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1 Introduction
Given a sequence v = (v1,...,v,) of n real numbers, we can consider a random signed sum of vy, ..., v,
— we imagine choosing ¢1,...,&, € {—1,1} uniformly and independently at random, and we consider the

random variable ejv1 + - - - + €,v,. We are interested in how concentrated this random variable can be at a
single point; we formalize this using the following definition.

Definition 1.1. For v = (vy,...,v,) € R" we define the concentration probability p(v) as p(v) =
maxqer Pleqvi + -+ - 4+ €pv, = a] for independent and uniform e1,...,¢e, € {—1,1}.

The problem of finding upper bounds on p(v) was first considered by Littlewood and Offord in [5], who
proved that for any nonzero v, ..., v, we have p(v) = O(n~'/2logn). This bound was later improved by
Erdds [2], who removed the factor of logn — Erdés proved a bound of

2—7’1

p(v) < = O(n™'/?). (1)
This bound is tight — taking v = (1,1,...,1) achieves equality. But we can then ask whether imposing
certain restrictions on vy, ..., v, — such as requiring them to be distinct — results in a better bound.
This was first considered by Erdés and Moser [1], who proved that if vy, ..., v, are distinct, then p(v) =
O(n=3/%(logn)3/?); Sarkozy and Szemerédi [6] improved this bound to

p(v) = O(n=*?). (2)

This bound is tight as well — taking v = (1,2,...,n) achieves equality. (To see this, note that Var[} g;v;] <
n?, so by Chebyshev’s inequality P[|3 e;v;| < 2n%/?] > %7 which means there is some a € [—2n%/2, 2n%/2] for
which P[Z EiU; = a] > %n—3/2.)

We can then ask whether imposing stronger restrictions on v lets us improve the exponent even further. In
particular, the condition that vy, ..., v, are distinct can be written as v; —v; # 0 for all i # j; we can ask
whether forbidding larger linear relations allows us to get a stronger bound. The answer is yes, as proved
by Haldsz [3].

Theorem 1.2 (Haldsz 1977). Given r € N and v = (v1,...,vy), let R be the number of relations of the
form &y + -+ + Eorvi,, = 0 satisfied by v, over all choices of signs &1,...,& € {—1,1} and indices
i1,...,d9r € [n]. Then p(v) = O.(Rn~=2""1/2),

We think of r as fixed and n as large. Note that there are ©,(n") ‘trivial’ relations of the form & v;, +-- -+
&arvi,, = 0 — i.e., relations that are identically true, such as v; —vo — v + v3 +v2 —v3 = 0. So Halasz’s
theorem implies that if v does not satisfy any ‘nontrivial’ relations of this form, then p(v) = O,(n=""1/2).

The results described so far provide upper bounds on p(v) given certain conditions on v. Tao and Vu [8]
approach the problem of anticoncentration from a different angle, that of finding inverse theorems — if we
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know p(v) is ‘large,” then what can we say about v? (All the upper bounds above are of the form 1/poly(n);
in contrast, if vy, ..., v, are completely generic, then p(v) = 27" is exponentially small. So we think of
p(v) as ‘large’ if it is 1/poly(n).)

More specifically, we would like to say that if p(v) is large, then v has a strong ‘additive structure’ in some
sense. (Haldsz’s theorem implies that v must satisfy many small linear relations, but this alone isn’t enough
to make p(v) large — for example, if half of vy, ..., v, have a lot of additive structure but the other half are
completely generic, then p(v) will still be exponentially small. So we would really like a statement saying
that v possesses a lot of ‘global” additive structure, rather than just ‘local’ structure.)

As motivation, here is a class of examples for which p(v) is large.

Definition 1.3. For w = (w1, ...,wq) € R? and k € N, we use Q(w, k) to denote the set

Q(w, k) ={ajwy + - +aqwg | a; € {—k,—k+1,...,k—1,k} for all i € [d]}.

(Intuitively, Q(w, k) is produced by taking the d-dimensional ‘integer box’ [—k, k]¢ N Z¢ and projecting it
down to R via the map (ai,...,aq) — ajw; + -+ + aqwg. This is a specific example of a more general
construction called a generalized arithmetic progression, and the construction described in Example
works with Q(w, k) replaced with any fixed-dimensional generalized arithmetic progression; we describe it
only using Q(w, k) for concreteness and to more closely correspond to the statement of Theorem 1.5.)

