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§1 First Definitions

§1.1 Definition of a Topology

Definition 1.1. A topology on a set X is a family T of subsets of X, called open sets, such that:
(1) Both ∅ and X are elements of T .
(2) For any collection {Ui}i∈I of elements of T , their union ⋃i∈I Ui is also an element of T .
(3) For any two elements U1 and U2 of T , their intersection U1 ∩ U2 is also an element of T .

A topological space is a set X together with a topology T on X.

(The third condition is equivalent to requiring that any intersection of a finite number of open sets is open.
However, this doesn’t have to be true for infinite intersections.)
First we’ll look at a few examples of topologies.

Example 1.2
If X = {a, b, c, d}, then T = {∅, {a}, {b}, {a, b}, X} is a topology on X.

Definition 1.3. For any set X, the trivial topology is the topology Ttriv = {∅, X}, and the discrete
topology is the topology consisting of all subsets of X.

The trivial and discrete topologies are both examples of topologies.

Example 1.4
If X = Rn, let d(x, y) denote the Euclidean distance between x and y, and let

B(x, ε) = {y ∈ Rn | d(x, y) < ε}

be the ball of radius ε centered at x. The family of subsets

T = {U ⊆ Rn | for all x ∈ U there exists ε > 0 with B(x, ε) ⊆ U}

forms a topology on Rn, called the standard topology.

x

Proof. First, it’s clear that ∅ and Rn belong to T .
For the second condition, suppose {Ui} is a collection of elements of T . To show that their union is as well,
for any x ∈ ⋃i Ui, there must exist some i with x ∈ Ui. Then there is some ball B(x, ε) ⊆ Ui, and for this ε
we have B(x, ε) ⊆ ⋃i Ui as well.
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x

For the third condition, suppose that U1 and U2 are in T . To show their intersection is as well, suppose
x ∈ U1 ∩ U2. Then since x ∈ U1 there must exist ε1 such that B(x, ε1) ⊆ U1, and since x ∈ U2 there must
exist ε2 such that B(x, ε2) ⊆ U2. Then take ε = min(ε1, ε2).

x

Then B(x, ε) is contained in both U1 and U2, and therefore in their intersection.

Fact 1.5 — In the standard topology on Rn, the balls B(x, r) (with r > 0) are open.

Proof. Given any point y ∈ B(x, r), we can find ε with 0 < ε < r−d(x, y). Then we claim B(y, ε) ⊆ B(x, r).

x

y

To show this, if z ∈ B(y, ε) we have

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + ε < r,

so z ∈ B(x, r) as well. This means B(x, r) contains a ball around each of its points y, so it is open.

In particular, when n = 1, we get that the intervals (x − r, x + r) are open. More generally, the interval
(a, b) is open for any a, b ∈ R ∪ {−∞,∞}.

Definition 1.6. For a set X with two topologies T1 and T2, if T1 ⊆ T2 then we say T1 is coarser than
T2, and T2 is finer than T1.
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Example 1.7
Of the four topologies on X = {1, 2}, the trivial topology Ttriv = {∅, {1, 2}} is coarsest and the dis-
crete topology Tdisc = {∅, {1}, {2}, {1, 2}} is finest. The topologies T1 = {∅, {1}, {1, 2}} and T2 =
{∅, {2}, {1, 2}} are both finer than Ttriv and coarser than T disc, but cannot be compared with each
other.

§1.1.1 Closed Sets

Definition 1.8. A set C ⊆ X is closed in X if X \ C is open in X.

The axioms of a topology can be equivalently stated in terms of closed sets, as follows.
(1) Both ∅ and X are closed.
(2) The intersection of any (not necessarily finite) collection of closed sets is closed.
(3) The union of any finite collection of closed sets is closed.

Example 1.9
The interval [a, b] is closed in R, as its complement (−∞, a) ∪ (b,∞) is open (we’ve seen that (−∞, a)
and (b,∞) are both open, so their union is as well).

§1.1.2 Neighborhoods

Definition 1.10. A set N ⊆ X is a neighborhood of an element x ∈ X if there exists an open set U ⊂ X
such that x ∈ U ⊆ N .

x

Example 1.11
The closed interval [x − ε, x + ε] ⊆ R is a neighborhood of x — it contains (x − ε, x + ε), which is an
open set containing x.

We’ll now consider two useful concepts related to neighborhoods — the interior and closure of a set.

Definition 1.12. For a subset A ⊆ X, the interior of A is the set

Å = {x ∈ X | A is a neighborhood of x}.

Proposition 1.13
The interior of A is the union of all open sets U such that U ⊆ A.
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Proof. First we’ll show that Å is contained in the union of all open sets U ⊆ A. Consider any point x ∈ Å.
Then since A is a neighborhood of x, there must exist an open set U ⊆ A which contains x, and therefore
x is in the union of all open sets contained in A.
Conversely, if x is in any open set U contained in A, then by definition A is a neighborhood of x, and
therefore x ∈ Å. So the union of all open sets U ⊆ A is also contained in Å, which means they are equal.

Corollary 1.14
The interior of A is the largest open set contained in A.

In particular, this means Å is open and contained in A.

Proof. First, Å is a union of open sets, so it is itself open; it is also a union of sets contained in A, so it is
itself contained in A. Meanwhile, any open set U ⊆ A is included in this union, and is therefore contained
in Å. So Å is the largest open set contained in Å.

This gives the following characterization of open sets, which is often very useful.

Corollary 1.15
A set A is open if and only if it is a neighborhood of each of its points.

Proof. We’ve seen that Å is the largest open set contained in A, so A is open if and only if Å = A, which
by definition means A is a neighborhood of each of its points.

Definition 1.16. For a subset A ⊆ X, the closure of A is the set

A = {x ∈ X | X \A is not a neighborhood of x}.

Similarly to the interior, there is an alternate characterization of the closure in terms of closed sets.

Proposition 1.17
The closure of A is the intersection of all closed sets C such that C ⊇ A.

Proof. First we’ll show that Amust be contained in this intersection. Suppose that x is not in the intersection
of closed sets C ⊇ A, so there exists a closed set C ⊇ A not containing x. Then X\C is an open set contained
in X \A which contains x, so X \A is a neighborhood of x; this means x is not in A either.
Conversely, if x is not in A, then X \A is a neighborhood of x, so there must exist an open set U ⊆ X \A
containing x. Then X \ U is a closed set which contains A (and is therefore present in the intersection of
all closed C ⊇ A) and does not contain x; so x cannot be in this intersection.

Corollary 1.18
The closure of A is the smallest closed set in X containing A.

In particular, this means A is closed and contains A. So we have Å ⊆ A ⊆ A, giving rise to the following
definition.
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Definition 1.19. The boundary of A is the set ∂A = A \ Å.

Example 1.20
If X = R and A = [0, 1), we have Å = (0, 1) and A = [0, 1], which means ∂A = {0, 1}.

§1.2 Subspaces

We’ll now see how given a topological space, we can define a topology on a subset.

Definition 1.21. Let (X, TX) be a topological space. The induced topology on a subset A ⊆ X is

TA = {U ⊆ A | there exists an open set V ⊆ X with U = A ∩ V }.

We say that A (under this topology) is a subspace of X.

Note that a set U ⊆ A may be open in the subspace topology on A but not in the original topology on X
— so it only makes sense to declare a set open in a certain topological space (i.e., if the ambient topological
space is not clear, we should state that a set U is open in X rather than just that U is open).

Example 1.22
Let X be R with the standard topology, and let A = [0,∞). Then the set U = [0, 1) is open in A, as
we can write [0, 1) = (−1, 1) ∩ A and (−1, 1) is open in R. However, U is not open in R, as U is not a
neighborhood of 0.

§2 Maps Between Topological Spaces

§2.1 Continuous Maps

Definition 2.1. Let X and Y be topological spaces. A map f :X → Y is continuous if for every open
set U ⊆ Y , the set f−1(U) ⊆ X is open.

Example 2.2
The identity map idX : (X, T ) → (X, T ) is open — if U ⊆ X is open, then id−1

X (U) = U is also open.
More generally, idX : (X, T1)→ (X, T2) is continuous if and only if T1 is finer than T2.

Fact 2.3 — If f :X → Y and g:Y → Z are continuous, then g ◦ f :X → Z is also continuous.

Proof. If U is open in Z, then g−1(U) is open in Y , so (g ◦ f)−1(U) = f−1(g−1(U)) is open in X.

There are a few equivalent ways of defining continuity. For example, it would be equivalent to require that
for every closed C ⊆ Y , the set f−1(C) ⊆ X is closed; this equivalence follows from the fact that

f−1(Y \ U) = f−1(Y ) \ f−1(U) = X \ U.

A different and often useful way of showing continuity is by continuity at a point.
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Definition 2.4. A map f :X → Y is continuous at x ∈ X if for every neighborhood V ⊆ Y of f(x) in
Y , the set f−1(V ) ⊆ X is a neighborhood of x in X.

Proposition 2.5
A map f :X → Y is continuous if and only if it is continuous at every x ∈ X.

Proof. First we’ll show that continuity implies continuity at every point. Suppose f is continuous, and
consider a point x ∈ X and a neighborhood V of f(x). Then there must exist an open set U ⊆ Y such that
f(x) ∈ U ⊆ V . But then we have x ∈ f−1(U) ⊆ f−1(V ), and f−1(U) is open because f is continuous; this
means f−1(V ) is a neighborhood of x, as desired.
Now we’ll show that continuity at every point implies continuity. Suppose f is continuous at every x ∈ X.
Let U ⊆ Y be any open set, so we wish to prove that f−1(U) is open as well. We’ll use the characterization
from 1.15 that a set is open if and only if it’s a neighborhood of each of its points.
Since U is open, then U is a neighborhood of all its points. In particular, for all x ∈ f−1(U) we have
f(x) ∈ U , so U must be a neighborhood of f(x). But since f is continuous at x, then f−1(U) must be a
neighborhood of x. So f−1(U) is a neighborhood of each of its points, which means it is open, and therefore
f is continuous.

Now we’ll see a few more examples of continuous maps.

Example 2.6
Any constant map is continuous.

Proof. Let f :X → Y be the constant map x 7→ y (for some fixed y ∈ Y ). Then for any set U ⊆ Y , its
inverse image f−1(U) is X if y ∈ U and ∅ otherwise; both of these sets are open in X.

Example 2.7
If X has the discrete topology, then every map f :X → Y is continuous, as all subsets of X are open.

Example 2.8
If Y has the trivial topology, then every map f :X → Y is continuous — the only open sets U ⊆ Y are
∅ and Y , whose inverse images are ∅ and X respectively (both of which are necessarily open in X).

In the next section (on metric spaces), we’ll prove that if X and Y are metric spaces, then the topological
definition of continuity coincides with the ε–δ definition from analysis. (In particular, this is true if X and
Y are Rn and Rm under the standard topology.)
Continuity behaves well with respect to restriction of our spaces, as seen by the following proposition.
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Proposition 2.9
Let X and Y be topological spaces, and f :X → Y a continuous map.

(1) If A ⊆ X is a subspace, the restriction f |A:A→ Y is continuous.
(2) If B ⊆ Y is a subspace with im(f) ⊆ B, then the function h:X → B obtained by restricting the

target of f is also continuous.
(3) If Y ⊆ Z is a subspace, then the function h:X → Z obtained by extending the target of f is also

continuous.

In particular, taking f to be the identity idX in (1) gives that the inclusion map A ↪→ X is continuous.

Proof. For (1), for any U ⊆ Y we have (f |A)−1(U) = f−1(U) ∩A. If U is open, then since f is continuous,
f−1(U) is open in X, so by the definition of the subspace topology then f−1(U) ∩A is open in A.
For (2), for any open subset U ⊆ B we can write U = V ∩ B for an open subset V ⊆ Y . Then h−1(U) =
f−1(U) = f−1(V ) (where the latter equality is because im(f) ⊆ B, so f−1(V ) = f−1(V ∩B) for any set V ).
Since f :X → Y is continuous, then f−1(V ) must be open, so h−1(U) is open as well.
Finally, (3) can be proven using the same reasoning as (2) in reverse.

§2.2 Homeomorphisms

Definition 2.10. A map f :X → Y between two topological spaces is a homeomorphism if f is contin-
uous, f is bijective, and f−1:Y → X is continuous.

Definition 2.11. If there exists a homeomorphism f :X → Y , then we say X and Y are homeomorphic,
denoted by X ∼= Y .

Intuitively, homeomorphism captures the notion of two topological spaces being ‘essentially the same.’
It is necessary to require that f−1 is continuous as well, as this is not implied by f being bijective and
continuous — for example, the map idX : (X, Tdisc) → (X, Ttriv) is continuous and bijective, but its inverse
is not continuous.
We’ll now see a few examples of homeomorphisms.

Example 2.12
The function f :R→ R defined as x 7→ ax+ b (for a 6= 0) is a homeomorphism — it is continuous and
bijective, and its inverse y 7→ y−b

a is also continuous (the continuity of both maps can be proved using
the fact that continuity in R coincides with the ε–δ definition of continuity from real analysis).

Example 2.13
The function f :R → (−1, 1) defined as x 7→ x

1+|x| is a homeomorphism — f is bijective with inverse
g: (−1, 1)→ R given by y 7→ y

1−|y| , and both f and g are continuous by real analysis.

Example 2.14
For each n ≥ 1, let Sn denote the n-sphere Sn = {x ∈ Rn+1 | |x| = 1}. Then Sn \ {(0, . . . , 0, 1)} is
homeomorphic to Rn.
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Proof. One explicit homeomorphism is the stereographic projection

ϕ: (x1, x2, . . . , xn) 7→
(

x1
1− xn

,
x2

1− xn
, . . . ,

xn−1
1− xn

)
.

Geometrically, given a point x ∈ Sn other than the north pole p = (0, . . . , 0, 1), this map sends x to the
intersection of line px with the plane xn = 0.

p

ϕ(x)

x

ϕ(y)

y

It’s easy to see geometrically that ϕ is bijective, as for every point q on the plane xn = 0 there is a unique
intersection of line pq with Sn (other than p). The fact that ϕ is continuous can be checked using analysis,
and it is possible to explicitly write down its inverse and check its continuity using analysis as well.

Finally, here is a less trivial example of a function that is continuous and bijective, but not a homeomorphism.

Example 2.15
Endow R and R2 with the standard topology, and consider the subspaces [0, 1) ⊆ R and

S1 = {(x, y) ∈ R2 | x2 + y2 = 1} ⊆ R2

and the map f : [0, 1)→ S1 defined as t 7→ (cos(2πt), sin(2πt)). Then f is continuous and bijective, but
f−1 is not continuous.

Proof. The continuity of f follows from first considering the same map R → R2, which is continuous by
analysis, and restricting its domain and range. It is easy to see that f is bijective.
However, its inverse g: S1 → [0, 1) is not continuous at (1, 0) — for example, the set U = [0, 1/4) is a
neighborhood of g(1, 0) = 0 in [0, 1), but g−1(U) = f(U) is not a neighborhood of (1, 0) in S1.

It is sometimes useful to rephrase the final condition of a homeomorphism (that f−1 is continuous) using
the following terminology.

Definition 2.16. For topological spaces X and Y , a map f :X → Y is open if for every open U ⊆ X,
its image f(U) ⊆ Y is open as well.

In particular, if f is bijective, then f−1 is continuous if and only if f is open.
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§3 Metric Spaces

One common way in which topological spaces naturally arise is from metric spaces. (This is a generalization
of the way we defined a topology on Rn to general metric spaces.)

Definition 3.1. For a set X, a map d:X ×X → [0,∞) is called a metric (or distance) if it satisfies the
following three properties (for all x, y, z ∈ X):

• Nondegeneracy — d(x, y) = 0 if and only if x = y.
• Symmetry — d(x, y) = d(y, x).
• The triangle inequality — d(x, z) ≤ d(x, y) + d(y, z).

