Introduction
00

Search-MCSP Sparse NP Languages
000000 00000

References

o

Hardness magnification

Sanjana Das
18.405

May 14, 2024

1/15

Introduction Search-MCSP Sparse NP Languages References

o0 000000 00000 o
:

What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower
bounds on certain problems imply much stronger lower bounds.

2/15

Introduction Search-MCSP Sparse NP Languages References

o0 000000 00000 o

What is hardness magnification?

Hardness magnification is a phenomenon where weak-looking lower
bounds on certain problems imply much stronger lower bounds.

If there is € > 0 and arbitrarily small 5 > 0 such that
x MCSP[n”] doesn't have circuits of size n**¢ (on inputs of length
n=2m),
* then NP & Circuit[poly].

We believe MCSP[n”] is ‘hard,’ so a lower bound of n'*¢ looks very weak
— but it would be enough to imply NP € Circuit[poly]!

Introduction Search-MCSP Sparse NP Languages References

oe 000000 00000 o
:

The high-level idea

We argue by contrapositive: e.g., we assume NP C Circuit[poly] and use
this to get super efficient circuits for MCSP[n”].

Reduce to a problem on much smaller input size (e.g., n® instead of n).

3/15

Introduction Search-MCSP Sparse NP Languages References
oe 000000 00000 [e]

The high-level idea

We argue by contrapositive: e.g., we assume NP C Circuit[poly] and use
this to get super efficient circuits for MCSP[n”].

Reduce to a problem on much smaller input size (e.g., n” instead of n).

> Given an oracle O for a specific problem, we can solve MCSP[n”]
with a circuit of size n'*7 and oracle calls of size n”.

» Under the assumption NP C Circuit[poly], we can solve O with a
decently efficient circuit (e.g., polynomial in its input length).

» The input length to O is so tiny that even a decently efficient circuit
for O in terms of its input length is super efficient in terms of n.

Introduction Search-MCSP Sparse NP Languages
Q0 @00000 00000

References
o

Magnification for Search-MCSP

» Input: f: {0,1}™ — {0,1}, as a truth table of length n = 2™.

» Qutput: a circuit of size at most s that computes f, or the all-0’s
string if no such circuit exists.

Introduction Search-MCSP Sparse NP Languages References

00 ®00000 00000 o
:

Magnification for Search-MCSP

» Input: f: {0,1}™ — {0,1}, as a truth table of length n = 2™.

» Qutput: a circuit of size at most s that computes f, or the all-0’s
string if no such circuit exists.

If there is € > 0 and arbitrarily small 3 > 0 such that Search-MCSP[n”]
doesn't have circuits of size n'*¢ and depth n®, then NP ¢ Circuit[poly].

Introduction Search-MCSP Sparse NP Languages References
Q0 @00000 00000 [e]

Magnification for Search-MCSP

» Input: f: {0,1}™ — {0,1}, as a truth table of length n = 2™.

» Qutput: a circuit of size at most s that computes f, or the all-0’s
string if no such circuit exists.

If there is € > 0 and arbitrarily small 3 > 0 such that Search-MCSP[n”]
doesn't have circuits of size n'*¢ and depth n®, then NP ¢ Circuit[poly].

If NP C Circuit[poly], then Search-MCSP[s] has circuits of size n - poly(s)
and depth poly(s). (Think of s as n”.)

Introduction Search-MCSP Sparse NP Languages References

00 O®0000 00000 o
:

Main idea — compression using small circuits

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

5/15

Introduction Search-MCSP Sparse NP Languages References
Q0 0e0000 00000 [e]

Main idea — compression using small circuits

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

0 0 1 0 1 0 1 1
Z
» Imagine we have some interval Z = [z, 2] C {0,1}™. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can't be
computed by a small circuit.

Introduction Search-MCSP Sparse NP Languages References
Q0 0e0000 00000 [e]

Main idea — compression using small circuits

If our input f can be computed by a small circuit, then we can ‘compress’
chunks of it by representing the chunk with a small circuit.

0 0 1 0 1 0 1 1
Z Z>

o] G]

Merge C; on Z; and G, on Z;

» Imagine we have some interval Z = [z1, 2] C {0,1}™. Then we can
store the values of f on Z by instead storing a small circuit C that
computes f on Z — if no such circuit exists, we know f can't be
computed by a small circuit.

» If we've got two such circuits, to ‘merge’ them we only need their
descriptions and the endpoints of their intervals — this is a problem
with input length poly(s).