Example 1.4. Suppose that vy, ..., v, are all contained in Q(w, k), for some w = (wy,...,wy) and k € N
(think of d as a constant and k as a small power of n). Then for 1,...,e, € {—1,1}, we always have
Y eivi € Q(w,nk), which means
1 1
> .
w,nk)| = (2nk + 1)¢

) 2 g

Motivated by this example, we would like to say that if p(v) is large, then most of vy, ..., v, lie in a ‘small’
generalized arithmetic progression (i.e., one of fixed dimension and 1/poly(n) volume). (We need most rather
than all in such a statement because one can add a small number of arbitrary terms to v without affecting
p(v) too much — specifically, adding O(logn) terms can only change p(v) by a polynomial factor.)

Tao and Vu [8] prove several statements along these lines. In this paper, we explain the proof of their first
inverse theorem.

Theorem 1.5 (Tao—Vu 2009). For every d € N, there is a constant C > 0 (only depending on d) such that
for any v = (v1,...,v,) and k € N such that p(v) > Ck™9, there exists w = (wy,...,w,;) € R" such that
r < d—1 and all entries of w are also contained in v, and v; € Uae[k] %Q(W, k) for all but at most k>
indices i € [n].

We think of d as fixed and k as a small power of n; then this theorem states that if p(v) > 1/poly(n),
then we can find a projected integer box Q(w, k) of constant dimension such that nearly all entries of v are
contained in one of k dilates of Q(w, k).

We prove Theorem in Section 2 (based on the exposition in [4, Sections 10-12]) and Theorem in
Section 3 (based on [8, Sections 5-6] from the original paper).

2 Proof of Theorem

In this section, we prove Theorem (of Haldsz). We first give an outline of the proof in Subsection 2.1,
where we describe the main steps of the proof — stated as lemmas — and explain how these lemmas imply
Theorem 1.2; in the remaining subsections, we prove these lemmas one at a time.
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2.1 Proof Outline

The proof of Theorem uses Fourier analytic methods. For this, it’ll be convenient to assume that vq, ...,
vy, are integers. We can make this assumption without loss of generality — given arbitrary real numbers v,
..., Up, we can write down all the equations of the form vy +-- -+ & v, = 0 with & € {—2,—-1,0, 1,2} that
v = (v1,...,v,) satisfy, producing a (massive) system of equations. Then we can obtain a generic solution

/

v/ = (v],...,v]) to this system of equations with v{,...,v], € Z by solving the system over Q and rescaling.

Then v’ satisfies all the same equations of this form that v does but no others, so p(v’') = p(v).

Throughout the rest of the proof, we’ll assume vy, ..., v, are integers, and we’ll treat v as fixed (i.e., we
won’t quantify over v in the statements of the following lemmas).

The first step is to use Fourier analysis to bound p(v) by the integral of a continuous function of ¢ € [0, 1],
as given by the following lemma.

Lemma 2.1. We have p,(v) < fol [17= [cos(2mv;t)| dt.

This transforms the problem of bounding p(v) — which is quite difficult to deal with — into one of bounding
the expression [[7_; |cos(2mv;t)| for each t € [0, 1], which is much more tractable. However, this expression
is somewhat unwieldy, so in the next step, we approximate it by a nicer function and ‘group together’
values of ¢t based on their contribution to the integral in Lemma 2.1. Specifically, for any x € R, we define
|z|| = min,,ez |x — m| as the distance from z to the closest integer. Then for each s € (0,00) we define

Ay ={t € [0,1] | ||ort]* + - + [Jont]* < s}.

We then get the following bound on the right-hand side of Lemma (where for a set A C [0, 1], we use
A(A) to denote its Lebesgue measure).

Lemma 2.2. We have fol 1 [cos(2mu;t)| dt <[5 N(Ag)e™* ds.

Now it remains to bound the measures \(Ag). Intuitively, we only care about the case where s is ‘small,’
because the factor of e means that ‘large’ s have very small contribution to the integral on the right-hand
side of Lemma (if s is linear in n, then its contribution to the integral is exponentially small — much
smaller than the bound of n=2"~1/2 that we are trying to prove). However, it turns out that it is difficult to

directly bound A(As) when s is small. Instead, we use the following lemma to bound A(A;) for small s in
terms of A(A;) for larger s.

Lemma 2.3. For all s € (0,00) and m € N, we have A(4,,2,) > min{mA(As),1}.

This means it suffices to consider the case where s is reasonably large (specifically, we’ll take s to be a small
constant times n). In this case, we prove the following bound — this is the step of the argument in which
we use the fact that v satisfies only R linear relations of the specified form.

Lemma 2.4. We have A(A, /1) < Rn™?".