One especially useful object in metric spaces is an (open) ball.

Definition 3.2. Let (X, d) be a metric space. For any x ∈ X and r > 0, the open ball of radius r
centered at x is defined as

Bd(x, r) = {y ∈ X | d(x, y) < r}.

When the metric is clear from context, we write B(x, r) in place of Bd(x, r).

Example 3.3
The set R can be equipped with the metric d(x, y) = |x− y|, in which case the open balls are B(x, r) =
(x− r, x+ r).

Example 3.4
For any p ≥ 1, the set Rn can be equipped with the metric

dp(x, y) =
(

n∑
i=1
|xi − yi|p

)1/p

.

(The fact that dp satisfies the triangle inequality is nontrivial, and follows from Minkowski’s inequality.)
The case p = 2 corresponds to the standard Euclidean metric; we can also take p = ∞ in the above
definition, which gives the metric

d∞(x, y) = max
1≤i≤n

{|xi − yi|}.

Example 3.5
Any nonempty set X can be equipped with the discrete metric

d(x, y) =
{

0 if x = y

1 otherwise.

A metric gives rise to a topology in the following way.

Definition 3.6. Given a metric space (X, d), the topology induced by d is

Td = {U ⊆ X | for all x ∈ U , there exists ε > 0 with Bd(x, ε) ⊆ U}.
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The fact that this is a valid topology can be proven in the same way as in Example 1.4. Note that open
balls are open in this topology (the proof is the same as in Fact 1.5). In particular, this means a set V ⊆ X
is a neighborhood of a point x if and only if there exists ε > 0 with B(x, ε) ⊆ V — first, if such ε exists
then B(x, ε) is an open set containing x and contained in V . Conversely, if V is a neighborhood of x then
there must exist an open set U with x ∈ U ⊆ V , and since U is open it must contain a ball B(x, ε).

Example 3.7
The Euclidean metric d2 induces the standard topology on Rn. (This is true by definition.)

Example 3.8
For any set X, the discrete metric induces the discrete topology — for every set U , for all points x ∈ U
we have B(x, ε) = {x} ⊆ U for all 0 < ε < 1, so U is open.

§3.1 Equivalent Metrics

Question 3.9. Do the different metrics dp on Rn induce the same topology?

To answer this question, we’ll introduce some terminology.

Definition 3.10. Two metrics d and d′ on a set X are equivalent if there exist positive constants c and
c′ such that for all x, y ∈ X we have

c · d(x, y) ≤ d′(x, y) ≤ c′ · d(x, y).

Proposition 3.11
Equivalent metrics induce the same topology.

Proof. Note that we have
Bd′(x, cr) ⊆ Bd(x, r) ⊆ Bd′(x, c′r)

(the first inclusion follows from the fact that if d′(x, y) < cr then cd(x, y) ≤ d′(x, y) < cr, so d(x, y) < r; the
second follows similarly).
Now if U is open in Td, then for all x ∈ U there exists r with Bd(x, r) ⊆ U , which means Bd′(x, cr) ⊆
Bd(x, r) ⊆ U as well, and therefore U is open in Td′ . The converse follows from the same argument.

Remark 3.12. The converse is not true — it is possible for non-equivalent metrics to induce the same
topology. For example, for any metric space (X, d), we can define

d(x, y) = d(x, y)
1 + d(x, y) .

Then d is a metric and induces the same topology as d, but d and d′ are not equivalent in general.

This answers our original question about the different metrics on Rn.
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Example 3.13
The different metrics dp on Rn are all equivalent, as

d∞(x, y) ≤ dp(x, y) ≤ n1/pd∞(x, y)

for every p; it then follows that all induce the standard topology.

§3.2 Continuity in Metric Spaces

Finally, we’ll show (as mentioned earlier) that for a metric space, the topological definition of continuity is
the same as the definition from analysis.

Proposition 3.14
Let (X, dX) and (Y, dY ) be metric spaces, and consider any point x ∈ X. Then the following two
statements are equivalent:

(1) f is continuous at x.
(2) For every ε > 0, there exists δ > 0 such that for all points x′ ∈ X with dX(x, x′) < ε, we have

dY (f(x), f(x′)) < ε.

(Here (1) refers to the topological definition of continuity, and (2) is the ε–δ definition from real analysis.)

Proof. By definition, f is continuous if and only if for every neighborhood V ⊆ Y of f(x), the set f−1(V )
is a neighborhood of x. We’ve seen that a set is a neighborhood of a point x if and only if it contains a ball
of positive radius around x, so this is true if and only if for every ε > 0, the set f−1(BdY

(f(x), ε)) contains
BdX

(x, δ) for some δ > 0 (the backwards implication follows from the fact that any neighborhood V ⊆ Y
of f(x) contains a ball BdY

(f(x), ε), while the forwards direction follows from the fact that any such ball is
itself a neighborhood of f(x)). But this is precisely the statement in (2), so we are done.

§4 More Topological Spaces

§4.1 Bases and Subbases

We’ll soon describe ways to build more topological spaces. But in some of these cases (especially the product
topology), it will be clunky to describe all the open sets. So before we do so, we’ll see an easier way to
describe a topology that requires us to specify fewer sets, by writing down a basis or subbasis instead.(This
is similar to in linear algebra, where in order to fully describe a vector space, it’s enough to describe a basis.)

Definition 4.1. Let (X, T ) be a topological space.
• A subset B ⊆ T is a basis if every U ∈ T can be written as a union of elements of B.
• A subset S ⊆ T is a subbasis if the collection of finite intersections of elements of elements of S

forms a basis.

We say that such a collection B or S generates the topology T .
Note that every basis is also a subbasis. (In the above definition, we consider ∅ to be the union of an empty
collection of sets, so B does not have to contain ∅.)
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Example 4.2
Let X = {0, 1, 2} and T = {∅, {0}, {0, 1}, {0, 2}, {0, 1, 2}}. Then the set B = {{0}, {0, 1}, {0, 2}} is a
basis, as we can write {0, 1, 2} = {0, 1}∪ {0, 2}. Meanwhile S = {{0, 1}, {0, 2}} is a subbasis, as we can
write {0} = {0, 1} ∩ {0, 2}.

Example 4.3
Let X be any set with the discrete topology. Then B = {{x} | x ∈ X} is a basis, since we can write
any U ⊆ X as U = ⋃

x∈U{x}.

Example 4.4
Let X be any set with the trivial topology. Then B = {X} is a basis.

Example 4.5
Let (X, d) be a metric space. Then the set of all balls — i.e., B = {B(x, r) | x ∈ X, r > 0} — is a basis
for the induced topology Td.

This follows immediately from the following characterization of bases.

Proposition 4.6
A collection of sets B ⊆ T is a basis for T if and only if for all U ∈ T and x ∈ U , there exists B ∈ B
with x ∈ B ⊆ U .

Proof. To show that any basis has this property, suppose that U ∈ T and x ∈ U . By the definition of a
basis, we can write U = ⋃

iBi as a union of sets Bi ∈ B. Then Bi ⊆ U for all i, and since x ∈ U we must
have x ∈ Bi for some i.
Meanwhile to show that any B with this property is a basis, given any U ∈ T , for every x ∈ U fix some set
B(x) ∈ B with x ∈ B(x) ⊆ U . Then we can write U = ⋃

x∈U B(x), so B is indeed a basis.

Remark 4.7. Unlike in linear algebra, a basis does not have to be minimal.

§4.1.1 Conditions for Bases and Subbases

We’ll often want to create a topology by specifying a basis or subbasis; so it will be useful to have a simple
criterion to check whether a collection is a valid basis or subbasis.

Proposition 4.8
Let X be a set, and B a collection of subsets of X. Then B generates a topology on X if and only if
the following two conditions hold:

• X = ⋃
B∈B B.

• For all B1, B2 ∈ B and all x ∈ B1 ∩B2, there exists B ∈ B such that x ∈ B ⊆ B1 ∩B2.
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Proof. First we’ll show that if B generates a valid topology then both conditions must hold.
• For the first condition, X must be an open set, so it must be possible to write X = ⋃

iBi for some sets
Bi ∈ B. Then adding in the remaining sets in B to the union has no effect, as all such B are subsets
of X, so X must also be the union of all the sets in B.

• For the second condition, since B1 and B2 are in B they must be open, so B1 ∩ B2 must be open as
well. The condition then follows from Proposition 4.6.

Now we’ll show that if B satisfies both conditions, then B generates a valid topology — i.e., that the set
T = {⋃i∈I Bi | Bi ∈ B} is a topology on X. We can check the three axioms:

• We can write ∅ as an empty union, so ∅ ∈ T . Meanwhile X ∈ T by the first condition.
• The fact that a union of elements of T is also in T is obvious, since the union of two unions of elements

of B is still a union of elements of B.
• Finally, we need to check that if U1 and U2 are in T , then so is U1 ∩ U2. We can write U1 = ⋃

i∈I Bi
and U2 = ⋃

j∈J Bj , so that U1 ∩ U2 = ⋃
i,j(Bi ∩Bj). Then it suffices to show that Bi ∩Bj is in T for

all Bi, Bj ∈ B.
But this follows from the second condition — for all x ∈ Bi ∩ Bj there must exist B(x) ∈ B with
x ∈ B(x) ⊆ Bi ∩Bj . Then Bi ∩Bj = ⋃

x∈Bi∩Bj
B(x) is a union of elements of B, so is in T .

This also gives an even easier criterion to check that a set is a subbasis.

Corollary 4.9
Let X be a set, and S a collection of subsets of X. Then S is a subbasis for some topology on X if and
only if X = ⋃

V ∈S V .

Proof. First if S is a subbasis, then X is a union of finite intersections of elements of S. But any such
set is contained in the union of all sets V ∈ S (and all sets V ∈ S are contained in X), so we must have
X = ⋃

V ∈S V .
For the reverse direction, let B be the set of finite intersections of elements of S. We can check that B is a
valid basis using Proposition 4.8 — the first condition is immediate (as S ⊆ B), and the second condition is
satisfied because if B1 and B2 are both finite intersections of sets in S, then B1 ∩ B2 is as well (so we can
simply take B = B1 ∩B2 in the condition).

§4.1.2 Checking Continuity

It turns out that it is easy to check continuity using a subbasis. (This will be useful when discussing the
product topology.)

Lemma 4.10
Let X and Y be topological spaces, and let S be a subbasis of Y . Then a map f :X → Y is continuous
if and only if f−1(U) is open for every U ∈ S.

Proof. First, if f is continuous, then f−1(U) is open for every open U ⊆ Y , so in particular this is true for
every U ∈ S. To prove the converse, since S is a subbasis, every open V ⊆ Y can be written as a union of
finite intersections of sets Ui ∈ S. Using the facts that f−1(⋃i Ui) = ⋃

i f
−1(Ui) and f−1(⋂i Ui) = ⋂

i f
−1(Ui),

it then follows that f−1(V ) ⊆ X is a union of finite intersections of sets f−1(Ui) ⊆ X for Ui ∈ S. But each
such set is open by assumption, so f−1(V ) is open as well.
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A similar statement holds for checking whether a map is open.

Lemma 4.11
Let X and Y be topological spaces, and let B be a basis of X. Then a map f :X → Y is open if and
only if f(U) is open for every U ∈ B.

Proof. Similarly to in the previous lemma, the ‘only if’ direction is obvious, and the ‘if’ direction follows
from the fact that every open V ⊆ X can be written as a union of sets Ui ∈ B, and f(⋃i Ui) = ⋃

i f(Ui). So
if each f(Ui) is open, then so is f(V ).

Remark 4.12. In Lemma 4.11, if f is injective then it is enough to check openness on a subbasis, as for
f injective we have f(⋂i Ui) = ⋂

i f(Ui) as well; however, this is not true in general.

§4.2 Box and Product Topologies

We’ll now describe how to put a topology on a product of topological spaces. We’ll begin by defining the
product of sets.

Definition 4.13. For sets X1, . . . , Xn, their product, denoted by ∏n
i=1Xi or X1 × · · · ×Xn, is the set

n∏
i=1

Xi = {(x1, . . . , xn) | xi ∈ Xi for all i}.

This definition extends to infinite products as well.

Definition 4.14. For any collection {Xi}i∈I of sets, their product, denoted ∏i∈I Xi, is the set∏
i∈I

Xi = {(xi)i∈I | xi ∈ Xi for all i} .

More precisely, ∏i∈I Xi is the set of functions x: I → ⋃
i∈I Xi such that xi ∈ Xi for each i (where x(i)

corresponds to xi in the above definition). However, we generally view elements of ∏i∈I Xi as in the above
definition.
There are two ways of placing a topology on a product — the box topology and the product topology. These
are the same for finite products, but differ for infinite products. We’l begin with the box topology — the
box topology is easier to describe and perhaps matches what we would naively expect, but it turns out to
have somewhat undesirable behavior on infinite products; we’ll see later that the product topology fixes
these issues.

§4.2.1 The Box Topology

Definition 4.15. Let (Xi)i∈I be a collection of topological spaces. The box topology on ∏i∈I Xi is the
topology generated by the basis

B =
{∏
i∈I

Ui | Ui ⊆ Xi open
}
.
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For this to make sense, we need to check that B is a valid basis for some topology. This follows from
Proposition 4.8 — the first condition is satisfied because X = ∏

i∈I Xi is itself in B, and the second is
satsified because the intersection of any two elements of B is in fact in B as well — we have∏

i∈I
Ui ∩

∏
i∈I

Vi =
∏
i∈I

Ui ∩ Vi,

and if each Ui and Vi is open then so is each Ui ∩ Vi.

Example 4.16
If R is endowed with the standard topology, then the box topology on Rn = R× · · · ×R is the same as
the standard topology.

(This is an exercise on a problem set.)

Example 4.17
For a collection of spaces {Xi}i∈I where each Xi has the discrete topology, the box topology on ∏i∈I Xi

is discrete as well.

Proof. For each x = (xi)i∈I in the product, we have {x} = ∏
i∈I{xi} ∈ B (since each {xi} ⊆ Xi is open).

This means every set U ⊆ ∏i∈I Xi is open, as we can write U = ⋃
x∈U{x}.

Unfortunately, the box topology does not behave well with infinite products, as seen in the following example.

Example 4.18
Consider the product RN = R × R × · · · (where I = N and each Xi is R with the standard topology).
Then the map f :R→ RN sending t 7→ (t, t, t, . . .) is not continuous.

Proof. For each i ∈ N, let Ui = (−1
i ,

1
i ) ⊆ Xi. Then U = ∏

i∈N Ui is open, but

f−1(U) = {t ∈ R | t ∈ Ui for all i ∈ N} =
⋂
i∈N

Ui = {0},

which is not open. So f is not continuous.

This is undesirable because f is a fairly nice function — in particular, each of its components is continuous
— so we would like a topology on RN in which f is continuous. The problem with the box topology is
roughly that it contains too many open sets — for example, the above example shows that we don’t want
the set ∏i∈I(−1

i ,
1
i ) to be open. We’ll now see a different topology — the product topology — that works

the same way as the box topology for finite products, but fixes this issue for infinite products.

§4.2.2 The Product Topology

Definition 4.19. Given a product of sets X = ∏
i∈I Xi, for each j ∈ I the jth projection map, denoted

πj , is the map πj :X → Xj sending x 7→ xj for each x = (xi)i∈I ∈ X.
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Definition 4.20. Let {Xi}i∈I be a collection of topological spaces. The product topology on ∏i∈I Xi is
the topology with subbasis

S = {π−1
j (Uj) | j ∈ I, Uj ⊆ Xj open}.

