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1 Introduction

Given a sequence v = (v1, . . . , vn) of n real numbers, we can consider a random signed sum of v1, . . . , vn
— we imagine choosing ε1, . . . , εn ∈ {−1, 1} uniformly and independently at random, and we consider the
random variable ε1v1 + · · ·+ εnvn. We are interested in how concentrated this random variable can be at a
single point; we formalize this using the following definition.

Definition 1.1. For v = (v1, . . . , vn) ∈ Rn, we define the concentration probability p(v) as p(v) =
maxa∈R P[ε1v1 + · · ·+ εnvn = a] for independent and uniform ε1, . . . , εn ∈ {−1, 1}.

The problem of finding upper bounds on p(v) was first considered by Littlewood and Offord in [5], who
proved that for any nonzero v1, . . . , vn we have p(v) = O(n−1/2 logn). This bound was later improved by
Erdős [2], who removed the factor of logn — Erdős proved a bound of

p(v) ≤
( n
bn/2c

)
2−n = O(n−1/2). (1)

This bound is tight — taking v = (1, 1, . . . , 1) achieves equality. But we can then ask whether imposing
certain restrictions on v1, . . . , vn — such as requiring them to be distinct — results in a better bound.
This was first considered by Erdős and Moser [1], who proved that if v1, . . . , vn are distinct, then p(v) =
O(n−3/2(logn)3/2); Sárközy and Szemerédi [6] improved this bound to

p(v) = O(n−3/2). (2)

This bound is tight as well — taking v = (1, 2, . . . , n) achieves equality. (To see this, note that Var[∑ εivi] ≤
n3, so by Chebyshev’s inequality P[|∑ εivi| ≤ 2n3/2] ≥ 3

4 , which means there is some a ∈ [−2n3/2, 2n3/2] for
which P[∑ εivi = a] ≥ 3

16n
−3/2.)

We can then ask whether imposing stronger restrictions on v lets us improve the exponent even further. In
particular, the condition that v1, . . . , vn are distinct can be written as vi − vj 6= 0 for all i 6= j; we can ask
whether forbidding larger linear relations allows us to get a stronger bound. The answer is yes, as proved
by Halász [3].

Theorem 1.2 (Halász 1977). Given r ∈ N and v = (v1, . . . , vn), let R be the number of relations of the
form ξ1vi1 + · · · + ξ2rvi2r = 0 satisfied by v, over all choices of signs ξ1, . . . , ξ2r ∈ {−1, 1} and indices
i1, . . . , i2r ∈ [n]. Then p(v) = Or(Rn−2r−1/2).

We think of r as fixed and n as large. Note that there are Θr(nr) ‘trivial’ relations of the form ξ1vi1 + · · ·+
ξ2rvi2r = 0 — i.e., relations that are identically true, such as v1 − v2 − v1 + v3 + v2 − v3 = 0. So Halász’s
theorem implies that if v does not satisfy any ‘nontrivial’ relations of this form, then p(v) = Or(n−r−1/2).
The results described so far provide upper bounds on p(v) given certain conditions on v. Tao and Vu [8]
approach the problem of anticoncentration from a different angle, that of finding inverse theorems — if we

Page 1 of 13



Some results on anticoncentration Sanjana Das (May 12, 2024)

know p(v) is ‘large,’ then what can we say about v? (All the upper bounds above are of the form 1/poly(n);
in contrast, if v1, . . . , vn are completely generic, then p(v) = 2−n is exponentially small. So we think of
p(v) as ‘large’ if it is 1/poly(n).)
More specifically, we would like to say that if p(v) is large, then v has a strong ‘additive structure’ in some
sense. (Halász’s theorem implies that v must satisfy many small linear relations, but this alone isn’t enough
to make p(v) large — for example, if half of v1, . . . , vn have a lot of additive structure but the other half are
completely generic, then p(v) will still be exponentially small. So we would really like a statement saying
that v possesses a lot of ‘global’ additive structure, rather than just ‘local’ structure.)
As motivation, here is a class of examples for which p(v) is large.

Definition 1.3. For w = (w1, . . . , wd) ∈ Rd and k ∈ N, we use Q(w, k) to denote the set

Q(w, k) = {a1w1 + · · ·+ adwd | ai ∈ {−k,−k + 1, . . . , k − 1, k} for all i ∈ [d]}.

(Intuitively, Q(w, k) is produced by taking the d-dimensional ‘integer box’ [−k, k]d ∩ Zd and projecting it
down to R via the map (a1, . . . , ad) 7→ a1w1 + · · · + adwd. This is a specific example of a more general
construction called a generalized arithmetic progression, and the construction described in Example 1.4
works with Q(w, k) replaced with any fixed-dimensional generalized arithmetic progression; we describe it
only using Q(w, k) for concreteness and to more closely correspond to the statement of Theorem 1.5.)

Example 1.4. Suppose that v1, . . . , vn are all contained in Q(w, k), for some w = (w1, . . . , wd) and k ∈ N
(think of d as a constant and k as a small power of n). Then for ε1, . . . , εn ∈ {−1, 1}, we always have∑
εivi ∈ Q(w, nk), which means

p(v) ≥ 1
|Q(w, nk)| ≥

1
(2nk + 1)d .