Together, these lemmas immediately imply Theorem

Proof of Theorem 1.2. First, we can assume Rn~2" < 1 — otherwise the desired statement is immediate
from Erdés’s bound (1). Then combining Lemmas and 2.2, we have

pu(v) < /0 T MAy)e "t ds.
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First, values of s with s > g7 have very little contribution to this integral — we have

/ AMAg)e %ds < / e S ds = e/ = 0, (n" ¥/ (3)
n/64 n/64

(using the crude bound A(As) < 1). Meanwhile, for each 0 < s < &, we’ll use Lemma to bound A(Ajs)
in terms of A(A,,/64) — given s, we can find m € N such that 2§ < m?s < {%. Then by Lemma we have

AMAp2s) < )‘(An/64) < Rn~?"

In particular, since we assumed Rn~2" < 1, Lemma gives
1 45172 9 1
1 [ > R /2, —2r—1/2
AAs) < m)\(Amas) < Ve Rn™" =4Rs"/*n~ """/
Finally, integrating over s, we have
n/64 n/64
/ AMAg)e P ds < 4Rn_2r_1/2/ s'2¢7% ds = O(Rn~2~1/2) (4)
0 0
(as [g° s'/2¢7% ds is finite). Combining (3) and (1) gives the desired bound. O
In the rest of this section, we’ll prove each of these lemmas — we’ll prove Lemma in Subsection ,
Lemma in Subsection 2.3, Lemma in Subsection 2.4, and Lemma in Subsection
2.2 Proof of Lemma — Fourier analysis

The proof of Lemma is by Fourier analysis — specifically, we use the fact that for any integer v, we have

/1€2m’vtdt: 1 ifv:q (5)
0 0 otherwise.

Proof of Lemma 2.1. We assumed vy, ..., v, are all integers, so > ;v; only takes on integer values; then
for every integer a, by (5) we have

1 1
]P)[Elvl + -t epv, = a] =E |:/ 627Ti(€1U1+"'+6nU7z—a)t dt:| — / E[GZTFi(61U1-‘r"'-‘ré‘nvn—a)t] dt.
0 0

Since €1, ..., &, are independent, for every ¢ € [0, 1] we can expand

n n
E[€27rz(€1v1+--‘+€nvn—a)t] — e—27ruzt H ]E[€27TZ€jth] — e—27rzat H COS(27T’th).
j=1 7j=1

Finally, by the triangle inequality this means
Plejvi + -+ - + envn = 4] / H |cos(2mu;t)| dt

(since || is always 1). This is true for all integers a, so p(v) < fo _1 |cos(2mv;t)| dt as well. O
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2.3 Proof of Lemma — simplifying the integral
In order to prove Lemma 2.2, we need the following bound on the cosine function.
Fact 2.5. For all 2 € R, we have |cos(27mz)| < exp(— [|2z]%).

We won’t prove this. But heuristically, the reason it’s true is that |cos(27z)| is close to 1 when 2z is close
to an integer, and if z is close to 0 then |cos(2mz)| ~ 1 — £(272)? ~ exp(—3(27z)?) — and Fact has
enough slack in the coefficients of x (4 compared to 272) to turn this approximation into a true inequality.

Proof of Lemma 2.2. First, we can imagine choosing ¢ ~ UNIF[0, 1]; then the integral we’re trying to bound
can be written as E; [[}_ [cos(27v;t)|, and using the fact that E[X] = [ P[X > z]dx for any nonnegative
random variable X, we can rewrite it as [y P¢[[Tj_; [cos(2mv;t)| > u] du. Now by Fact 2.5 we have

n
I lcos(2mo;)| < exp(— [[2012]* — - — [20,t]?)
=0

for all ¢, which means P;[[]7_; |cos(2mv;t)| > e7°] < Py [{2t} € As] = A(As) for all s (where {2t} denotes the
fractional part of 2¢, which is also uniformly distributed in [0, 1]). Substituting u = e~* and plugging this

in gives the desired bound. O
2.4 Proof of Lemma — from small s to large s
Next we’ll prove Lemma 2.3, a lower bound on A(A,,2,) in terms of A\(Ay). For this, we’ll view the sets Aj

as subsets of R/Z rather than [0, 1] (this makes sense because for ¢ € R and v € Z, the value of |[vt| only
depends on {t}). For A, B C R/Z, we use A + B to denote their sumset

A+B={a+blac Abe B} CR/Z,
and we use mA to denote the iterated sumset

mA=A+---+A.
—_———

m copies
The key observation that goes into the proof of Lemma is the following.
Claim 2.6. We have mA; C A,,2,.
Proof. We need to show that for any ti, ..., t,, satisfying 37, |v;ti||* < s for every i € [m], their sum
t =114+t satisfies 3°7_4 ||v;t]|* < m?s. To see this, note that | - || satisfies the triangle inequality, so