In other words, the subbasis S of the product topology consists of sets of the form Uj×
∏
i 6=j Xi for open sets

Uj ⊆ Xj (since π−1
j (Uj) consists precisely of the points whose jth coordinate is in Uj). So the corresponding

basis B (i.e., the collection of finite intersections of sets in S) consists of sets of the form ∏
i∈I Ui where each

Ui ⊆ Xi is open, and there are only finitely many i for which Ui 6= Xi (namely, the i which appear as j in
one of the sets in the intersection). In particular, the product topology is coarser than the box topology
(as its basis is contained in the basis of the box topology), and if I is finite then the two topologies are the
same (as they then have the same basis).

Remark 4.21. One way to view the product topology is as the coarsest topology such that each
projection πj is continuous (since πj is continuous if and only if π−1(Uj) is open for all Uj ⊆ Xj).

Example 4.22
The product topology on X = ∏

i∈I{0, 1} (where each set {0, 1} has the discrete topology) is the discrete
topology if and only if I is finite.

One of the main issues we had with the box topology was that a componentwise continuous map such as
t 7→ (t, t, . . .) need not be continuous. The product topology fixes this issue — in the product topology it is
true that any componentwise continuous map is continuous, as seen in the following proposition.

Proposition 4.23
Let X = ∏

i∈I Xi be endowed with the product topology. Then a function f :Y → X is continuous if
and only if its ith coordinate πi ◦ f :Y → Xi is continuous for each i ∈ I.

Proof. First πi is continuous for each i, so if f is continuous, then so is πi ◦ f . Conversely, in order to check
that such a function f is continuous, by Lemma 4.10 it suffices to check that f−1(U) is open for every U ∈ S.
But every set U in our subbasis can be written as π−1

j (Uj) for some j ∈ I and some open set Uj ⊆ Xj . Then
f−1(U) = (πj ◦ f)−1(Uj), which is open by the continuity of πj ◦ f .

§4.3 The Quotient Topology

Now we’ll see how to define a topology on the quotient of a set.

§4.3.1 Definitions

First we’ll define the quotient of a set by an equivalence relation.

Definition 4.24. An equivalence relation on a set X is a binary relation ∼ on X satisfying the following
three properties:

• Reflexivity — x ∼ x for all x ∈ X.
• Symmetry — x ∼ y if and only if y ∼ x for all x, y ∈ X.
• Transitivity — if x ∼ y and y ∼ z, then x ∼ z (for any x, y, z ∈ X).
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Example 4.25
The relation x ∼ y if and only if x = y is an equivalence relation (on any set).

Example 4.26
On the set R, the relation x ∼ y if and only if x− y ∈ nZ (for fixed n) is an equivalence relation.

Definition 4.27. The equivalence class of an element x ∈ X, denoted [x], is defined as

[x] = {y ∈ X | x ∼ y}.

The properties of an equivalence relation imply that x ∈ [x] and that the different equivalence classes form
a partition of X.

Definition 4.28. Given a set X and equivalence relation ∼, the quotient set, denoted X/∼, is defined
as the set of equivalence classes in X.

Definition 4.29. Given a quotient X/∼, the projection map π:X → X/∼ is the map x 7→ [x].

We are now ready to place a topology on the quotient of a set.

Definition 4.30. For a topological space X with equivalence relation ∼ and projection map π:X →
X/∼, the quotient topology on X/∼ is defined as

{U ⊆ X/∼ | π−1(U) ⊆ X open}.

It can be checked that this defines a valid topology. Note that the projection map π is continuous in the
quotient topology — in fact, the quotient topology is the finest topology on X/∼ for which this is true.

§4.3.2 Maps on a Quotient Space

Definition 4.31. Given a quotient space X/∼ with projection map π:X → X/∼, we say a map
f :X → Y descends to a map f̃ :X/∼ → Y if f = f̃ ◦ π.

(We may also say that the map f̃ is induced by f .) A map f :X → Y descends to the quotient X/∼ if and
only if whenever x ∼ y we have f(x) = f(y); in that case f̃ is uniquely defined as f̃([x]) = f(x) for all x ∈ X
(the above condition implies that this is well-defined).
Note that if f descends to f̃ , then im(f̃) = im(f) — in particular, f̃ is surjective if and only if f is.
Meanwhile, f̃ is injective if and only if whenever f(x) = f(y) we have x ∼ y.

Lemma 4.32
If a map f :X → Y descends to f̃ :X/∼ → Y , then f̃ is continuous if and only if f is continuous.

Proof. For each open set U ⊆ Y , by the definition of the quotient topology f̃−1(U) ⊆ X/∼ is open if and
only if π−1(f̃−1(U)) = (f̃ ◦ π)−1(U) = f−1(U) is open.
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Lemma 4.33
If a map f :X → Y descends to f̃ :X/∼ → Y and f is open, then f̃ is open.

(Unlike in the previous lemma, the converse is not true.)

Proof. Given an open set U ⊆ X/∼, we have f̃(U) = f(π−1(U)). (Explicitly, this is because we have
f̃(U) = {f̃([x]) | [x] ∈ U} = {f(x) | x ∈ π−1(U)}.) But π−1(U) is open by the definition of the quotient
topology. Since f is open, this means f(π−1(U)) is open, so f̃(U) is open.

§4.3.3 Examples of Quotient Spaces

Now we’ll look at a few examples of quotient spaces.

Example 4.34
Consider the space R2 with the equivalence relation (x1, x2) ∼ (y1, y2) if and only if x2

1 +x2
2 = y2

1 +y2
2 (in

other words, x ∼ y if and only if |x| = |y|). Then R2/∼ is homeomorphic to [0,∞) (with the subspace
topology of the standard topology on R).

Intuitively, this makes sense because quotienting R2 by ∼ means that we only care about the radius of each
point, and we can think of [0,∞) as recording this radius.

Proof. Consider the map f :R2/∼ → [0,∞) mapping x 7→ |x|. By definition f(x) = f(y) if and only if
x ∼ y, so f descends to an injective map f̃ :R2/∼ → [0,∞). Additionally, f is clearly surjective, as for each
r ∈ [0,∞) we have f((0, r)) = r; this means f̃ is surjective as well, and is therefore bijective.
We claim that f̃ is in fact a homeomorphism. First, in order to check that f̃ is continuous, it suffices (by
Lemma 4.32) to check that f is continuous; this can be easily checked using real analysis.
Similarly, in order to check that f̃−1 is continuous — i.e., that f̃ is open — by Lemma 4.33 it suffices to
check that f is open; and by Lemma 4.11 it suffices to check that f(B(x, r)) is open for every x ∈ R2 and
r > 0 (since the open balls B(x, r) form a basis for the topology on R2). But we have

f(B(x, r)) =
{

(|x| − r, |x|+ r) if |x| ≤ r
[0, |x|+ r) otherwise,

which is open in either case. So f and therefore f̃ is open, which means f̃−1 is continuous.
So f̃ is indeed a homeomorphism between R2/∼ and [0,∞), as desired.

One common use of quotient spaces is to squash part of our space into a single point — this can be formalized
in the following way.

Definition 4.35. Let X be a space and A ⊆ X a subspace. Then X/A is defined as the quotient of X
by the equivalence relation x ∼ y if and only if x = y or x, y ∈ A.

Example 4.36
The quotient [0, 1]/{0, 1} is homeomorphic to S1.

Intuitively, this makes sense because if we take the interval [0, 1] and identify its two endpoints by gluing
them together, we obtain a circle.
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Proof. View S1 as {z ∈ C | |z| = 1} (with the induced topology), and consider the map f : [0, 1]→ S1 sending
t 7→ e2πit. Then e2πi·0 = e2πi·1 = 1, so f descends to a map f̃ : [0, 1]/{0, 1} → S1. We will show that f̃ is a
homeomorphism; as before, we need to check that it is continuous, bijective, and open.
First, the fact that f̃ is continuous follows from the fact that f is continuous, which can again be proven
using analysis (the map t 7→ e2πit is continuous as a map R→ R2, so it remains continuous when we restrict
its domain and range).
Next, f is clearly surjective, which means f̃ is surjective. Meanwhile if e2πis = e2πit then s − t ∈ Z, which
implies s ∼ t (as either s = t or {s, t} = {0, 1}); this means f̃ is injective. So f̃ is bijective.
Finally, it remains to prove that f̃−1 is continuous (i.e., that f̃ is open); we need to check that for every
open set U ⊆ [0, 1]/{0, 1}, the set f̃(U) = f(π−1(U)) ⊆ S1 is also open. We’ll do this by checking that it is
the neighborhood of each of its points — i.e., given any open set U ⊆ [0, 1]/{0, 1}, for every t ∈ π−1(U) we
have that f(π−1(U)) is a neighborhood of f(t).
Case 1 (t 6∈ {0, 1}). Since U ⊆ [0, 1]/{0, 1} is open, then π−1(U) is open, so there exists ε > 0 such that
(t − ε, t + ε) ⊆ π−1(U) ∩ (0, 1). It then suffices to show that f((t − ε, t + ε)) is open. But if we define
log:S1 → [0, 1) as the inverse of t 7→ e2πit, then log is continuous on S1/{1}; then we can write

f((t− ε, t+ ε)) = 1
2πi log−1((t− ε, t+ ε)),

which means it must be open.
Case 2 (t ∈ {0, 1}). This means both 0 and 1 are in π−1(U), so we can find ε > 0 such that [0, ε)∪(1−ε, 1] ⊆
π−1(U). We can again check that f([0, ε) ∪ (1 − ε, 1]) ⊆ S1 is open, so f(π−1(U)) is again a neighborhood
of f(t) = 1.
This shows that f̃ is open, and therefore f̃−1 is continuous, as desired.

Remark 4.37. In both the examples we’ve seen here, proving that f̃ is continuous and bijective was
fairly easy, but proving its inverse is continuous was surprisingly painful. Later, we’ll see that if our
two spaces are ‘nice’ enough (we’ll define the specific criterion later), then any map which is continuous
and bijective also has continuous inverse; this will make our lives a lot easier when trying to prove that
certain maps are homeomorphisms.

Example 4.36 generalizes to higher dimensions in the following way.

Definition 4.38. For every n, the n-sphere Sn is defined as

Sn = {x ∈ Rn+1 | |x| = 1},

and the n-disk Dn is defined as
Dn = {x ∈ Rn | |x| ≤ 1}.

Note that the n-dimensional sphere Sn lives in the (n+ 1)-dimensional space Rn+1, and the boundary of Dn
is ∂Dn = Sn−1.
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Example 4.39
For any n, the quotient Dn/∂Dn is homeomorphic to Sn.

The case n = 1 is Example 4.36 (as Dn = [−1, 1] is a closed interval). We won’t prove this in general, but it
makes intuitive sense — for example, when n = 2, if we take a circular disk and glue together all the points
on its boundary, the resulting object is essentially a (hollow) sphere.

Example 4.40
Consider the space [0, 1]2 with the equivalence relation (x, y) ∼ (x′, y′) if and only if x, x′ ∈ {0, 1} and
y = y′, or y, y′ ∈ {0, 1} and x = x′. Then [0, 1]2/∼ ∼= S1 × S1.

The space S1 × S1 is called the torus. It can be drawn in the following way, where the two circles shown
represent the two factors of S1.

Meanwhile, to visualize [0, 1]2/∼, we can draw it in the following way (where the two blue arrows represent
that we identify the two horizontal sides of the square in the same orientation, and the two purple arrows
represent that we identify the vertical sides).

To intuitively see why these two spaces are homeomorphic, imagine taking the above figure and gluing
together the blue edges to produce a cylinder, and then gluing together the purple edges to produce a torus.

This homeomorphism can be rigorously proven in the following way.

Proof. We’ll instead show that [0, 1]2/∼ is homeomorphic to [0, 1]/{0, 1} × [0, 1]/{0, 1} — the result then
follows from the fact that [0, 1]/{0, 1} ∼= S1, which we’ve shown earlier.
To see this, consider the map f : [0, 1]× [0, 1]→ [0, 1]/{0, 1} × [0, 1]/{0, 1} sending (x, y) 7→ ([x], [y]). (Here
[x] denotes the equivalence class of x in the quotient of [0, 1] by {0, 1}.) We can check that f descends
to a map f̃ : [0, 1]2/∼ → [0, 1]/{0, 1} × [0, 1]/{0, 1}, and that f̃ is bijective. Then f is continuous (as each
of its components is continuous), so f̃ is continuous as well; and we can also check that f̃−1 is continuous
(this can be checked by hand, but it’ll also follow from the criterion we’ll see in a few weeks). So f̃ is a
homeomorphism, as desired.
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§5 Sequences and Convergence

We’ll now see how the notion of convergence in analysis can be generalized to any topological space — it
turns out that we can define convergence even without a metric.

§5.1 Neighborhood Bases

Before we begin discussing sequences and convergence, we’ll define a notion that will be useful in this
discussion.

Definition 5.1. Let X be a topologicla space. A neighborhood basis Bx for a point x ∈ X is a collection of
neighborhoods of x such that for every V ⊆ X which is a neighborhood of x, there exists a neighborhood
B ∈ Bx such that B ⊆ V .

Example 5.2
If (X, d) is a metric space, for each x ∈ X the set Bx = {B(x, r) | r > 0} is a neighborhood basis of x.

Proof. Given any neighborhood V of x, by the definition of a neighborhood there must exist an open set U
with x ∈ U ⊆ V , and by the definition of open sets in the metric topology there must exist r > 0 such that
B(x, r) ⊆ U , so then B(x, r) ⊆ V as well.

Note that we could have taken a much smaller neighborhood basis in the above example.

Example 5.3
If (X, d) is a metric space, for each x ∈ X the set Bx = {B(x, 1

n) | n ∈ N} is a neighborhood basis of x.

Proof. This follows from Example 5.2 and the fact that for any r > 0, there exists n ∈ N with 1
n ≤ r, and

therefore B(x, 1
n) ⊆ B(x, r).

Example 5.4
If X has the discrete topology, for every x ∈ X the set Bx = {{x}} is a neighborhood basis of x.

Proof. First, {x} is open in the discrete topology, so it is indeed a neighborhood of x. Meanwhile for any
neighborhood V of x, since x ∈ V we must have {x} ⊆ V , as desired.

Example 5.5
If X has the discrete topology, for every x ∈ X the set Bx = {X} is a neighborhood basis of x.

§5.2 Definition of Convergence

We’ll soon define what it means for a sequence to converge; first we’ll formally define a sequence.
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Definition 5.6. A sequence in a set X is a map x:N→ X.

We generally use xn to denote the nth element of a sequence, and (xn)n∈N (or (xn) as shorthand) to denote
the entire sequence x1, x2, x3, . . . .

Definition 5.7. Given a sequence (xn) in a topological space X, we say that (xn) converges to a point
x ∈ X — or that x is a limit of the sequence (xn) — if for every open set U ⊆ X containing x, there
exists N ∈ N such that for all n ≥ N we have xn ∈ U .

In other words, (xn) converges to x if for each open set U around x, all terms sufficiently far out in the
sequence lie in U (where the meaning of ‘sufficiently far out’ may depend on U).

Remark 5.8. It is sometimes useful to rephrase the above definition in terms of neighborhoods — a
sequence (xn) converges to x if and only if for every neighborhood V ⊆ X of x, there exists N such that
for all n ≥ N we have xn ∈ V . (The backwards direction is clear as every open set U containing x is a
neighborhood of x, while the forwards direction follows from the fact that every neighborhood V of x
contains an open set U containing x, so there exists N such that for n ≥ N we have xn ∈ U ⊆ V .)

Notation 5.9. We use xn → x to denote that the sequence (xn) converges to x.

It turns out that we often don’t have to check the above condition on every open set U — it’s enough
to check it on a neighborhood basis or a subbasis, as the following two lemmas state. (This will often be
simpler to check.)

