

Hardness magnification

Sanjana Das

18.405

May 14, 2024

What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower bounds on certain problems imply much stronger lower bounds.

What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower bounds on certain problems imply much stronger lower bounds.

Theorem (McKay–Murray–Williams 2019)

If there is $\varepsilon > 0$ and arbitrarily small $\beta > 0$ such that

- ★ $\text{MCSP}[n^\beta]$ doesn't have circuits of size $n^{1+\varepsilon}$ (on inputs of length $n = 2^m$),
- ★ then $\text{NP} \not\subseteq \text{Circuit[poly]}$.

We believe $\text{MCSP}[n^\beta]$ is ‘hard,’ so a lower bound of $n^{1+\varepsilon}$ looks very weak — but it would be enough to imply $\text{NP} \not\subseteq \text{Circuit[poly]}$!

The high-level idea

We argue by contrapositive: e.g., we assume $\text{NP} \subseteq \text{Circuit}[\text{poly}]$ and use this to get super efficient circuits for $\text{MCSP}[n^\beta]$.

Main idea

Reduce to a problem on **much smaller input size** (e.g., n^β instead of n).

The high-level idea

We argue by contrapositive: e.g., we assume $\text{NP} \subseteq \text{Circuit}[\text{poly}]$ and use this to get super efficient circuits for $\text{MCSP}[n^\beta]$.

Main idea

Reduce to a problem on **much smaller input size** (e.g., n^β instead of n).

- ▶ Given an oracle \mathcal{O} for a specific problem, we can solve $\text{MCSP}[n^\beta]$ with a circuit of **size $n^{1+\beta}$** and **oracle calls of size n^β** .
- ▶ Under the assumption $\text{NP} \subseteq \text{Circuit}[\text{poly}]$, we can solve \mathcal{O} with a decently efficient circuit (e.g., polynomial in its input length).
- ▶ The input length to \mathcal{O} is so tiny that even a **decently** efficient circuit for \mathcal{O} in terms of its input length is **super** efficient in terms of n .

Magnification for Search-MCSP

Definition (Search-MCSP[s])

- ▶ **Input:** $f: \{0, 1\}^m \rightarrow \{0, 1\}$, as a truth table of length $n = 2^m$.
- ▶ **Output:** a circuit of size at most s that computes f , or the all-0's string if no such circuit exists.

Magnification for Search-MCSP

Definition (Search-MCSP[s])

- ▶ **Input:** $f: \{0, 1\}^m \rightarrow \{0, 1\}$, as a truth table of length $n = 2^m$.
- ▶ **Output:** a circuit of size at most s that computes f , or the all-0's string if no such circuit exists.

Theorem (McKay–Murray–Williams 2019)

If there is $\varepsilon > 0$ and arbitrarily small $\beta > 0$ such that $\text{Search-MCSP}[n^\beta]$ doesn't have circuits of size $n^{1+\varepsilon}$ and depth n^ε , then $\text{NP} \not\subseteq \text{Circuit}[\text{poly}]$.

Magnification for Search-MCSP

Definition (Search-MCSP[s])

- ▶ **Input:** $f: \{0, 1\}^m \rightarrow \{0, 1\}$, as a truth table of length $n = 2^m$.
- ▶ **Output:** a circuit of size at most s that computes f , or the all-0's string if no such circuit exists.

Theorem (McKay–Murray–Williams 2019)

If there is $\varepsilon > 0$ and arbitrarily small $\beta > 0$ such that $\text{Search-MCSP}[n^\beta]$ doesn't have circuits of size $n^{1+\varepsilon}$ and depth n^ε , then $\text{NP} \not\subseteq \text{Circuit}[\text{poly}]$.

Theorem ('Contrapositive' of MMW19)

If $\text{NP} \subseteq \text{Circuit}[\text{poly}]$, then $\text{Search-MCSP}[s]$ has circuits of size $n \cdot \text{poly}(s)$ and depth $\text{poly}(s)$. (Think of s as n^β .)