Motivated by this example, we would like to say that if p(v) is large, then most of v1, . . . , vn lie in a ‘small’
generalized arithmetic progression (i.e., one of fixed dimension and 1/poly(n) volume). (We need most rather
than all in such a statement because one can add a small number of arbitrary terms to v without affecting
p(v) too much — specifically, adding O(logn) terms can only change p(v) by a polynomial factor.)
Tao and Vu [8] prove several statements along these lines. In this paper, we explain the proof of their first
inverse theorem.

Theorem 1.5 (Tao–Vu 2009). For every d ∈ N, there is a constant C > 0 (only depending on d) such that
for any v = (v1, . . . , vn) and k ∈ N such that p(v) ≥ Ck−d, there exists w = (w1, . . . , wr) ∈ Rr such that
r ≤ d − 1 and all entries of w are also contained in v, and vi ∈

⋃
a∈[k]

1
aQ(w, k) for all but at most k2

indices i ∈ [n].

We think of d as fixed and k as a small power of n; then this theorem states that if p(v) ≥ 1/poly(n),
then we can find a projected integer box Q(w, k) of constant dimension such that nearly all entries of v are
contained in one of k dilates of Q(w, k).
We prove Theorem 1.2 in Section 2 (based on the exposition in [4, Sections 10–12]) and Theorem 1.5 in
Section 3 (based on [8, Sections 5–6] from the original paper).

2 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 (of Halász). We first give an outline of the proof in Subsection 2.1,
where we describe the main steps of the proof — stated as lemmas — and explain how these lemmas imply
Theorem 1.2; in the remaining subsections, we prove these lemmas one at a time.
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2.1 Proof Outline

The proof of Theorem 1.2 uses Fourier analytic methods. For this, it’ll be convenient to assume that v1, . . . ,
vn are integers. We can make this assumption without loss of generality — given arbitrary real numbers v1,
. . . , vn, we can write down all the equations of the form ξ1v1 + · · ·+ ξnvn = 0 with ξi ∈ {−2,−1, 0, 1, 2} that
v = (v1, . . . , vn) satisfy, producing a (massive) system of equations. Then we can obtain a generic solution
v′ = (v′1, . . . , v′n) to this system of equations with v′1, . . . , v′n ∈ Z by solving the system over Q and rescaling.
Then v′ satisfies all the same equations of this form that v does but no others, so p(v′) = p(v).
Throughout the rest of the proof, we’ll assume v1, . . . , vn are integers, and we’ll treat v as fixed (i.e., we
won’t quantify over v in the statements of the following lemmas).
The first step is to use Fourier analysis to bound p(v) by the integral of a continuous function of t ∈ [0, 1],
as given by the following lemma.

Lemma 2.1. We have pµ(v) ≤
∫ 1

0
∏n
j=1 |cos(2πvjt)| dt.

This transforms the problem of bounding p(v) — which is quite difficult to deal with — into one of bounding
the expression ∏n

j=1 |cos(2πvjt)| for each t ∈ [0, 1], which is much more tractable. However, this expression
is somewhat unwieldy, so in the next step, we approximate it by a nicer function and ‘group together’
values of t based on their contribution to the integral in Lemma 2.1. Specifically, for any x ∈ R, we define
‖x‖ = minm∈Z |x−m| as the distance from x to the closest integer. Then for each s ∈ (0,∞) we define

As = {t ∈ [0, 1] | ‖v1t‖2 + · · ·+ ‖vnt‖2 ≤ s}.

We then get the following bound on the right-hand side of Lemma 2.1 (where for a set A ⊆ [0, 1], we use
λ(A) to denote its Lebesgue measure).

Lemma 2.2. We have
∫ 1

0
∏n
j=1 |cos(2πvjt)| dt ≤

∫∞
0 λ(As)e−s ds.

Now it remains to bound the measures λ(As). Intuitively, we only care about the case where s is ‘small,’
because the factor of e−s means that ‘large’ s have very small contribution to the integral on the right-hand
side of Lemma 2.2 (if s is linear in n, then its contribution to the integral is exponentially small — much
smaller than the bound of n−2r−1/2 that we are trying to prove). However, it turns out that it is difficult to
directly bound λ(As) when s is small. Instead, we use the following lemma to bound λ(As) for small s in
terms of λ(As) for larger s.

Lemma 2.3. For all s ∈ (0,∞) and m ∈ N, we have λ(Am2s) ≥ min{mλ(As), 1}.

This means it suffices to consider the case where s is reasonably large (specifically, we’ll take s to be a small
constant times n). In this case, we prove the following bound — this is the step of the argument in which
we use the fact that v satisfies only R linear relations of the specified form.

Lemma 2.4. We have λ(An/64) ≤ Rn−2r.

Together, these lemmas immediately imply Theorem 1.2.

Proof of Theorem 1.2. First, we can assume Rn−2r < 1 — otherwise the desired statement is immediate
from Erdős’s bound (1). Then combining Lemmas 2.1 and 2.2, we have

pµ(v) ≤
∫ ∞

0
λ(As)e−s ds.
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First, values of s with s ≥ n
64 have very little contribution to this integral — we have∫ ∞
n/64

λ(As)e−s ds ≤
∫ ∞
n/64

e−s ds = e−n/64 = Or(n−2r−1/2) (3)

(using the crude bound λ(As) ≤ 1). Meanwhile, for each 0 < s ≤ n
64 , we’ll use Lemma 2.3 to bound λ(As)

in terms of λ(An/64) — given s, we can find m ∈ N such that n
64 ≤ m

2s ≤ n
16 . Then by Lemma 2.4 we have

λ(Am2s) ≤ λ(An/64) ≤ Rn−2r.

