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§1 Introduction

In 18.701, we saw the concept of a group action, and how group actions relate to the symmetry of the set
being acted on. In representation theory, we’ll look at how a group can act on a vector space — combining
ideas of both symmetry and linearity.

Another main topic we’ll see is ring theory, where we can both add and multiply in abstract spaces.

We'll also see Galois theory, and how it relates to the symmetries of the solutions to a polynomial equation.
For example, we're familiar with the quadratic formula

. —b++vb? —4ac

2a

In this formula, we have a + — there’s two possible solutions, and when we’re trying to write one down, we
have this ambiguity around which square root to extract. We can think of this as a symmetry on the set of
solutions.

In this specific situation, the symmetry isn’t very rich — changing the sign of the square root just swaps
the roots. But in equations of higher degree, this is more interesting. We’ll see that symmetries (such as
swapping the two square roots in the quadratic case) control the existence of a formula for the roots of the
polynomial, as well as what such a formula can look like (when it exists).
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§2 Group Representations

§2.1 Definitions

Definition 2.1. Let G be a group. Then a complex representation of G of dimension n is a homomor-
phism R : G — GL,(C).

We can define a representation over any field F' similarly. But in this class, we’ll mostly only study complex
representations of finite groups.

Note that matrices act on column vectors — a matrix A describes a linear transformation from C™ to itself
sending v — Av. If A € GL,(C), then this linear transformation is bijective. So GL,(C) is the group of
linear automorphisms of C. This means a dimension-n representation is the same as a linear action of G on
C™ (an action of G where each element acts by a linear map on C").

To write down a representation R, for each g € G we can define an invertible matrix R,. The condition
that R is a homomorphism means we must have

Ry = Ry Ry,
for all g,h € G, and R; must be the identity matrix.

Equivalently, we could write down R by thinking of the elements R, as linear maps on C™" rather than
matrices — for each g € G and each v € C", we can define the vector Ry(v) € C". For each g, the map
R,(v) should be linear in v, meaning that

Rg(v1 +v2) = Rg(v1) + Ry(v2),
Ry(cv) = cRy(v).
Meanwhile, the different maps R, should be compatible with composition, meaning that for all v,

Rgn(v) = Ry(Rn(v))-

Example 2.2

Some examples of representations are the following:
1. Any group has a trivial 1-dimensional representation, where R, = 1 for all g.
2. S, has the 1-dimensional sign representation, where R, = 1 if ¢ is even, and —1 if ¢ is odd.

3. S, has a n-dimensional representation: the permutation representation where we send a permu-
tation to the corresponding permutation matrix. For example, if o = (123) then

Ry, =

O = O
= O O

1
0
0
4. 7Z/mZ has a 2-dimensional real representation, as the group of rotational symmetries of a regular

m-~gon. In this representation, for each residue @ (used to denote a mod m), we map

cos2ma/m —sin2mwa/m
sin2ma/m  cos2mwa/m

Note that if G is given by generators x1, ..., x, and some relations, then to define a representation of G,
it’s enough to specify the images 1 — 71, ..., Tn = Yn, and make sure that the ~; satisfy all the same
relations as the z;.
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Example 2.3

Since Z/mZ = (x | 2™ = 1) (in other words, Z/mZ is generated by 1, with the relation m -1 = 0), in
order to define a representation of Z/mZ, it’s enough to define the image of 1, and check that it has
order dividing m. In our above 2-dimensional representation, we have

cos2m/m —sin2mw/m

L A= sin27/m  cos2m/m

)

and we can check that A™ = 1.

Example 2.4

Let D,, be the dihedral group, the group of symmetries of a regular n-gon (which are all rotations and
reflections). Then D,, is generated by a rotation and reflection:

D, =(r,s|rm=1srs" ! =r71).
Then D, has a 2-dimensional real representation where

cos2m/m —sin2mw/m and s s 0
sin2w/m  cos2mw/m 0 —1|°

§2.1.1 A Basis-Free Definition

As we saw when studying linear algebra in 18.701, we often want to be able to do things that don’t depend
on coordinates. If we have a matrix representation R, then by looking at the same linear transformations
in a different basis of C", we get a new matrix representation — if P is the change of basis matrix, then our
new representation has

/ -1
R, =P " R4P
for all g. Then we say R and R’ are conjugate representations. Since these two representations are essentially

the same representation, just in different coordinates, we only want to study representations up to conjugacy
— or equivalently, we actually want to study the conjugacy classes of representations.

In fact, we can give the definition of a representation without referencing any matrices. Recall that for any
vector space V', the notation GL(V') denotes the group of linear automorphisms (or in other words, bijective
linear transformations) of V.

Definition 2.5. A linear representation of G on a vector space V is a homomorphism p : G — GL(V).

Given a linear representation, we can choose a basis for V' in order to turn it into a matrix representation.

We still want to keep track of whether two representations are really the same. If we have a representation
p: G — V and a vector space W = V, of course there’s a representation p’ : G — W as well, which is
essentially the same as p — if I is the isomorphism V' — W, then we can intertwine the actions of I and p,
defining p’ such that

Pg(I(0)) = I(pg(v)).

We use this as the definition of when two representations are isomorphic.
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Definition 2.6. Two linear representations p : G — GL(V) and p' : G — GL(W) are isomorphic if
there exists an isomorphism I : V — W such that

pg(I(v)) = I(pg(v))

forallv € V and all g € G.

Studying linear representations up to isomorphism is the same as studying matrix representations up to
conjugacy; we then want to describe representations up to isomorphism.

§2.2 Characters

When studying representations, we’d like the properties we study to not depend on the choice of basis. The
determinant and trace of a matrix are two such properties, which motivates the definition of the character.

Definition 2.7. The character of a representation R is the function on G where
xr(g) = tr(Ry).

We can define character in the basis-free definition as well. This works because trace is conjugation-invariant,

meaning that
tr(A) = tr(P1AP).

So although we defined the character using a matrix, the characters of conjugate matrix representations
coincide — so the character of a linear representation (when we don’t have a fixed basis) is still well-defined.

Proposition 2.8

The character x, is constant on the conjugacy classes of G — for all g and z, we have
Xp(zgz ™) = X,(9)-

This follows directly from the fact that trace is conjugation-invariant — p(zgz~') = p(z)p(g)p(z)~! is
conjugate to p(g).

If a function is fixed on each conjugacy class of G, then we call it a class function — so x, is a class function
for any representation p.

Example 2.9
Find the character of the permutation representation p : S5 — C3.

Solution. It suffices to take one representative from each conjugacy class, and the conjugacy classes of S,
are dependent on the cycle decomposition pattern.

For a permutation matrix, the entries are all 0 or 1, and 1’s on the diagonal correspond to fixed points. So
the trace of a permutation matrix is just the number of fixed points of the permutation, and we get the
following character table:

(1) | (12) | (123)
31 1] 0
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For example,
010
(12) —» |1 0 0],
0 01

which has trace 1 — the one fixed point is 3.

Remark 2.10. If the dimension of p is 1, then the character is the same as the representation — so
one-dimensional characters are exactly homomorphisms x : G — C* (meaning x(gh) = x(g)x(h)). But
in higher dimensions, characters are not necessarily homomorphisms.

Example 2.11

Find the one-dimensional representations of Z/nZ.

Solution. We saw that a 1-dimensional representation of Z/nZ is determined by the image of 1, which must

be a nth root of unity. Let this root of unity be

2ta . . 2ma 2mia
Ca = coOs — +isin = exp .
n n
Then the representation is
2miax

T — (;, =exp p—

where T denotes z mod n.

§2.3 Building Blocks of Representations

We’ll now see how to build representations from smaller ones.

§2.3.1 The Direct Sum

Definition 2.12. If ¢ : G — GL(U) and n : G — GL(WW) are representations of G, then their direct
sum p = 1) @ n is the representation on the space V =U @& W where

pg(u, w) = (g (w), 19 (w))-

In terms of matrices, for all g, the matrix of p, is the block-diagonal matrix

_ ¥ | O

Proposition 2.13
It p=1 @®mn, then x, = xy + Xz-

Proof. This is clear from writing all representations in terms of matrices — since p is a block-diagonal matrix

with blocks % and n, the diagonal entries of p are exactly the diagonal entries of ¢ and those of 7.

O
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Question 2.14. Given a representation, can we split it as the sum of two smaller representations?

Example 2.15

Consider the 2-dimensional representation of Z/2Z where

= 0 1
1»—>[1 0].

(This can be thought of as the permutation representation of Ss.)

Solution. This is not a block-diagonal matrix as written. But we can take a new basis, with v; = (1,1)" and
vy = (1,—1)%. Then our matrix would be written as

b4

which ¢s block-diagonal. So this representation does split as a sum. O

Remark 2.16. A bit more generally, if G = Z/mZ and p is a representation of dimension n, then it’s
determined by one matrix A = p(1). Then the question of decomposing p into a direct sum corresponds
to diagonalization — if we can diagonalize A, then we’ve found an isomorphism between p and a sum

P=UV1® Dy,

where the 1); are 1-dimensional representations.

But A" = 1,, (where 1,, denotes the identity matrix of dimension n), and it’s possible to show that this
means A cannot have any Jordan blocks of size greater than 1. So it follows that A can necessarily be
diagonalized.

This means every representation of Z/mZ is a sum of 1-dimensional representations p = ¢y @ - - - @ ¥y,
where v; is the representation sending 1 to the eigenvalue )\; (which must be a mth root of unity). Our
above example is a special case of this.

§2.3.2 Irreducible Representations
The building blocks of representations will be the irreducible representations.

Definition 2.17. A G-invariant subspace is a subspace W C V which is preserved by GG, meaning that
pg sends W to itself for all g € G.

Definition 2.18. A representation p : G — GL(V) is irreducible if the only G-invariant subspaces of V
are {0} and V itself.

If we have a G-invariant subspace W C V, then we can consider the action of G on W instead — this gives
a smaller representation inside the original representation p. (A priori this gives a map G — End(W), but
each of the linear maps in End(W) we use must be invertible — p(g~') and p(g) are inverses for all g — so
we actually get a map G — Aut(W) = GL(W), and therefore a representation on W.)
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Of course, if p : G — GL(V) can be written as a direct sum p = ¢ & n (where ¢ acts on U and 7 on W,
with V' = U @ W), then p is not irreducible — the set of pairs (u,0) in V' (which is isomorphic to U) is a
G-invariant subspace. So irreducible representations can’t be split as a direct sum of representations. (It’s
not clear whether the converse is true, but as we’ll see later, for complex representations of finite groups,
the converse is true!)

All 1-dimensional representations are trivially irreducible; but there are usually other irreducible represen-
tations as well.

Example 2.19

Consider the representation of S3 acting on the space
V={(z,y,2) €C3 |z +y+2=0}

by permuting coordinates. Show that this representation is irreducible.

Proof. Suppose W C V is a nonzero subspace of V. Pick a nonzero vector v = (x,y,2) € W; we want to
then use the permutations to generate all of V.

Two coordinates must be different (otherwise z = y = z = 0), so without loss of generality, z # y. Then
(12)v and v must be in W, so
(12v—v=(y —z,z—y,0) € W.

By scaling, we get that (1,—1,0) € W. Now we can permute the coordinates to get that (1,0,—1) € W
as well. But (1,—1,0) and (1,0, —1) span V, so we must have W = V. This means V has no Ss-invariant
subspaces (except for {0} and itself), so this representation is irreducible. O

This argument generalizes — for any n, we can consider the permutation representation of S,, acting on the
set V' C C" consisting of points with 1 + - - - + x,, = 0. The same argument shows that this representation
is always irreducible.

Remark 2.20. In the case n = 3, we can think of this argument geometrically — imagine drawing an
equilateral triangle, for example with vertices at (2,—1,—1), (=1,2,—1), and (—1,—1,2). Then S; is
the set of symmetries of this equilateral triangle. By considering the reflections, we can see that there
are no non-obvious subspaces of V fixed by all three reflections.

Example 2.21

Consider the same set V' as a representation of Z/3Z = {1, (123), (132)}, instead of the entire group Ss.
Is this representation irreducible?

Proof. The answer is no. We have to be careful if thinking geometrically — geometrically, the elements of
Z/3Z correspond to rotations of the triangle, and it may appear that there are no subspaces of the plane
fixed by a rotation. But this only works over reals. Over reals, the representation really is irreducible. But
it can’t be irreducible as a complex representation — we’ve already seen the general statement that every
representation of a cyclic group is the sum of one-dimensional representations.

By taking two basis vectors for the plane V' (which are perpendicular and have the same length), this

representation is isomorphic to one on C?, where

- cos2m/3 —sin2mw/3
sin27/3  cos2mw/3 |’
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Let a = —% and 8 = @ Then we have

b 2l -em ]

which means (1,i)! is an eigenvector of our linear map. So if we take the basis v; = (1,4)! and vy = (1, —i)*
for C? instead, then we get the matrix

)

a— Pi 0
0 o+ Bi

which gives a decomposition of p as a direct sum. O

§2.3.3 Maschke’s Theorem
Question 2.22. Can any reducible representation be split as a direct sum of smaller representations?