Main idea — compression using small circuits

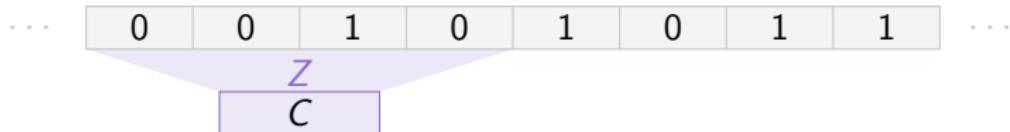
Main Idea

If our input f can be computed by a small circuit, then we can ‘compress’ chunks of it by representing the chunk with a small circuit.

Main idea — compression using small circuits

Main Idea

If our input f can be computed by a small circuit, then we can ‘compress’ chunks of it by representing the chunk with a small circuit.

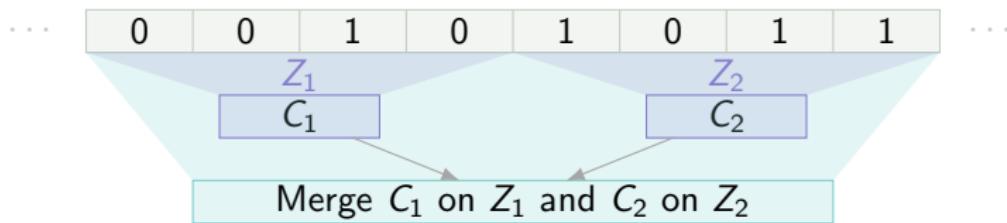


- ▶ Imagine we have some interval $Z = [z_1, z_2] \subseteq \{0, 1\}^m$. Then we can store the values of f on Z by instead storing a small circuit C that computes f on Z — if no such circuit exists, we know f can’t be computed by a small circuit.

Main idea — compression using small circuits

Main Idea

If our input f can be computed by a small circuit, then we can ‘compress’ chunks of it by **representing the chunk with a small circuit**.



- ▶ Imagine we have some interval $Z = [z_1, z_2] \subseteq \{0, 1\}^m$. Then we can store the values of f on Z by instead storing a small circuit C that computes f on Z — if no such circuit exists, we know f can’t be computed by a small circuit.
- ▶ If we’ve got two such circuits, to ‘merge’ them we only need their descriptions and the endpoints of their intervals — **this is a problem with input length $\text{poly}(s)$** .

The smaller problem

Definition (Circuit-Merge)

- ▶ **Input:** $\langle 1^s, C_1, C_2, Z_1, Z_2, j \rangle$ where $j \in \mathbb{N}$, C_1 and C_2 are circuits of size at most s , and $Z_1, Z_2 \subseteq \{0, 1\}^m$ are adjacent intervals.
- ▶ **Output:** $\langle C \rangle_j$ where C is the lexicographically first circuit C of size at most s such that $C(z) = C_1(z)$ for all $z \in Z_1$ and $C(z) = C_2(z)$ for all $z \in Z_2$, or 0 if no such circuit exists.

The smaller problem

Definition (Circuit-Merge)

- ▶ **Input:** $\langle 1^s, C_1, C_2, Z_1, Z_2, j \rangle$ where $j \in \mathbb{N}$, C_1 and C_2 are circuits of size at most s , and $Z_1, Z_2 \subseteq \{0, 1\}^m$ are adjacent intervals.
- ▶ **Output:** $\langle C \rangle_j$ where C is the lexicographically first circuit C of size at most s such that $C(z) = C_1(z)$ for all $z \in Z_1$ and $C(z) = C_2(z)$ for all $z \in Z_2$, or 0 if no such circuit exists.

Claim

$\text{Circuit-Merge} \in \Sigma_3 P$.

Proof.