In particular, since we assumed Rn−2r < 1, Lemma 2.3 gives

λ(As) ≤
1
m
λ(Am2s) ≤

4s1/2

n1/2 ·Rn
−2r = 4Rs1/2n−2r−1/2.

Finally, integrating over s, we have∫ n/64

0
λ(As)e−s ds ≤ 4Rn−2r−1/2

∫ n/64

0
s1/2e−s ds = O(Rn−2r−1/2) (4)

(as
∫∞

0 s1/2e−s ds is finite). Combining (3) and (4) gives the desired bound.

In the rest of this section, we’ll prove each of these lemmas — we’ll prove Lemma 2.1 in Subsection 2.2,
Lemma 2.2 in Subsection 2.3, Lemma 2.3 in Subsection 2.4, and Lemma 2.4 in Subsection 2.5.

2.2 Proof of Lemma 2.1 — Fourier analysis

The proof of Lemma 2.1 is by Fourier analysis — specifically, we use the fact that for any integer v, we have
∫ 1

0
e2πivt dt =

{
1 if v = 0
0 otherwise.

(5)

Proof of Lemma 2.1. We assumed v1, . . . , vn are all integers, so ∑ εivi only takes on integer values; then
for every integer a, by (5) we have

P[ε1v1 + · · ·+ εnvn = a] = E
[∫ 1

0
e2πi(ε1v1+···+εnvn−a)t dt

]
=
∫ 1

0
E[e2πi(ε1v1+···+εnvn−a)t] dt.

Since ε1, . . . , εn are independent, for every t ∈ [0, 1] we can expand

E[e2πi(ε1v1+···+εnvn−a)t] = e−2πiat
n∏
j=1

E[e2πiεjvjt] = e−2πiat
n∏
j=1

cos(2πvjt).

Finally, by the triangle inequality this means

P[ε1v1 + · · ·+ εnvn = a] ≤
∫ 1

0

t∏
j=1
|cos(2πvjt)| dt

(since |e2πiat| is always 1). This is true for all integers a, so p(v) ≤
∫ 1

0
∏t
j=1 |cos(2πvjt)| dt as well.
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2.3 Proof of Lemma 2.2 — simplifying the integral

In order to prove Lemma 2.2, we need the following bound on the cosine function.

Fact 2.5. For all x ∈ R, we have |cos(2πx)| ≤ exp(−‖2x‖2).

We won’t prove this. But heuristically, the reason it’s true is that |cos(2πx)| is close to 1 when 2x is close
to an integer, and if x is close to 0 then |cos(2πx)| ≈ 1 − 1

2(2πx)2 ≈ exp(−1
2(2πx)2) — and Fact 2.5 has

enough slack in the coefficients of x (4 compared to 2π2) to turn this approximation into a true inequality.

Proof of Lemma 2.2. First, we can imagine choosing t ∼ Unif[0, 1]; then the integral we’re trying to bound
can be written as Et

∏n
j=1 |cos(2πvjt)|, and using the fact that E[X] =

∫∞
0 P[X ≥ x] dx for any nonnegative

random variable X, we can rewrite it as
∫∞

0 Pt[
∏n
j=1 |cos(2πvjt)| ≥ u] du. Now by Fact 2.5 we have

n∏
j=0
|cos(2πvjt)| ≤ exp(−‖2v1t‖2 − · · · − ‖2vnt‖2)

for all t, which means Pt[
∏n
j=1 |cos(2πvjt)| ≥ e−s] ≤ Pt[{2t} ∈ As] = λ(As) for all s (where {2t} denotes the

fractional part of 2t, which is also uniformly distributed in [0, 1]). Substituting u = e−s and plugging this
in gives the desired bound.

2.4 Proof of Lemma 2.3 — from small s to large s

Next we’ll prove Lemma 2.3, a lower bound on λ(Am2s) in terms of λ(As). For this, we’ll view the sets As
as subsets of R/Z rather than [0, 1] (this makes sense because for t ∈ R and v ∈ Z, the value of ‖vt‖ only
depends on {t}). For A,B ⊆ R/Z, we use A+B to denote their sumset

A+B = {a+ b | a ∈ A, b ∈ B} ⊆ R/Z,

and we use mA to denote the iterated sumset

mA = A+ · · ·+A︸ ︷︷ ︸
m copies

.

The key observation that goes into the proof of Lemma 2.3 is the following.

Claim 2.6. We have mAs ⊆ Am2s.

Proof. We need to show that for any t1, . . . , tm satisfying ∑n
j=1 ‖vjti‖

2 ≤ s for every i ∈ [m], their sum
t = t1 + · · ·+ tm satisfies ∑n

j=1 ‖vjt‖
2 ≤ m2s. To see this, note that ‖ · ‖ satisfies the triangle inequality, so

‖vjt‖2 ≤ (‖vjt1‖+ · · ·+ ‖vjtm‖)2 ≤ m(‖vjt1‖2 + · · ·+ ‖vjtm‖2)

for each j ∈ [n] (the latter inequality is Cauchy–Schwarz). Summing over all j ∈ [n] gives
n∑
j=1
‖vjt‖2 ≤ m

m∑
i=1

n∑
j=1
‖vjti‖2 ≤ m2s

(since ∑n
j=1 ‖vjti‖

2 ≤ s for each i, and we sum over m values of i).