Introduction Search-MCSP Sparse NP Languages References

00 O0@000 00000 o

The smaller problem

» Input: (1°, Gy, Gy, Z1, 2,) where j € N, G and G, are circuits of
size at most s, and Z;, Z, C {0,1}™ are adjacent intervals.

» Output: (C); where C is the lexicographically first circuit C of size
at most s such that C(z) = Ci(z) for all z € Z; and C(z) = Gy(2)
for all z € Z5, or 0 if no such circuit exists.

Introduction Search-MCSP Sparse NP Languages References

00 O0@000 00000 o
: :

The smaller problem

» Input: (1°, Gy, Gy, Z1, 2,) where j € N, G and G, are circuits of
size at most s, and Z;, Z, C {0,1}™ are adjacent intervals.

» Output: (C); where C is the lexicographically first circuit C of size
at most s such that C(z) = Ci(z) for all z € Z; and C(z) = Gy(2)
for all z € Z5, or 0 if no such circuit exists.

Circuit-Merge € 23P.

Existentially guess C. To check it works, universally guess z and check
C(z) is correct. To check it's lexicographically first, universally guess
C’ < C, then existentially guess z’ and check C’(z’) is incorrect. O

Introduction Search-MCSP Sparse NP Languages References

00 [e]e]e] Jele] 00000 o
:

An oracle circuit

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size
n - poly(s), queries of length poly(s), and depth log n.

7/15

Introduction Search-MCSP Sparse NP Languages

References
00 [e]e]e] Jele] 00000

o
:

An oracle circuit

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size
n - poly(s), queries of length poly(s), and depth log n.

» \We start out with one circuit representing each bit of the input (e.g.,
the all-0's or all-1's circuit).

» Then we repeatedly merge two consecutive circuits (in a binary tree)
to get circuits representing larger and larger chunks of the input.

» If we ever get ‘stuck’ (i.e., there's no small circuit merging C; and
(), then we know f itself doesn't have a small circuit.

» Otherwise, we eventually get a small circuit representing f. O

Introduction Search-MCSP Sparse NP Languages References

00 O000e0 00000 o
:

An oracle circuit

000 001 010 011 100 101 110 111
0 0 1 0 1 0 1 1

‘ Cooo ‘ ‘ Coot ‘ ‘ Co1o ‘ ‘ Co11 ‘ ‘ Cioo ‘ ‘ Giot ‘ ‘ Ciio ‘ ‘ G ‘

Merge Merge Merge Merge
Coo Co1 Gio G
Merge Merge
Merge

(We hardcode 1° and all the values of Z; and Z,.)

8/15

Introduction Search-MCSP Sparse NP Languages References
Q0 00000 00000 [e]

Finishing the proof

If NP C Circuit[poly], then Search-MCSP[s] has circuits of size n - poly(s)
and depth poly(s).

» \We've made a Circuit-Merge-oracle circuit of size n - poly(s) and
depth log n, making queries of length ¢ = poly(s).

» If NP C Circuit[poly], then X3P C Circuit[poly].

» So we can implement all the oracle queries with circuits of size
poly(¢) = poly(s) to get an actual circuit for Search-MCSP[s] of size
n - poly(s) and depth poly(s). O

Introduction Search-MCSP Sparse NP Languages References

00 000000 90000 o
:

Magnification for more general languages

What's special about MCSP[n®]?

10/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 90000 o
:

Magnification for more general languages

What's special about MCSP[n®]?

» One property of MCSP[n”] is that it's sparse — MCSP][s] only has
2slogs YES instances (out of 2" possible inputs).
» Surprisingly, this is enough to get a hardness magnification result!

10/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 90000 o
:

Magnification for more general languages

What's special about MCSP[n®]?

» One property of MCSP[n”] is that it's sparse — MCSP][s] only has
2slogs YES instances (out of 2" possible inputs).
» Surprisingly, this is enough to get a hardness magnification result!

Suppose there is some ¢ > 0 and a family of languages {Lz} C NP (with

arbitrarily small values of 3) such that each Lg is 27" sparse and doesn't
have circuits of size n'™¢. Then NP ¢ Circuit[n¥] for all k.

10/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 90000 o
:

Magnification for more general languages

What's special about MCSP[n®]?

» One property of MCSP[n”] is that it's sparse — MCSP][s] only has
2slogs YES instances (out of 2" possible inputs).
» Surprisingly, this is enough to get a hardness magnification result!

Suppose there is some ¢ > 0 and a family of languages {Ls} C NP (with

arbitrarily small values of 3) such that each Lg is 2”B—sparse and doesn’t
have circuits of size n'™¢. Then NP ¢ Circuit[n¥] for all k.