2 2 2
lostll* < (logtall + - + lojtml)® < m(lojtall® + - + llvgtml”)

for each j € [n] (the latter inequality is Cauchy—Schwarz). Summing over all j € [n] gives

n m n
STt <m Y-S uit]|? < m?s
j=1

i=1j=1
(since »°7 |v;ti||* < s for each 4, and we sum over m values of 7). O
In order to use Claim 2.6 to bound A(A4,,2,) in terms of A(A;), we need a version of the Cauchy—Davenport

theorem for subsets of [0, 1]. First, the usual Cauchy-Davenport theorem for Z/qZ (where ¢ is a prime) is
as follows (we will not prove it; a proof can be found in [7, Section 5.1]).
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Theorem 2.7 (Cauchy-Davenport). For any prime q and nonempty sets A, B C Z/qZ, we have
|A + B| > min{q, |A| + |B| — 1}.
We can straightforwardly derive an analogous statement for R/Z from the one for Z/pZ in the case where

A and B are unions of finitely many intervals; this suffices for our purposes (as A is the union of finitely
many intervals, and if A and B are unions of finitely many intervals then so is A 4+ B).

Claim 2.8. For any nonempty sets A, B C R/Z which are each a union of finitely many intervals, we have
AMA+ B) > min{\(A4) + A\(B), 1}.

Proof. We'll convert A and B to subsets of Z/qZ for a large prime g and apply Theorem to these sets.
For any prime ¢, we can define

A*:{ae{o,...,qu] {“ ““) gA},

9y
q q

and we can define B* analogously for B. If A and B are each a union of at most k disjoint intervals, then

1, 2k
~ A" > |A| = —
q q

(and the analogous statement is true for B) — this is because for any interval [z,y] C A, we must have
[ + %,y - %) € Uaea-lg %1) (so the right-hand side, which has measure %|A*|, is missing at most a
measure—% portion of each of the k intervals that make up A).

Now by Cauchy-Davenport in Z/qZ, we have |A* + B*| > min{|A*| + |B*| — 1,q}. Meanwhile, if a € A*

and b € B* then [“T*b,%) CA+B,so

1 4k +1
MA+B)> 14"+ B > min{)\(A) FAB) - L ,1} .
q
This is true for every prime ¢, so taking ¢ — oo gives the desired result. O
Combining Claims and immediately gives Lemma
2.5 Proof of Lemma — a bound for large s
Finally, it remains to prove Lemma 2.4. For this, it’ll be convenient to again imagine choosing t ~ UNIF|0, 1];

then we want to show that
n
Py ([lort]® + - + lontl]* < | < Rn72"

The idea is that we’ll convert this inequality into an inequality on a sum of cosines —if 377, [v;t]|? is small,
then 2?21 cos(27mv;t) must be large. We’ll then use Markov’s inequality on the 2rth moment of this sum to
upper-bound the probability this occurs (and this moment calculation is where R comes into the picture).

Claim 2.9. If 3°7 ot < g1 then 377 cos(2mu;t) > 3.

Proof. For all z € R, we have cos(2rz) > 1 —32||z||* (this is true for similar reasons as Fact 2.5). Summing
this over all j gives
no_n

O
64

n n
> cos(2mujt) > n— 32 [lvit|* = n—32-
j=1 j=1
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In order to use Markov’s inequality as described earlier, we need the following 2rth moment computation.
Claim 2.10. We have E.[(3°7_4 cos(2mv;t))?*] = 27 R (for t ~ UNIF[0, 1]).

Proof. If we write out each cosine as cosx = %(em + e7™) and expand, we get

Ji,ed2r€n] £1,..,82-€{£1}

2r
n
(Z cos(27rvjt)) = Z Z 92 2 (§1vjy +HE2rvjy, )t (6)
j=1

(where j; and & correspond to the term %eﬂ”“’jt we take from the first factor when expanding, jo and &

correspond to the term we take from the second factor, and so on). But as seen earlier, for any (fixed) v € Z
and t ~ UNIF[0, 1], we have
1 ifo=0

0 otherwise

Et [627wt] — {

So when we take the expectation of (6), all terms with &yvj, + -+ + &,vj,. = 0 contribute 272", and all
other terms contribute 0. But there are precisely R terms with &vj, + - -+ 4 &2,vj,, = 0 (by the definition
of R), so this expectation is 272" R. OJ
With this, we're ready to deduce Lemma
Proof of Lemma 2./. By Claim 2.9, we have
2 2 n n