Existentially guess C . To check it works, universally guess z and check $C(z)$ is correct. To check it's lexicographically first, universally guess $C' \prec C$, then existentially guess z' and check $C'(z')$ is *incorrect*. \square

An oracle circuit

Lemma

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size $n \cdot \text{poly}(s)$, queries of length $\text{poly}(s)$, and depth $\log n$.

An oracle circuit

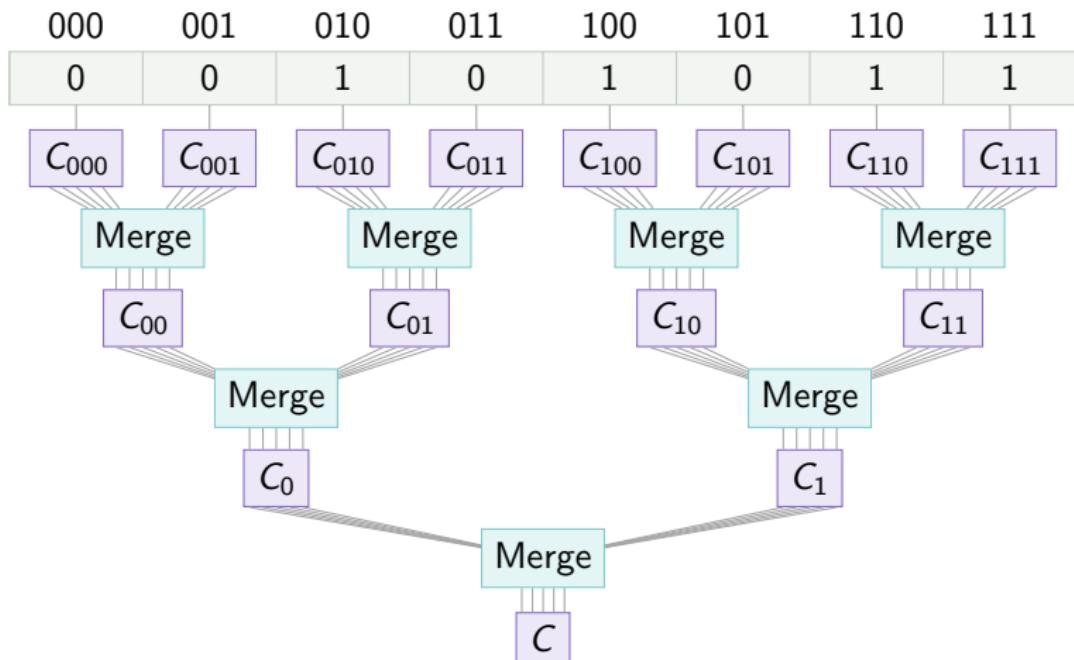
Lemma

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size $n \cdot \text{poly}(s)$, queries of length $\text{poly}(s)$, and depth $\log n$.

Proof.

- ▶ We start out with one circuit representing each bit of the input (e.g., the all-0's or all-1's circuit).
- ▶ Then we repeatedly merge two consecutive circuits (in a binary tree) to get circuits representing larger and larger chunks of the input.
- ▶ If we ever get 'stuck' (i.e., there's no small circuit merging C_1 and C_2), then we know f itself doesn't have a small circuit.
- ▶ Otherwise, we eventually get a small circuit representing f . □

An oracle circuit



(We hardcode 1^s and all the values of Z_1 and Z_2 .)

Finishing the proof

Theorem ('Contrapositive' of MMW19)

If $\text{NP} \subseteq \text{Circuit}[\text{poly}]$, then $\text{Search-MCSP}[s]$ has circuits of size $n \cdot \text{poly}(s)$ and depth $\text{poly}(s)$.

Proof.

- We've made a Circuit-Merge-oracle circuit of size $n \cdot \text{poly}(s)$ and depth $\log n$, making queries of length $\ell = \text{poly}(s)$.
- If $\text{NP} \subseteq \text{Circuit}[\text{poly}]$, then $\Sigma_3\text{P} \subseteq \text{Circuit}[\text{poly}]$.
- So we can implement all the oracle queries with circuits of size $\text{poly}(\ell) = \text{poly}(s)$ to get an actual circuit for $\text{Search-MCSP}[s]$ of size $n \cdot \text{poly}(s)$ and depth $\text{poly}(s)$. □

Magnification for more general languages

Question

What's special about MCSP[n^β]?