Let p : G — GL(V) be a representation which is not irreducible. Then there is a G-invariant subspace
W c V. Now if we pick a basis v1, ..., v, for V, such that vy, ..., v, form a basis for W, then all elements
of G act by matrices of the form

% *

0 Mg

(where the top-left block is m x m), since all elements of W must be sent to elements of .

So we can write down the maps ¢ : G — GL(W) and n : G — GL(V/W), corresponding to the blocks v
and 74. These are homomorphisms — we have g, = g0, and ng, = 1y, (note that we’re ignoring the
“junk” in the top-right corner, since in V/W we treat all elements of W as 0).

g —

Then we can write p = 1) @ n if and only if the “junk” is 0 (the part denoted ). The values of * may depend
on our choice of basis, but it’s actually possible to phrase this without referencing a basis — * is 0 if and
only if the vector space U = Span(vp+1,...,0,) is G-invariant as well. So it’s necessary to choose basis
vectors whose span U is a G-invariant subspace (different choices of v;,41, ..., v, may provide different
spans), but given U, which basis of U we take isn’t relevant. So we have the following conclusion:

Lemma 2.23

We can decompose p = 1 @ n if and only if W has a complement (a subspace U with V= W & U)
which is G-invariant as well.

So to see whether we can split our representation as a direct sum, we want to see whether an invariant
complement exists.

Example 2.24 (A non-example)

The group Z has the 2-dimensional complex representation (acting on V' = C?) given by

11
1+— 0 1] ,
which means )
0 1 n
0 1|°

The span W of (1,0)! is invariant, and the representation is trivial on V/W. But our representation is
not isomorphic to the sum of two trivial ones.
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So there exist situations where there may be an invariant subspace which does not have any invariant
complement. But it turns out that this never happens for complex representations of finite groups — we’ll
show that there always exists an invariant complement.

In order to prove this, we’ll use Hermitian forms.

Theorem 2.25

If p: G — GL(V) is a complex representation of a finite group, then V has a G-invariant positive
Hermitian form.

Recall that a Hermitian form is a pairing V x V' — C, written as (—, —), which is linear in the first variable

and satisfies (w,v) = (w,v). Then (v,v) is always real; we say the Hermitian form is positive if (v,v) > 0
for all v # 0.

Meanwhile, we say the Hermitian form is G-invariant if (gv, gw) = (v,w) for all g € G and all v,w € V —
so the G-action doesn’t affect the pairing of any two elements. (Here gv denotes p4(v).)

Proof. Start with any positive Hermitian form (—, —)’. Now use the averaging trick — take the form
(v,w) =Y (gv, gw)".
geG

It’s clear that this is a positive Hermitian form. Meanwhile, for any h € G, we have

(hv, hw) = Z«gh)vv (gh)w>/ = Z(gv,gw)/ = (v, w),

geG geqG

since for a fixed h, as g runs over the entire group, so does gh. So (—, —) is G-invariant as well. O

Theorem 2.26

If p: G — GL(V) is a complex (finite-dimensional) representation with a G-invariant positive Hermitian
form, then every G-invariant subspace has an invariant complement.

Proof. If W C V is a subspace, then we saw in 18.701 that

Wt ={v]| (v,w) =0 for all w € W}
is a complement subspace. Now if (—, —) is G-invariant, and W is also G-invariant, then we claim W+ is
G-invariant as well — for any g € G, we have (gv, gw) = 0 if and only if (v,w) = 0, so then gv € (gW)=+

if and only if v € Wt. But ¢gW = W, so gv € W if and only if v € W, which means W+ is indeed
G-invariant. ]

Combining these two theorems, we get the following result.

Theorem 2.27 (Maschke's Theorem)

Every complex representation of a finite group is a sum of irreducible representations.

This is sometimes referred to as complete reducibility.
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Proof. Induct on dimension. For the base case, all one-dimensional representations are irreducible. Now
suppose p : G — GL(V) is a representation. If it’s irreducible then we’re done; otherwise we can pick an
invariant subspace W, which is neither 0 nor V. Let (—, —) be an invariant Hermitian form, so V.= W oW+,

If we let n: G — GL(W) and v : G — GL(W), then we have

p=mndP.

But these have strictly smaller dimension than p, so by the inductive hypothesis, they are the sum of
irreducible representations. So p is the sum of irreducibles as well. 0

Remark 2.28. We need positivity in order to get that W+ is a complement subspace of W. But we
also use positivity to guarantee that the new form we get when averaging isn’t just 0.

The averaging trick is useful in many other contexts as well: in 18.701, we used it to show that a finite
group of isometries of R™ has a fixed point (by taking the orbit of a point, and the center of mass of that
orbit).

We can also use it, given a representation ¢ : G — GL(W) and a vector v € W, to produce an invariant

vector
Z g (v).

geG

1
|Gl

This vector is invariant because if we act on it by h, then we get

Un Y Pe(v) = Y Yng(v),

geG geqG

which is the same sum. (This idea will again be useful later.)
Remark 2.29. The existence of an invariant positive Hermitian form is equivalent to saying that every

representation of a finite group is conjugate to a unitary representation — one where all the elements
pg are in Up, C GL,(C), the set of matrices p; € GL,(C) with pgpp = 1.

§2.4 Main Theorem

We'll see that the character of a representation stores quite a lot of information — in fact, it’s possible to
recover the representation from looking at its character! Before we state the theorem that allows us to do
this, we’ll start by looking at a few useful properties of these characters.

§2.4.1 More on Characters

We can prove a few basic properties of characters.

Proposition 2.30
If p: G — GL(V) is a complex representation, then:

(a) xp(g) is a sum of roots of unity for all g.

(d) Xp(g7) = x,(g) for all g.

(c) X, is the character of another representation of the same dimension.
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Proof. For (a), the trace of a matrix is the sum of its eigenvalues (with multiplicity). Since p(g) must have
finite order, all eigenvalues are roots of unity.

For (b), we have

Xp(g™ ") =trp(g)~"

~1 are the inverses of those of p(g), and (~! = ( for any root of unity .

But the eigenvalues of p(g)

For (c), given a representation p acting on V', we can define an action of G on the dual space V*, the set of
all linear maps from V to C. If we write f(v) = (f,v) as a pairing, then take

(g (f),0) = (f,pg=1(v)).

In other words, we take a representation of G acting on V* such that for all v € V and f € V*, we have
(fsv) = {py(f); pg(v)).

For a matrix presentation of the same construction, fix a basis to get a matrix representation R : G —
GL,(C). Then take Ry = Rf]_l. This is a valid representation because

(AB))™ = (B'A")™ = (49~ (BY) ™.

Since tr A' = tr A, we have

xr-(9) = xr(9™") = xr(9)
for all g, as desired. O

§2.4.2 The Theorem

Theorem 2.31
Let G be a finite group. Then:

(a) If p1, ..., pp is a full list of irreducible representations (up to isomorphism), then their characters
X1, -- -, Xn form a basis of the space of class functions on G.

(b) This basis is orthonormal with respect to the Hermitian pairing on the space of class functions

defined as "
(fi, f2) = 7= Y, f1(9) fa(g).-
(c) If the representations have dimensions dy, ..., d,, then

di+---+d, =G,

and d; divides |G| for each i.
We will prove this later; first we will look at a few implications.

Corollary 2.32

The isomorphism class of a representation is determined by its character.

Proof. By Maschke’s Theorem, we know that every representation can be decomposed as a sum of irre-

ducibles, as
p=EPu"
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(where ¢™ is the direct sum of n copies of ¢). But then
Xp = Z i Xy »
i
which means the n; are the coefficients of the decomposition of x, in the basis given by the 1); — so the n;

are uniquely determined from . O

Corollary 2.33

The number of irreducible representations is the number of conjugacy classes of G.

Proof. Both are the dimension of the space of class functions. O

§2.4.3 Examples of Characters

The information about characters can be put into a character table, where columns correspond to conjugacy
classes and rows to irreducible representations.

Example 2.34
Find the character table of Z/4Z.

Solution. Since Z/4Z is an abelian group, every conjugacy class has one element. We saw earlier that all
irreducible representations of Z/nZ are one-dimensional, and are of the form p, : T — e2miaz/n Qo we get
the following table:

jojt]2][3]
xo |l 1] 1 1 1
xe||[1]—-1] 1 | -1
xt ||| 2 | —1| —12
x3 || 1| —¢|—=1| ¢
Here x, is the character of p,. O

Note that x,(1) is always dim p, where 1 is the identity element of G — since p(1) is the identity matrix.

If x and ' are 1-dimensional characters, then so is xx’. (In general, the product of two characters is still
a character, but it usually won’t be irreducible.) This means we can check orthogonality quite directly for
one-dimensional characters:

Example 2.35

One-dimensional characters are orthogonal.

Proof. 1f x and x' are one-dimensional characters, then

D> X (9x(g) = D X' (9x(g™).

geG geG

Let ¥(g) = x'(9)x(g), so ¥ = 1 if and only if y = x’. Then the proof reduces to the following claim:
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Claim — For any one-dimensional character, we have

> (g) = {‘OG’ v=?

e otherwise.

Proof. To prove this, if ¢ is not trivial, we can let the sum be s, and pick some gy such that 1(gg) = A # 1.

Then
As =Y P(go)(g) = D ¢(gog) = Y ¥(h) = s,
geG geG heG
since multiplication by go permutes the group. So As = s, which means s = 0. |
Now since v is a 1-dimensional character, we’re done. O

Remark 2.36. If the group is Z/nZ, this claim states that the sum of all nth roots of unity is 0, and
our proof corresponds to rotating the regular n-gon.

Corollary 2.37

If G is abelian, every irreducible representation is one-dimensional.

There are many ways to prove this — some which use the theorem, and some which don’t.

Proof 1. Use Theorem —if dy, ..., d, are the dimensions of the irreducible representations, then we
must have n = |G|, since G has n conjugacy classes. But then we know

3 +dj+ - +d%=n.
Since the d; are positive integers, they must all be 1. O

Sketch of Proof 2. We've already seen that this is true for cyclic groups. Later in this course, we’ll see that
every finite abelian group is a product of cyclic groups, which can be used to deduce this result as well. [

Proof 3. Let p be a representation; then the elements p, must all commute, since G is abelian.

Claim — If we have a collection of diagonalizable matrices which commute, then there is a basis that
diagonalizes all of them.

Proof. If AB = BA and v is a A-eigenvector of A, then
A(Bv) = BAv = BA\v = ABv,

so Bv is a A-eigenvector of A as well. Then the A-eigenspace of A for each A is B-invariant (and is invariant
under all matrices in the collection for the same reason). We can then split the vector space as a direct sum
of the eigenspaces of A. This automatically diagonalizes A (as it is a scalar matrix on each eigenspace);
meanwhile, since these eigenspaces are invariant under all other matrices, it then suffices to diagonalize our
matrices (or rather, their corresponding linear operators) on each of the smaller space, which we can do by
induction on the number of matrices. |

In our situation, this means we can diagonalize all the p, simultaneously, which means p is the direct sum
of one-dimensional representations. O
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Example 2.38
Compute the character table of Ss.

Solution. We've already seen 3 irreducible representations: 1, sgn, and the representation 7 which permutes
coordinates on V' = {(z1,z2,x3) | 1 + 2 + 3 = 0}. But there are three conjugacy classes — 1, (12), and
(123) — so these must be all the irreducible representations. So we get the following table:

| 1](12) | (123) |
1L [1] 1 1
sgn || 1| —1 1
T 2] 0 [ -1

In order to compute x,, we used the fact that C> = V @ Span((1, 1,1)!), so the permutation representation
of S3 is 7@ 1. This means the character of 7 is one less than the character of the permutation representation
(which we saw is the number of fixed points).

We can check that these rows are orthonormal (note that the conjugacy classes have 1, 3, and 2 elements,
respectively): we have

1
() =52-2-14+(=1)-(-1)-2) =1,
for example, and

<Sgn,T>:é(2~1+(—1)-1-2):().

We can check other pairs similarly. O

Example 2.39
Compute the character table of Sy.

Solution. There are five conjugacy classes (corresponding to the cycle types), so there are five irreducible
representations. We know that 1, sgn, 7, and sgn -7 are irreducible representations, so there must be one
more irreducible representation p.

| (1) | (12) | (12)(34) | (123) | (1234) |

1 1 1 1 1 1

sgn 1 —1 1 1 —1

T 3 1 -1 0 -1

sgn-t || 3 -1 -1 0 1
p 2 0 2 -1

To fill in the last row, we can find the dimension of p using > d% = 24, which gives x,(1) = 2. Then we can
compute the rest of the character by using the orthogonality relations

<Xpa X1 — ngn> = <Xpa Xr — ngn7'> =0.

It is also possible to construct p explicitly using the fact that S4/K = S3, where K is the Klein 4-group.
More precisely, this gives a homomorphism Sy — S3, and the representation 7 of S5 gives a homomorphism
S3 — GLy(C); composing these two homomorphisms produces p. O

Now we will prove the theorem.
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§2.4.4 Schur’s Lemma

Definition 2.40. Let p: G — GL(V) and ¢ : G — GL(W) be (not necessarily irreducible) representa-
tions. Then we define

Homg(p,¥) :=={f :V — W | f is a linear map such that f(pg(v)) = ¥q(f(v))}.

If f € Homg(p,v) we say f is G-equivariant.