In order to use Claim 2.6 to bound λ(Am2s) in terms of λ(As), we need a version of the Cauchy–Davenport
theorem for subsets of [0, 1]. First, the usual Cauchy–Davenport theorem for Z/qZ (where q is a prime) is
as follows (we will not prove it; a proof can be found in [7, Section 5.1]).
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Theorem 2.7 (Cauchy–Davenport). For any prime q and nonempty sets A,B ⊆ Z/qZ, we have

|A+B| ≥ min{q, |A|+ |B| − 1}.

We can straightforwardly derive an analogous statement for R/Z from the one for Z/pZ in the case where
A and B are unions of finitely many intervals; this suffices for our purposes (as As is the union of finitely
many intervals, and if A and B are unions of finitely many intervals then so is A+B).

Claim 2.8. For any nonempty sets A,B ⊆ R/Z which are each a union of finitely many intervals, we have

λ(A+B) ≥ min{λ(A) + λ(B), 1}.

Proof. We’ll convert A and B to subsets of Z/qZ for a large prime q and apply Theorem 2.7 to these sets.
For any prime q, we can define

A∗ =
{
a ∈ {0, . . . , q − 1}

∣∣∣ [a
q
,
a+ 1
q

)
⊆ A

}
,

and we can define B∗ analogously for B. If A and B are each a union of at most k disjoint intervals, then

1
q
|A∗| ≥ |A| − 2k

q

(and the analogous statement is true for B) — this is because for any interval [x, y] ⊆ A, we must have
[x + 1

q , y −
1
q ) ⊆ ⋃

a∈A∗ [aq ,
a+1
q ) (so the right-hand side, which has measure 1

q |A
∗|, is missing at most a

measure-2k
q portion of each of the k intervals that make up A).

Now by Cauchy–Davenport in Z/qZ, we have |A∗ +B∗| ≥ min{|A∗| + |B∗| − 1, q}. Meanwhile, if a ∈ A∗
and b ∈ B∗ then [a+b

q , a+b+1
q ) ⊆ A+B, so

λ(A+B) ≥ 1
q
|A∗ +B∗| ≥ min

{
λ(A) + λ(B)− 4k + 1

q
, 1
}
.

This is true for every prime q, so taking q →∞ gives the desired result.

Combining Claims 2.6 and 2.8 immediately gives Lemma 2.3.

2.5 Proof of Lemma 2.4 — a bound for large s

Finally, it remains to prove Lemma 2.4. For this, it’ll be convenient to again imagine choosing t ∼ Unif[0, 1];
then we want to show that

Pt
[
‖v1t‖2 + · · ·+ ‖vnt‖2 ≤

n

64

]
≤ Rn−2r.

The idea is that we’ll convert this inequality into an inequality on a sum of cosines — if ∑n
j=1 ‖vjt‖

2 is small,
then ∑n

j=1 cos(2πvjt) must be large. We’ll then use Markov’s inequality on the 2rth moment of this sum to
upper-bound the probability this occurs (and this moment calculation is where R comes into the picture).

Claim 2.9. If ∑n
j=1 ‖vjt‖

2 ≤ n
64 , then ∑n

j=1 cos(2πvjt) ≥ n
2 .

Proof. For all x ∈ R, we have cos(2πx) ≥ 1− 32 ‖x‖2 (this is true for similar reasons as Fact 2.5). Summing
this over all j gives

n∑
j=1

cos(2πvjt) ≥ n− 32
n∑
j=1
‖vjt‖2 ≥ n− 32 · n64 = n

2 .
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In order to use Markov’s inequality as described earlier, we need the following 2rth moment computation.

Claim 2.10. We have Et[(
∑n
j=1 cos(2πvjt))2r] = 2−2rR (for t ∼ Unif[0, 1]).

Proof. If we write out each cosine as cosx = 1
2(eix + e−ix) and expand, we get n∑

j=1
cos(2πvjt)

2r

=
∑

j1,...,j2r∈[n]

∑
ξ1,...,ξ2r∈{±1}

2−2re2π(ξ1vj1 +···+ξ2rvj2r
)t (6)

(where j1 and ξ1 correspond to the term 1
2e
±2πivjt we take from the first factor when expanding, j2 and ξ2

correspond to the term we take from the second factor, and so on). But as seen earlier, for any (fixed) v ∈ Z
and t ∼ Unif[0, 1], we have

Et[e2πvt] =
{

1 if v = 0
0 otherwise

.

So when we take the expectation of (6), all terms with ξ1vj1 + · · · + ξ2rvj2r = 0 contribute 2−2r, and all
other terms contribute 0. But there are precisely R terms with ξ1vj1 + · · · + ξ2rvj2r = 0 (by the definition
of R), so this expectation is 2−2rR.

With this, we’re ready to deduce Lemma 2.4.

Proof of Lemma 2.4. By Claim 2.9, we have

λ(An/64) = Pt
[
‖v1t‖2 + · · ·+ ‖vnt‖2 ≤

n

64

]
≤ Pt

[
cos(2πv1t) + · · ·+ cos(2πvnt) ≥

n

2

]
(for t ∼ Unif[0, 1]). Then by Markov’s inequality on (∑n

j=1 cos(2πvjt))2r (which is always nonnegative),

Pt
[
cos(2πv1t) + · · ·+ cos(2πvnt) ≥

n

2

]
≤ Pt

[
(cos(2πv1t) + · · ·+ cos(2πvnt))2r ≥ 2−2rn2r

]
≤

E[(∑n
j=1 cos(2πvjt))2r]

2−2rn2r

= Rn−2r,

where the last equality is by Claim 2.10; this gives the desired bound.