Magnification for more general languages

Question

What's special about MCSP[n^β]?

- ▶ One property of MCSP[n^β] is that it's **sparse** — MCSP[s] only has $2^{s \log s}$ **YES** instances (out of 2^n possible inputs).
- ▶ Surprisingly, this is enough to get a hardness magnification result!

Magnification for more general languages

Question

What's special about $\text{MCSP}[n^\beta]$?

- ▶ One property of $\text{MCSP}[n^\beta]$ is that it's **sparse** — $\text{MCSP}[s]$ only has $2^{s \log s}$ **YES** instances (out of 2^n possible inputs).
- ▶ Surprisingly, this is enough to get a hardness magnification result!

Theorem (Chen–Jin–Williams 2019)

Suppose there is some $\varepsilon > 0$ and a family of languages $\{L_\beta\} \subseteq \text{NP}$ (with arbitrarily small values of β) such that each L_β is 2^{n^β} -sparse and doesn't have circuits of size $n^{1+\varepsilon}$. Then $\text{NP} \not\subseteq \text{Circuit}[n^k]$ for all k .

Magnification for more general languages

Question

What's special about $\text{MCSP}[n^\beta]$?

- One property of $\text{MCSP}[n^\beta]$ is that it's **sparse** — $\text{MCSP}[s]$ only has $2^{s \log s}$ **YES** instances (out of 2^n possible inputs).
- Surprisingly, this is enough to get a hardness magnification result!

Theorem (Chen–Jin–Williams 2019)

Suppose there is some $\varepsilon > 0$ and a family of languages $\{L_\beta\} \subseteq \text{NP}$ (with arbitrarily small values of β) such that each L_β is 2^{n^β} -sparse and doesn't have circuits of size $n^{1+\varepsilon}$. Then $\text{NP} \not\subseteq \text{Circuit}[n^k]$ for all k .

Theorem (Contrapositive of CJW19)

Suppose that $\text{NP} \subseteq \text{Circuit}[n^k]$. Then every 2^{n^β} -sparse language $L_\beta \in \text{NP}$ has circuits of size $O(n^{1+k\beta})$ (for all β).

Main idea — hashing

Lemma

Given β , there is a hash family $\{h_v: \{0, 1\}^n \rightarrow \{0, 1\}^t\}$ such that:

- ▶ For any $S \subseteq \{0, 1\}^n$ of size $|S| \leq 2^{n^\beta}$, there is some 'good seed' v such that h_v hashes all $x \in S$ to different values.
- ▶ The output length t and seed lengths $|v|$ are both $O(n^\beta)$.
- ▶ Given n , β , v , and x , we can very efficiently compute $h_v(x)$.

Main idea — hashing

Lemma

Given β , there is a hash family $\{h_v: \{0, 1\}^n \rightarrow \{0, 1\}^t\}$ such that:

- ▶ For any $S \subseteq \{0, 1\}^n$ of size $|S| \leq 2^{n^\beta}$, there is some 'good seed' v such that h_v hashes all $x \in S$ to different values.
- ▶ The output length t and seed lengths $|v|$ are both $O(n^\beta)$.
- ▶ Given n , β , v , and x , we can very efficiently compute $h_v(x)$.

Main idea

On input x , we hash x ; then instead of checking whether $x \in L_\beta$, we check whether there's some $y \in L_\beta$ with $h_v(y) = h_v(x)$.

This is a problem on much smaller input length — $h_v(x)$ only has length $O(n^\beta)$ (as opposed to x , which has length n).