We may also write this as Homg(V, W). In particular, Homg(p, p) = Endg(p) is the set of G-equivariant
endomorphisms (where f(pg(v)) = pg(f(v)) for all g).

Theorem 2.41 (Schur's Lemma)
Let p: G — GL(V) and ¢ : G — GL(W) be irreducible representations. Then

0 p2Evy

dim Homg (p, ¥) = {1 R

If p = ¢, then
Endg(p) =C-id

(meaning any G-equivariant endomorphism is scalar).

The first statement means that if p 2 v, then the only G-equivariant homomorphism is the zero map; the
second means that if p = ¢, the only G-equivariant maps are the isomorphism we already know between the
two representations, and its scalar multiples — equivalently, Endg(p) = C - Id (meaning any G-equivariant
endomorphism is scalar).

Proof. Suppose f:V — W is a nonzero G-equivariant map. Then im(f) is a G-invariant subspace of W, as

Ye(f(v)) = f(pg(v)) € im(f).

But im(f) # 0, and 1) is irreducible. So then we must have im(f) = W — meaning f is surjective.

Meanwhile, ker(f) is a G-invariant subspace of V', as if f(v) = 0, then

f(/)g(v)) = wg(f(v)) = 1/19(0) =0.
But since f is nonzero, ker(f) # V', so we must have ker(f) = 0 — meaning f is injective.
So f is an isomorphism, which means p = .

Now suppose p = . Then we may assume p = 1), so f is a map from V to itself. Let f have eigenvalue A.
Then f — A1Id must be G-equivariant as well. But since its kernel is nonzero (it contains an eigenvector of
A), it must be the entire vector space — so f — AId = 0, and f is scalar. O

Remark 2.42. The first case — when p # 1) — works for any field of coefficients, since we didn’t use
anything specific to C. But the second doesn’t — we used the existence of an eigenvalue, which isn’t
necessarily true over R. (In fact, there exist irreducible representations over R for which the second
statement isn’t true, and there are more G-equivariant endomorphisms.)
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Corollary 2.43
Let p: G — GL(V) be a representation. Let py, ..., p, be a list of all irreducible representations. Then

n
p= P,
=1

where for each 1,
d; = dim Homg (p;, p).

Proof. From Maschke’s Theorem, we know p can be written in this form for some d;. But we have

Home (pr, @ o) = @ Home (pi, pi)™ = C%,

since all summands with ¢ # & are 0. O

Remark 2.44. In this proof, we used the fact that

HomG(Pﬂ/fl ® ¢2> = HOIIIG(p, wl) D HOmG’(p,Tng).

To see why this is true, suppose p, 11, and ¥y act on V, Wi, and Ws, respectively. Then 11 @ 1) acts
on Wy @ Wy, the space (wq,ws) with wy € Wi and wy € Wa. An element of Homg(p, 11 @ 102) is then
a linear map from V to Wy @& W5 that is G-equivariant. But specifying a linear map V' — Wy & Wy is
the same as specifying a linear map V' — W (for the first coordinate) and V' — Wy (for the second),
and since G acts separately on the two spaces W7 and Wa, our linear map is G-equivariant if and only
if the two components are.

§2.4.5 Proof of Orthonormality

We can rewrite Schur’s Lemma in matrices. Choose a basis for V' and W, so we can write a linear map
V — W as a m X n matrix, where n = dimV and m = dim W, mapping v € V — Av € W.

Let our representations p and ¢ have matrix representations R : G — GL,(C) and S : G — GL,,(C). Then
A € Maty,xn(C) corresponds to f € Homg(V, W) if and only if

ARy, = SyA for all g € G.

We can rewrite this as
-1
A=S,AR;".
The space M = Mat,,x,(C) is a vector space, and we can make it a representation of G, as
. -1
Cy: A SGAR .
We can check
Con(A) = Sgn AR} = SySnAR; 'R = CyCh(A),
so this is a valid representation. Then Homg(V, W) is the space of invariant vectors in that representation
(where by vectors, we here mean matrices in Mat,,x,(C)).

We can describe this construction without matrices as well: take
M = Homc(V, W)

(the space of all homomorphisms V' — W, which corresponds exactly to Mat,,x,(C)). Then our represen-
tation is

Vg B ngpgl.
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Proposition 2.45
For the representation + above, we have
Xy = Xy Xp-

The proposition quickly reduces to a statement about matrices:

Lemma 2.46

Let A and B be n x n and m x m matrices. Consider the map from Mat,,x,(C) to itself defined as
AR B:E— BFEA.

Then we have
tr(A® B) = tr(A) - tr(B).

Proof. The space of matrices has a basis consisting of the matrices E;; with a 1 at (i, ) and 0’s everywhere
else. But we can check that BE;;A has bja;; in position (i,7). So the trace of A ® B is the sum of the
diagonal entries in the basis of E;;, which is

n

Z Z biiajj = Z bii Z Gj; = tI‘(B) . tI‘(A),
i=17=1 =1 7=1
as desired. O

Proof of Proposition . Using the above lemma, we have

Xy (9) = tr(pg—1 @ g) = tr(pg—1) - tr(vg) = xp(g7") - X (9)-

We saw earlier that Xp(g_l) = x(9), so

X~(9) = Xp(9) - xv(9):

as desired. 0
This is enough to prove that the x; are orthonormal:

Proof of orthonormality. Let p and v be irreducible representations, and consider the expression

{(Xv> Xp) |G| Z Xo(g
geG
We saw a representation v whose character is exactly this sum, so
(X Xp) X~ ( g
w |G| 2 s |G| 2.

geG geqG

(using the fact that tr(A + B) = tr A + tr B).

But this sum is the averaging operator, so applying it to any vector gives a G-invariant vector: we saw

earlier that
X = g = X
geG geG geG
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In ~, vectors are actually homomorphisms V' — W, and we saw that the G-invariant vectors are exactly
Homg(V, W) — which we described using Schur’s Lemma.

So if p 2 1, then our sum must map every vector to 0, since 0 is the only G-invariant vector (as by Schur’s
Lemma, Homg(V, W) only contains 0). Therefore the sum is the 0 matrix, which has trace 0.

Meanwhile, note that if v is G-invariant, then

|G‘Z79 |G‘Zv—v

geG geG

If p = 1), then there is exactly one invariant vector up to scaling (since the invariant vectors are exactly
scalar homomorphisms, again by Schur’s Lemma).
Now choose a basis (for the space of homomorphisms) where that invariant vector is the first element of the
basis.
Then our operator |—CITV| >_ g sends that vector to itself, and everything else to a scalar multiple of that vector

(because they are sent to some invariant vector, and these are the only invariant vectors). So in this basis,
it must be of the form

1 % -+ %
00 --- 0
00 0
which means its trace is 1. O

Corollary 2.47
Any representation p : G — GL(V') can be split as a sum of irreducibles as

p= Do,

where for each 1,
n; = <Xp>Xi>'

Proof. We know p can be written in this form for some n;, by Maschke’s Theorem. But then

Xp = Z niXia

which means
Xan] an Xzan
by orthonormality. O

Unlike the previous formula (using Schur’s Lemma), this is a very concrete expression that we can evaluate.

Example 2.48

Describe the dimension of the space of invariant vectors in a representation p.

Solution. This dimension is the multiplicity n; of the trivial representation in the above decomposition. But
we have

<Xp7X1 Z Xp

gEG
since x1(g) =1 for all g. O
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Corollary 2.49
We have

<p,p> :anz

In particular, p is irreducible if and only if (p, p) = 1.

Proof. Write p = @ p;'*. Then we can expand
(Xps Xp) = D2 D mamj(xiy Xg) = )_ni
i

by orthonormality. O

§2.4.6 The Regular Representation

We’ve shown that the characters y; are orthonormal, which means they are linearly independent. But to
show that they form a basis, we also need to show that they span the space of class functions.

To do this (and prove the sum of squares formula), we’ll introduce the regular representation.

If G acts on a finite set X, then we can form a matrix representation of G of dimension n = dim(X),
where G acts by permutation matrices: every element g € GG is mapped to the permutation matrix of how
it permutes the elements of X.

For example, S,, acts on the set of n elements, which we used to find a n-dimensional representation of S,,.

But any group acts on itself by left multiplication. So we can take X to be G itself.

Definition 2.50. Let V be a vector space with basis v, indexed by elements h € G. Then the regular
representation of G is the representation p : G — GL(V') such that

pg(vn) = vgn

for all g and h.

So in the regular representation, g € GG is sent to the permutation matrix of how left multiplication by g
permutes the elements of G.

Example 2.51
Find the regular representation of Z/3.

Solution. Adding 1 corresponds to the permutation (123), so then

0 01
I— |1 0 0
010
Since 1 generates the group, this suffices to determine the representation. O
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Example 2.52

Find the regular representation of Ss.

Solution. A transposition g = (12) swaps pairs of permutations, so if we order the rows and columns so that
permutations swapped by (12) are consecutive, then it acts as a block-diagonal matrix with three blocks of

the form
01
1 0]

We can find the matrices corresponding to the other permutations similarly. O

The regular representation has exactly one invariant vector up to scaling — the sum of all basis elements.
(If 3~ apvy, is an invariant vector, then we have aj, = ag4p, for all g and h, which means all a;, must be equal.)

Remark 2.53. A vector in V has the form

Z apvp.

heG

So we can also think of such vectors as C-valued functions on G, which map h — ay.

Now use p to denote the regular representation; we want to describe the character and decomposition of p.

Lemma 2.54

The character of the regular representation is

el — {‘G’ 9=1

0 otherwise.

Proof. The trace of a permutation matrix is its number of fixed points. But h — gh has |G| fixed points if
g = 1, and no fixed points otherwise: more explicitly, if A were a fixed point under p,, then

vp = pg(vp) = vgn = h = gh,

which means g = 1. O

So we can decompose p into a sum of irreducibles pretty easily:

Lemma 2.55
We have

p= P,

where d; = dim p; for each i.

Proof. We know p = @ p;'*, where

1 —_— 1
ni = (i Xp) = 757 22 Xil9)x(9) = 15a(1) - 1G] = xi(1).
ol 2 €
But p;(1) = 14, is the identity matrix of dimension d;, so x;(1) = d;. O
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For example, in an abelian group, all dimensions are 1, so p = @ p;.

Corollary 2.56

|G| = 3" d?, where the d; are the dimensions of all irreducible representations.

Proof. Compare the dimensions of the two sides. We have dim p = |G|. Meanwhile, @ pfi contains d; copies
of a d;-dimensional representation for each i, so its dimension is _ d?. O

§2.4.7 Proof of Span

Finally, we will prove the first part of the main theorem — that the characters of irreducible representations
span the space of class functions. We already know that they are linearly independent (because they are
orthonormal). So it suffices to show that for any class function f, we have

F=> (. xix.
(We already know this holds for the characters of representations.)

In order to show this, it’s clear that the space of class functions with this pairing is a Hermitian space. So
it suffices to check the following claim:

Lemma 2.57
If f is a class function and (f, x;) = 0 for all 4, then f is identically 0.

This suffices because for any class function f, we can then define f' = > (f, x;)x;. Then we have

(F = o) = (Foxa) = (X xa) = (F.x0) = () =0
for each i, which means f = f’.
Now we will prove this claim.

Definition 2.58. Given any function f : G — C and a representation p : G — GL(V), define

p(f) = fl9)py € End(V).

geG

This essentially defines p on linear combinations of group elements.

Lemma 2.59
‘We have

trp(f) = <Xp7f>'

Proof. This follows from linearity of trace: we have

Xo: /Y =D x0(9)f(9) =D flg)trpg =tr > flg)pg = trp(f).

geG geG gelG
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Lemma 2.60
If f is a class function, then p(f) € Endg(p).

Proof. Recall that class functions are functions which are invariant under conjugation: so they take a fixed
value on every conjugacy class. So then p( f) must be invariant under conjugation as well: we have

pap(Hpg' =D f(M)pgng-1 = D f(R)on = p(f),
heG heG
since f(ghg™!) = f(h) because f is a class function. So py(p(f)v) = p(f)(pe(v)) for all v. O

Now we prove our initial claim, that if f is a class function with (f, x;) = 0 for all ¢, then f is identically 0:

Proof. Since (x;, f) = 0 for all i, we have

trpi(f) =0
for all i as well. But p;(f) € Endg(pi), so by Schur’s Lemma, it must be a scalar matrix. The only scalar
matrix with trace 0 is the 0 matrix, so p;(f) is the 0 matrix for all i.

But by Maschke’s Theorem, every representation is the sum of irreducibles. So since p;(f) = 0 for all
irreducible representations p;, we must have that p(f) = 0 for any representation p.

But now we can take p to be the regular representation. We can actually read off f from its action in the
regular representation: we have

=Y " f(9)pgv1 =D f(g)vg

So if p(f) is 0, then f is identically 0. O

§2.4.8 Proof of Divisibility

Finally, we’ll show that if p : G — GL(V) is an irreducible representation of dimension d, then d | |G|. (This
was not proved in class; these notes are from the writeup posted to Canvas.)