So we’ve now proven all four lemmas that go into Theorem 1.2, wrapping up its proof.

3 Proof of Theorem 1.5

In this section, we’ll prove Theorem 1.5 (of Tao and Vu). For this proof, it’ll be convenient to work in a
slightly more general setup, where instead of choosing ε1, . . . , εn ∈ {−1, 1}, we allow them to be 0 with a
certain probability as well.

Definition 3.1. For µ ∈ (0, 1], we write ε ∼ Pµ to denote that ε takes the value 0 with probability 1− µ,
1 with probability 1

2µ, and −1 with probability 1
2µ.

Definition 3.2. For v = (v1, . . . , vn) and µ ∈ (0, 1], we define pµ(v) = maxa∈R P[ε1v1 + · · · + εnvn = a]
where ε1, . . . , εn ∼ Pµ are chosen independently.

Page 7 of 13



Some results on anticoncentration Sanjana Das (May 12, 2024)

We’re mostly interested in the case µ = 1 (we have p1(v) = p(v)), but the proof of the theorem will go
through smaller values of µ. We’ll actually prove the following generalization of Theorem 1.5.

Theorem 3.3 (Tao–Vu 2009). For every d ∈ N and µ ∈ (0, 1], there is a constant C > 0 (only depending
on d and µ) such that for any v = (v1, . . . , vn) and k ∈ N such that pµ(v) ≥ Ck−d, there exists w =
(w1, . . . , wr) ∈ Rr such that r ≤ d− 1 and all entries of w are also contained in v, and vi ∈

⋃
a∈[k]

1
aQ(w, k)

for all but at most k2 indices i ∈ [n].

For the proof, it’ll be convenient to think of v as a ‘word’ — so we’ll write v as v1 . . . vn rather than
(v1, . . . , vn). We’ll use vw to denote the concatenation of two words v and w, and vm to denote the m-fold
repetition of v.
We’ll also need the following definition.

Definition 3.4. For w = (w1, . . . , wr) ∈ Rr and k ∈ N, we say w is k-dissociated if

a1w1 + · · ·+ arwr 6= 0

for all ai ∈ {−k,−k + 1, . . . , k − 1, k} with (a1, . . . , ar) 6= (0, . . . , 0).

At a high level, the proof of Theorem 3.3 works by algorithmically constructing a k-dissociated word w from
v one entry at a time; we use certain properties of how pµ(v) behaves with respect to word operations (i.e.,
concatenation and repetition) to ensure that if pµ(v) is reasonably large, then so is pµ′(wk2) for some µ′.
We’ll show that if at any step we can’t extend w further, then the current value of w has the properties
we want in Theorem 3.3. Meanwhile, we’ll show that if the algorithm runs for long enough that the length
of w becomes d, then pµ′(wk2) is small (using the fact that w is k-dissociated); this will contradict the
assumption that pµ(v) is reasonably large.
The organization of the rest of the proof is as follows. In Subsection 3.1 we’ll state and prove the properties
of how pµ(v) behaves with respect to word operations that we’ll need for the proof. In Subsections 3.2
and 3.3 we’ll state and prove the facts that let us deduce that pµ′(wk2) is small (if w is k-dissociated and
has length at least d). Finally, in Subsection 3.4 we’ll prove Theorem 3.3 by describing the algorithm and
showing that it works as in the above sketch.

3.1 Properties of concentration probabilities

We’ll first state all the properties of pµ(v) that we’ll need in one lemma, and then prove them one at a time.

Lemma 3.5. For all v = v1 . . . vn and w = w1 . . . wm (of lengths n and m), the following properties hold.
(i) For all µ ∈ (0, 1], we have pµ(vw) ≤ pµ(v).

(ii) For all µ ∈ (0, 1], we have pµ(v) ≤ pµ/4(v).

(iii) For all µ ∈ (0, 1
2 ] and d ∈ N, we have pµ(v) ≤ pµ/d(vd).

(iv) For all µ ∈ (0, 1
2 ], we have pµ(vw) ≤ (∏m

i=1 pµ(vwmi ))1/m.

(The purpose of (ii) is simply to allow us to make µ small enough that (iii) and (iv) apply.)
First, (i) can be proven directly from the definition.

Proof of Lemma 3.5(i). By definition, we have pµ(vw) = maxc∈R P[∑ εivi +∑
ηiwi = c], where εi, ηi ∼ Pµ

are all independent; and we can split this as maxc∈R(∑a∈R P[∑ εivi = a]P[∑ ηiwi = c − a]). But for any
c ∈ R, we have ∑a∈R P[∑ εivi = a]P[∑ ηiwi = c − a] ≤ ∑

a∈R pµ(v)P[∑ ηiwi = c − a] = pµ(v) (because
P[∑ εivi = a] ≤ pµ(v) for all a ∈ R), as desired.
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In order to prove the remaining properties, we’ll use Fourier analysis to obtain an explicit formula for pµ(v),
similar to Lemma 2.1. First, we can assume v1, . . . , vn, w1, . . . , wm are all integers (just for the proof of
Lemma 3.5) for the same reason as in Section 2 — given any real numbers v1, . . . , vn, w1, . . . , wm, we can
replace them with integers v′1, . . . , v′n, w′1, . . . , w′m satisfying exactly the same set of linear equations of the
form relevant to the concentration probabilities in Lemma 3.5. (We’ll assume v1, . . . , vn, w1, . . . , wm are
integers throughout the rest of this subsection, but not the subsections that follow.)