The smaller problem

Definition (L_β -Hash-Match)

- ▶ **Input:** $\langle n, v, x^*, i, b \rangle$ (where $|x^*| = cn^\beta$, $i \in [n]$ and $b \in \{0, 1\}$).
- ▶ **Decide:** is there some $y \in \{0, 1\}^n$ such that $y \in L_\beta$, $h_v(y) = x^*$, and $y_i = b$?

The smaller problem

Definition (L_β -Hash-Match)

- ▶ **Input:** $\langle n, v, x^*, i, b \rangle$ (where $|x^*| = cn^\beta$, $i \in [n]$ and $b \in \{0, 1\}$).
- ▶ **Decide:** is there some $y \in \{0, 1\}^n$ such that $y \in L_\beta$, $h_v(y) = x^*$, and $y_i = b$?

Claim

L_β -Hash-Match \in NP.

Proof.

- ▶ Guess y (of length n), check that $h_v(y) = x^*$ and $y_i = b$, and nondeterministically check $y \in L_\beta$.
- ▶ This takes $\text{poly}(n)$ time; the input length is at least n^β , and n is a polynomial in n^β for fixed β . □

An oracle circuit

Lemma

There is a L_β -Hash-Match oracle circuit for L_β with size $O(n^{1+\beta})$ and queries of length $O(n^\beta)$.

An oracle circuit

Lemma

There is a L_β -Hash-Match oracle circuit for L_β with size $O(n^{1+\beta})$ and queries of length $O(n^\beta)$.

Construction

- ▶ Fix a good seed v for the **YES** instances of L_β (which we hardcode).
- ▶ Given x , compute $h_v(x)$ (which we can do with a $O(n)$ -size circuit).
- ▶ Output $\bigwedge_{i \in [n]} L_\beta\text{-Hash-Match}(\langle n, v, h_v(x), i, x_i \rangle)$.

An oracle circuit

Lemma

There is a L_β -Hash-Match oracle circuit for L_β with size $O(n^{1+\beta})$ and queries of length $O(n^\beta)$.

Construction

- ▶ Fix a good seed v for the **YES** instances of L_β (which we hardcode).
- ▶ Given x , compute $h_v(x)$ (which we can do with a $O(n)$ -size circuit).
- ▶ Output $\bigwedge_{i \in [n]} L_\beta\text{-Hash-Match}(\langle n, v, h_v(x), i, x_i \rangle)$.

Proof.

- ▶ For every i , is there some $y \in L_\beta$ with $h_v(y) = h_v(x)$ and $y_i = x_i$?
- ▶ If $x \in L_\beta$, then we can take $y = x$ for all i .
- ▶ If $x \notin L_\beta$, then there is at most one $y \in L_\beta$ with $h_v(y) = h_v(x)$, and this y must be wrong at some index i . □

Finishing the proof

Theorem (Contrapositive of CJW19)

Suppose that $\text{NP} \subseteq \text{Circuit}[n^k]$. Then every 2^{n^β} -sparse language $L_\beta \in \text{NP}$ has circuits of size $O(n^{1+k\beta})$ (for all β).

Proof.

- We take our oracle circuit and replace each call to L_β -Hatch-Match with an actual circuit.
- The assumption $\text{NP} \subseteq \text{Circuit}[n^k]$ means that L_β -Hash-Match has circuits of size ℓ^k on inputs of length ℓ .
- Our oracle circuit made n queries of length $O(n^\beta)$, so now we can solve each query with a circuit of size $O(n^{\beta k})$; then our resulting circuit has size $O(n^{1+\beta k})$. □

References

Thanks for listening!

- Lijie Chen, Ce Jin, and R. Ryan Williams. *Hardness magnification for all sparse NP languages*. 2019.
- Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. *Weak lower bounds on resource-bounded compression imply strong separations of complexity classes*. 2019.
- Igor C. Oliveira, Ján Pich, and Rahul Santhanam. *Hardness magnification near state-of-the-art lower bounds*. 2019.
- Igor C. Oliveira and Rahul Santhanam. *Hardness magnification for natural problems*. 2018.