Recall that we defined
=Y flg)p(g) € End(V).

geG

Proposition 2.61
We have

_ ]G|

Proof. Since X, is a class function, by Schur’s Lemma we know p(X,) is of the form AId for some A\. Now
we can compute A by taking the trace: we saw earlier that tr p(f) = |G| (x,, f), so

tr p(xp) = |G| (X, Xp) = |G|

by orthonormality. But this trace is dA, so we must have \ = %. O

(€]

So now we have a natural construction where -+ comes up. In order to prove it is an integer, we will use
algebraic integers:
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Definition 2.62. A complex number is a algebraic integer if it is the root of a monic polynomial with
integer coefficients.

Lemma 2.63

Algebraic integers have the following standard properties:
(a) If a and B are algebraic integers, so are o + 5 and af.

(b) If & € Q is an algebraic integer, then « € Z.
We will discuss algebraic integers later in the course.

Proposition 2.64

If f is a function on G such that f(g) is an algebraic integer for every g, and p(f) = r-Id for a rational
number 7, then r is an integer.

Remark 2.65. In fact, a stronger statement is true — if f(g) is an algebraic integer for all g € G, then
every eigenvalue of p(f) is an algebraic integer. But this is harder to prove.

Proof. We will show that
trp(f)" €Z

for all n, which suffices (as if dr™ is an integer for all n, and r € Q, then r must be an integer).

When n = 1, this is true as

trp(f) = > f(9)xo(9),

geG

and f(g) and x,(g) are both algebraic integers (as x,(g) is the sum of roots of unity). So trp(f) is an
algebraic integer and is rational, which means it is an integer.

For n > 1, it suffices to find a function f,, with p(f)" = p(fn), where f,(g) is also always an algebraic
integer.

But given two functions on G, we can consider their convolution:

(@ x0)(g) =Y d(h)v(h'g).

heG
We can check that p(¢ ) = p(¢)p(1), so then

fa=frfronf
—_—

n

satisfies p(f)™ = p(fn), as desired (and f,, consists of sums and products of algebraic integers, so is always
an algebraic integer). O

This shows that % is an integer.

Remark 2.66. Here is a way to think of convolution: the space of functions on G has a basis §; mapping
g to 1 and all other elements to 0. Then 04 * 5, = d4p, and p(dy) = p(g), so we have

P89 % 01) = pgn = papn = p(3g)p(0).

The statement for general ¢ and 1 then follows from linearity.
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§2.5 Final Remarks

We can also study continuous representations of compact subgroups of GL,,(C) — for example, U(n) and
O(n). A lot of the theory still goes through, with some modification: the set of irreducible representations
is not finite, but it is discrete. Their characters are orthonormal under the pairing

() = /G x(9)9(g) dg.

For example, consider U(1) = {z € C* | |2|= 1}. The group is abelian, so every irreducible representation
has dimension 1, and every function is a class function.

The irreducible representations are v, : z + 2™ for each n € Z. A continuous function U(1) = S' — C is
the same as a 2m-periodic function R — C. All such functions have a Fourier series f(t) = > a, exp(2mwint),
where we have

1 2w
ap = — f(t)exp(2mint) dt.
21 Jo

This is analogous to f = > a;x;, where

a; = |(1;‘ S F9)a(@),

in the case where G is finite.

8§83 Rings
§3.1 Definitions

Informally, a ring is a set of elements which can be added and multiplied, so that the natural properties
we’d expect of addition and multiplication all hold.

Example 3.1
Z, Q, R, and C are all rings.

There are various rings between Z and Q: for example, Z[%] = {35 | a,k € Z} is a ring. Similarly,
Z[i) ={a+bi|a,b € Z} and Q[v2] = {a+bv2 | a,b € Q} are rings. So is
Z[¢() ={ao+ a1 + -+ + an_1(""" | a; € Z}

(where ( is a nth root of unity).

Definition 3.2. A ring R is a set with two binary operations R x R — R, written as 4+ and -, which
satisfy the following axioms:

e (R,+) is an abelian group: addition is associative and commutative, there is an additive identity
Og, and every element has an additive inverse.

o Multiplication is also associative and commutative, and there is a multiplicative identity 1z. (So
under multiplication, R is a semigroup — a group without the condition that every element has
an inverse.)

o Addition and multiplication satisfy distributivity: we have

a(b+ c) = ab+ ac.
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In this class, we’ll use “ring” in this sense; but usually this is called a commutative unital ring. In defining
a ring, one can drop the commutativity of multiplication, or the existence of 1. If everything holds except
for ab = ba — and we add distributivity in the other direction as well, meaning (b + ¢)a = ba + ca — then
R is a noncommutative ring.

Example 3.3

The set of n x n matrices, or the set of endomorphisms of any vector space, are noncommutative rings.

Example 3.4

If G is a group, then take the vector space with basis vy for ¢ € G. If multiplication is defined as
VgV, = Vgp, then this forms the group ring, which is noncommutative if G is nonabelian.

From now, all rings we will look at will be commutative, unless otherwise specified.

Lemma 3.5

In any ring R, for all a € R, we have
OR a4 = OR.

Proof. Pick any x € R. Then
Or+=x)-a=0g-a+2x-a.

But Op + = «, so
Or+2z)-a=z-a.

Since x - a has an additive inverse, we can cancel it out to get O - a = Og. [l

Corollary 3.6

Or cannot have a (multiplicative) inverse unless O = 1.

The axioms do not prohibit 0 = 1g, but this only results in trivial examples: if 0 = 1g, then for any
x € R we get
r=x-1gp=x- -0 =0g,

so the ring only contains one element. This is the zero ring, which is a legitimate but trivial example. In
all other rings, O # 1r, as we would expect.

Definition 3.7. A ring where every nonzero element has a (multiplicative) inverse, and O # 1g, is
called a field.

Example 3.8
Q, R, and C are fields; Z and Z[i] are not fields.

Z/n is a field if and only if n is prime.

By definition, the zero ring is not a field.
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Example 3.9

C|x], the set of polynomials in one variable with complex coefficients, is a ring. The set C°°(R) — the
set of real-valued functions which are continuous and infinitely differentiable — is also a ring.

§3.2 Homomorphisms

Definition 3.10. A homomorphisms of rings is a map ¢ : R — S such that:
« pla+b)=p(a) +p(b);
* p(ab) = p(a)p(b);
« p(1r) = ¢(1s).

Example 3.11

The map Z — Z/n with a — @ = a mod n is a ring homomorphism.

Remark 3.12. The definition does not require ¢(0g) = Og ecause this is implied by the first property:
since we have additive inverses

©(0r) + ¢(a) = ¢(0r + a) = p(a) = ¢(0r) = Os.
But this does not work with multiplication, since we do not necessarily have inverses so cannot cancel.
There are maps satisfying the first two conditions but not the third: as a trivial example, take R to be
the zero ring and S to be any nonzero ring, and map Or — Og.
If  is a bijection, it is easy to check that its inverse is a homomorphism as well.

Definition 3.13. ¢ is an isomorphism if it is a bijective homomorphism.

If ¢ is one-to-one (but not necessarily onto), then ¢ identifies R with a subring of S — it’s bijective on its
image, which must be closed under addition, multiplication, and subtraction, and must contain 1g.

Definition 3.14. The kernel of ¢ is the set of a € R such that ¢(a) = 0Og.

Then the kernel is an additive subgroup. But it’s also compatible with multiplication in some ways: it turns
out that ker ¢ is an ideal.

§3.3 ldeals

Definition 3.15. An ideal is a subset I C R such that [ is an additive subgroup of R (meaning that it
is closed under addition and taking additive inverses), and for any a € R and = € I, we have ax € I.

Then ker ¢ is an ideal because if p(x) = 0, then p(az) = p(a)p(x) = 0 as well.

Example 3.16
If n € Z, then nZ (the set of integers divisible by n) is an ideal.

In general, for any ring R and any element a € R, the set aR = {ax | z € R} is an ideal.
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Definition 3.17. The ideal aR = {ax | x € R} is called a principal ideal, and is denoted (a).

We saw in 18.701 that every additive subgroup of Z is cyclic, meaning of the form nZ. So every ideal of Z
must be principal. But this isn’t true in more general rings — we will see many examples later.

Definition 3.18. The ideal generated by a1, ..., a, is the smallest ideal containing each of a1, ..., an:
(a1,...,an) = {Zaixi | z; € R}.

Ideals arise from kernels, and they play a similar role as normal subgroups did in group theory.
Remark 3.19. The name ideals comes from ideal divisors — we will discuss this later.

Note that ideals I are usually not rings, as they do not usually contain 1g. If 1z € I, then we must have
I = R, since for every © € R, we have lgx =z € [.

Definition 3.20. Let R be a ring, and I C R an ideal. Then the quotient ring R/I is the quotient of
the additive groups (R, +) and (I,+), where if we denote the coset of x € R as © + I = Z, then we
define multiplication as

T-y=2xy.
This is well-defined because if a € I, then
(x 4+ a)y =2y + ay,

and ay € I. We can check that all the ring axioms are satisfied.

Many properties here are similar to what happens when we quotient a group by a normal subgroup. For
example, if ¢ is a homomorphism, then there is an isomorphism from R/ker ¢ to im ¢. The Correspondence
Theorem holds as well: there is a bijection between ideals in R/I and ideals in R containing 1.

Example 3.21
If R=7Z and I = nZ, then R/I =Z/n.

§3.4 Building New Rings
§3.4.1 Product Rings
Definition 3.22. Let R and S be rings. Then we define their Cartesian product as
RxS={(r,s)|reR,seS}.
Addition and multiplication are defined componentwise.

The axioms clearly hold — in particular, 1grxs = (1g, 1g).
Given a product ring R x S, we have the projection homomorphism R x S — R given by (r,s) — r. The
kernel of this homomorphism is the set (0, s), which is the ideal generated by (0,1g).

Question 3.23. Given a ring ), how can we recognize whether it’s isomorphic to R x S for nonzero
rings R and S7
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First, if Q@ = R x S, then consider the two elements e; = (1g,0) and e = (0,1g). These are not units, but
they have interesting properties:

Definition 3.24. An element e is idempotent if e? = e.

Equivalently, e is idempotent if e(1 — e) = 0 — in particular, if e is idempotent, then so is 1 — e.

Then e and ey are both idempotent.

Remark 3.25. In linear algebra, if a matrix E is idempotent, then its only eigenvalues are 0 and 1. So
it splits as the direct sum of eigenspaces ' = V; @ V. We can do something similar in a ring.

Remark 3.26. All rings have the idempotents 1 and 0. If R is a field, then there are no others —
e(1 —e) =0 implies e = 0 or 1. But this is not true for general rings.

Conversely, given an idempotent e € @), we can set R = e@ and S = (1 — e)Q. Then we can check that R
and S are rings — essentially, we can multiply because e? = e, and the unit in R is e. Then Q = R x S,
since any = € @) can be written as ex + (1 — e)x — the inverse map is (r, s) — r+s. (This is an isomorphism
because e(1 — e) = 0, so “mixed” terms disappear when we multiply.)

Remark 3.27. R is not a subring of @) in our terminology, because 19 € R.

Similarly, the map R — R x S with r — (r,0) is compatible with addition and multiplication, but is
not a homomorphism because 1g is not sent to 1rxg.

Combining these answers our question about when we can split a ring:

Proposition 3.28

A ring @ is isomorphic to a product R x S of nonzero rings R and S if and only if ) contains a nontrivial
idempotent.

We can define the product of a collection of rings (which may be finite or infinite) in the same way.

§3.4.2 Adjoining Elements

Definition 3.29. If R is a subring of S, and « € S, then the ring R[«] is defined as the smallest subring
of S containing both R and a.

This means .
Rla] = {Z rial | r; € R},
i=0

since clearly all such elements must be in the subring, and this set is closed.

Example 3.30
When S =C, R =7, and o = i, we get the Gaussian integers Z[i| = {a + bi | a,b € Z}.

When R = Q and a = v/2, we get Q[v2] = {a +bv2 | a,b € Q}.

1 1
WHen R=7Z and a = 5 Ve get that Z[§] is the set of fractions whose denominator is a power of 2.
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Similarly, if we start with elements oy, ..., oy, in S, then Rlay, ..., a,] is the smallest subring of S containing
R and all the «;. It consists of all sums of products of powers of the a;, with coefficients in R.

There is another way to think of adjoining elements:

Definition 3.31. Let R be a ring, and x a formal variable. Then the polynomial ring R|x] is the set
R[z] = {Zrlx’ | i € R}.
=0

Remark 3.32. For R = C, R, or Q, we can think of R[z] as the ring of polynomial functions from R to
itself as well — but this isn’t true in general.

In general, given some o € R and P € R[x], we can still plug in « for x and get an element of R — so
a polynomial P does give a function R — R. But it can’t necessarily be recovered from the function
— 80 it contains more information than just the function, and we should think of polynomials in terms
of formal expressions rather than functions.

For example, P(z) = 2P —x is 0 for all € F), so is the zero function but a nonzero polynomial. (In fact,
the set of functions on F), is finite-dimensional, while the space of polynomials is infinite-dimensional.)

Definition 3.33. The evaluation homomorphism at a is the map R[z] — R which sends z — a.

We can define the ring of polynomials in multiple variables — denoted R[z1,...,x,] — in the same way.

Proposition 3.34 (Mapping Property)

Suppose we have a ring R, and a ring homomorphism ¢ : R — S. Given aq, ..., a, € S, there exists a
unique extension of ¢ to a homomorphism ¢ : R[z1,...,z,] — S, such that @(r) = ¢(r) for r € R, and
o(z;) = ay for all 4.