Claim 3.6. For all µ ∈ (0, 1] and v = (v1, . . . , vn) ∈ Zn, we have

pµ(v) = max
a∈Z

∫ 1

0
e−2πiat

n∏
j=1

(1− µ+ µ cos(2πvjt)) dt.

Furthermore, if µ ∈ (0, 1
2 ], then this maximum is attained at a = 0.

Proof. The proof of the first statement is essentially the same as that of Lemma 2.1, except that now for
each j ∈ [n], for all t we have

E[e2πiεjvjt] = (1− µ) · 1 + 1
2µ · e

2πivjt + 1
2µ · e

−2πivjt = 1− µ+ µ cos(2πvjt).

For the second statement, note that if µ ∈ (0, 1
2 ], then each term 1 − µ + µ cos(2πvjt) in the product is

nonnegative (for all t), and |e−2πiat| is always 1, so the integral is maximized when a = 0 (in which case
e−2πiat is 1 for all t).

We can now obtain the remaining properties in Lemma 3.5 by using this Fourier analytic formula for pµ(v)
in combination with various inequalities.

Proof of Lemma 3.5(ii). We claim that for all µ ∈ (0, 1] and all x, we have

|1− µ(1− cos(x))| ≤ 1− µ

4 (1− cos(2x)). (7)

To see this, note that

1− cos(2x) = 2 sin2 x = 2(1− cos(x))(1 + cos(x)) ≤ 4(1− cos(x)),

which immediately gives 1 − µ(1 − cos(x)) ≤ 1 − 1
4µ(1 − cos(2x)), and 1 − cos(2x) ≤ 4(1 + cos(x)) for the

same reason, which gives µ(1− cos(x))− 1 ≤ 1− 1
4µ(1− cos(2x)).

Then by using the triangle inequality on our formula for pµ(v) from Claim 3.6 and plugging in (7), we get

pµ(v) ≤
∫ 1

0

n∏
j=1
|1− µ+ µ cos(2πvjt)| dt ≤

∫ 1

0

n∏
j=1

(
1− µ

4 + µ

4 cos(2πvj · 2t)
)
dt = pµ/4(v).

(We can replace 2t with t in the latter integral because the integrand only depends on {t}.)

Proof of Lemma 3.5(iii). Using the inequality 1− dx ≤ (1− x)d for x ∈ [0, 1], we have

pµ(v) =
∫ 1

0

n∏
j=1

(1− µ+ µ cos(2πvjt)) dt ≤
∫ 1

0

n∏
j=1

(
1− µ

d
+ µ

d
cos(2πvjt)

)d
dt = pµ/d(vd).

Proof of Lemma 3.5(iii). We use Hölder’s inequality (which gives that for any nonnegative functions f1,
. . . , fm we have

∫ 1
0 f1 . . . fm ≤

∏m
i=1(

∫ 1
0 f

m
i )1/m) on the functions

fi(t) =
n∏
j=1

(1− µ+ µ cos(2πvjt))1/m · (1− µ+ µ cos(2πwit)).

Then we have
∫ 1

0 f1 . . . fm = pµ(vw) and
∫ 1

0 f
m
i = pµ(vwmi ) for each i ∈ [m] (by the Fourier analytic formula

in Claim 3.6), so Hölder’s inequality gives that pµ(vw) ≤ (∏m
i=1 pµ(vwmi ))1/m.
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3.2 Anticoncentration for k-dissociated words

In this subsection, we’ll prove the following bound on pµ(wk2) when w is k-dissociated.

Lemma 3.7. For each µ ∈ (0, 1], if w = w1 . . . wd is k-dissociated, then pµ(w) = Oµ,d(k−d).

In order to prove this, we can first write

pµ(wk2) = max
a∈R

P

 d∑
i=1

k2∑
j=1

εijwi = a


for independent εij ∼ Pµ. So for m ∈ N, we define Qµ,m to be the distribution of ∑m

j=1 εj for independent
εj ∼ Pµ (note that this is always an integer); then we have

pµ(wk2) = max
a∈R

P[Y1w1 + · · ·+ Ydwd = a]

for independent Yi ∼ Qµ,k2 . In order to prove Lemma 3.7, we’ll need the following fact about Qµ,m.

Lemma 3.8. For µ ∈ (0, 1
2 ] and m ∈ N, let Y ∼ Qµ,m. Then letting σ = (µm)1/2, for all a ∈ Z, we have

P[Y = a] ≤ 4σ−1 · P[Y ∈ [a− 2σ, a+ 2σ]].

Very loosely speaking, this lemma states that Qµ,m is roughly ‘evenly spread out’ on intervals of length
roughly σ — the interval [a− 2σ, a+ 2σ] contains around 4σ integers, so the average value of P[Y = b] over
all b in this interval is 1

4σ
−1P[Y ∈ [a − 2σ, a + 2σ]]. Then Lemma 3.8 states that P[Y = a] cannot be too

much (i.e., more than a constant factor) greater than this average.
We defer the proof of this lemma to Subsection 3.3; for now, we’ll prove Lemma 3.7 assuming it.