Lemma 5.10
If Bx is a neighborhood basis of x ∈ X, then a sequence (xn) converges to x ∈ X if and only if for all
neighborhoods B ∈ Bx, there exists N ∈ N such that for all n ≥ N we have xn ∈ B.

Proof. The forwards direction follows from Remark 5.8, as if (xn) converges to x then every neighborhood
of x must have this property. The backwards direction similarly follows from the fact that every open set
U with x ∈ U is a neighborhood of x, and therefore contains some B ∈ Bx.

Lemma 5.11
If S is a subbasis of the topology on X, then a sequence (xn) converges to a point x if and only if for
every U ∈ S containing x, there exists N ∈ N such that for all n ≥ N we have xn ∈ U .

Proof. The forwards direction is clear, as every U ∈ S is open. To prove the backwards direction, let B be
the corresponding basis (consisting of finite intersections of sets in S).
First we’ll show that every B ∈ B containing x has the same property — i.e., that there exists N ∈ N such
that for all n ≥ N we have xn ∈ B. To do so, write B = U1 ∩ · · · ∩ Ur for sets Ui ∈ S. Then since x ∈ B,
for each i ∈ {1, . . . , r} we must have x ∈ Ui, and therefore there exists Ni ∈ N such that for all n ≥ Ni we
have xn ∈ Ui. Then taking N = max(N1, . . . , Nr) gives the desired result.
Now we’ll show that having this property for all B ∈ B containing x implies that the same property holds
for all open sets U containing x. Write U = ⋃

iBi for some collection of sets Bi ∈ B. Then since x ∈ U ,
there must exist some i with x ∈ Bi; then there exists N ∈ N such that for all n ≥ N we have xn ∈ Bi, and
since Bi ⊆ U this implies xn ∈ U as well.
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§5.3 Some Examples of Convergence

Now we’ll see a few examples of convergence. First, we’ll see that for metric spaces, the topological definition
of convergence is equivalent to the one from analysis.

Example 5.12
If (X, d) is a metric space, a sequence (xn) converges to x if and only if for every ε > 0, there exists
N ∈ N such that for all n ≥ N we have d(xn, x) < ε.

Proof. By Lemma 5.10, in order to check convergence at x, it suffices to consider all elements of a neigh-
borhood basis of x (rather than all open sets containing x); and by Example 5.2 the balls B(x, ε) form a
neighborhood basis of x. So (xn) converges to x if and only if for every ε > 0 there exists N such that
xn ∈ B(x, ε), or in other words, such that d(xn, x) < ε.

Example 5.13
If X is discrete, then any convergent sequence must be eventually constant.

(Sequences which are eventually constant are also called stationary.)

Proof. Suppose that (xn) converges to x. Then since {x} is open, there must exist N such that for n ≥ N
we have xn ∈ {x}, and therefore xn = x.

Example 5.14
If X has the cocountable topology

Tc = {U ⊆ X | X \ U is countable or U = ∅},

then again any convergent sequence must be eventually constant.

Proof. Assume that a sequence (xn) converges to x, and consider the set

U = (X \ {xn | n ∈ N}) ∪ {x},

which is open as {xn | n ∈ N} is countable. Then there must exist N such that for all n ≥ N we have
xn ∈ U , and since we cannot have xn ∈ X \ {xn | n ∈ N}, this implies xn = x.

Example 5.15
If X has the trivial topology, then every sequence converges to every point.

This is because then the only open set is X itself, in which case the condition for convergence is trivially
satisfied.
In particular, a sequence may have multiple limits, as seen in the last example. This behavior is perhaps
somewhat unsettling, as in analysis a sequence can only have one limit; we’ll now see a condition on our
space that does guarantee the uniqueness of limits.
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§5.4 Hausdorff Spaces

Definition 5.16. A space X is Hausdorff if for all distinct points x, y ∈ X, there exist disjoint open
sets U, V ⊆ X with x ∈ U and y ∈ V .

In other words, in a Hausdorff space we can separate any two different points using open sets.

x y

Remark 5.17. Being Hausdorff is a topological property, meaning that it is preserved by homeomorphism
(i.e., if X and Y are homeomorphic, then X is Hausdorff if and only if Y is) — this is true of basically
any property defined purely in terms of open sets.

Proposition 5.18
Let X be a Hausdorff space, and (xn) a sequence in X. If (xn) converges to two points x and y, then
we must have x = y.

Proof. Assume x 6= y. Since X is Hausdorff we can find disjoint open sets U, V ⊆ X with x ∈ U and
y ∈ V . Then by the definition of convergence, there must exist N1 and N2 such that for all n ≥ N1 we have
xn ∈ U , and for all n ≥ N2 we have xn ∈ V . But this is impossible, as then for all n ≥ max(N1, N2) we
have xn ∈ U ∩ V = ∅.

§5.4.1 Some Examples

Now we’ll consider a few examples of Hausdorff spaces.

Example 5.19
Every discrete space is Hausdorff — for any two points x 6= y, we can take the disjoint open sets U = {x}
and V = {y}.

Example 5.20
Any space with the trivial topology (and with at least two elements) is not Hausdorff.

Example 5.21
Every metric space is Hausdorff.

Proof. Given two points x 6= y in our metric space, let r = 1
2d(x, y) > 0 and take the open sets U = B(x, r)

and V = B(y, r). These are disjoint by the triangle inequality — if a point z were in their intersection, we
would have

d(x, z) + d(z, y) < r + r = d(x, y),

contradicting the triangle inequality.
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Lemma 5.22
If X is Hausdorff and Y ⊆ X a subspace, then Y is Hausdorff as well.

Proof. Given two points x 6= y in X, we can choose disjoint open sets U and V in X which contain x and y
respectively. Then U ∩ Y and V ∩ Y are disjoint open sets in Y which contain x and y respectively.

Lemma 5.23
If {Xi}i∈I is a family of Hausdorff spaces, then their product ∏i∈I Xi is Hausdorff as well (with the
product topology).

Proof. Given two points x 6= y in the product space, fix a coordinate i at which they differ, and let U and
V be disjoint open subsets of Xi containing xi and yi respectively. Then π−1(U) and π−1(V ) are disjoint
open subsets of ∏i∈I Xi containing x and y respectively.

Remark 5.24. This also implies that a product of Hausdorff spaces with the box topology is Hausdorff,
since the box topology is finer than the product topology.

However, it is not true in general that a quotient of a Hausdorff space is Hausdorff.

§5.4.2 A Partial Converse

Question 5.25. Is the converse of Proposition 5.18 true — i.e., if all limits in X are unique, must X
be Hausdorff?

The answer in general is no. For example, any uncountably infinite set with the cocountable topology is not
Hausdorff, but has the property that limits are unique — we saw in Example 5.14 that in the cocountable
topology, a sequence (xn) converges to x if and only if the sequence xn becomes eventually constant at x.
However, it turns out that there is a fairly reasonable condition we can impose on X under which the
converse is true.

Definition 5.26. A space X is first countable if for every x ∈ X, there exists a countable neighborhood
basis Bx of x.

Example 5.27
Every metric space (X, d) is first countable, since as seen in Example 5.3, each x ∈ X has a countable
neighborhood basis Bx = {B(x, 1

n) | n ∈ N}.

Example 5.28
The line with two origins, defined as the quotient of R × {±1} by the relation (x,−1) ∼ (x, 1) for all
x 6= 0, is first countable but not Hausdorff.

(The ‘two origins’ are the points corresponding to (0,±1) — we can visualize the above space by taking two
lines and gluing them together at all points except their origins.)
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Proof. Let X denote our space, and let π denote the projection map R× {±1} → X.
First, to see that X is not Hausdorff, note that the sequence (xn) defined as xn = π( 1

n , 1) = π( 1
n ,−1)

converges to both π(0, 1) and π(0,−1) — this implies there cannot exist disjoint open sets separating π(0, 1)
and π(0,−1).
Meanwhile, to see that X is first countable, for every x 6= π(0,−1) we can take the countable neighborhood
basis {π((x− 1

n , x+ 1
n)×{1}) | n ∈ N}, and for x = π(0,−1) we can take the countable neighborhood basis

{π((− 1
n ,

1
n) × {−1}) | n ∈ N}. So every point has a countable neighborhood basis, and therefore X is first

countable.

We’ll soon prove that under the assumption of first countability, the converse of Proposition 5.18 is indeed
true. Before we do so, we’ll establish the following lemma (which will be useful for many similar proofs as
well).

Lemma 5.29
If X is first countable, then for every x ∈ X we can find a sequence U1 ⊇ U2 ⊇ U3 ⊇ · · · of open sets
containing x, such that any sequence (xn) with xn ∈ Un for each n must converge to x.

Proof. Let Bx = {Bn}n∈N be a countable neighborhood basis of x, and for each n ∈ N, define Vn to be an
open set such that x ∈ Vn ⊆ Bn (such a set Vn must exist because Bn is a neighborhood of x). Then define
Un = V1 ∩ · · · ∩ Vn. It’s clear that the sets Un are nested open sets containing x. To show that they have
the final property, consider any sequence (xn) with xn ∈ Un for all n, and let U be any open set containing
x. Then since U is a neighborhood of x and Bx is a neighborhood basis, there must exist some N such that
VN ⊆ BN ⊆ U , which means Un ⊆ U for all n ≥ N . So then xn ∈ Un ⊆ U for all n ≥ N , as desired.

Now using this lemma, we can prove the converse of Proposition 5.18 for first countable spaces.

Theorem 5.30
Suppose thatX is a first countable topological space. Then X is Hausdorff if and only if every convergent
sequence has a unique limit.

Proof. We’ve already proven the forwards direction in Proposition 5.18 (in particular, it holds for all spaces
X, not just first countable ones). To prove the backwards direction, assume that X is not Hausdorff. Choose
x and y such that there do not exist disjoint open sets separating x and y; we will construct a sequence (xn)
which converges to both x and y.
Consider the chains of open sets U1 ⊇ U2 ⊇ · · · and V1 ⊇ V2 ⊇ · · · obtained from applying Lemma 5.29 to
x and y respectively. Then for each n, by assumption Un and Vn are not disjoint, so we can choose some
xn ∈ Un ∩ Vn. Then (by Lemma 5.29) the sequence (xn) converges to both x and y.

§5.5 Sequential Properties

It turns out that several of the topological properties we’ve seen earlier — in particular closedness and
continuity — have sequential versions. These versions will be related but not equivalent to the usual
notions; but under the additional assumption of first countability, they will in fact be equivalent.
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§5.5.1 Sequential Closedness

Definition 5.31. Given a topological space X, a subset A ⊆ X is sequentially closed if whenever (an)
is a sequence in A converging to some x ∈ X, we have x ∈ A.

Example 5.32
The subset (0, 1) ⊆ R is not sequentially closed, since the sequence (xn) defined as xn = 1

n ∈ (0, 1)
converges to 0 6∈ (0, 1).

Theorem 5.33
In any topological space X, every closed subset A ⊆ X is sequentially closed. Furthermore, if X is first
countable, then every sequetially closed A ⊆ X is also closed.

Proof. First we’ll show that if A ⊆ X is closed, then it is sequentially closed. Assume for contradiction
that there exists a sequence (an) in A converging to a point x 6∈ A. Since A is closed, X \A is an open set
containing x, so there must exist N such that for all n ≥ N we have an ∈ X \ A, which is a contradiction
as an ∈ A for all n.
Now we’ll prove the converse for first countable spaces X — we’ll show that if A ⊆ X is not closed, then
it is not sequentially closed. Since X \ A is not open, it is not a neighborhood of each of its points, so we
can choose some x ∈ X \ A such that X \ A is not a neighborhood of x — this means every open set U
containing x must intersect A.

x

Use Lemma 5.29 to choose a chain U1 ⊇ U2 ⊇ · · · of open sets containing x such that any sequence with
xn ∈ Un for all n converges to x. Now since each Un must intersect A, we can define a sequence (an) such
that an ∈ Un ∩A for all n.

a1

a2

a3

x

Then (an) is a sequence in A which converges to x 6∈ A, so A is not sequentially closed.
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§5.5.2 Sequential Continuity

A very similar story holds for continuity and sequential continuity.

Definition 5.34. A map f :X → Y is sequentially continuous at a point x ∈ X if for every sequence
(xn) in X with xn → x, we have f(xn)→ f(x). (We say f is sequentially continuous if it is sequentially
continuous at every point.)

Theorem 5.35
If a map f :X → Y is continuous at a point x ∈ X, then f is also sequentially continuous at x. If X is
first countable then the converse holds as well.

Proof. First we’ll prove that if f is continuous at x, then it is sequentially continuous at x. Consider any
sequence (xn) in X with xn → x. We wish to show that f(xn) → f(x) in Y , meaning that for every
neighborhood V ⊆ Y of f(x), for all large n we have f(xn) ∈ V . But given any neighborhood V of f(x),
by the continuity of f we know that f−1(V ) is a neighborhood of x, and therefore there exists an open set
U ⊆ X with x ∈ U ⊆ f−1(V ). Then since xn → x, there must exist N such that for all n ≥ N we have
xn ∈ U ⊆ f−1(V ), and therefore f(xn) ∈ f(U) ⊆ V .
Now we’ll prove the converse when X is first countable — we’ll show that if f is not continuous at x, then
f is not sequentially continuous at x either. Since f is not continuous at x, there exists a neighborhood
V ⊆ Y of f(x) such that f−1(V ) ⊆ X is not a neighborhood of x, which means that any open set U ⊆ X
containing x cannot be contained in f−1(V ).

f−1(V ) x

X

V

f(x)

Y

Now use Lemma 5.29 to again produce a chain U1 ⊇ U2 ⊇ · · · of open sets in X containing x such that
any sequence (xn) with xn ∈ Un for each n converges to x. Since none of the sets Un can be contained in
f−1(V ), we can construct a sequence (xn) with xn ∈ Un ∩ (X \ f−1(V )) for each n.

f−1(V ) x

x1

x2

x3

X

V

f(x)

f(x1)
f(x3)

f(x2)

Y
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Then xn ∈ Un for each n, so xn → x. However, xn is not in f−1(V ) for any n, and therefore f(xn) is not in
V ; since V is a neighborhood of f(x), this means we cannot have f(xn)→ f(x).

§6 Connectedness

We’ll now see the notion of connectedness, which gives one useful adjective to describe a topological space.

§6.1 Definition and First Examples

Definition 6.1. A space X is connected if for any disjoint open sets U and V such that X = U ∪ V ,
either U or V is empty.

In other words, a space X is not connected if and only if we can write X as a union of two nonempty disjoint
open sets U and V . This definition captures what we’d intuitively expect — a space is disconnected if it
splits into two separate pieces.

Remark 6.2. From the definition, it is often fairly easy to show that a space isn’t connected — we
can simply provide a decomposition X = U ∪ V — but it can be much harder to prove that a space
is connected (i.e., that no such decomposition exists). Later we’ll prove that [a, b] is connected; this
makes intuitive sense, but is not easy to prove.

Remark 6.3. Connectedness is a topological notion (i.e., it is preserved under homeomorphism), since
it is defined purely in terms of open sets. This means it gives us a tool to tell that two spaces are not
homeomorphic — if one space is connected and the other isn’t, then they can’t be homeomorphic.

The definition of connectedness can be reformulated in terms of clopen sets — sets which are both open and
closed — in the following way.

Lemma 6.4
A space X is connected if and only if ∅ and X are the only clopen sets.

Proof. If there exists a clopen set U ⊆ X other than ∅ and X, then we can write X as the disjoint union of
U and X \ U . Both are nonempty (as U is not ∅ or X) and open (the fact that U is closed means X \ U is
open), so X is not connected.
Conversely, if X is not connected, then we can write X as a disjoint union of nonempty open sets U and V .
Then V = X \ U is open, so U is also closed, and is therefore a clopen set other than ∅ and X.