This is much less complicated than it appears. The unique extension is just evaluation:
@ (Z Tiyonin @ 562{') =3 @(riy.ip)alt - alr.
This follows directly from the properties of a homomorphism.
But it gives us another way of looking at our original definition: if R C S is a subring, then
Rlai,...,an] = Rlzy,...,x,)/ker §.

(Here ¢ is the inclusion map r + r.)

Example 3.35
We have Q[v2] = Q[z]/(x? — 2).

Similarly, C = R[z]/(z% + 1). This is essentially how C is constructed — we define i as an abstract
variable postulated to satisfy i2 = —1.

So we can construct new rings as the quotient of a polynomial ring R[z1,...,x,]| by ideals. If we want an
element with a certain property, then we can add a variable and say that it satisfies that property (with a
bit more work).
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§3.4.3 Ideals in Polynomial Rings

Proposition 3.36
A ring R is a field if and only if it has exactly two ideals.

Any ring has the ideals (0) = {0} and (1) = R — these coincide only in the zero ring, which is not a field.
So the proposition states that the ring is a field if and only if it has no other ideals.

Proof. Suppose R is a field, so it has at least two ideals (0) and (1). But there are no other ideals, because
every element is invertible — if I is an ideal containing some element = # 0, then 1 = 'z is in I as well,
so I =(1).

Conversely, if R is not a field, then either it is the zero ring and only has one ideal, or it contains a nonzero
x which is not invertible. Then (x) cannot contain 1, so (0), (z), and (1) are distinct ideals. O

Proposition 3.37

Every ideal in F'[z] is principal. More precisely, if I C F[z] is a nonzero ideal and P a (nonzero) element
of I with minimal degree, then I = (P) and the images of 1, =, 22, ..., "~ ! form a basis in F|[z]/I
(where n = deg P).

Proof. This follows from division of polynomials with remainder: if () € I, then by polynomial division we
can write

Q=P -S+R,
where S and R are in F[z] and deg R < deg P. But R must be in I, so if R # 0 then this contradicts the
choice of P as having minimal degree. So R = 0, which means I = (P).
Then considering the quotient F'[z]/(P), the images 1, 7, ..., 2"~ must be linearly independent: since F
is a field (so has no zero divisors), we have deg PQ) = deg P + deg @, so a polynomial of degree less than n
cannot be divisible by P.

Meanwhile, they span the quotient because of division with remainder again: we can write Q = P- S+ R
with deg R < n, which means ) = R. Ul

Remark 3.38. This doesn’t generalize fully to polynomial rings over an arbitrary ring R, but some
parts do. First, it’s not always true that

deg PQ) = deg P + deg Q.

(For example, in Z/4[z], (22)(2x + 1) = 2z does not have degree 2.) Division with remainder also does
not necessarily work: for example, we can’t divide 22 by 2z + 1 with remainder in Z[x].

But both work for monic polynomials. So if P is monic, then it’s still true that every element of
R[z]/(P) can be written uniquely as

aol + a1 T+ -+ + ap_1271,
for a; € R.

Last time, we said that F[z]/(P) is like adjoining a root of P to F' — for example, C = R[z]/(2? +1). Using
this lemma, we can prove this: if we let a = 7, then R[x]/P consists of elements ag + - -+ + a,_1a" 1. It’s
enough to understand how to multiply by «, and we can do this by using the polynomial relation given by
P(a) =0.
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§3.5 Maximal Ideals

Definition 3.39. An ideal I C R is maximal if the only ideal J strictly containing I is R itself.

In other words, I is not the entire ring, and the only ideals containing it are the obvious ones (I and R).

Example 3.40

Find the maximal ideals of Z.

Proof. We saw earlier that the ideals of Z are nZ. But nZ is contained in mZ iff m | n, so the maximal
ideals are (p) for primes p € Z. O]

Example 3.41
Find the maximal ideals of F[x] for a field F.

Proof. Again, all ideals are of the form (P) for a polynomial P. But (P) C (Q) if and only if @ | P, so the
maximal ideals are (P) where P is irreducible, meaning P cannot be written as QR for ) and R in F[z]

with positive degree. O

Remark 3.42. The irreducible polynomials in C[x| are exactly the polynomials of degree 1, since the
Fundamental Theorem of Algebra states that every polynomial over C is a product of linear factors.
So the maximal ideals of C[z] are exactly (z — a) for a € C.

Proposition 3.43
An ideal I C R is maximal if and only if R/ is a field.

Proof. We know R/I is a field if and only if it has two ideals. But the Correspondence Theorem gives a
direct correspondence between ideals in R/I and ideals of R containing I, so this is equivalent to there being

exactly two ideals containing I, which is equivalent to I being maximal. O
Example 3.44
Let R = Flx1,...,x,], where F is a field. Fixing scalars a = (o, ..., ay) (with o; € F'), we have the
evaluation map F[z1,...,x,| — F defined as
evg 1 P Plag,...,ap).

The kernel of this map
My = (T1 — Q1. .., Ty — Q)

is a maximal ideal of R.

Remark 3.45. Note that R/m, = F is a field, since we can repeatedly use polynomial division in order
to replace all the z; with «;.
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Similarly, we can take R = F[x1,...,x,]/J, where J = (P,..., Py,). Then the m, which contain J give
maximal ideals of R. In order for m, to contain J, all the P; should be in kerev,, meaning that « is a
common root of the polynomials P, ..., Pp,.

§3.5.1 Hilbert’s Nullstelensatz

Theorem 3.46 (Hilbert's Nullstelensatz)

The maximal ideals of Clzy,...,z,] are exactly the kernels of evaluation homomorphisms, and are thus
in bijection with C™.

Proof. We already saw that the kernels m, are maximal ideals of C[z1,...,z,], so it suffices to show that
they are the only maximal ideals.

Let m C Clxy,...,2,] be a maximal ideal; then F' = Clxy,...,z,]/m is a field. This gives a homomor-
phism from C to F (since it gives a homomorphism from Clxzy,...,z,] to F'); we want to show that this
homomorphism is an isomorphism.

But any homomorphism between fields is injective — the kernel of the homomorphism must be an ideal,
but the only ideals of a field are {0} and the entire field. Since the homomorphism cannot map 1 to 0, the
kernel cannot be the entire field, so must be {0}.

So it suffices to show that the homomorphism is surjective. Assume not. Then F strictly contains C, so we
can pick z € F with z & C. Then consider the elements

(- pec)

The point is that C[xy,...,z,] is a countable union of finite-dimensional vector spaces over C. But C is

not countable, so there are uncountably many terms T and therefore infinitely many must fall into the

same finite-dimensional vector space.

But then they must satisfy some linear dependence

a; .
ZZ—)\Z‘_O’

where the a; € C and there are finitely many terms. But this can be written as a polynomial P(z) = 0, with
complex coefficients. Since all polynomials over C factor, we can write

P(x) = CH(JZ —73),

for r; € C. But z € C, so z cannot equal any of the r;, contradiction (as in a field, the product of nonzero
terms cannot be zero). O

Remark 3.47. The key point of this proof was that the statement reduces to showing that if F' is a
field containing C, which is finitely generated as a ring over C — meaning there exists a surjective map
Clx1,...,zn] = F — then we must have F' = C.

The proof doesn’t use the fact that F' is the quotient of a polynomial ring that much — it’s used just
to show that F' is a countable union of finite-dimensional C-vector spaces.

Remark 3.48. This theorem is true for all algebraically closed fields.
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Corollary 3.49

The maximal ideals of C[z1,...,2z,]/(Py,..., Py,) are in bijection with the common roots of the poly-
nomials P, ..., P, (more precisely, they are the kernels of the evaluation homomorphisms at those
roots).

This follows from the fact that ideals in R/I are in correspondence with ideals in R containing I.
Definition 3.50. For a ring R, we define MSpec(R) as the set of all maximal ideals of R.

In algebraic geometry and commutative algebra, people try to work with MSpec(R) as a geometric object.
Each element r € R defines a “function” f, on MSpec(R), where we send a maximal ideal m to the element
7 in R/m (which is a field).

If R = C[zy1,...,x,]/1 is the quotient of a polynomial ring, then R/m = C, so f, is a function Mspec(R) — C
(given by evaluating the polynomial  at the point corresponding to m). But in general, there isn’t even
a guarantee that the fields R/m are all isomorphic — they may be different for different m, which is why
“function” is in quotation marks.

§3.6 Inverting Elements and Fraction Fields
We’ve previously looked at the structure of R[z]/(P) for a monic polynomial P, and seen that this essentially
adds a root of P into our ring.

Similarly, we can consider R[z]|/(ax —1). This essentially adds a variable x and declares it to be the inverse
of a — so this ring is the result of formally inverting a. We call this ring the localization of R at a, denoted
Ry

Example 3.51

If we invert 2 in Z, we get
Z(g)g{; ]nEZ}

If we invert a composite number, such as 6, then we get

~ a
Z(()) = {2m3n ]m,nEZ}.

But we have to be careful when we say that we’re adding an inverse of an element — it’s possible that this
procedure collapses some of R as well.

Lemma 3.52
If ab = 0, then the image of b in R, is 0.

Proof. The image of ab in R(,) must be 0. But the image of a is invertible, so the inverse of b must be 0. [

Example 3.53
If we invert 2 in Z/6, then 3 will die. In fact, (Z/6)(9) = Z/3. Similarly, (Z/4) () is the zero ring.
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Definition 3.54. An element a € R is a zero divisor if a # 0, but ab = 0 for some b # 0.

For example, 2 and 3 are zero divisors in Z/6.

If a is not a zero divisor, then we have R C R(,), so inverting a doesn’t collapse the ring.
Definition 3.55. A ring R is an integral domain if it has no zero divisors.

This concept is useful because in an integral domain, if ax = ay with a # 0, then we must have x = y — so
cancellation works.

So we can invert elements of an integral domain, using this construction R(,). We can invert finitely many
elements in a similar way. But we can also invert every element:

Definition 3.56. Let R be an integral domain. Then the fraction field of R is
Frac(R) = {(a,b) | a,b € R,b # 0}
modulo the equivalence relation (a,b) ~ (¢,d) if ad = bc.

This is the formal definition, but we usually write elements as § instead of (a,b), and operations work in

the same way as the usual operations on fractions.
b

Note that Frac(R) is a field containing R, where every nonzero element § has an inverse .

Example 3.57
If R =7, then Frac(R) = Q.

Example 3.58

If R = Clz], then Frac(R) is the field of rational functions in one variable.

We can define the field of rational functions on n variables in a similar way. Such functions are defined
almost everywhere, and have poles at a few points.

Example 3.59
If R is a field F, then Frac(R) is the field F' as well.

Giving a homomorphism Frac(R) — S is the same as giving a homomorphism R — S sending every nonzero
element of R to a unit (an invertible element) in S.

§4 Factorization

§4.1 An Example

Proposition 4.1

Every polynomial P € F[z| factors as a product of irreducible polynomials in an essentially unique way.

In order to prove this, we’ll first prove the following lemma:
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Lemma 4.2

If an irreducible polynomial P € F[z] divides QS (for polynomials @, S € F[z]), then P must divide @
or S.

Proof. We know that F[z]|/(P) is a field, and a polynomial is divisible by P iff its image in F[x]/(P) is 0.
So @S =0 in F[x]/(P), and since a field has no zero divisors, we must have @ = 0 or S = 0. O

Using this, we can prove unique factorization in the usual way:

Proof of /.1. To show existence of a factorization into irreducibles, we can just keep factoring until stuck
(more formally, we can induct on degree). To prove that this factorization is unique, suppose

Then P; must divide ); for some 7, WLOG Q1. But since ()7 is irreducible, then P; and ()1 must be equal,
up to a scalar. So we can cancel them out, and repeat with the remaining factors (again, we can make this
more precise with induction). O]

§4.2 Principal Ideal Domains

The key point in the proof that F[x] has unique factorization was that F[z|/(P) is a field. We can consider
more generally when this is true:

Definition 4.3. An integral domain is a principal ideal domain (PID) if every ideal is principal.

Definition 4.4. An integral domain is a unique factorization domain (UFD) if every element factors as
a product of irreducibles in an essentially unique way.

We can adapt this argument to show that every PID is a UFD. But the converse is not true — for example,
Zlz] and C[zy,...,z,] (polynomials in several variables) have unique factorization as well, but are not a
PID.

For the discussion of factorization, we’ll assume R is an integral domain (if ab = 0, then a or b is 0), so that
we can cancel.

Recall that an element a € R is irreducible if a is not a unit, and if a = bc then either b or ¢ is a unit. We
say two irreducible elements a and b are associate if they differ by a unit, meaning that ¢ = bu for a unit
u € R.

So in the definition of a UFD, “essentially unique” factorization means unique up to reordering the factors
and association. (With integers, we can fix this ambiguity by working with positive primes only, but in
general this doesn’t work.)

Theorem 4.5
Every PID is a UFD.

Proof. To prove uniqueness of factorization, we can use a very similar proof to the one used for polynomials.
If R is a PID and p € R is irreducible, then (p) is a maximal ideal. So R/(p) is a field, which means that if
p | ab, then p | aor p|b.
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Once we have this property, now if we take two factorizations, we can take some irreducible in one factor-
ization and find an element associate to it in the other, and cancel them out.