MApjea) = Py ([Jort]]” + -+ [lot]|” < o < Py [cos(2mv1t) + - - - + cos(2mupt) > 5

(for t ~ UNIF[0, 1]). Then by Markov’s inequality on (3-7_; cos(2mv;t))*" (which is always nonnegative),
P, {cos(27rvlt) + -+ 4 cos(2mupt) > Z} <P {(cos(27rvlt) + -+ cos(2mupnt)) " > 2*2’”n2’”]

E[(Y)=; cos(2mv;t))™']

< 2—27"n27“

—2r
= Rn™"",

where the last equality is by Claim ; this gives the desired bound. O

So we’ve now proven all four lemmas that go into Theorem 1.2, wrapping up its proof.

3 Proof of Theorem

In this section, we’ll prove Theorem (of Tao and Vu). For this proof, it’ll be convenient to work in a
slightly more general setup, where instead of choosing 1, ...,&, € {—1,1}, we allow them to be 0 with a
certain probability as well.

Definition 3.1. For u € (0,1], we write € ~ P, to denote that ¢ takes the value 0 with probability 1 — u,
1 with probability 24, and —1 with probability 2.

Definition 3.2. For v = (vy,...,v,) and p € (0,1], we define p,(v) = max,cr Ple1vi + -+ + epvn, = a
where ¢1,...,&, ~ P, are chosen independently.
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We’re mostly interested in the case u = 1 (we have pi(v) = p(v)), but the proof of the theorem will go
through smaller values of . We'll actually prove the following generalization of Theorem

Theorem 3.3 (Tao—Vu 2009). For every d € N and p € (0, 1], there is a constant C > 0 (only depending
on d and ) such that for any v = (vi,...,v,) and k € N such that p,(v) > Ck™?, there exists w =
(w1,...,wy) € R" such that 1 < d—1 and all entries of w are also contained in v, and v; € Uqep 1Q(w, k)
for all but at most k* indices i € [n].

For the proof, it’ll be convenient to think of v as a ‘word’ — so we’ll write v as v;...v, rather than
(v1,...,v,). We'll use vw to denote the concatenation of two words v and w, and v'™ to denote the m-fold
repetition of v.

We’ll also need the following definition.

Definition 3.4. For w = (wy,...,w,) € R" and k € N, we say w is k-dissociated if
ajwy + -+ apwy, #0
for all a; € {—k,—k+1,...,k—1,k} with (a1,...,a,) # (0,...,0).

At a high level, the proof of Theorem works by algorithmically constructing a k-dissociated word w from
v one entry at a time; we use certain properties of how p,(v) behaves with respect to word operations (i.e.,
concatenation and repetition) to ensure that if p,(v) is reasonably large, then so is p, (w**) for some 1.
We’ll show that if at any step we can’t extend w further, then the current value of w has the properties
we want in Theorem 3.3. Meanwhile, we’ll show that if the algorithm runs for long enough that the length
of w becomes d, then p, (ka) is small (using the fact that w is k-dissociated); this will contradict the
assumption that p,(v) is reasonably large.

The organization of the rest of the proof is as follows. In Subsection we’ll state and prove the properties
of how p,(v) behaves with respect to word operations that we’ll need for the proof. In Subsections

and we’ll state and prove the facts that let us deduce that pMI(WkQ) is small (if w is k-dissociated and
has length at least d). Finally, in Subsection we’ll prove Theorem by describing the algorithm and
showing that it works as in the above sketch.

3.1 Properties of concentration probabilities
We'll first state all the properties of p,(v) that we’ll need in one lemma, and then prove them one at a time.
Lemma 3.5. For allv=wvy...v, and W = w1 ... wy, (of lengths n and m), the following properties hold.
(1) For all p € (0,1], we have p,(vw) < pu(v).
(ii) For all ju € (0,1], we have pu(v) < pp/a(v).

(
(tit) For all p € (0, 5] and d € N, we have p,(v) < pu/d(vd).
( l/m'

1
2
(iv) For all i € (0, 3], we have p,(vw) < ([T7%; pu(vw!™))

(The purpose of is simply to allow us to make p small enough that and apply.)

First, can be proven directly from the definition.