We’ll also often use the following rephrasing of connectedness for subspaces.

Lemma 6.5
If Y ⊆ X is a subspace, then Y is connected if and only if for all open U, V ⊆ X such that Y ⊆ U ∪ V
and Y ∩ U ∩ V = ∅, we have Y ⊆ U or Y ⊆ V .

This can be easily proven using the definition of the subspace topology — the decomposition of Y corre-
sponding to such sets U and V is (Y ∩ U) ∪ (Y ∩ V ).
We’ll now see a few examples of connectedness.
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Example 6.6
Any space X with the trivial topology is connected, as the only open sets are X and ∅.

Example 6.7
Any space X with the discrete topology (and with |X| ≥ 2) is not connected, as every set is clopen.

Alternatively, we can write X as the disjoint union of {x} and X \ {x} (both of which are open in the
discrete topology) for any point x ∈ X.

Example 6.8
The space [−1, 0)∪ (0, 1) is not connected, as we can write it as the disjoint union of [−1, 0) and (0, 1),
both of which are open in the subspace topology.

Alternatively, we could apply Lemma 6.5 with U = (−2, 0) and V = (0, 1).

Example 6.9
All intervals [a, b] and (a, b) are connected — we will prove this next class.

§6.2 Some Properties of Connectedness

Now we’ll see some facts that let us deduce the connectedness of one space from that of another.

Proposition 6.10
Let X be a space and let {Ai}i∈I be a collection of connected subspaces of X with ⋂i∈I Ai 6= ∅. Then⋃
i∈I Ai is connected as well.

Intuitively this makes sense — if we have a bunch of connected blobs which overlap, their union should be
connected as well.

Proof. Let ⋃i∈I Ai = Y , and assume that U, V ⊆ X are open with Y ⊆ U ∪ V and Y ∩U ∩ V = ∅; we want
to show that Y ⊆ U or Y ⊆ V .
First, for every i ∈ I, since Ai ⊆ Y we must have Ai ⊆ U ∪ V and Ai ∩ U ∩ V = ∅; since Ai is connected,
this means Ai ⊆ U or Ai ⊆ V .
But we cannot have Ai ⊆ U and Aj ⊆ V for any i and j — if this were the case, then since Y ∩ U ∩ V = ∅
(and Ai and Aj are both subsets of Y ) we would have Ai ∩ Aj = ∅, which is impossible since we assumed
the intersection of all the sets Ai was nonempty.
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VU

Y

AjAj

So then either Ai ⊆ U for all i or Ai ⊆ V for all i. In the first case we have Y ⊆ U , while in the second we
have Y ⊆ V , so we’re done.

Remark 6.11. Note that this proof only requires the pairwise intersections Ai ∩Aj to be nonempty, so
the proposition is true in slightly greater generality than stated.

Proposition 6.12
Let X be a space and let A,B ⊆ X. If A ⊆ B ⊆ A and A is connected, then B is connected.

Recall that A denotes the closure of A, defined as the set of points x ∈ X for which X \ A is not a
neighborhood of x; equivalently, we saw in Corollary 1.18 that A is the smallest closed set containing A.

Proof. We want to show that for any open sets U, V ⊆ X with B ⊆ U ∪ V and B ∩ U ∩ V = ∅, we must
have B ⊆ U or B ⊆ V . Let U and V be two such sets.
First, since A ⊆ B, we must have A ⊆ U ∪ V and A ∩ U ∩ V = ∅ as well; since A is connected, this means
A ⊆ U or A ⊆ V . Assume that A ⊆ U , so that A ∩ V = ∅. We will show that B ⊆ U as well.
Assume for the sake of contradiction that there is some x ∈ B with x 6∈ U , which means x ∈ V . Then since
V ⊆ X \ A is open and contains x, then X \ A must be a neighborhood of x, contradicting the fact that
x ∈ B ⊆ A (and A is defined as the points x ∈ X for which X \A is not a neighborhood of x).

Proposition 6.13
If f :X → Y is continuous and X is connected, then f(X) is connected.

Proof. We’ll show the contrapositive — that if f(X) is not connected, then neither is X. Since f(X) is not
connected, we can find nonempty disjoint open sets U and V in f(X) with union f(X). We claim that then
f−1(U) and f−1(V ) are disjoint open sets in X with union X.

Y

U V

f−1(U) f−1(V )

X
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The sets f−1(U) and f−1(V ) are nonempty because U and V are nonempty subsets of im(f), and are disjoint
because U and V are disjoint. Furthermore, U and V are open in f(X) and f is continuous when viewed
as a map X → f(X) (since restricting the target preserves continuity), so f−1(U) and f−1(V ) are open.
Finally we have f(X) = U ∪ V , so X = f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).
This means X is not connected, as desired.

Corollary 6.14
If a space X is connected, then any quotient X/∼ is connected as well.

Proof. Let π:X → X/∼ denote the corresponding projection map; then π(X) = X/∼, and the result follows
from the above proposition.

Proposition 6.15
Given spaces X1, . . . , Xn, their product X1 × · · · × Xn is connected if and only if each of the spaces
X1, . . . , Xn is connected.

(This is true for both the box and the product topology, as the two are the same for finite products.)

Proof. For the forwards direction, suppose that X1×· · ·×Xn is connected. For each index i, the projection
map πi:X1 × · · · ×Xn → Xi is continuous and has image Xi, so Xi is connected by Proposition 6.13.
To prove the converse, it suffices to show that if X and Y are connected, then X × Y is connected (the
general case then follows from the fact that we can write X1 × · · · ×Xn

∼= (X1 × · · · ×Xn−1)×Xn).
In order to prove this, we’ll use Proposition 6.10 — fix some b ∈ Y , and for each x ∈ X define

Tx = ({x} × Y ) ∪ (X × {b}).

X

Y

X × {b}

{x} × Y

x

b

Then each set Tx is connected by Proposition 6.10, as both {x} × Y and X × {b} are connected (they are
homeomorphic to Y and X respectively) and their intersection is {(x, b)} 6= ∅.
Meanwhile we have X × Y = ⋃

x∈X Tx, and ⋂x∈X Tx = X × {b} is nonempty. So then X × Y is connected
by another application of Proposition 6.10. (The purpose of including the set X × {b} in each Tx was so
that they would have nonempty intersection — the statement X × Y = ⋃

x∈X Tx would remain true even if
we replaced Tx with just {x} × Y .)
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Remark 6.16. The above proposition shows that a finite product of connected spaces is connected.
The same is in fact true for infinite products of connected spaces, using the product topology. However,
it’s not true in general for infinite products with the box topology — for example, in RN with the box
topology, the set of bounded sequences

{(x1, x2, . . .) | exists c > 0 such that |xi| ≤ c for all i}

is clopen, and therefore RN is not connected.

§6.3 Connectedness in R

Theorem 6.17
Every open interval (a, b) ⊆ R is connected.

Proof. Assume for contradiction that (a, b) is not connected, so there exist nonempty disjoint open sets U
and V in (a, b) with U ∪ V = (a, b). Choose some u ∈ U and v ∈ V , and without loss of generality assume
u < v. Now consider the set

S = {s ∈ (a, b) | [u, s] ⊆ U}.

Note that S is nonempty (as it contains u) and bounded, so S has a supremum m = supS. We will show
that m is in (a, b) but cannot be in either U or V , which will give the desired contradiction.

u v

S

m

First note that for all w ∈ V with w > u, we have m ≤ w, as w is an upper bound for S (if s ≥ w then w is
in [u, s], so [u, s] cannot be contained in U). In particular this means u ≤ m ≤ v, so m is in (a, b).
Now if m is in U , then since U is open, there must exist some ε > 0 such that (m− ε,m+ ε) ⊆ U . But we
have [u,m) ⊆ U (if some x ∈ [u,m) were not in U , then x would be an upper bound for S), so combining
these gives that [u,m+ ε) ⊆ U . Then S must contain m+ 1

2ε (for example), contradicting the fact that m
is an upper bound for S. So m cannot be in U .

u v

S

m

U
m− ε m+ ε

Meanwhile, if m is in V , then there must exist some ε > 0 such that (m− ε,m+ ε) ⊆ V . But then m− ε is
an upper bound for S, contradicting the fact that m is the least upper bound.
So m is in (a, b) but not U or V , contradicting the fact that (a, b) = U ∪ V .

Corollary 6.18
All intervals of the form (a, b), [a, b), (a, b], [a, b], (−∞, a), (−∞, a], (a,∞), [a,∞), and R are connected.
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Proof. First, we’ve seen that all open intervals are homeomorphic, so since (a, b) is connected, the same
is true for (a,∞), (−∞, a), and R. The connectedness of the remaining intervals follows from Proposition
6.12, which states that if A is connected and A ⊆ B ⊆ A then B is connected as well (for example, we have
(a, b) ⊆ [a, b) ⊆ (a, b) = [a, b], so [a, b) is connected).

§6.3.1 The Intermediate Value Theorem

In analysis, we’ve seen the intermediate value theorem, which states that a continuous function f : [a, b]→ R
takes on all values between f(a) and f(b). It turns out that the relevant property of [a, b] is that it is
connected, and this generalizes to continuous maps from any connected space.

Theorem 6.19
Suppose X is connected and f :X → R is continuous. Then for any a, b ∈ X and any r ∈ R with
f(a) < r < f(b), there exists c ∈ X with f(c) = r.

Proof. Assume for contradiction that there is no such c. Since X is connected and f is continuous, we know
that f(X) is connected as well. But since r 6∈ f(X), we can split f(X) as

f(X) = (f(X) ∩ (−∞, r)) ∪ (f(X) ∩ (r,∞)).

These two sets are disjoint and nonempty (as the first set contains f(a) and the second contains f(b)), and
both are open (as (−∞, r) is open in R, so f(X) ∩ (−∞, r) is open in f(X) under the subspace topology).
So f(X) is a union of two nonempty disjoint open sets, contradicting its connectedness.

§6.4 Path-connectedness

We’ll now define another notion of connectedness, called path-connectedness. This definition will be useful
because we’ll see later that it implies connectedness, and it’s often easier to check.

§6.4.1 Definition of a Path

Definition 6.20. Let X be a topological space, and let x and y be points in X. A path from x to y is
a continuous map γ: [0, 1]→ X such that γ(0) = x and γ(1) = y.

x

γ

y

Note that we could have used any interval [a, b] instead of [0, 1], since all such intervals are homeomorphic.
The following fact will frequently be useful — it essentially states that the concatenation of two paths is
again a path.
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Proposition 6.21
Suppose that γ1: [0, 1] → X is a path from x to y, and γ2: [0, 1] → X is a path from y to z. Then the
function γ: [0, 1]→ X defined as

γ(t) =


γ1(2t) if t ∈ [0, 1

2]

γ2(2t− 1) if t ∈ [12 , 1]

is a path from x to z.

x

γ1
y

γ2

z

Intuitively, γ is the path where we first go along γ1 twice as fast (so we’re essentially using [0, 1
2 ] rather than

[0, 1] as the input to γ1), and then go along γ2 twice as fast (using [1
2 , 1] rather than [0, 1] as the input).

Note that we’ve defined γ(1
2) in both cases above, but these definitions agree (both define it as y).

In order to prove this, it’s enough to show that γ is continuous. This follows immediately from the following
more general lemma (applied to the closed sets [0, 1

2 ] and [1
2 , 1]).

Lemma 6.22
Let X be a space and let A1 and A2 be closed subsets of X. Then given a map f :X → Y , if the
restrictions of f to A1 and A2 are both continuous, then f is continuous as well.

Proof. We’ll check that f is continuous at every point — i.e., that for all points x ∈ X and all neighborhoods
V ⊆ Y of f(x), the set f−1(V ) is a neighborhood of x. Let f1 and f2 denote the restrictions of f to A1 and
A2 respectively, and note that f−1

1 (V ) ⊆ f−1(V ) and f−1
2 (V ) ⊆ f−1(V ) for any V ⊆ Y .

First consider the case where x is in A1 but not A2. (The case where x is in A2 but not A1 is the same.)

A1 A2

x

Then given any neighborhood V ⊆ Y of f(x), since f1 is continuous we know that f−1
1 (V ) is a neighborhood

of x in A1, so there exists an open set (here ‘open’ refers to the subspace topology on A1) which contains x
and is contained in f−1

1 (V ). By the definition of the subspace topology, we can write this set as U ∩A1 for
an open set U ⊆ X (here ‘open’ refers to the topology on X).
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A1 A2

f−1
1 (V )

U
x

Now consider the set U ∩ (X \A2). Since both U and X \A2 are open, this set is open as well; meanwhile
since X = A1 ∪A2, we have X \A2 ⊆ A1, and therefore U ∩ (X \A2) ⊆ U ∩A1 ⊆ f−1

1 (V ) ⊆ f−1(V ).

A1 A2

f−1
1 (V )

U ∩ (X \A2)
x

Finally, since x 6∈ A2 we have x ∈ X \A2. So U ∩ (X \A2) is an open set which contains x and is contained
in f−1(V ), and therefore f−1(V ) is indeed a neighborhood of x.
Now consider the case where x is in both A1 and A2.

A1 A2

x

Then by the same reasoning, we can find open sets U1 and U2 in X, both of which contain x, such that
U1 ∩A1 ⊆ f−1

1 (V ) and U2 ∩A2 ⊆ f−1
2 (V ).

A1 A2

f−1
1 (V )

f−1
2 (V )

U1 U2

x

Now consider the set U1 ∩U2, which is open and contains x (since both U1 and U2 are open and contain x).
We claim that U1 ∩ U2 is contained in f−1(V ) — this is because every point in U1 ∩ U2 must be in either
A1 or A2, and U1 ∩ U2 ∩A1 ⊆ U1 ∩A1 ⊆ f−1

1 (V ) ⊆ f(V ), while U1 ∩ U2 ∩A2 ⊆ U2 ∩A2 ⊆ f−1
2 (V ) ⊆ f(V ).

So U1 ∩ U2 is an open set in X which contains x and is contained in f−1(V ), which means that f−1(V ) is
again a neighborhood of x.
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§6.4.2 Definition of Path-Connectedness

Definition 6.23. A space X is path-connected if for any two points x and y in X, there exists a path
from x to y in X.

Path-connectedness satisfies many of the properties we saw for connectedness in Subsection 6.2.
• If {Ai}i∈I is a collection of path-connected spaces with nonempty intersection, their union ⋃i∈I Ai is

path-connected as well — given any points y ∈ Ai and z ∈ Aj , fix a point x ∈ Ai ∩ Aj . Then we can
find a path from y to x in Ai and a path from z to x in Aj , and concatenating these paths gives a
path from y to z in ⋃i∈I Aj .

x
y

z

• Any product of path-connected spaces is path-connected (this is true for both finite and infinite
products with the product topology) — given a product ∏i∈I Xi of path-connected spaces Xi and two
points x = (xi)i∈I and y = (yi)i∈I , for each i we can find a path γi from xi to yi in Xi, and combining
these (i.e., letting γ: [0, 1] → ∏

i∈I Xi be the function whose ith coordinate is γi) produces a path γ
from x to y.

X1

X2

x

y

x1 y1

x2

y2

• If f :X → Y is continuous and X is path-connected, then f(X) is path-connected — if γ: [0, 1] → X
is a path from x to y, then f ◦ γ: [0, 1] → f(X) is a path from f(x) to f(y). In particular, path-
connectedness is preserved under homeomorphism (i.e., it is a topological property), and any quotient
of a path-connected space is path-connected.

§6.4.3 Path-Connectedness vs. Connectedness

Proposition 6.24
If X is path-connected, then X is also connected.