So this proves uniqueness. We haven’t shown that a factorization always ezists, and we won’t prove it in the
general case. But in all the examples we’ll look at, it’s clear why the factorization process must terminate
— we have an invariant (the size of an integer, or the degree of a polynomial) that strictly decreases when
we factor nontrivially. (This argument doesn’t work in the general case.) O

§4.3 Euclidean Domains

We proved earlier that the polynomial ring F[z] (for a field F') is a PID. We can use a similar argument to
show that a somewhat more general class of rings are PIDs.

Definition 4.6. A FEuclidean domain is a domain R together with a size function o : R/{0} — Z>o,
such that for every a and b in R, with b # 0, we can find ¢ and r in R such that a = bg + r, and either
o(r) <o(b) orr=0.

This essentially is division with remainder — it states that either a is divisible by b, or we can perform
division with remainder and end up with a strictly smaller remainder.

Example 4.7

The ring R = Z is a Euclidean domain, with size function o(n) = |n|.

Example 4.8
The ring R = F[z] (for a field F) is a Euclidean domain, with size function o(P) = deg P.

Example 4.9

The Gaussian integers R = 7Z]i] are a Euclidean domain, with size function o (a + bi) = a2 + b,

Proof. We can prove that the division with remainder property holds by geometry. Given b, the multiples
of b form a square lattice (generated as a lattice by b and bi).

So by subtracting multiples of b, we can guarantee that a lands in the small square centered at the origin —
more precisely, we can guarantee that r = ab+ 3ib where —% <a,f< % Then we have o(r) < %a(b) < o(b),
as desired. O
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Proposition 4.10
Any Euclidean domain is a PID, and therefore a UFD.

Proof. If I C R is a nonzero ideal, then take an element b € I with minimal o(b). We know that for any
a € I, we can write a = bqg + r, with » = 0 or o(r) < o(b). The second case is impossible (since r € I,
but we chose b to have minimal size), so we must have » = 0. So b divides all elements of I, which means

=) O

This is the exact same proof we gave for polynomials some time ago — the point of the definition is that
the trick works a bit more generally. But it’s not very general — in most cases, it doesn’t work.

Example 4.11
The ring R = Z[v/—5] is not a UFD, and therefore not a PID or Euclidean domain.

Proof. We have
6=2-3=(1++v-5)(1—-+V-5).

It’s possible to show that all of these elements — 2, 3, and 1 & +/—5 — are irreducible, so R does not have
unique factorization.

Note that it is still possible to bound o(r) in terms of o(b) by the same geometric argument as before; but
this bound will not be strong enough to imply o(r) < o(b). O

§4.4 Factorization in Polynomial Rings

We’ve seen that PIDs have unique factorization, but the converse isn’t true — there are cases where unique
factorization is true, but there exist nonprincipal ideals.

For example, we’ll see that Z[z] and C[xy,...,z,] are UFDs, but the ideals (2,z) C Z[z] and (z,y) C C[z, y]
are not principal. In fact, the following theorem is true:

Theorem 4.12
If R is a UFD, then R[z] is also a UFD.

Corollary 4.13
The rings Z[z] and C[xy,...,z,] are UFDs.

Proof of Corollary. For Z[z], this follows directly from the theorem (since Z is a PID). Meanwhile, for
Clx1,...,zy], we can use induction: we have

Clzy,...,zn] =Clz1, ..., zp—1][zn)

(by thinking of n-variable polynomials as polynomials in the last variable x,, whose coefficients are polyno-
mials in the other n — 1 variables), so this follows immediately from the theorem as well. O

Page 40 of



Class by Roman Bezrukavnikov (Spring 2022) 18.702 — Algebra II

§4.4.1 Greatest Common Divisor
In order to prove Theorem , we'll first look at the concept of a ged.

Definition 4.14. A ged of two elements a,b € R is an element d € R such that d | a or d | b, and for
any other § with this property, we have ¢ | d.

It’s clear that the ged for integers has the same properties.

If ged(a, b) exists, then it’s unique up to association — if d and d’" are both ged’s of a and b, then we must
have d | d’ and d' | d, and in an integral domain, this means they must differ by a unit. (We can write
d = ud" and d' = vd, so then uvd = d. This implies uv = 1, since we’re in an integral domain.) However,
the ged doesn’t necessarily exist:

Example 4.15
In Z[+/—5], there is no ged of 2 + 2y/—5 and 6.

Proof. Both 2 and 1 + v/—5 are common divisors, and they are maximal in the sense that it’s impossible
to multiply them by non-units and still get a common divisor. This property for 2 implies that if the ged
existed, it would have to be 2, but 1 + /=5 does not divide 2, contradiction. O

Lemma 4.16
In a UFD, the gcd always exists.

Proof. The usual way of calculating the ged (over integers) using prime factorization still works — to find
ged(a, b), we can write down their prime factorizations, and take the smaller power of each irreducible. [J

Remark 4.17. In a PID, if ged(a,b) = d, then we have (a,b) = (d), which means d can be written in
the form ap+ bg. But this is not true in general — for example, in Clz, y], ged(z,y) = 1, but 1 & (x,y).

§4.4.2 Gauss’s Lemma
Let R be a UFD. To prove unique factorization in R[z|, we'll use Gauss’s Lemma.

Definition 4.18. A polynomial P € R[z] is primitive if the ged of its coefficients is a unit in R.

Lemma 4.19 (Gauss's Lemma)
If P and @ are primitive, then so is PQ.

Proof. 1t’s enough to show that for any irreducible p € R, we can find a coefficient of PQ not divisible by p
(as then by unique factorization, no element other than units can divide the ged of its coefficients).

Let P =Y a2’ and Q =3 bjxj, and let n be the maximal integer with n { a,, and m the maximal integer
with m { b,,. Then in PQ, the coefficient of 2" comes from a,b,,, and other terms a;b; where at least
one of a; and b; is divisible by p; so this coefficient cannot be divisible by p. O
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Remark 4.20. When R = Z, we can think of this as reducing mod p — then P and ) are nonzero
polynomials mod p, and since [F, is a field, this means P is nonzero mod p as well.

Using this, we can get a good sense of which polynomials are irreducible in R — as we’ll see later, these
are the irreducible elements of R, and primitive polynomials in R[x] which are irreducible in F[x], where
F = Frac(R). So using unique factorization in R and in F[z] can let us understand factorization in R|x].

§4.4.3 Factorization of Integer Polynomials

We’ll now prove Theorem (that if R is a UFD, then R[z] is a UFD as well) for the case of R = Z. The
proof in the general case is very similar (using the abstract construction of the ged, instead of the more
familiar ged over integers).

Question 4.21. Given a polynomial P € Z[z], there are two natural questions about its factorization:
1. Can P be factored in Q|x]?
2. What about in Z[z]?

The second question seems easier in some sense — we have more tools for answering it, which can be used
to reduce potential factorizations to a finite number of possibilities. For example, we can reduce mod p, use
the fact that the constant terms of the factors multiply to the constant term of P (which has finitely many
factorizations), and so on.

Example 4.22
The polynomial P(z) = 323 + 2z + 2 is irreducible in Z[z].

Proof. Assume P factors as P; P, where P, and P are nonconstant. Then reduce mod 2, so we have
PP, =2 (mod 2).

Since the leading terms of P; and P, are odd, the factorization in Fo cannot be 1-23 (as then one polynomial
would be constant), so it must be z - 2. But then the constant terms of P; and P, are both even, so the
constant term of P would have to be 0 mod 4, contradiction. O

Meanwhile, trying to factor in Q[z] seems harder — we can no longer reduce to finitely many possibilities
using the same methods (for example, the constant term of P can be factored in infinitely many ways as a
product of rationals).

But it turns out that Gauss’s Lemma implies that the two questions are actually essentially the same. First,
it’s clear that for any polynomial P, we can factor out the ged of its coefficients, to write P = n@) where @
is primitive. Meanwhile, Gauss’s Lemma has the following corollary:

Corollary 4.23
If P,Q € Z|x] such that P | @ in Q[z] and P is primitive, then P | @ in Z[x] as well.

Proof. We know that Q = P - S for some S € Q[z]. By clearing denominators and factoring out the ged of
the coefficients, we can then write S = §7T', where T' € Z[z] is primitive. Then we have

bQ = aPT.
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By Gauss’s Lemma PT is primitive, so the ged of the coefficients on the right-hand side is a. Meanwhile,
the ged of the coefficients on the left-hand side is clearly divisible by b. So b | a, which means S € Z[z]. O

Remark 4.24. Another way to view this proof is to define the content of a polynomial in Z[x] as the ged
of its coefficients, and extend the definition to Q[z] in the obvious way (such that the content of ¢P is ¢
times the content of P for any ¢ € Q). Then Gauss’s Lemma implies that the content is multiplicative
(the content of PQ is the content of P times the content of @); in this case, if Q@ = PS, then since P
has content 1 and @ has integer content, S must have integer content as well.

This implies that for example, 323 + 2z + 2 is irreducible in Q[z] as well. More generally:

Corollary 4.25

The irreducible elements of Z[z| are exactly £p for integer primes p, and primitive polynomials which
are irreducible in Q[z].

Proof. 1t’s straightforward to check that all such elements are irreducible — first, it’s clear that +p are
irreducible in Z[z] (since the factors would have to be integers). Meanwhile, if a polynomial is irreducible in
Q[z], then the only way to factor it is to pull out constants, which is impossible for a primitive polynomial.

On the other hand, if P € Z[x] is not of this form, then we can check that it factors:
e If P is an integer, then it factors as a product of integers.
e If P is not primitive, then we can factor out the gcd of its coefficients.

o If P is primitive but factors as P = Q1Q2 in Q[z], then we can rescale the factors so that Q1 € Z[z]
is primitive; then by Corollary , we must have Q2 € Z[x] as well. O

Corollary 4.26
Z[z] is a UFD.

Proof. The existence of factorization is clear — start by writing P = p1 - - - pgQ, where the p; are integer
primes and @ is primitive. Then if @ isn’t irreducible in Q[z], we can factor it as a product of primitive
polynomials in Z[z]. We continue doing this until all factors are irreducible; this process must terminate
since the degrees of the polynomials decrease at each step.

Meanwhile, to prove uniqueness, it suffices to show that if P € Z[z] is irreducible, then if P | Q1Q2, we have
P| Qi or P| Q2 (Then we can finish by the same argument as in Lemma 1.2.)

If P is an integer prime p, then this follows from Gauss’s Lemma. Otherwise, P is primitive and irreducible
in Q[z]. By unique factorization in Q[z]|, we know that if P | @1Q2, then P | Q1 or P | Q2 in Q[z]. But
since P is primitive, by Corollary , the divisibility must hold in Z[z] as well. O

§4.5 Gaussian Integers

Unique factorization may be an abstract property, but unique factorization in Z[i] can be used to solve a
concrete problem in number theory:

Question 4.27. Which integers n can be written in the form a? 4 b??
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Example 4.28

We have 5 = 22 4 12, while 6 and 21 cannot be written as the sum of two squares.

The question relates to Gaussian integers because
n=a>+b* < n=(a+bi)la— bi).

In particular, this makes the following result clear:

Corollary 4.29

If n and m can be written as a sum of squares, so can nm.

Proof. If we have n = a@ and m = 33, then nm = afap. O

This motivates considering the case where n is prime — it turns out that this will be enough to solve the
general question.

Lemma 4.30
If p is an integer prime, then:
« p can be written as a? + b? iff p is not a prime in Z[i].

o This occurs iff p=2or p=1 (mod 4).

Proof. The first statement is almost a direct application of unique factorization. On one hand, if p is prime
in Z[i] and p = (a + bi)(a — bi), then we must have p | a + bi or p | a — bi. Either way, then p | a and p | b,
which is impossible.

On the other hand, if p is not a prime in Z[i], then we can write p = a3 for some «, 5 € Z[i] (which are not
units). It’s clear that « and 8 cannot be integers (since p is prime), so they must be complex conjugates;
then if o = a + bi, we have p = a@ = a® + b°.

Now we’ll show that p is prime in Z[i] iff p =2 or p =1 (mod 4). When p = 2, we have 2 = (1 +¢)(1 — i),
so now assume p is an odd (integer) prime.

Claim — p is not prime in Z[7] iff there exists a € Z[i] such that p{ «, but p | aav.

Proof. One direction is clear — if p | @ but p t o, then by definition p cannot be prime.

For the other direction, by definition, if p is not prime, there exist «, 5 € Z[i] such that p t «, 3, but p | af5.
Then we have

plafap = (aa)(8B).

But both a@ and 3§ are integers, so since p is an integer prime, p must divide one of them. OJ

This reduces the problem to one in I, of determining when there exist nonzero a, b € I, such that a?+b* = 0.
But since F, is a field, we can divide by b2, so this occurs iff —1 is a square in Fp.