Proof of Lemma . By definition, we have p,(vw) = max.cr P[}_ &;v; + > niw; = ¢|, where &;,1; ~ P,
are all independent; and we can split this as max.cr(>_,cr P[> €ivi = a]P[>°miw; = ¢ — a]). But for any
¢ € R, we have g P[Xocvi = alP[Xniwi = ¢ — a] < Yoer pu(V)PE niwi = ¢ — a] = pu(v) (because
P[> eiv; = a] < pu(v) for all a € R), as desired. O
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In order to prove the remaining properties, we’ll use Fourier analysis to obtain an explicit formula for p,(v),
similar to Lemma 2.1. First, we can assume vi, ..., Uy, Wi, ..., Wy, are all integers (just for the proof of
Lemma 3.5) for the same reason as in Section 2 — given any real numbers vy, ..., Uy, W1, ..., Wy, We can
replace them with integers vi, ..., v}, wi, ..., w), satisfying exactly the same set of linear equations of the
form relevant to the concentration probabilities in Lemma 3.5. (We'll assume vy, ..., vp, w1, ..., Wy, are
integers throughout the rest of this subsection, but not the subsections that follow.)

Claim 3.6. For all p € (0,1] and v = (vy,...,v,) € Z", we have

1 n
_ —2miat .
pu(v) = rggzx/o o~ 2mia jlzll(l — p+ pcos(2mujt)) dt.

Furthermore, if p € (0, %], then this maximum is attained at a = 0.

Proof. The proof of the first statement is essentially the same as that of Lemma 2.1, except that now for
each j € [n], for all ¢t we have
4 1 . 1 .
E[e%rzsjvjt] — (1 _ /J,) 14 5,[1, . evajt 4 5,[1, . 6727rwjt —-1— w+ ,U,COS(Qﬂ'th).
For the second statement, note that if p € (0, 2] then each term 1 — p + pcos(27v;t) in the product is

nonnegative (for all ¢), and |e~27%| is always 1, so the integral is maximized when a = 0 (in which case
e~2miat s 1 for all ). O

We can now obtain the remaining properties in Lemma by using this Fourier analytic formula for p,(v)
in combination with various inequalities.

Proof of Lemma . We claim that for all u € (0,1] and all z, we have
11— (1 —cos(z))| < 1— %(1 — cos(22)). (7)

To see this, note that
1 — cos(2z) = 2sin? z = 2(1 — cos(z))(1 + cos(z)) < 4(1 — cos(z)),

which immediately gives 1 — pu(1 — cos(x)) <1 — fu(l —cos(2x)), and 1 — cos(2z) < 4(1 + cos(z)) for the
same reason, which gives (1 — cos(z)) — 1 < 1 — (1 — cos(2z)).

Then by using the triangle inequality on our formula for p,(v) from Claim and plugging in (7), we get
LA poop
/ H |1 — po+ pcos(2mv;t)| dt < / H <1 — — + = cos(2mv; - 275)) dt = p,/a(v).
0 ;i 4 4
(We can replace 2t with ¢ in the latter integral because the integrand only depends on {t¢}.) O
Proof of Lemma . Using the inequality 1 — dz < (1 — 2)? for = € [0, 1], we have
' poon I d
/ H (1 — p+ pcos(2mu;t)) dt < /0 Jl;[l <1 —3 + ECOS(Q?TUJ )) dt = ppja(v®). O
Proof of Lemma . We use Hélder’s inequality (which gives that for any nonnegative functions fi,

, fm we have [ fi... fo <TI0 (3 £7)Y™) on the functions

Fi®) = ] (@ =+ peos(2mvt)) /™ - (1 — p+ pcos(2mw;t)).
j=1

Then we have fol fi-o fm =pu(vw) and fol [ = pu(vwi™) for each i € [m] (by the Fourier analytic formula
in Claim 3.6), so Holder’s inequality gives that p,(vw) < ([T"; pu(vw™))Y/™. O
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3.2 Anticoncentration for k-dissociated words

In this subsection, we’ll prove the following bound on pu(wkz) when w is k-dissociated.
Lemma 3.7. For each p € (0,1], if w = w1 ... wy is k-dissociated, then p,(w) = O, 4(k~%).

In order to prove this, we can first write

d k?
pu(w IéleaédP’ [Z Z EijW; = a]

=1 j=1
for independent €;; ~ P,,. So for m € N, we define Q, » to be the distribution of 377", ¢; for independent
€j ~ P, (note that this is always an integer); then we have
pu(wk2) = max PYiwi + -+ 4+ Yywg = a]
a

for independent Y; ~ Q,, ;2. In order to prove Lemma 3.7, we’ll need the following fact about Q.

Lemma 3.8. For pn € (0,3] and m €N, let Y ~ Q.. Then letting o = (um)Y/2, for all a € Z, we have
PlY =a] <407 ' -P[Y € [a — 20,a + 20]].