Proof. Assume for contradiction that X is path-connected but not connected, so X = U ∪ V for some
disjoint nonempty open sets U and V . Fix u ∈ U and v ∈ V , and consider a path γ: [0, 1] → X from u to
v. Since γ is continuous, both γ−1(U) and γ−1(V ) must be open. However, they must also be disjoint and
have union [0, 1] (since U and V are disjoint and have union X), and both are nonempty as 0 ∈ γ−1(U) and
1 ∈ γ−1(V ). This contradicts the fact that [0, 1] is connected.
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The converse is not true, however, as the following counterexample shows.

Example 6.25
The topologist’s sine curve {(t, sin 1

t ) | t > 0} ∪ {(0, 0)} is connected but not path-connected.

(We won’t prove this, but proving that it is connected is not that hard.)
However, there’s a fairly mild additional assumption we can make under which the converse does become
true. (As with many of the other results we’ve seen, the general converse isn’t true, but it becomes true
once we impose a reasonable condition.)

Definition 6.26. A space X is locally path-connected if for every x ∈ X, there is a path-connected
neighborhood of x.

Proposition 6.27
If X is connected and locally path-connected, then X is path-connected.

Proof Sketch. Given a point x ∈ X, consider the set

U = {y ∈ X | exists a path from y to x}.

We’ll show that U = X, which will imply that X is path-connected. In order to do this, we’ll show that U
is clopen — this suffices because since X is connected the only clopen sets are ∅ and X, and U is nonempty
as it contains x, so then it must be X.
In order to show that U is open, we’ll show that U is a neighborhood of each of its points. Fix any point
y ∈ U . Then since X is locally path-connected, there exists a path-connected neighborhood V of y. But
then we must have V ⊆ U , since for every z ∈ V , we can find a path from z to y (since V is path-connected)
and a path from y to x (since y is in U), and concatenating them gives a path from z to x.

x y z

V

Then since V is a neighborhood of y and V ⊆ U , this implies U is a neighborhood of y as well.
Similarly, to show that U is closed, we’ll show that X \ U is a neighborhood of each of its points. Fix any
point y ∈ X \U , and consider a path-connected neighborhood V of y. Then we must have V ⊆ X \U — if
there were any point z ∈ U ∩V , then there would exist a path from y to z and from z to x, so concatenating
them would give a path from y to x, contradicting the fact that y 6∈ U .
So U is both open and closed, as desired.

§6.4.4 Some Examples of Path-Connectedness

We’ll now see a few examples of path-connectedness.

Definition 6.28. A set X ⊆ Rn is convex if for any two points x and y in X, the line segment
[x, y] = {(1− t)x+ ty | t ∈ [0, 1]} is contained in X.
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x

y

Example 6.29
Any convex subspace X ⊆ Rn is path-connected, and therefore connected.

Proof. Given any two points x and y in X, the map γ: [0, 1] → X defined as γ(t) = (1− t)x+ ty is a path
from x to y — this map is clearly continuous, and its image is contained in X by convexity.

Example 6.30
For every n > 1 and any x ∈ Rn, the space Rn \ {x} is path-connected (and therefore connected).

Proof. Given any two points y and z in Rn \ {x}, we wish to find a path between y and z in Rn not passing
through x. To do so, choose a point w which does not lie on the lines xy or xz.

x

y

zw

Then the line segment yw gives a path from y to w in Rn \{x} (given by the equation t 7→ (1− t)y+ tw), and
the line segment wz gives a path from w to z. Concatenating them gives a path from y to z, as desired.

Example 6.31
For every n ≥ 1, the sphere Sn is path-connected, and therefore connected.

This is intuitively clear, as by walking along the sphere we can reach any point from another.

Proof. Given two points x and y in Sn, we wish to show that there exists a path between them. To do so, fix
a point z on the sphere other than x and y; then we’ve seen (in Example 2.14) that Sn\{z} is homeomorphic
to Rn. Since Rn is path-connected, then Sn \ {z} is path-connected as well. So there exists a path from x
to y in Sn \ {z}, which must also be a path from x to y in Sn.

These examples illustrate one reason the notion of path-connectedness is useful — proving an interval [a, b]
is connected was quite hard, but now path-connectedness allows us to find much simpler proofs that more
complicated spaces are connected. (Note that the fact path-connectedness implies connectedness relies on
the fact that [a, b] is connected.)
Connectedness allows us to tell certain spaces apart, as seen in the following simple example.
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Example 6.32
The space R is not homeomorphic to Rn for any n ≥ 2.

Proof. Assume for contradiction that there exists a homeomorphism ϕ:R → Rn, and let x = ϕ(0). Then
ϕ restricts to a homeomorphism R \ {0} → Rn \ {x}. But R \ {0} is not connected — we can write it as
(−∞, 0) ∪ (0,∞) — while Rn \ {x} is connected, contradiction.

§7 Compactness

We’ll now see another adjective that we can use to describe topological spaces, the notion of compactness.
Compactness will be another tool we can use to distinguish between topological spaces — for example, we’ll
be able to show that S2 is not homeomorphic to R2.

§7.1 Definition of Compactness

Definition 7.1. Given a topological space X, we say that a collection of open sets U = {Ui}i∈I is an
open cover of X if X = ⋃

i∈I Ui.

U1

U2

U3

Definition 7.2. A space X is compact if every open cover of X admits a finite subcover.

A finite subcover of an open cover U is a finite subset of U which still forms an open cover of X — so
explicitly, a space X is compact if for every family U = {Ui}i∈I of open sets with X = ⋃

i∈I Ui, there exist
finitely many indices i1, . . . , in such that X = Ui1 ∪ · · · ∪ Uin .
Note that compactness is again a topological property — if X and Y are homeomorphic, then X is compact
if and only if Y is. (As in the case of connectedness, this follows from the fact that compactness is defined
purely in terms of open sets.)
We can describe compactness of a subspace Y ⊆ X in the following way — Y is compact if and only if for
every family {Ui}i∈I of open sets in X such that Y ⊆ ⋃i∈I Ui — which we will again refer to as an open
cover of Y — there exists a finite subcover. (This can be easily checked using the definition of the subspace
topology.)

§7.2 Some Examples

Example 7.3
If X is a topological space with only finitely many open sets, then X is compact. In particular, any
space with the trivial topology is compact.

This is immediate, as if there are only finitely many open sets, then every open cover is already finite.
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Example 7.4
A space X with the discrete topology is compact if and only if X is finite.

Proof. First, if X is finite, then there are only finitely many open sets (as X only has finitely many subsets),
so X is compact. Conversely, if X is infinite, then the open cover U = {{x} | x ∈ X} consisting of all
singletons does not admit a finite subcover (since we need to include each {x} to cover the element x).

Example 7.5
The space R with the standard topology is not compact.

Proof. The open cover U = {(−n, n) | n ∈ N} does not have a finite subcover — the union of finitely many
sets of the form (−n, n) is simply (−m,m) where m is the largest integer n present in the union, and is
therefore not R.

Intuitively, R fails to be compact because it is ‘big’ in some sense.

Example 7.6
The intervals (a, b), (−∞, a), and (b,∞) are not compact (for any real numbers a and b).

This follows from the fact that each of these intervals is homeomorphic to R.

Example 7.7
The closed interval [a, b] is compact.

This is difficult to prove, and we will see the proof next lecture.

Example 7.8
The space X = {0} ∪ { 1

n | n ∈ N} is compact (as a subspace of R with the standard topology).

Intuitively, this makes sense because the sequence is very ‘localized’ — it doesn’t wander off in any way (in
particular, it doesn’t go to ∞, and the point that it does approach is in our set).

Proof. Suppose we have an open cover X ⊆ ⋃i∈I Ui (for open sets Ui ⊆ R); we wish to find a finite subcover
of this open cover.
First, since the Ui cover 0, we can find some set U among the Ui which contains 0.

0 11
2

1
3

1
4

· · ·

Then since 1
n → 0, all but finitely many of the points 1

n must lie in U , and therefore if we place U in our
finite subcover, there are only finitely many points remaining that we still have to cover.

0 11
2

1
3

1
4

· · ·
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For each of these remaining points, we can choose one set Ui containing our point; then taking U along
with each of these Ui (of which there are finitely many, since we have finitely many points) gives a finite
subcover.

Example 7.9
The set Q ∩ [0, 1] (consisting of all rational numbers between 0 and 1) is not compact.

(Of course, Q itself is not compact for the same reason that R is not compact; this statement is less obvious,
but still true.)

Proof. Fix an irrational number x ∈ [0, 1], and consider the collection U = {[0, 1] \ [x − ε, x + ε] | ε > 0}.
These sets are each open in [0, 1] (as their complements [x− ε, x+ ε] are closed), and they cover Q ∩ [0, 1]
because their union is [0, 1] \ x, and x 6∈ Q, so they form an open cover of Q ∩ [0, 1]. But they do not
admit a finite subcover — if we only took finitely many sets corresponding to ε1, . . . , εn, then letting
ε = min(ε1, . . . , εn) the union of our sets would not touch [x − ε, x + ε], and there must exist a rational
number in this interval.

§7.3 Some Properties of Compactness

Now we’ll prove a few properties regarding compactness.

Proposition 7.10
If X is compact and Y ⊆ X is closed, then Y is compact.

Proof. Suppose we are given an open cover U = {Ui}i∈I of Y , i.e., open sets Ui ⊆ X such that Y ⊆ ⋃i∈I Ui.
X

Y

Then the set X \ Y is open (since Y is closed), so U ∪ {(X \ Y )} forms an open cover of X.

X

Y
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Since X is compact, we can find a finite subcover of this cover of X. Then we can simply remove the set
X \ Y to obtain a finite subcover of our original cover of Y (if X \ Y is not present in the subcover of X,
we do not need to perform any modifications).

The converse is not true in general — for example, in the trivial topology, every subspace is compact but
no nontrivial subspace is closed. However, under the condition that X is Hausdorff, it is true that every
compact subspace is closed (this does not require X to be compact).

Proposition 7.11
If X is Hausdorff and Y ⊆ X is compact, then Y must be closed.

Proof. We will show that X \ Y is open by showing that it is a neighborhood of each of its points. Fix a
point x ∈ X \ Y , so we wish to find an open set V ⊆ X \ Y such that x ∈ V .

xY

First, given any point y ∈ Y , since x 6= y and X is Hausdorff, we can find disjoint open sets Uy and Vy such
that y ∈ Uy and x ∈ Vy.

x

y

Now the collection U = {Uy | y ∈ Y } forms an open cover of Y , since each point y ∈ Y is covered by its
corresponding set Uy.
Since Y is compact, this open cover must have a finite subcover, so we can find points y1, . . . , yn such that
Y ⊆ Uy1 ∪ · · · ∪ Uyn . Now set V = Vy1 ∩ · · · ∩ Vyn . We will show that V has the desired properties.

x

First, we have x ∈ V because by definition x ∈ Vy for all y. Meanwhile, V and Y must be disjoint — for
each y ∈ Y , since the sets Uyi cover Y there must exist i with y ∈ Uyi , and since Uyi and Vyi are disjoint
by construction, y cannot be in Vyi , and therefore cannot be in V . Finally, V is open because it is a finite
intersection of open sets.

Page 45 of 62



18.901 — Introduction to Topology Class by Anthony Conway (Spring 2023)

So we have shown that V is an open set with x ∈ V ⊆ X \ Y . This means X \ Y is a neighborhood of each
of its points and is therefore open, so Y is closed.

Proposition 7.12
If X is compact and f :X → Y is continuous, then f(X) is compact.

Proof. Suppose that we have an open cover {Ui}i∈I of f(X), i.e., a family of open sets Ui ⊆ Y such that
f(X) ⊆ ⋃

i∈I Ui. Then the sets f−1(Ui) ⊆ X form an open cover of X — they are open because f is
continuous, and they cover X because ⋃i∈I f−1(Ui) = f−1(⋃i∈I Ui) = X.
Then since X is compact, we can find a finite subcover of our open cover of X. Taking the corresponding
sets in our open cover of Y (i.e., if our finite subcover in X contains f−1(Ui) then we place Ui in our finite
subcover of Y ) gives a finite subcover of Y as well.

§7.3.1 A Criterion for Homeomorphisms

Using these properties, we can obtain a condition that guarantees a continuous and bijective map automat-
ically is a homeomorphism. This is very practically useful — in many examples we saw earlier, proving our
functions were continuous and bijective was easy, but proving their inverses were continuous was difficult;
and now under the right conditions, we can simply get this for free.

Corollary 7.13
If X is compact and Y is Hausdorff, then any continuous bijective map f :X → Y is a homeomorphism.

Proof. In order to show that f−1 is continuous, it suffices to show that if C ⊆ Y is closed, then f(C) ⊆ Y
is closed as well.
First, since X is compact and C ⊆ X is closed, we know C is compact. This means f(C) is compact as
well. But since Y is Hausdorff, this implies f(C) is closed.

§7.3.2 Compactness of Products

Theorem 7.14
Given spaces X1, . . . , Xn, the product X1 × · · · ×Xn is compact if and only if each of the spaces X1,
. . . , Xn is compact.

Proof. For the forwards direction, for each i ∈ {1, . . . , n} the projection map πi:X1 × · · · × Xn → Xi is
continuous and has image Xi, so if X1 × · · · ×Xn is compact then Xi must be compact as well.
For the reverse direction, by induction it suffices to prove that if X and Y are compact, then X × Y is
compact as well. Suppose we have an open cover W = {Wi}i∈I of X × Y ; we wish to find a finite subcover.
First fix a point x ∈ X. Then since {Wi}i∈I covers all of X×Y , it in particular covers {x}×Y . But {x}×Y
is compact (as it is homeomorphic to Y ), so we can find a finite subcover W(x) ⊆ W of {x} × Y (i.e., we
can find finitely many indices i1, . . . , in such that {x} × Y ⊆Wi1 ∪ · · · ∪Win).
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X

Y

x

{x} × Y

Let N(x) be the union of the open sets in W(x), and note that N(x) is open. We’ll attempt to show that
we can choose finitely many points x ∈ X so that the union of their corresponding sets N(x) covers X × Y
— this suffices because each set N(x) is the union of finitely many sets in our original open cover W. In
order to do so, we need the following lemma.

Lemma 7.15 (Tube Lemma)
Let X be any space and let Y be compact, and fix x ∈ X. If N is any open subset of X × Y which
contains {x} × Y , then there exists an open set U ⊆ X containing x such that N contains U × Y .

X

Y

x

{x} × Y

N

U

U × Y

Intuitively, this lemma states that if we have an open set in X×Y which contains a slice (i.e., a set {x}×Y ),
then it also contains a slight thickening of that slice.

Proof. First fix a point y ∈ Y , so that N contains (x, y).

X

Y

x

{x} × Y

N

(x, y)

The product topology on X × Y has a basis given by the sets U × V for open subsets U ⊆ X and V ⊆ Y .
Since N is open, it can be written as the union of basis elements. Since (x, y) is in N it must be in one
of the basis elements present in this union, so we can find open subsets Uy ⊆ X and Vy ⊆ Y such that
(x, y) ∈ Uy × Vy ⊆ N .
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X

Y

x

{x} × Y

N

(x, y)

Now the collection V = {Vy | y ∈ Y } forms an open cover of Y (since Vy contains y for each y ∈ Y ). So
since Y is compact, we can find a finite subcover — i.e., we can find finitely many points y1, . . . , yn such
that Y = Vy1 ∪ · · · ∪ Vyn .

X

Y

x

{x} × Y

N

Now define U = Uy1 ∩ · · · ∩ Uyn . We will show this choice of U has the claimed properties.