Suppose that NP C Circuit[n¥]. Then every 2”ﬂ—sparse language
Lg € NP has circuits of size O(n'*k#) (for all).

10/15

Introduction Search-MCSP Sparse NP Languages References
Q0 000000 0@000 [e]

Main idea — hashing

Given 3, there is a hash family {h,: {0,1}" — {0,1}*} such that:
> For any S C {0,1}" of size |S| < 2", there is some ‘good seed’ v
such that h, hashes all x € S to different values.
» The output length t and seed lengths |v| are both O(n?).

» Given n, 8, v, and x, we can very efficiently compute h,(x).

11/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 0@000 o
: :

Main idea — hashing

Given 3, there is a hash family {h,: {0,1}" — {0,1}*} such that:

> For any S C {0,1}" of size |S| < 2", there is some ‘good seed’ v
such that h, hashes all x € S to different values.
» The output length t and seed lengths |v| are both O(n?).

» Given n, 8, v, and x, we can very efficiently compute h,(x).

On input x, we hash x; then instead of checking whether x € Lg, we
check whether there's some y € Lg with h,(y) = h,(x).

This is a problem on much smaller input length — h,(x) only has length
O(n?) (as opposed to x, which has length n).

11/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 [e]e] le]e} o
:

The smaller problem

» Input: (n,v,x*,i,b) (where |x*| = cn®, i € [n] and b € {0,1}).
» Decide: is there some y € {0,1}" such that y € Lg, h,(y) = x*,
and y; = b?

12/15

Introduction Search-MCSP Sparse NP Languages References
Q0 000000 00000 [e]

The smaller problem

» Input: (n,v,x*,i,b) (where |x*| = cn®, i € [n] and b € {0,1}).
» Decide: is there some y € {0,1}" such that y € Lg, h,(y) = x*,
and y; = b?

L 3-Hash-Match € NP.

» Guess y (of length n), check that h,(y) = x* and y; = b, and
nondeterministically check y € Lg.

» This takes poly(n) time; the input length is at least n®, and n is a
polynomial in n? for fixed 3. O

12/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 [e]e]e] Jo} o
:

An oracle circuit

There is a Lg-Hash-Match oracle circuit for Lg with size O(n**#) and
queries of length O(n?).

13/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 [e]e]e] Jo} o
:

An oracle circuit

There is a Lg-Hash-Match oracle circuit for Lg with size O(n**#) and
queries of length O(n?).

» Fix a good seed v for the YES instances of Lz (which we hardcode).
» Given x, compute h,(x) (which we can do with a O(n)-size circuit).
> Output A\;c(, Lg-Hash-Match((n, v, hy(x), 7, x;)).

13/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 [e]e]e] Jo} o
:

An oracle circuit

There is a Lg-Hash-Match oracle circuit for Lz with size O(n*#) and
queries of length O(n?).

» Fix a good seed v for the YES instances of Lz (which we hardcode).
» Given x, compute h,(x) (which we can do with a O(n)-size circuit).
> Output A\;c(, Lg-Hash-Match((n, v, hy(x), 7, x;)).

» For every i, is there some y € Lg with h,(y) = h,(x) and y; = x;?
» If x € Lg, then we can take y = x for all i.

» If x & Lg, then there is at most one y € Lg with h,(y) = h,(x), and
this y must be wrong at some index i. O

13/15

Introduction Search-MCSP Sparse NP Languages References

00 000000 [e]e]ele]] o
:

Finishing the proof

Suppose that NP C Circuit[n¥]. Then every 2”ﬂ—sparse language
Lg € NP has circuits of size O(n'**#) (for all 3).

» We take our oracle circuit and replace each call to Lg-Hatch-Match
with an actual circuit.

» The assumption NP C Circuit[n*] means that Lg-Hash-Match has
circuits of size £X on inputs of length ¢.

» Our oracle circuit made n queries of length O(n?), so now we can
solve each query with a circuit of size O(n®*); then our resulting
circuit has size O(n1*+5k). O

14 /15

Introduction
00

Search-MCSP Sparse NP Languages References

000000 00000 (]

References

B
[

Thanks for listening!

Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for
all sparse NP languages. 2019.

Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak
lower bounds on resource-bounded compression imply strong
separations of complexity classes. 2019.

Igor C. Oliveira, Jan Pich, and Rahul Santhanam. Hardness
magnification near state-of-the-art lower bounds. 2019.

Igor C. Oliveira and Rahul Santhanam. Hardness magnification for
natural problems. 2018.

15/15

	Introduction
	Search-MCSP
	Sparse NP Languages
	References