Proof of Lemma 3.7. First, we can assume that µ ≤ 1
16 — otherwise we can replace µ with 1

16µ using Lemma
3.5(ii) twice. We wish to show that P[Y1w1 + · · · + Ydwd = a] = Oµ,d(k−d) for all a ∈ R, where Yi ∼ Qµ,k2

are independent. Fix a, and let
S = {(y1, . . . , yd) ∈ Zd | y1w1 + · · ·+ ydwd = a}

be the set of ‘good’ outcomes for (Y1, . . . , Yd), so that
P[Y1w1 + · · ·+ Ydwd = a] =

∑
y∈S

P[Yi = yi for all i]

(where we use y to denote (y1, . . . , yd) ∈ Zd). Now we’ll use Lemma 3.8 to replace each yi with a length-k
interval around yi — by Lemma 3.8 we have

P[Yi = yi] ≤ 4µ−1/2k−1 · P[Yi ∈ [yi − 2µ1/2k, yi + 2µ1/2k]] ≤ 4µ−1/2k−1 · P
[
Yi ∈

[
yi −

1
2k, yi + 1

2k
]]

for all i and all yi ∈ Z (since µ1/2 ≤ 1
4 by assumption). Since Y1, . . . , Yd are independent, this means

P[Y1w1 + · · ·+ Ydwd = a] ≤ 4dµ−d/2k−d
∑
y∈S

P
[
Yi ∈

[
yi −

1
2k, yi + 1

2k
]

for all i
]

(8)

(we can split P[Yi = yi for all i] = ∏d
i=1 P[Yi = yi], and expanding the points yi into intervals lets us pick up

a factor of 4µ−1/2k for each i).
But using the fact that w is k-dissociated, we can show that the events that Yi ∈ [yi − 1

2k, yi + 1
2k] for all

i for different choices of y ∈ S are disjoint — if there were distinct y,y′ ∈ S and integers bi, b′i ∈ [−1
2k,

1
2k]

such that yi + bi = y′i + b′i for all i, then since ∑i yiwi = ∑
i y
′
iwi = a (by the definition of S) we would have∑

i(bi − b′i)wi = 0, and since |bi − b′i| ≤ |bi|+ |b′i| ≤ k for all i, this contradicts the k-dissociativity of w.
So the sum in the right-hand side of (8) is a sum of probabilities of disjoint events, which means it is at
most 1; this gives

P[Y1w1 + · · ·+ Ydwd = a] ≤ 4dµ−d/2k−d = Oµ,d(k−d).
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3.3 Proof of Lemma 3.8

In order to prove Lemma 3.8, we’ll first prove a few intermediate results about Y ∼ Qµ,m. We’ll assume
that µ ≤ 1

2 throughout this subsection (this is mostly just for convenience, and similar arguments can be
made even for 1

2 ≤ µ ≤ 1, possibly with different constants). We’ll also use σ to denote (µm)1/2 throughout
this subsection. (The reason for this notation is that σ2 = Var[Y ], as we will compute later.)
The first is an anticoncentration bound similar to (1) for the case v = 1m (but for general µ ≤ 1

2).

Claim 3.9. For Y ∼ Qµ,m, we have P[Y = a] ≤ σ for all a ∈ Z.

Proof. First, we have maxa∈Z P[Y = a] = pµ(1m), and by Claim 3.6, we have the explicit formula

pµ(1m) =
∫ 1/2

−1/2
(1− µ+ µ cos(2πt))m dt.

(The value of the integrand only depends on {t}, so it doesn’t matter whether we integrate over [0, 1] or
[−1

2 ,
1
2 ], and the latter will be slightly more convenient here.) We can now use a similar approximation for

the cosine function as in Fact 2.5 — for all t ∈ [−1
2 ,

1
2 ] we have 1− cos(2πt) ≥ 4t2, which means

1− µ+ µ cos(2πt) ≤ 1− 4µt2 ≤ e−4µt2 ,

and therefore
pµ(1m) ≤

∫ 1/2

−1/2
e−4µmt2 dt ≤

∫ ∞
−∞

e−4µmt2 dt = 1
2σ

∫ ∞
−∞

e−u
2
du ≤ σ−1

(where we substitute u = 2σt and use the fact that
∫∞
−∞ e

−u2 =
√
π ≤ 2).

On the other hand, using Chebyshev’s inequality we can show that Y ∼ Qµ,m is fairly concentrated on an
interval of length O(σ).

Claim 3.10. For Y ∼ Qµ,m, we have P[|Y | ≤ 2σ] ≥ 3
4 .

Proof. For each εi ∼ Pµ we have Var[εi] = E[ε2
i ] = µ, which means Var[Y ] = µm = σ2 (since Y is a sum of

m independent variables εi ∼ Pµ). By Chebyshev’s inequality, this means P[|Y | ≥ 2σ] ≤ 1
4 .

The final observation about Y ∼ Qµ,m we need is that if we fix the parity of a, then P[Y = a] decreases as
a moves further away from 0.

Claim 3.11. For Y ∼ Qµ,m, for all a ≥ 0, we have P[Y = a] ≥ P[Y = a+ 2].