X

Y

x

{x} × Y

N

First, U contains x because each of the sets Uy contains x, and U is open because it is an intersection of
finitely many open sets. Finally, we have U × Y = (U × Vy1) ∪ · · · ∪ (U × Vyn), and for each i we have
U × Vyi ⊆ Uyi × Vyi ⊆ N , so U × Y ⊆ N . So U has all the necessary properties, and we’re done.

Now to finish our proof that the product of two compact spaces is compact, recall that for each point
x ∈ X, we have defined an open set N(x) which contains {x} × Y (by taking a finite subcover of {x} × Y
in our original cover), and we wish to find finitely many points x1, . . . , xm such that the sets N(xi) cover
X × Y . By the above lemma, for each point x ∈ X, we can find an open set Ux ⊆ X containing x such that
Ux × Y ⊆ N(x). Then the collection U = {Ux | x ∈ X} forms an open cover of X, so since X is compact,
we can find a finite subcover, consisting of the finitely many sets Ux1 , . . . , Uxm . Then the sets Ux1 ×Y , . . . ,
Uxm ×Y form a finite cover of X ×Y , and since Ux×Y ⊆ N(x) for each x ∈ X, the sets N(x1), . . . , N(xm)
form a finite cover of X × Y as well.
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Remark 7.16. This theorem is still true for infinite products as well — the product of any collection
of compact spaces, with the product topology, is compact. This is known as Tychonoff’s theorem, and
the proof is much harder.
However, it is not true for infinite products with the box topology — for example, if we place the
discrete topology on {0, 1} (which is finite and therefore compact), then the box topology on {0, 1}N is
also the discrete topology; but {0, 1}N is not finite, so it cannot be compact.

§7.4 Compactness in Rn

We’ll now prove the statement mentioned earlier that closed intervals are compact, and use it to obtain a
characterization of compactness in Rn we may have seen in analysis — that a subset of Rn is compact if
and only if it is closed and bounded.

§7.4.1 Compactness of Closed Intervals

Theorem 7.17
The closed interval [a, b] is compact.

Proof. Suppose we have an open cover of [a, b], i.e., a collection U = {Ui}i∈I of open subsets of R such that
[a, b] ⊆ ⋃i∈I Ui. We want to find a finite open subcover.
Consider the set

S = {x ∈ (a, b] | [a, x] has a finite subcover of U}.

Our proof will consist of three steps:
(1) We’ll show that S is nonempty and bounded, and therefore we can define m = supS.
(2) We’ll show that m must be in S.
(3) Finally, we’ll show that m = b.

Together, these steps will imply that b ∈ S, and therefore [a, b] admits a finite subcover, as desired.
For (1), it is clear that S is bounded, as S ⊆ (a, b]. In order to see that S is nonempty, there must exist
some set U ∈ U which contains a, and since U is open there must exist some ε such that (a− ε, a+ ε) ⊆ U .

a ba− ε a+ ε

Then in particular [a, a + 1
2ε] ⊆ U , so a + 1

2ε must be in S (as this set U alone forms a finite subcover of
the interval [a, a+ 1

2ε]).
So S is bounded and nonempty, which lets us define m = supS. First note that we must have m ∈ (a, b] —
we must have m > a because m ≥ s for all s ∈ S and S ⊆ (a, b] is nonempty, while we must have m ≤ b
because b is an upper bound for S (and m is the least upper bound).
Then for (2), we need to show that [a,m] admits a finite subcover. First, since m ∈ [a, b], we can find an
open set U ∈ U which contains m, and therefore which contains (m− ε,m+ ε) for some ε > 0.

a bmm− ε m+ ε
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Now since m is the least upper bound of S, there must exist s ∈ S with s > m− ε — otherwise m− ε would
be an upper bound of S as well. By the definition of S, this means we can find a finite subcover of [a, s].

a bmm− ε m+ ε

s

Then adding U to this finite subcover of [a, s] produces a finite subcover of [a,m] = [a, s] ∪ (m − ε,m]. So
we’ve found a finite subcover of [a,m], which means m ∈ S.
Finally for (3), assume for contradiction that m < b. Then similarly to in the previous step, we can find
a set U ∈ U and some ε > 0 such that (m − ε,m + ε) ⊆ U , and such that m + ε < b (by shrinking ε if
necessary). Now consider the interval [a,m+ 1

2ε]. We can find a finite subcover of [a,m] since m ∈ S, and
since [m,m+ 1

2ε] ⊆ U , then adding U to this finite subcover produces a finite subcover of [a,m+ 1
2ε]. This

implies m+ 1
2ε ∈ S, contradicting the fact that m is an upper bound for S.

So we must have m = b, and therefore b ∈ S; so we are done.

§7.4.2 Extreme Value Theorem

A few lectures ago, we saw that the intermediate value theorem from analysis generalizes to continuous maps
from all connected spaces. Today we’ll see that another theorem from analysis, the extreme value theorem
(which states that any continuous function on a closed interval has a minimum and maximum) generalizes
to all compact spaces.

Theorem 7.18 (Extreme Value Theorem)
If X is compact and f :X → R is continuous, then there exist xmin and xmax in X such that for all
x ∈ X we have f(xmin) ≤ f(x) ≤ f(xmax).

Proof. We wish to show that f(X) has a minimum and maximum (then taking xmin and xmax to be the
values of x producing the minimum and maximum gives the desired statement). We will prove that it has
a maximum, i.e., that there exists m ∈ f(X) such that y ≤ m for all y ∈ f(X); the proof that it has a
minimum is identical.
First note that since X is compact and f is continuous, f(X) is compact. Now assume for contradiction
that f(X) does not have a maximum, so for every m ∈ f(X) we can find a point y ∈ f(X) with y > m.
This means f(X) ⊆ ⋃y∈f(X)(−∞, y) — for each m ∈ f(X) there exists some y such that m ∈ (−∞, y), and
therefore this union covers each m ∈ f(X).
Since f(X) is compact and {(−∞, y) | y ∈ f(X)} forms an open cover, we can find a finite subcover — so
there exist finitely many points y1, . . . , yn in f(X) such that f(X) ⊆ (−∞, y1) ∪ · · · ∪ (−∞, yn). Without
loss of generality assume yn is the largest of y1, . . . , yn; then this union is simply (−∞, yn). But we cannot
have f(X) ⊆ (−∞, yn) because yn is in f(X) by definition; so this is a contradiction.

§7.4.3 Compactness in Rn

We’ll now prove the characterization of compact sets in Rn (with the standard topology) that we may have
seen in analysis.

Definition 7.19. A set A ⊆ Rn is bounded if there exists r > 0 such that A ⊆ B(0, r).

Note that boundedness depends on which metric we use; here we use the standard Euclidean metric d2
(though we could have used any metric dp — equivalent metrics produce the same notion of boundedness).
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Theorem 7.20
A set A ⊆ Rn is compact if and only if it is closed and bounded.

Proof. First we’ll prove the forwards direction — suppose that A ⊆ Rn is compact. First, since Rn is
Hausdorff, this implies A must be closed in Rn. To show that A must be bounded, consider the collection
{B(0, r) | r > 0} (consisting of all balls of positive radius centered at the origin). These balls form an open
cover of Rn, and therefore of A. Since A is compact, we can find a finite subcover — so we can find finitely
many radii r1 < · · · < rk such that A ⊆ B(0, r1) ∪ · · · ∪B(0, rk) = B(0, rk), and therefore A is bounded.
Now we’ll prove the reverse direction — that if A is closed and bounded, then it is compact. First, fix r > 0
such that A ⊆ B(0, r); then since B(0, r) ⊆ [−r, r]n we have A ⊆ [−r, r]n as well. We’ve seen that the closed
interval [−r, r] is compact and that products of compact spaces are compact, and combining these gives that
[−r, r]n is compact. Then A ⊆ [−r, r]n is a closed subset of a compact space, so it is compact as well.

Example 7.21
The space Sn is compact for each n, as Sn ⊆ Rn+1 is closed and bounded.

In particular, note that this means Sn is not homeomorphic to Rm for any n and m, since Sn is compact
and Rm is not.

§7.5 Sequential Compactness

As with many other properties (e.g. closedness and continuity), there exists a sequential version of the
definition of compactness; the two definitions will be equivalent in Rn (and in fact in any metric space) but
not in full generality.

Definition 7.22. A space X is sequentially compact if every sequence in X has a convergent subsequence.

Given a sequence (xn)n∈N, a subsequence is a sequence (xnk
)k∈N for indices 1 ≤ n1 < n2 < · · · — intuitively,

a subsequence of (xn) is a sequence consisting of only some of the terms of (xn), in their original order.

Example 7.23
Any space X with the trivial topology is sequentially compact, as every sequence is convergent.

Example 7.24
A space X with the discrete topology is sequentially compact if and only if it is finite.

Proof. We’ve seen that in the discrete topology, a sequence is convergent if and only if it is eventually
constant. If X is finite, then any sequence (xn) in X will have some point x which appears infinitely many
times; then taking all occurrences of x gives a convergent subsequence of (xn). Conversely, if X is infinite,
then we can construct a sequence (xn) all of whose terms are distinct (by first choosing x1, then choosing
x2 different from x1, then choosing x3 different from x1 and x2, and so on). Then any subsequence of (xn)
will also have the property that all its terms are distinct, so it cannot converge.
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Example 7.25
In R with the standard topology:

• R is not sequentially compact, as the sequence xn = n does not have a convergent subsequence.
• (0, 1) is not sequentially compact, as the sequence xn = 1

n does not have a convergent subsequence.
• Closed intervals [a, b] are sequentially compact — this is known as the Bolzano–Weirstrass theorem.

(The proof of the Bolzano–Weirstrass theorem is covered in an analysis class — the idea is to repeatedly
split our interval in half, and consider one half which contains infinitely many points.)

§7.5.1 Sequential Compactness vs. Compactness

In all the examples we’ve seen, sequential compactness is the same as compactness. This isn’t true in general,
but we’ll now see some conditions under which it is.

Theorem 7.26
If X is compact and first countable, then X is sequentially compact.

The proof uses the notion of accumulation points — we’ll show that every sequence has an accumulation
point, and then that we can find a subsequence converging to this accumulation point.

Definition 7.27. Given a sequence (xn) in X, we say that a point x ∈ X is an accumulation point of
(xn) if for every open set U containing x, there are infinitely many n for which xn ∈ U .

x

Lemma 7.28
If X is compact, then every sequence (xn) in X has an accumulation point.

Proof. Assume that (xn) does not have an accumulation point. Then for every point x ∈ X, since x is not
an accumulation point of (xn), we can find an open set Ux containing x such that there are only finitely
many n with xn ∈ Ux. Then {Ux | x ∈ X} is an open cover of X, so since X is compact, we can find a finite
subcover — i.e., we can find finitely many sets Ux which together cover X.

U1

U2

U3
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Then since our finitely many sets Ux cover X, each point xn must be in at least one of these sets. But there
are finitely many sets Ux and each contains only finitely many points xn; this is a contradiction, as there
are infinitely many points xn in total.

Lemma 7.29
Let X be a first countable space, and suppose that x is an accumulation point of a sequence (xn) in X.
Then there exists a subsequence of (xn) which converges to x.

Proof. Since X is first countable, by Lemma 5.29 we can find a chain U1 ⊇ U2 ⊇ · · · of open sets containing
x such that any sequence (yk) with yk ∈ Uk for each k ∈ N converges to x. Now since x is an accumulation
point of (xn), for each k there are infinitely many n for which xn ∈ Uk. So we can choose n1 such that
xn1 ∈ U1, then n2 > n1 such that xn2 ∈ U2, then n3 > n2 such that xn3 ∈ U3, and so on. This produces a
subsequence (xnk

) which has the property that xnk
∈ Uk for each k, and therefore which converges to x.

Combining Lemmas 7.28 and 7.29 immediately implies Theorem 7.26.
Now we’ll prove the converse for metric spaces.

Theorem 7.30
If X is a sequentially compact metric space, then X is compact.

Note that all metric spaces are first countable, and therefore Theorem 7.26 applies to them — so together,
the two theorems imply that compactness and sequential compactness are equivalent in any metric space.

Proof. Suppose that we are given an open cover U of X. We will perform a process that attempts to find a
finite subcover — we will construct points x1, x2, . . . in X and open sets U1, U2, . . . in U (where we construct
xn and Un on the nth step for each n ∈ N) in such a way that if the process terminates after n steps, then
the sets U1, . . . , Un we have constructed form a finite subcover. If the process doesn’t terminate after finitely
many steps, then we will have produced a sequence (xn)n∈N, and we will use the fact that this sequence
must have a convergent subsequence to obtain a contradiction.
We define our process in the following way. For each n ≥ 1, on the nth step, suppose that we have already
constructed points x1, . . . , xn−1 and open sets U1, . . . , Un−1. Then:

• If U1 ∪ · · · ∪ Un−1 = X, then terminate the process — then U1, . . . , Un−1 form a finite subcover of U ,
so we are done.

• Otherwise, we’ll intuitively choose xn to be a point not covered by U1 ∪ · · · ∪ Un−1 and Un to be a
reasonably large set containing xn. To formalize this, consider the set

Sn = {ε ∈ (0, 1] | exists x ∈ X \ (U1 ∪ · · · ∪ Un−1) and U ∈ U with B(x, ε) ⊆ U}.

Note that Sn is nonempty — there must exist some point x ∈ X \ (U1∪ · · ·∪Un−1), or else the process
would have terminated. For each such point, there must exist a set U ∈ U containing x (since U covers
X), and since U is open there must exist ε ∈ (0, 1] with B(x, ε) ⊆ U .

U
x
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Meanwhile, clearly Sn is bounded, as Sn ⊆ (0, 1]. So we can define cn = supSn. Then there must
exist some element of Sn which is at least 1

2cn (or else 1
2cn would be a smaller upper bound for Sn);

let εn be any such element.
Define xn and Un to be the sets x and U corresponding to our chosen εn — so xn is a point in
X \ (U1 ∪ · · · ∪ Un−1) and Un a set in U such that B(xn, εn) ⊆ Un.

We wish to show that this process must terminate; assume not. Then the process produces a sequence
(xn)n∈N, and since X is compact, this sequence must have a subsequence (xnk

)k∈N which converges to some
point x ∈ X.
First, we claim that x cannot be in any of our chosen sets Um — assume for contradiction that x is in Um
for some m. Since in each step xn is chosen from X \ (U1 ∪ · · · ∪ Un−1), we cannot have xn ∈ Um for any
m ≥ n. But Um is an open set containing x, so this contradicts the fact that (xn) has a subsequence (xnk

)
converging to x (which requires that xnk

∈ Um for all large k).
Now since U covers X there must exist some U ∈ U containing x, and since U is open there must exist ε > 0
such that B(x, ε) ⊆ U . Then at each step we must have ε ∈ Sn (since x is not in any of the sets Um, and is
therefore always one of the points considered when defining Sn), and therefore εn ≥ 1

2ε.
But since our subsequence (xnk

) converges to x, for all large k we must have d(xnk
, x) < 1

2ε, and therefore
x must be contained in B(xnk

, εnk
). But by construction B(xnk

, εnk
) ⊆ Unk

, so then x must be contained
in Unk

, contradicting the fact that x is not in Um for any m.

§8 The Fundamental Group

So far, we’ve discussed point-set topology. We’ll now turn to algebraic topology and associate to each
topological space X a group π1(X) which stores certain data about X. As some motivation, with the tools
we’ve seen so far (connectedness and compactness) we can tell some spaces apart, but there are many
spaces we can’t tell apart — for example, we can’t yet prove that the torus S1 × S1 and the sphere S2 are
not homeomorphic (which does seems true). It’ll turn out that we can do this using the fundamental group
— we’ll see that if two spaces are homeomorphic then their fundamental groups are isomorphic. We’ll also
see that π1(S1 × S1) = Z2 and π1(S2) = {1}, so the two spaces cannot be homeomorphic.