Now consider the multiplicative group F,, which is an abelian group of order p — 1. We know its only

element of order 2 is —1 (since 22 — 1 = (x — 1)(x + 1) only has the roots +1).
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Consider the homomorphism ¢ : FX — F) where a — a®. Then ker(¢) = {%1}, so by the homomorphism

theorem, |im(yp)| = %. A group has an element of order 2 iff its order is even (one direction follows from

the fact that the order of an element always divides the order of the group, while the other follows from the
Sylow Theorems), so since —1 is the only possible element of order 2, then —1 is in im(y) (and is therefore
a square) iff % is even, or equivalently iff p =1 (mod 4). O

This gives a classification of which integer primes remain prime in Z[i], and we can use this to work out a
classification of all primes in Z[i]:

Theorem 4.31

The full list of primes in Z[i], up to association, is:
o Integer primes p =3 (mod 4);
e a =+ bi, where a? + b? = p for an integer prime p =1 (mod 4);

o 1+471.

Note that we have 2 = (1 +1)(1 — ), but 14+ ¢ and 1 — i are associate, so 2 only contributes one prime (up
to association).

Proof. First we’'ll check that all such elements are primes. We've already shown that if p = 3 (mod 4) is an
integer prime, then p remains prime in Z[i]. For the other two cases:

Claim — If a? + b? = p is an integer prime, then a + bi is prime in Z[i].

Proof. Define the norm N(a + bi) = a? + b2, which is multiplicative. Assume for contradiction that there
exist & and 8 (which are not units) with a 4+ bi = a3, so we have

p = N(a +bi) = N(a) N(B).

Then since p is an integer prime, N(«) or N(5) must be 1, and a or 8 must be a unit, contradiction. O

So then the second and third types of elements are all prime in Z[i] as well.

Now we will check that there are no other primes — it’s enough to check that every non-unit o € Z[i] is
divisible by some element of this list. To do so, we again use the norm — if « is not a unit, then we have
aa@ = n for some integer n > 1. Let p be a prime divisor of n. Then if p =3 (mod 4), we must have p | «
(or p | @, which also implies p | ), since p is prime. Otherwise, we can write p = (a + bi)(a — bi), so a + bi
must divide « or @, and therefore a + bi or a — bi must divide a. O

This classification of primes gives us a full answer to our initial question:

Corollary 4.32

If n has prime factorization pfl e pf,lr, then n can be written as a sum of squares iff all primes p; = 3
(mod 4) have an even exponent d;.

Proof. First, in order to show that all such n work, we know that all p # 1 (mod 4) can be written as a sum
of squares, and all squares can trivially be written as a sum of squares. So any n of the form described is
the product of numbers which can be written as a sum of squares, which means n itself is a sum of squares.
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Conversely, if n = (a+bi)(a — bi), then we want to check that every p =3 (mod 4) appears an even number
of times in the prime factorization of n (over integers). But p remains prime in Z[i], and if p has exponent
d in the factorization of a + bi (in Z[i]), then it has exponent d in the factorization of a — bi as well. Then
p has exponent 2d in the prime factorization of n in Z, which is even. O

§4.6 Fermat’s Last Theorem

In 1847, a French mathematician announced a proof of Fermat’s Last Theorem; this proof was later found
to be wrong in general, but valid in a few cases. The initial steps of the argument are somewhat similar to
the ideas we saw using factorization in Z[i].

Theorem 4.33 (Fermat's Last Theorem)

If n > 2, then there are no solutions in nonzero integers to
a +b" ="

Assume n is odd, and let ¢ be a primitive nth root of unity. Then in the ring of cyclotomic integers Z[(],
we can factor

a™ +b" = (a+b)(a+Cb)(a+C%b)---(a+ "),

In many cases, it’s possible to check that the factors are pairwise coprime. If we were working over Z and
an nth power factored as a product of coprime integers, then all factors would have to be nth powers as
well (up to multiplication by +1). Here, we’d like to conclude similarly that all factors are nth powers in
Z[i] (up to multiplication by units); this eventually leads to a contradiction.

But in order to make this conclusion in Z, we used the fact that Z is a UFD. However, Z[(] is usually not
a UFD — in fact, there’s finitely many ¢ for which it is a UFD. So this proof does not work. But Kummer
later discovered that it’s possible to modify it so that it works, under a weaker condition — that p is a
regular prime. We will discuss this more later.

§5 Factorization in Number Fields

We will now discuss factorization in rings similar to Z[i] and Z[(]. We can think of Z[i] as a subring of Q[i],
and similarly of Z[(] as a subring of Q[(] — the advantage of this perspective is that Q[i] and Q[(] are fields.

Definition 5.1. A number field is a subfield of C which is finite-dimensional as a Q-vector space.

§5.1 Algebraic Numbers and Integers

In the case of Q[i], we performed factorization in the ring Z[i], not the field Q[i]. To describe the analog of
Z[i] in a general number field, we need the concept of an algebraic integer.

Definition 5.2. A number « € C is algebraic if it is the root of a polynomial P € Q[z].
If F is a number field with dimg(F) = n, and a € F, then we can write down the powers 1, a, ...,

a™. For linear algebra reasons, these elements must be linearly dependent. This linear dependence gives a
polynomial with rational coefficients that « is a root of, which means o must be algebraic.
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Conversely, if ai, ..., a, are algebraic, then Q[ay,...,a,] is always a number field (since if we have a
polynomial P(a) = 0 of degree d, then we can express any o with k& > d in terms of lower powers; so there’s
finitely many terms involving the «; that we can have).

If « is algebraic, then the set of polynomials P € Q[z] for which P(a) = 0 forms an ideal in Q[z]. Since

Q[z] is a PID, this means the ideal is generated by any of its minimal-degree polynomials.

Definition 5.3. If « is algebraic, the minimal polynomial of o is the monic polynomial that generates
the ideal
{P| P(e) =0} C Q].

Definition 5.4. « is an algebraic integer if its minimal polynomial lies in Z[z].

Lemma 5.5

« is an algebraic integer iff a is the root of any monic polynomial P € Z[x].

Proof. First, clearly if « is an algebraic integer, then it’s a root of its minimal polynomial, which is in Z[z].

For the other direction, we can use Gauss’s Lemma — let P be a monic polynomial with P(«) = 0, and let
Py, be the minimal polynomial of a. Then we can rescale the minimal polynomial to a polynomial Q = ¢ Pp,
which is in Z[z] and primitive. We know @ | P in Z[z], and @ is primitive; so by Gauss’s Lemma, @ | P in
Z[z] as well.

But this requires that the leading coefficient of () divides the leading coefficient of P. This means ) must
have leading coefficient +1. So then Q = +P,,, and P,, € Z[z| as well. O

Corollary 5.6
If & € Q, then « is an algebraic integer iff « € Z.

Proof. This is immediate, as the minimal polynomial of « is z — «. O

In this class, the number fields we will work with are mostly of the form Q[\/;i], called quadratic number
fields. We can assume without loss of generality that d is a squarefree integer. (Note that d may be positive
or negative.)

Example 5.7
If d € Z is squarefree, the algebraic integers in the quadratic number field Q[v/d] are:

e a+ bVd where a,b € Z, if d # 1 (mod 4);
e a+ bv/d where either a,b € Z, ora—i—%,b—i—%EZ, ifd=1 (mod 4).

Proof. For any o € Q[v/d], we can write o = a 4 bv/d where a,b € Q. Then its minimal polynomial is
P(z) = ($—a—b\/g)(x—a+b\/g):m2—2a—|—(a2—b2d).

(This is because « is a root of P, while if it were a root of a polynomial of lower degree, it would have to
be rational.) This means « is an algebraic integer iff 2a € Z and a? — b%d € Z.
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Then we must have b?d € Z. If b were not an integer, then its denominator would be
divisible by p for some prime p, so the denominator of b would be divisible by p?. Since d is squarefree,
then b?d would have denominator divisible by p, contradiction. So b must be an integer, and all such cases
clearly work.

Then 2b must be an integer for the same reason as in the previous case, so we must
have (a,b) = (k+ 4,m + 1). Then we have
(2k +1)%2 — (2m +1)%d
4 ?
which is an integer iff d =1 (mod 4). O

a? — b*d =

Example 5.8

The rings of algebraic integers in Q[i] and Q[v/—5] are Z[i] and Z[\/—5], respectively, while the ring of
algebraic integers in Q[v/—3] is Z|w] (where w is a primitive 3rd root of unity).

In the case of Q[i], we saw that Z[i] was a ring.

Theorem 5.9

For a number field F', the set of algebraic integers in F' is a subring of F. Furthermore, it is the largest
subring that is finitely generated as an abelian group under addition.

We won’t prove this in general — but we’ll see later that the algebraic integers are closed under addition
and multiplication, which will show that they do form a subring of F'. But in our specific example of Q[\/&],
this fact is clear.

§5.2 Ideal Factorization

We saw that the existence of unique factorization in Z[i] has concrete uses — we used it to solve the
problem of which integers can be written as a sum of squares. We’d like this trick to work more generally,
but unfortunately it doesn’t — we’ve seen that Z[\/—5] does not have unique factorization.

But we can instead prove a weaker statement. Instead of proving unique factorization as a product of prime
elements, we’ll prove unique factorization as a product of prime ideals.

§5.2.1 Motivation

To motivate the concept of factorization into ideals — we’ve seen that unique factorization into elements
fails in general, so instead of trying to factor as a product of elements, we can try to factor as a product of
ideal divisors.

We’ve named the concept, but we don’t yet know what they are — but we know some ways we’d like them
to behave. If we're using these ideal divisors for factorization, then they should appear in the factorization
of actual ring elements; and in particular, they should arise as ged(ay, ..., a,) for some elements a4, ..., a,
of the ring. (The ged is not defined in a general ring; but if we’ve restored unique factorization into ideal
divisors, then the ged does again make sense.)

So we can introduce the formal gcd of elements in the ring. But in good situations where we already
have unique factorization, such as Z and Z[i], we know that ged(aq,...,a,) is the generator of the ideal
(a1,...,an). So we can declare our formal ged to actually be that ideal — we’ll define ged(ay, ..., ay,) to be
the ideal (ai,...,ay).
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Remark 5.10. In fact, this is where the term ideal comes from. We introduced it by thinking about
the kernel of a ring homomorphism, but it originally arose from thinking about these ideal divisors.

This is where the shorthand notation (ay,...,a,) for ged(ay,...,a,) comes from as well.

§5.2.2 Prime ldeals

To factor into ideals, we need a concept of prime ideals. The definition is very similar to the case of prime
elements:

Definition 5.11. An ideal I C R is prime if I # R, and for all a,b € R, if ab=1thena € [ or b € I.

Note that if I = (a) is principal, then I is prime if and only if a is prime (this follows directly from the
definition).

Proposition 5.12
An ideal I C R is prime if and only if R/I is an integral domain.

Proof. This is clear from the definition as well — if we use @ to denote a mod I (so @ = 0 if and only if
a € I), then the definition can be restated as that ab = 0 implies @ or b is 0. But this is exactly the definition
of an integral domain (that there are no zero divisors). O

Corollary 5.13

All maximal ideals are prime.

Proof. An ideal is maximal if and only if R/I is a field; but all fields are integral domains, so all maximal
ideals are prime as well. O

§5.2.3 Ideal Multiplication

Definition 5.14. Given two ideals I, J C R, their product is
1J = {Zalbz | a; € 1,b; € J}

It’s clear that ideal multiplication is both commutative and associative.

Note that if I is generated by aq, ..., an and J is generated by by, ..., b, then IJ is generated by their
pairwise products a;b; (for 1 <i <m and 1 < j < n). In particular, if I = (a) and J = (b), then IJ = (ab)
— so ideal multiplication is compatible with the usual multiplication of ring elements.

Proposition 5.15
We have IJ C INJ.

Proof. All terms in I.J are linear combinations of elements of I with coefficients in J, and therefore in R;
so since [ is an ideal, they must all be in I. Similarly, all terms in /.J must also be in J. O

On the other hand, it’s not necessarily true that IJ =1nNJ.
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Example 5.16
In the ring Z, if I = (m) and J = (n), then IJ = (mn), while I N J = (lem(m,n)). In particular,
I1J =1InNJ if and only if m and n are relatively prime.

Now that we’ve defined the components of ideal factorization, we’re ready to state our main theorem:

Theorem 5.17

In the ring of algebraic integers in a number field, every nonzero ideal factors uniquely (up to permutation
of factors) as a product of prime ideals.

Unlike in the case of factorization into elements, we don’t have to worry about association — ideals already
capture information up to association (multiplication by a unit). For example, o and  are associate iff

(@) = (B).
This theorem holds for any number field, but we’ll only prove it in the case of imaginary quadratic fields.

§5.2.4 Ideals and Lattices

From now, we'll let F' = Q[\/;i], where d is negative and squarefree, and we’ll let R be the ring of algebraic

integers in F. As we’ve seen previously, in Example 5.7, we have
Z[\/d] ifd#1 (mod 4)
R=q_1+d
2PV i— 1 (mod 4),

2

In either case, we can think of R as a lattice in C (an additive subgroup of C generated by two noncollinear
vectors) — for example, Z[i] is a square lattice.

There are a few elementary properties of lattices that we’ll make use of:

Proposition 5.18
If L and L’ are lattices with L' C L, then:

1. L/L' is finite.
2. If L" is a subgroup of L, and L' C L” C L, then L” must also be a lattice.

Just using these properties, we can quickly deduce a few important observations about ideals in R.

Corollary 5.19

Every nonzero ideal in R is a lattice.