Proof. Let Y = ε1 + · · ·+ εm for independent εi ∼ Pµ, and let S = {i ∈ [m] | εi 6= 0}; we’ll show that in fact
P[Y = a | S] ≥ P[Y = a+2 | S] for all S. Once we condition on S, the variables εi for i ∈ S are independent
and uniform in {−1, 1} (and all others are 0). If |S| = b, then in order to have Y = a, exactly b+a

2 of them
must be 1; similarly, in order to have Y = a, exactly b+a

2 + 1 of them must be 1. (In particular, we must
have b ≡ a (mod 2), or else both probabilities are 0). But since

(b
c

)
is decreasing in c for c ≥ 1

2b, the former
is more likely than the latter.

We can now combine these claims to prove Lemma 3.8.
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Proof of Lemma 3.8. Since Y is symmetric, we can assume without loss of generality that a ≥ 0. If a ≥ 2σ,
then we can directly use Claim 3.11 — for all integers b ∈ [a − 2σ, a] with the same parity as a, by Claim
3.11 we have P[Y = b] ≥ P[Y = a], and since there are at least σ such integers b, we get that

P[Y ∈ [a− 2σ, a+ 2σ]] ≥ σ · P[Y = a].

Meanwhile, if 0 ≤ a ≤ 2σ, then the interval [a − 2σ, a + 2σ] contains [0, 2σ]. So on one hand we have
P[Y = a] ≤ σ−1 by Claim 3.9, and on the other hand we have

P[Y ∈ [a− 2σ, a+ 2σ]] ≥ P[Y ∈ [0, 2σ]] ≥ 3
16 ≥

1
4

by Claim 3.10 and the fact that Y is symmetric; combining these bounds gives Lemma 3.8.

Remark 3.12. It’s actually possible to use similar ideas to prove the more general statement that

P[Y = y] . max{τ−1, σ−1}P[Y ∈ [y − τ, y + τ ]]

for all y ∈ Z and τ ∈ N. But since Lemma 3.8 is enough for our purposes, we only prove it (instead of this
more general statement) because the proof is simpler.

3.4 The algorithmic construction

Finally, we’re ready to prove Theorem 3.3 by constructing w algorithmically.

Proof of Theorem 3.3. We’ll give an algorithm that constructs w one entry at a time, maintaining the
following two invariants:

• At every step, w is k-dissociated.
• After r steps, when w has length r, we have pµ(v) ≤ pµ/4d(vd−rwk2).

First, we initialize w = ∅ and r = 0. To see that this satisfies the second invariant, note that pµ(v) ≤
pµ/4(v) ≤ pµ/4d(vd), where the first inequality is by Lemma 3.5(ii) and the second by Lemma 3.5(iii).
Then while r < d, we perform the following:

• If the number of indices i ∈ [n] such that wvi is k-dissociated is less than k2, then terminate and
return w. Note that if wvi is not k-dissociated, then vi ∈ 1

aQ(w, k) for some a ∈ [k] — this is because
there must exist a1, . . . , ar, a ∈ {−k, . . . , k}, not all zero, such that

a1w1 + · · ·+ arwr + avi = 0,

and we must have a 6= 0 (otherwise {w1, . . . , wr} would themselves not be k-dissociated), so

vi = −1
a

(a1w1 + · · ·+ arwr) ∈
1
|a|

Q(w, k).

So if we reach this step, this means vi ∈
⋃
a∈[k]

1
aQ(w, k) for all but fewer than k2 indices i, so w

satisfies the properties in Theorem 3.3, and we’re done.
• Otherwise, let I = {i1, . . . , ik2} be a set of k2 indices i ∈ [n] such that wvi is k-dissociated for each
i ∈ I. Our goal is to append vi to w for some i ∈ I. Any choice of i ∈ I will satisfy the first invariant,
so we wish to find one that also satisfies the second. To do so, note that

pµ/4d(vd−rwk2) = pµ/4d(vd−r−1wk2
v1 . . . vn) ≤ pµ/4d(vd−r−1wk2

vi1 . . . vik2 )
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by Lemma 3.5(i) (we’ve simply expanded out one of the d− r copies of v and dropped all the entries
that aren’t relevant to us), and

pµ/4d(vd−r−1wk2
vi1 . . . vik2 ) ≤

(∏
i∈I

pµ/4d(vd−r−1wk2
vk

2
i )
)1/k2

by Lemma 3.5(iv). Combining these gives that there must exist some i ∈ I such that

pµ/4d(vd−rwk2) ≤ pµ/4d(vd−r−1wk2
vk

2
i )

(since the left-hand side is at most the geometric mean of the right-hand side over all i ∈ I).
We then append vi to w (for this choice of i) — so we replace w with wvi and increment r by 1. This
maintains both invariants.

In order to prove Theorem 3.3, it is enough to prove that this algorithm must terminate before r becomes d.
Assume not, so that the algorithm produces w = w1 . . . wd of length d satisfying the two invariants. Then
by the second invariant, we have pµ/4d(wk2) ≥ pµ(v) ≥ Ck−d (where C is the constant in the statement
of Theorem 3.3, which we’ll choose soon). But since w is k-dissociated, by Lemma 3.7 we must have
pµ/4d(wk2) = Oµ,d(k−d). If we take C to be a constant (only depending on µ and d) larger than the implicit
constant in this bound, then this is a contradiction.
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