Very loosely speaking, this lemma states that Q, ,, is roughly ‘evenly spread out’ on intervals of length
roughly o — the interval [a — 20, a 4 20] contains around 4o integers, so the average value of P[Y" = b] over
all b in this interval is 307 'P[Y € [a — 20,a + 20]]. Then Lemma states that P[Y = a] cannot be too
much (i.e., more than a constant factor) greater than this average.

We defer the proof of this lemma to Subsection 3.3; for now, we’ll prove Lemma assuming it.

Proof of Lemma 5.7. First, we can assume that u < %6 — otherwise we can replace y with % 1 using Lemma
twice. We wish to show that P[Yiw; + - -+ + Yywy = a] = O, 4(k~%) for all a € R, where Y; ~ Qi
are independent. Fix a, and let
S={(1,---,ya) € Z* | yrw1 + - - + yawa = a}
be the set of ‘good’ outcomes for (Y7,...,Yy), so that

PYiw; + -+ Yywg = a] = Z P[Y; = y; for all ]
yeS

(where we use y to denote (y1,...,yq) € Z%). Now we’ll use Lemma to replace each y; with a length-k
interval around y; — by Lemma we have

1 1
PY; = y;] < 4p~ Y271 PY; € [yi — 20k, ys 4 2 2R)) < 4~V 2R P {Y € {yi = Skt 2k”

for all 7 and all y; € Z (since ,ul/ 2 < % by assumption). Since Y7, ..., Yy are independent, this means
1
P[Yl’ll}l Lot ded _ CL] 4d —d/Qk‘ d Z P |:Y S |:yl k,yz + 2k:| for all Z:| (8)
yeS
(we can split P[Y; = y; for all 1] = [T, P[Y; = ], and expanding the points y; into intervals lets us pick up

a factor of 4u~1/2k for each ).

But using the fact that w is k-dissociated, we can show that the events that Y; € [y; — %k, Yi + %k:] for all
i for different choices of y € S are disjoint — if there were distinct y,y’ € S and integers b;, b, € [—%k, %k]
such that y; + b; =y} + b, for all i, then since Y, y;w; = >, yiw; = a (by the definition of &) we would have
> (b — b))w; = 0, and since |b; — b} < |b;| + |b}| < k for all 4, this contradicts the k-dissociativity of w.
So the sum in the right-hand side of (8) is a sum of probabilities of disjoint events, which means it is at
most 1; this gives

P[Yiw; + - - + Yagwg = a] < 4%~k = 0, 4(k™9). O
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3.3 Proof of Lemma

In order to prove Lemma 3.5, we'll first prove a few intermediate results about Y ~ Q,, ;,,. We'll assume
that p < % throughout this subsection (this is mostly just for convenience, and similar arguments can be
made even for % < u <1, possibly with different constants). We’ll also use o to denote (,um)l/ 2 throughout
this subsection. (The reason for this notation is that o> = Var[Y], as we will compute later.)

The first is an anticoncentration bound similar to (1) for the case v = 1™ (but for general y < 3).

Claim 3.9. For Y ~ Q,, ,, we have P[Y = a] < ¢ for all a € Z.

Proof. First, we have max,cz P[Y = a] = p,(1™), and by Claim 3.6, we have the explicit formula
1/2
pu(1™) = / (1= st prcos(amt)) " i
~1/2

(The value of the integrand only depends on {t}, so it doesn’t matter whether we integrate over [0, 1] or

[—%, %], and the latter will be slightly more convenient here.) We can now use a similar approximation for
the cosine function as in Fact — for all t € [, 1] we have 1 — cos(27t) > 4¢, which means

1— pu+ peos(2mt) < 1 — dput® < e Wt°,

and therefore

V2 e it Lo/ -1
pu(lm)g/ e “Hm dtS/ e MM dt = / e du<o

-1/2 —00 % —00

(where we substitute u = 20t and use the fact that [0 e = /T <2). O

On the other hand, using Chebyshev’s inequality we can show that Y ~ Q,, ,,, is fairly concentrated on an
interval of length O(o).

Claim 3.10. For Y ~ Q,, ,,, we have P[|Y| < 20] > 3.

Proof. For each g; ~ P, we have Var[e;] = E[e?] = p, which means Var[Y] = pm = ¢ (since Y is a sum of
m independent variables g; ~ P,,). By Chebyshev’s inequality, this means P[|Y| > 20] < 1. O

The final observation about Y ~ Q,, ,, we need is that if we fix the parity of a, then P[Y = a| decreases as
a moves further away from 0.

Claim 3.11. For Y ~ Q,,,,, for all @ > 0, we have P[Y = a] > P[Y =a + 2].