§8.1 Definition of the Fundamental Group

Informally, the fundamental group will consist of loops in X up to deformation. We’ll now see how to make
this intuition into a precise definition.

§8.1.1 Loops and Path Composition

Definition 8.1. A loop in X is a path γ: [0, 1]→ X such that γ(0) = γ(1). We call the point γ(0) = γ(1)
the basepoint of the loop γ.

Intuitively, a loop is a path that returns to where it starts, as we would expect.

γ

Since we’re trying to turn these loops into a group, we’ll need a group law (i.e., a way to compose two loops).
This will essentially be given by concatenating the two loops.
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Definition 8.2. Given two paths γ0: [0, 1]→ X and γ1: [0, 1]→ X with γ0(1) = γ1(0), their composition,
denoted γ0 · γ1, is the path defined as

γ0 · γ1(t) =


γ0(2t) if t ∈ [0, 1

2]

γ1(2t− 1) if t ∈ [12 , 1].

Note that the definition of composition applies to paths in general, not just loops. We proved in Proposition
6.21 that the composition γ0 · γ1 is indeed a path (i.e., that the piecewise function defined in this way is
continuous).

γ0
γ1

§8.1.2 Homotopy of Paths

We mentioned earlier that we want to define the fundamental group to consist of loops ‘up to deformation.’
We’ll use the notion of homotopy to make precise what it means for two loops to be the same up to
deformation.

Definition 8.3. Let X be a space, let x0 and x1 be points in X, and let γ0 and γ1 be paths from x0
to x1 (i.e., each γi is a continuous map [0, 1] → X with γi(0) = x0 and γi(1) = x1). Then a homotopy
between γ0 and γ1 is a continuous function F : [0, 1]× [0, 1]→ X such that:

• F (0, t) = x0 and F (1, t) = x1 for all t ∈ [0, 1].
• F (x, 0) = γ0(x) and F (x, 1) = γ1(x) for all x ∈ [0, 1].

We say γ0 and γ1 are homotopic (denoted γ0 ' γ1) if there exists a homotopy between them.

Notation 8.4. We’ll often denote a homotopy by ft(x) instead of F (x, t).

Intuitively, a homotopy between γ0 and γ1 is a collection of paths ft from x0 to x1 (with one path for each
t ∈ [0, 1]) which interpolate continuously between γ0 and γ1.

x0 x1

γ0

γ1
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Example 8.5
In R (or more generally, in any convex subset of Rn), any two paths γ0 and γ1 with the same starting
and ending points are homotopic, with the homotopy given by

ft(x) = (1− t)γ0(x) + tγ1(x).

The following observation will frequently be useful.

Fact 8.6 — Let γ0 and γ1 be two paths in a space X, and let ϕ:X → Y be a continuous map. If
γ0 ' γ1 via a homotopy ft, then ϕ ◦ γ0 ' ϕ ◦ γ1 via the homotopy ϕ ◦ ft.

(Note that · denotes path composition, while ◦ denotes function composition.) We’ve seen earlier (when
discussing path-connectedness) that if γ: [0, 1]→ X is a path from x0 to x1 in X and ϕ:X → Y a continuous
map, then ϕ ◦ γ is a path from ϕ(x0) to ϕ(x1) in Y — this follows from the fact that a composition of
continuous functions is continuous. Here a similar argument can be used to show that the map (x, t) 7→
ϕ ◦ ft(x) is continuous, and it is straightforward to check that the other conditions on a homotopy are
satisfied.

§8.1.3 The Fundamental Group

We’ll eventually define the fundamental group of X to consist of all loops in X (with a fixed basepoint) up
to homotopy; for this to make sense, we need to check that homotopy is an equivalence relation.

Lemma 8.7
Let X be a space, and fix two points x0 and x1 in X. Then homotopy of paths is an equivalence relation
on the set of paths from x0 to x1.

Proof. We’ll check that the three properties of an equivalence relation all hold.
• Reflexivity (i.e., f ' f) — we can simply take the homotopy ft = f for all t ∈ [0, 1].
• Symmetry (i.e., if f0 ' f1 then f1 ' f0) — if ft is a homotopy from f0 to f1, then f1−t is a homotopy

from f1 to f0. (Intuitively, given a way to continuously deform f0 into f1, we can run this deformation
backwards to continuously deform f1 into f0.)

• Transitivity (i.e., if f0 ' f1 and f1 ' f2, then f0 ' f2) — for notational convenience, let g0 = f1 and
g1 = f2, and suppose that f0 ' f1 via the homotopy ft and g0 ' g1 by gt. Then we claim f0 ' g1 via
the homotopy

ht(x) =


f2t(x) if t ∈ [0, 1

2]

g2t−1(x) if t ∈ [12 , 1].

Intuitively, ht first deforms our path f0 into f1 = g0, then deforms this path into g1.

x0 x1

f0

g1

f1 = g0

ft

gt
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Note that (x, t) 7→ ht(x) is continuous by Lemma 6.22 (which states that a function which is continuous
on two closed subsets which together cover our entire space must be continuous on the entire space)
applied to the closed subsets [0, 1] × [0, 1

2 ] and [0, 1] × [1
2 , 1] of [0, 1] × [0, 1], and is therefore a valid

homotopy.

This allows us to define the set π1(X,x0) (for a fixed basepoint x0 ∈ X) as the set of all loops based at x0,
quotiented by the equivalence relation ' (i.e., two loops are equivalent if there exists a homotopy between
them). We’ll soon define a group law on this set given by path composition; for this to make sense (i.e., to
be well-defined), we need the following proposition.

Proposition 8.8
Let f0, f1, g0, and g1 be paths in X such that fi(1) = gi(0) for each i ∈ {0, 1}, and f0 ' f1 and g0 ' g1.
Then f0 · g0 ' f1 · g1.

Proof. Suppose that f0 ' f1 via a homotopy ft, and g0 ' g1 via a homotopy gt. Then we claim f0 ·g0 ' f1 ·g1
via the homotopy

ht = ft · gt =


ft(2x) if x ∈ [0, 1

2]

gt(2x− 1) if x ∈ [12 , 1].

x0
x1

x2

f0

f1

g0

g1

The continuity of the map (x, t) 7→ ht(x) again follows from Lemma 6.22, as it is continuous on both
[0, 1

2 ]× [0, 1] and [1
2 , 1]× [0, 1]. So ht is again a valid homotopy.

This means path composition gives a well-defined operation on homotopy classes of loops based at a fixed
point x0 — using [f ] to denote the class of a loop f , we can define [f ] · [g] as [f · g], as the above proposition
implies that [f · g] is independent of the choice of representatives of [f ] and [g].

Definition 8.9. The fundamental group of a space X with basepoint x0, denoted π1(X,x0), is the set

π1(X,x0) = {loops based at x0}/'

with group operation [f ] · [g] = [f · g].

(Note that to define the fundamental group of a space we must first fix a basepoint; we’ll say more about
the dependence on the basepoint later.)
It is not obvious that π1(X,x0) is a group; to prove this, we need to check the three group axioms — that
composition is associative, there is an identity, and every element has an inverse. (We’ll state these claims
in slightly more generality, for paths instead of just loops.)
First we’ll construct an identity element.
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Notation 8.10. For any point y ∈ X, we use cy to denote the constant loop at y — i.e., the path
cy: [0, 1]→ X which maps x 7→ y for all x ∈ [0, 1].

Lemma 8.11
Suppose that f is a path from x0 to x1. Then cx0 · f ' f ' f · cx1 .

Proof. We’ll just show that cx0 · f ' f ; the proof that f · cx1 ' f is essentially identical.
Intuitively, cx0 · f is the path that stands still at x0 for the interval [0, 1

2 ] and then performs f ; and we can
continuously deform it into f alone by gradually decreasing the amount of time we spend at x0 at the start.
It’s not hard to write down an explicit homotopy formalizing this, but we’ll instead use a slightly more
indirect argument that can be used to cleanly prove many similar statements.
Consider the function ϕ: [0, 1]→ [0, 1] defined as

ϕ(x) =


0 if x ∈ [0, 1

2]

2x− 1 if x ∈ [12 , 1].

Then we can think of cx0 ·f as the path f ◦ϕ, and f as the path f ◦ id. But ϕ and id can both be thought of
as paths from 0 to 1 in [0, 1], and since [0, 1] is convex, we’ve seen in Example 8.5 that any two such paths
are homotopic (one explicit homotopy between ϕ and id is ϕt(x) = (1 − t)ϕ(x) + tx). So ϕ ' id in [0, 1],
and since f is a continuous map [0, 1]→ X, by Fact 8.6 we have f ◦ ϕ ' f ◦ id as well, i.e., cx0 · f ' f .

In particular, this implies that [cx0 ] is an identity element of π1(X,x0).
Now we’ll construct inverses.

Notation 8.12. For any path f from x0 to x1, we use f to denote the path from x1 to x0 defined as
f(x) = f(1− x) for each x ∈ [0, 1].

x0

f

x1

x0

f

x1

Lemma 8.13
For any path f from x0 to x1, we have f · f ' cx0 and f · f ' cx1 .

Proof. We’ll only prove the first statement; the proof of the second is very similar. We’ll use the same idea
as in the previous proof — write f · f as f ◦ ϕ0, where ϕ0: [0, 1]→ [0, 1] is the map

ϕ0(x) =


2x if x ∈ [0, 1

2]

2− 2x if x ∈ [12 , 1],

and write cx0 as f ◦ ϕ1, where ϕ1: [0, 1]→ [0, 1] is the map x 7→ 0. Then both ϕ0 and ϕ1 are loops in [0, 1]
based at 0, so since [0, 1] is convex there exists a homotopy ϕt between them; then by Fact 8.6 we have that
f ◦ ϕt is a homotopy between f · f = f ◦ ϕ0 and cx0 = f ◦ ϕ1.

In particular, this implies that each [f ] ∈ π1(X,x0) has inverse [f ].
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Lemma 8.14
Let f , g, and h be paths such that f(1) = g(0) and g(1) = h(0). Then (f · g) · h ' f · (g · h).

Proof. The main idea is that similarly to before, we can define a map ϕ: [0, 1]→ [0, 1] such that f · (g · h) =
((f · g) · h) ◦ ϕ (since the two paths essentially trace the same route at different speeds), and use the fact
that ϕ ' id to conclude that f · (g · h) ◦ id ' ((f · g) · h) ◦ ϕ.
Explicitly, we have

(f · g) · h =


f(4x) if x ∈ [0, 1

4]

g(4x− 1) if x ∈ [14 ,
1
2]

h(2x− 1) if x ∈ [12 , 1],

and similarly we have

f · (g · h) =


f(2x) if x ∈ [0, 1

2]

g(4x− 2) if x ∈ [12 ,
3
4]

h(4x− 3) if x ∈ [34 , 1].

This means we have f · (g · h) = ((f · g) · h) ◦ ϕ, where ϕ: [0, 1]→ [0, 1] is defined as

ϕ(x) =



1
2x if x ∈ [0, 1

2]

x− 1
4 if x ∈ [12 ,

3
4]

2x− 1 if x ∈ [34 , 1].

0 1
4

1
2

1f g h
(f · g) · h

0
1
2

3
4 1f g h

f · (g · h)

Then ϕ is a path in [0, 1] from 0 to 1, and since all such paths are homotopic, as before we have ϕ ' id, and
therefore f · (g · h) = ((f · g) · h) ◦ ϕ ' ((f · g) · h) ◦ id = (f · g) · h.

Combining these statements gives the following result.

Theorem 8.15
For any space X and basepoint x0 ∈ X, the fundamental group π1(X,x0) is a group.
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§8.1.4 Dependence on the Basepoint

Note that our definition of the fundamental group requires us to choose a basepoint x0 ∈ X. However, the
choice of basepoint turns out to not be so important.
First, we’ll see that when considering the fundamental group, it essentially suffices to consider only path-
connected spaces.

Definition 8.16. For a space X and a point x ∈ X, the path component of x, denoted C(x), is the set
of points y ∈ X such that there exists a path from x to y.

C(x)

x y

Note that the relation x ∼ y if there exists a path from x to y is an equivalence relation; we can think of
the path-components of X as its equivalence classes. In particular, the different path-components form a
partition of X.

Fact 8.17 — For any space X and basepoint x0 ∈ X, we have π1(X,x0) ∼= π1(C(x0), x0).

This is essentially because any loop in X based at x0 must in fact be a loop in C(x0) (if a loop starting at
x0 passes through a point y, then there must exist a path from x0 to y), and two such loops are homotopic
in X if and only if they are homotopic in C(x0) (since all ‘intermediate’ loops in a homotopy in X must lie
in C(x0) for the same reason).
This means when we’re considering π1(X,x0) we only need to focus on the path-component of x0 — and
if x0 and x1 are two points in different path-components, then π1(X,x0) and π1(X,x1) don’t interact with
each other.
On the other hand, if x0 and x1 are in the same path-component, it turns out the corresponding groups are
isomorphic.

Lemma 8.18
Let X be a space, and let x0 and x1 be points in X. Suppose there exists a path h from x0 to x1. Then
the map βh:π1(X,x0)→ π1(X,x1) sending [γ] 7→ [h · γ · h] is a group isomorphism.

x0

γ

x1

h
x0

γ

x1

h

h

Proof. First note that for any [γ1], [γ2] ∈ π1(X,x0) we have

[(h · γ1 · h) · (h · γ2 · h)] = [h · γ1 · (h · h) · γ2 · h] = [h · (γ1 · γ2) · h],
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which means that βh is a group homomorphism. Meanwhile the map βh:π1(X,x1) → π1(X,x0) sending
[γ] 7→ [h · γ · h] (where γ is now a loop based at x1) is its inverse, so it is in fact a group isomorphism.

In particular, if X is path-connected, then the fundamental group π1(X,x0) does not depend on the choice
of basepoint (up to isomorphism).

Definition 8.19. A space X is simply-connected if X is path-connected and π1(X) is trivial.

§8.2 Some Examples

Now we’ll calculate the fundamental group of a few spaces. First we’ll see a very simple example.

Example 8.20
We have π1(Rn) = {1}— any two loops in Rn (with fixed basepoint) are homotopic, so there is only one
equivalence class of loops. For the same reason, for any convex subset C ⊆ Rn we have π1(C) = {1}.

Now we’ll see a few less trivial examples — we’ll find the fundamental group of the sphere Sn for each n.

§8.2.1 Fundamental Group of a Sphere

Theorem 8.21
For all n ≥ 2, we have π1(Sn) = {1}.

In order to prove this, fix a basepoint x0; we need to show that every loop f : [0, 1] → Sn is homotopic to
the constant loop cx0 . Intuitively, this makes sense as we can ‘squish’ any loop to a single point; however,
the details are fairly difficult. (Note the assumption that n ≥ 2 — this isn’t true for the circle S1, where a
loop winding around the circle cannot be squished down to a point.)

x0 x0 x0

The first idea in the proof is that if there is some point x not in our path f , then the proof is easy — we
can then think of f as a loop in Sn \ {x}, and we’ve seen (in Example 2.14) that Sn \ {x} is homeomorphic
to Rn via the stereographic projection at x.
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x0

x

But Rn is simply connected, so every loop in Rn is homotopic to the trivial loop. This means f is homotopic
to cx0 , as desired.
So in the rest of the proof, our goal will essentially be to show that any path f is homotopic to one which
misses some point. (Intuitively, we can think of homotopy as ‘wiggling’ our path around; so we’re trying to
wiggle our path to ensure it misses a point.)
Define two open sets B0 and B1 by taking two opposite hemispheres and enlarging them a bit, so that we
have x0 ∈ B0 ∩B1, Sn = B0 ∪B1, and B0 ∩B1 ∼= S1 × (−ε, ε) for ε > 0.

x0
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