nβ] doesn’t have circuits of size n1+ε (on inputs of length
n = 2m),

? then NP 6⊆ Circuit[poly].

We believe MCSP[nβ] is ‘hard,’ so a lower bound of n1+ε looks very weak
— but it would be enough to imply NP 6⊆ Circuit[poly]!
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The high-level idea

We argue by contrapositive: e.g., we assume NP ⊆ Circuit[poly] and use
this to get super efficient circuits for MCSP[nβ].

Main idea

Reduce to a problem on much smaller input size (e.g., nβ instead of n).

I Given an oracle O for a specific problem, we can solve MCSP[nβ]
with a circuit of size n1+β and oracle calls of size nβ .

I Under the assumption NP ⊆ Circuit[poly], we can solve O with a
decently efficient circuit (e.g., polynomial in its input length).

I The input length to O is so tiny that even a decently efficient circuit
for O in terms of its input length is super efficient in terms of n.
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Magnification for Search-MCSP

Definition (Search-MCSP[s])

I Input: f : {0, 1}m → {0, 1}, as a truth table of length n = 2m.

I Output: a circuit of size at most s that computes f , or the all-0’s
string if no such circuit exists.

Theorem (McKay–Murray–Williams 2019)

If there is ε > 0 and arbitrarily small β > 0 such that Search-MCSP[nβ]
doesn’t have circuits of size n1+ε and depth nε, then NP 6⊆ Circuit[poly].

Theorem (‘Contrapositive’ of MMW19)

If NP ⊆ Circuit[poly], then Search-MCSP[s] has circuits of size n · poly(s)
and depth poly(s). (Think of s as nβ .)
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Main idea — compression using small circuits

Main Idea

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

· · · · · ·0 0 1 0 1 0 1 1

I Imagine we have some interval Z = [z1, z2] ⊆ {0, 1}m. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can’t be
computed by a small circuit.

I If we’ve got two such circuits, to ‘merge’ them we only need their
descriptions and the endpoints of their intervals — this is a problem
with input length poly(s).
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The smaller problem

Definition (Circuit-Merge)

I Input: 〈1s ,C1,C2,Z1,Z2, j〉 where j ∈ N, C1 and C2 are circuits of
size at most s, and Z1,Z2 ⊆ {0, 1}m are adjacent intervals.

I Output: 〈C 〉j where C is the lexicographically first circuit C of size
at most s such that C (z) = C1(z) for all z ∈ Z1 and C (z) = C2(z)
for all z ∈ Z2, or 0 if no such circuit exists.

Claim

Circuit-Merge ∈ Σ3P.

Proof.

Existentially guess C . To check it works, universally guess z and check
C (z) is correct. To check it’s lexicographically first, universally guess
C ′ ≺ C , then existentially guess z ′ and check C ′(z ′) is incorrect.
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An oracle circuit

Lemma

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size
n · poly(s), queries of length poly(s), and depth log n.

Proof.

I We start out with one circuit representing each bit of the input (e.g.,
the all-0’s or all-1’s circuit).

I Then we repeatedly merge two consecutive circuits (in a binary tree)
to get circuits representing larger and larger chunks of the input.

I If we ever get ‘stuck’ (i.e., there’s no small circuit merging C1 and
C2), then we know f itself doesn’t have a small circuit.

I Otherwise, we eventually get a small circuit representing f .
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An oracle circuit
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(We hardcode 1s and all the values of Z1 and Z2.)
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Finishing the proof

Theorem (‘Contrapositive’ of MMW19)

If NP ⊆ Circuit[poly], then Search-MCSP[s] has circuits of size n · poly(s)
and depth poly(s).

Proof.

I We’ve made a Circuit-Merge-oracle circuit of size n · poly(s) and
depth log n, making queries of length ` = poly(s).

I If NP ⊆ Circuit[poly], then Σ3P ⊆ Circuit[poly].

I So we can implement all the oracle queries with circuits of size
poly(`) = poly(s) to get an actual circuit for Search-MCSP[s] of size
n · poly(s) and depth poly(s).

9 / 15



Introduction Search-MCSP Sparse NP Languages References

Magnification for more general languages

Question

What’s special about MCSP[nβ]?

I One property of MCSP[nβ] is that it’s sparse — MCSP[s] only has
2s log s YES instances (out of 2n possible inputs).

I Surprisingly, this is enough to get a hardness magnification result!

Theorem (Chen–Jin–Williams 2019)

Suppose there is some ε > 0 and a family of languages {Lβ} ⊆ NP (with

arbitrarily small values of β) such that each Lβ is 2nβ -sparse and doesn’t
have circuits of size n1+ε. Then NP 6⊆ Circuit[nk ] for all k.

Theorem (Contrapositive of CJW19)

Suppose that NP ⊆ Circuit[nk ]. Then every 2nβ -sparse language
Lβ ∈ NP has circuits of size O(n1+kβ) (for all β).
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Main idea — hashing

Lemma

Given β, there is a hash family {hv : {0, 1}n → {0, 1}t} such that:

I For any S ⊆ {0, 1}n of size |S | ≤ 2nβ , there is some ‘good seed’ v
such that hv hashes all x ∈ S to different values.

I The output length t and seed lengths |v | are both O(nβ).

I Given n, β, v , and x , we can very efficiently compute hv (x).

Main idea

On input x , we hash x ; then instead of checking whether x ∈ Lβ , we
check whether there’s some y ∈ Lβ with hv (y) = hv (x).

This is a problem on much smaller input length — hv (x) only has length
O(nβ) (as opposed to x , which has length n).
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The smaller problem

Definition (Lβ-Hash-Match)

I Input: 〈n, v , x∗, i , b〉 (where |x∗| = cnβ , i ∈ [n] and b ∈ {0, 1}).

I Decide: is there some y ∈ {0, 1}n such that y ∈ Lβ , hv (y) = x∗,
and yi = b?

Claim

Lβ-Hash-Match ∈ NP.

Proof.

I Guess y (of length n), check that hv (y) = x∗ and yi = b, and
nondeterministically check y ∈ Lβ .

I This takes poly(n) time; the input length is at least nβ , and n is a
polynomial in nβ for fixed β.
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An oracle circuit

Lemma

There is a Lβ-Hash-Match oracle circuit for Lβ with size O(n1+β) and
queries of length O(nβ).

Construction

I Fix a good seed v for the YES instances of Lβ (which we hardcode).

I Given x , compute hv (x) (which we can do with a O(n)-size circuit).

I Output
∧

i∈[n] Lβ-Hash-Match(〈n, v , hv (x), i , xi 〉).

Proof.

I For every i , is there some y ∈ Lβ with hv (y) = hv (x) and yi = xi?

I If x ∈ Lβ , then we can take y = x for all i .

I If x 6∈ Lβ , then there is at most one y ∈ Lβ with hv (y) = hv (x), and
this y must be wrong at some index i .
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Finishing the proof

Theorem (Contrapositive of CJW19)

Suppose that NP ⊆ Circuit[nk ]. Then every 2nβ -sparse language
Lβ ∈ NP has circuits of size O(n1+kβ) (for all β).

Proof.

I We take our oracle circuit and replace each call to Lβ-Hatch-Match
with an actual circuit.

I The assumption NP ⊆ Circuit[nk ] means that Lβ-Hash-Match has
circuits of size `k on inputs of length `.

I Our oracle circuit made n queries of length O(nβ), so now we can
solve each query with a circuit of size O(nβk); then our resulting
circuit has size O(n1+βk).
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