Proof. Let Y =¢e1+---+¢&y,, for independent e; ~ P, and let S = {i € [m] | &; # 0}; we’ll show that in fact
PY =a| S| >P[Y =a+2| 5] for all S. Once we condition on S, the variables ¢; for i € S are independent
and uniform in {—1,1} (and all others are 0). If |S| = b, then in order to have Y = a, exactly ZH'TC” of them
must be 1; similarly, in order to have Y = a, exactly H?a + 1 of them must be 1. (In particular, we must
have b = a (mod 2), or else both probabilities are 0). But since (lc’) is decreasing in ¢ for ¢ > £b, the former
is more likely than the latter. O

We can now combine these claims to prove Lemma
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Proof of Lemma 5.5. Since Y is symmetric, we can assume without loss of generality that a > 0. If a > 20,
then we can directly use Claim — for all integers b € [a — 20, a] with the same parity as a, by Claim
we have P[Y = b] > P[Y = a], and since there are at least o such integers b, we get that

PlY € [a — 20,a+ 20]] > 0 - P[Y = al.

Meanwhile, if 0 < a < 20, then the interval [a — 20,a + 20] contains [0,20]. So on one hand we have
P[Y =a] < o~! by Claim 3.9, and on the other hand we have

PY € [a - 20,0+ 20]] > P[Y € [0,20]] > % >

=~ =

by Claim and the fact that Y is symmetric; combining these bounds gives Lemma 3.8. OJ

Remark 3.12. It’s actually possible to use similar ideas to prove the more general statement that
PlY =y Smax{r 1o JP[Y € [y — 7,y + 7]|

for all y € Z and 7 € N. But since Lemma is enough for our purposes, we only prove it (instead of this
more general statement) because the proof is simpler.

3.4 The algorithmic construction

Finally, we’re ready to prove Theorem by constructing w algorithmically.

Proof of Theorem 5.5. We'll give an algorithm that constructs w one entry at a time, maintaining the
following two invariants:

e At every step, w is k-dissociated.
o After r steps, when w has length 7, we have p,(v) < pu/4d(vd_’”wk2).

First, we initialize w = () and r = 0. To see that this satisfies the second invariant, note that p,(v) <
Pu/a(v) < p, /4d(vd), where the first inequality is by Lemma and the second by Lemma

Then while r < d, we perform the following:

o If the number of indices i € [n] such that wuv; is k-dissociated is less than k2, then terminate and
return w. Note that if wv; is not k-dissociated, then v; € 2Q(w, k) for some a € [k] — this is because
there must exist ai,...,a,,a € {—k,...,k}, not all zero, such that

aiwi + -+ + apw, + av; = 0,

and we must have a # 0 (otherwise {wy,...,w,} would themselves not be k-dissociated), so
1 1
v; = —a(alwl +- 4 aw) € MQ(W, k).

So if we reach this step, this means v; € Uy %Q(W, k) for all but fewer than k? indices i, so w
satisfies the properties in Theorem 3.3, and we’re done.

o Otherwise, let Z = {i1,...,i52} be a set of k? indices i € [n] such that wu; is k-dissociated for each
1 € Z. Our goal is to append v; to w for some i € Z. Any choice of i € Z will satisfy the first invariant,
so we wish to find one that also satisfies the second. To do so, note that

2 o 2
k Vdrlk

— T 2
pu/4d(Vd "w ):pu/zld( W gL Up) Spu/4d(Vd Thwk

w" v, "‘Ui/#)
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by Lemma (we've simply expanded out one of the d — r copies of v and dropped all the entries
that aren’t relevant to us), and

1/k2
P 2 o 2 2
Pu/4d(Vd T lwhk Uil'--vikz) < <Hpu/4d(Vd Tlwh Uzk ))
i€l

by Lemma . Combining these gives that there must exist some ¢ € Z such that

— 2 e 2 2
Py/4d(Vd "wh) Spu/zxd(vd "Wl

(since the left-hand side is at most the geometric mean of the right-hand side over all i € 7).

We then append v; to w (for this choice of i) — so we replace w with wv; and increment r by 1. This
maintains both invariants.

In order to prove Theorem 3.3, it is enough to prove that this algorithm must terminate before r becomes d.
Assume not, so that the algorithm produces w = wjy ... wy of length d satisfying the two invariants. Then
by the second invariant, we have p,, /4d(wk2) > pu(v) > Ck™¢ (where C is the constant in the statement

of Theorem , which we’ll choose soon). But since w is k-dissociated, by Lemma we must have
p“/4d(wk2) = 0,,.4(k~%). If we take C' to be a constant (only depending on y and d) larger than the implicit
constant in this bound, then this is a contradiction. O
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