Proof. First, this is clearly true for a principal ideal — if I = («), then I can be obtained by multiplying
the elements of R by a. But multiplying a lattice by a complex number produces another lattice similar to
the original one (since we just scale and rotate it), so I is also a lattice.

But now if I is an arbitrary nonzero ideal, we can pick some nonzero o € I; then aR C I C R. So by the
above proposition, since aR and R are both lattices, I must be a lattice as well. O
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Lemma 5.20

A nonzero ideal in R is prime if and only if it is maximal.

Proof. We've already shown that all maximal ideals are prime, so it suffices to show all prime ideals are
maximal.

Let I be a prime ideal. Then by Proposition , R/I is an integral domain. But since R and I are both
lattices, R/I must be finite.

Meanwhile, in any finite ring S, every element a which is not a zero divisor must be invertible — consider
the list of elements ab, over all b € S. All such elements must be distinct — if ab = ac, then we would have
a(b—c) =0, and therefore b = c. But there are exactly |S| such elements, and only |S| possible elements —
so then the elements ab must cover every element of S, and in particular, there must exist b with ab = 1.

In our situation, since R/I is finite and there are no zero divisors, then every nonzero element must be
invertible. So R/I is a field, which means I is maximal. O

§5.2.5 Proof of Unique Factorization

To prove uniqueness of ideal factorization in R, the key point is the following.

Proposition 5.21

Ideal multiplication has the following two properties:

1. The Cancellation Property — if we have ideals such that I.J = I'J and J # 0, then we must have
I=T.

2. Divisibility is the same as inclusion — if I C J, then there exists an ideal J’ such that I = J.J'.

Note that in any ring, the converse of the second point is true — as we’ve seen before, if I = J.J' for some
ideal J’, then I C J. However, the direction written here is true for rings of algebraic integers as well as
some other examples, but it isn’t true in general.

To prove this, we’ll use the following lemma.

Lemma 5.22
For any ideal I C R, the ideal IT is principal, and is generated by an integer.

Here T is the ideal formed by taking the complex conjugate of all elements in 1.

Proof. We've seen that I is a lattice, so we can pick generators o and 3 which generate I as a lattice. Then
they must also generate I as an ideal, so I = (a, 3) and I = (@, 3). This means

IT = (o@, BB, a3, fa).
Note that a@, 85, and aff + Sa are all integers. So we can define

n = ged(a@, 3, ap + fa)

(where the ged is taken in Z).
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We then claim that IT = (n). It’s clear that IT contains n, so it suffices to show that (n) contains all
generators of I1. By definition, we know (n) contains aa, 33, and af8 + @, so it’s enough to check that
aB
n

(n) contains af3, or equivalently, that isin R.

But to see this, we can consider its minimal polynomial

Plr) = (ﬁ) (v ) =g PP om 0D

n2

By the definition of n, each of these coefficients is an integer; so then %ﬁ is an algebraic integer and is
therefore in R, as desired. O

Remark 5.23. In the case of a general number field, it’s possible to perform a similar argument, but
multiplying by all Galois conjugates instead. (We'll later learn what this means.)

This lemma gives rise to the following definition, which will be quite useful later.
Definition 5.24. The norm of an ideal I, denoted N([), is the positive integer n such that IT = (n).

Note that if I = («), then IT = (a@), so N(I) = a@. So in this case, the norm of the ideal coincides with
the usual norm of a complex number.

It’s also clear from the definition that the norm is multiplicative, since

IJ-1J=1II-JJ = N(1J)=N()N(J).
Now we can use this lemma to prove our proposition.

Proof of Proposition . The main idea is that if .J is principal, the proposition is almost obvious; and we
can use the above lemma to reduce to the case where J is principal.

First, suppose J = (a) for some nonzero o € R. Then for the first point, it’s clear that if ol = al’, we must
have I = I'. Meanwhile, for the second, if I C («), then we must have £ € R for all x € I. So we can take
J'=L1 ={Z |z e} (which is an ideal of R), and we have (a)J' = a - % = I, as desired.

Now consider the general case. Then to prove the first point, we have

IJ=1J = 1JJ=17JJ].
But since J.J is principal, the conclusion immediately follows from the special case where J is principal,
proved above.

Similarly, for the second point, if I C J, then IJ C JJ. Let JJ = (n); then as before, we can set J' = %,
which must be an ideal of R. Then we have

J'JJ=J(n)=1J,
and using the Cancellation Property, we can cancel out J to get J'J = I. O

Finally, we’ll need one more lemma.
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Lemma 5.25

Every non-unit ideal I C R is contained in a maximal ideal.

Proof. Assume that I # 0. Then R/I is finite, so there are finitely many ideals in R/I, and therefore one
must be maximal. But ideals of R containing I are in bijection with ideals of R/I, so there must be a
maximal ideal of R containing I as well. O

Remark 5.26. In fact, this lemma is true in any ring. Of course, the proof we used here doesn’t
work in general, since we used the fact that R/I is finite, so the poset of its non-unit ideals (ordered
by inclusion) necessarily has a maximal element (one with no element larger than it). In general, an
arbitrary poset which is infinite doesn’t need to have a maximal element (for example, just take the set
of positive integers, ordered by size).

But in this case, the poset of ideals has an additional property — every increasing chain of ideals
I C Iy C --- is majorated by the union I3 U I, U --- (which is an ideal as well). Then using Zorn’s
Lemma from set theory, it’s possible to show that there is a maximal ideal in R/I.

In a future class, we’ll see a condition on R which is much more general than R/I being finite for all
I (in particular, it’ll hold for polynomial rings such as Z[z] and Clz1,...,z,]), which can be used to
prove this lemma without relying on Zorn’s Lemma.

Now we can put these together to prove unique factorization.

Proof of Theorem . There are two claims we need to prove — that a factorization into prime ideals
exists, and is unique.

We’ll prove existence first. Let I C R be a nonzero ideal, which is not the unit ideal. Then by Lemma ,
there is a maximal (and therefore prime) ideal m with I C m. By Proposition , this means we can factor
I =m-J for some ideal J. Then if J is the unit ideal, we’re done; otherwise, we can factor J in the same
way, and so on.

It suffices to show that this process terminates; to do so, we can look at the norm. We have

and we must have N(m) > 1 (as 1 ¢ m). So the norm decreases at each step, which means the process must
eventually terminate.

Now we’ll prove uniqueness. Suppose an ideal I factors in two ways, as

It’s enough to show that we must have q; = p; for some ¢, since then we can cancel out this common ideal
using Proposition , and then repeatedly perform the same argument until we’ve matched up all factors.

Assume for contradiction that q; # py for all ¢. Then since all these ideals are prime and therefore maximal,
q; cannot be contained in p; for any i. So for each i, we can pick an element x; € q; such that z; € p;.

But then consider the element x; ---x,. By definition, x1 - - -, must be in q; ---q,. On the other hand,
it cannot be in pj, since none of the x; are (and p; is prime). So z---x, cannot be in p; ---p,, either,
contradiction. O
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Remark 5.27. It’s possible to restructure the final step in the proof as the slightly more general claim
that if p is a prime ideal, then for any ideals I and J with I ¢ p and J ¢ p, we must also have I.J ¢ p.
(This is quite similar to the definition of a prime ideal, but involving ideals instead of elements.)

This can be proved in the same way — take x and gy, which are in I and J respectively but not in p.
Then zy is in IJ but not p.

§5.3 List of Prime ldeals

We’ll now analyze the structure of ideals in R more closely. First, similarly to the case of Gaussian integers,
we can obtain a full list of prime ideals by attempting to factor the integer primes into ideals.

Theorem 5.28

For each integer prime ¢, there are three possibilities for its ideal factorization:
e (g) is a prime ideal.

o (q) factors as p1po where p; and po are distinct and conjugate to each other. Then p; and py are
prime ideals.

« (q) facotrs as p?; then p is a prime ideal.

This gives a full list of the nonzero prime ideals of R.

In these three cases, ¢ is called inert, splitting, and ramified, respectively. Ramified primes can be thought
of as edge cases — in the Gaussian integers the only ramified prime was 2, and in general there’s finitely
many ramified primes (and they come from the prime factors of d).

The proof is very similar to the one used for the Gaussian integers; it follows directly from the following
lemma.

Lemma 5.29

If p is a prime ideal in R, then either p = (¢) for an integer prime g, or pp = (¢) for an integer prime q.

Proof. Suppose pp = (n), and assume n is not prime. Then we can write n = ab for integers a,b > 1, so

pp = (a)(b)
Since p and p are prime, by unique factorization we must then have p = (a) and p = (b) (or the other way
around). This means p = p = (a), and a must be an integer prime. O

In fact, it turns out that similarly to the case of Gaussian integers, we can describe exactly when a prime
splits as a product of ideals.

Lemma 5.30

If ¢ is an odd integer prime, then ¢ remains prime (or in other words, (¢) is a prime ideal) if and only
if the equation
a* —db* =0

has no solutions in F, other than (0,0).
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Proof. First, if (q) is prime and there exists a solution (a,b), then
a? — db* = (a — bVd)(a + bVd)
is divisible by g, so one of the factors a & bv/d must be divisible by q. This implies ¢ | @ and ¢ | b.

Conversely, suppose (gq) is not prime; then there exist o and § such that ¢ | a8, but ¢ { a and ¢ 1 5. Then
we have

q|N(ap) = aa- 5,
so since ¢ is an integer prime, we must have q | a@ or S3. Without loss of generality, ¢ | a@; then if
o = a + bV/d, we have q | a> — db®. Since ¢ { a, then ¢ cannot divide both @ and b; so this gives a nonzero
solution to a? — db?> = 0 in F,. O

Remark 5.31. The reason we required ¢ to be odd in the theorem is that when ¢ = 2, we must be more
careful about the possibility that a and b are half-integers (when ¢ is odd, this isn’t a concern, since 2
is invertible in Fy); but it is possible to obtain a description of the case ¢ = 2 as well.

This gives a description of when a prime ¢ is inert, splitting, or ramified:

o If a®> = b?d has no nontrivial solutions mod ¢ (equivalently, d is not a square mod q), then ¢ is inert,
and (q) is a prime ideal.

o If a® = b?d has a nontrivial solution, then (¢) = pp. In most cases, p and p are distinct, so q is splitting
and both are prime ideals.

e In a few cases, we have p = p. In fact, this occurs exactly when ¢ is an odd prime divisor of d, and
when ¢ =2 and d # 1 (mod 4). These ¢ are ramified, and we get one prime ideal p.

§5.4 Ideal Classes

We can also consider what ideals “look like,” which gives rise to the concept of similarity of ideals. In this
section, we assume all ideals are nonzero.

Definition 5.32. Two ideals I and J of R are similar if there exists some \ € F' such that A\l = J.

Note that two ideals are similar under this definition if and only if their corresponding lattices are similar
in the geometric sense (meaning that one can be obtained from the other by scaling and rotating).

It’s clear that similarity is an equivalence relation, so we will write I ~ J to denote that I is similar to J.
We can then think about the equivalence classes of ideals under similarity, which we call i¢deal classes. We’ll
use [I] to denote the class of I.

Example 5.33
The ideal class [(1)] is exactly the set of principal ideals.

Solution. The ideal class of (1) consists of ideals which can be written as A(1) for A € F'. But we must then
have A € R (since A - 1 must be in the ideal, and therefore in R), so A(1) = () is a principal ideal. O

In particular, if R is a PID, then all ideals are similar. In most cases, R is not a PID; then the ideal classes
are, in some sense, a measure of the failure of R to be a PID.

It’s clear that if I ~ I’, then IJ ~ I'J. So multiplying ideals gives an operation on the set of ideal classes,
which is both commutative and associative. In fact, this makes the set of ideal classes an abelian group —
[(1)] is the unit, and since I is principal for any ideal I, the inverse of [I] is [/].
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Definition 5.34. The ideal class group, denoted CI(F'), is the abelian group of ideal classes (whose
operation is ideal multiplication).

Example 5.35

When R = Z[i] or Z[w] (where w is a primitive 3rd root of unity, so this is the ring of algebraic integers
in Q[v/—3]), then CI(F) is trivial.

Example 5.36
When R = Z[/—5], the ideal class group is Z/27Z — the only two ideals up to similarity are (1) and

(2,14 +/=5).

Proof. Let I be a nonzero ideal, and let o be an element of I with minimal nonzero norm. Let L be the
lattice generated by o and v/—5ba (or equivalently, the lattice corresponding to the ideal («)), so that L C I.

If L =1, then [ is principal; so now assume L # I, so there is an element § € I with § ¢ L. Without loss
of generality, we can assume that [ is in the rectangle spanned by « and /—5« (otherwise, we can subtract
multiples of o and /—ba to translate 3 into this rectangle).

Claim — We must have § = « - %

Proof. Let r = |a|. Then split the rectangle into smaller rectangles as shown:

V—=ba (1+V=5)a

If 5 is in a blue rectangle, then it has distance less than r from one of the blue dots; meanwhile, if § is in a
purple rectangle, by straightforward computation we can check that § has distance less than § from one of
the purple dots. In either case, let this dot be ~.

In the first case, this is an immediate contradiction — we must have v € I, so then 5 —~ € I, contradicting
the assumption that o had minimal norm (and therefore minimal magnitude).

In the second case, we have 2y € I, which means 25 — 2y € I as well. But |25 — 27| < r = |a], so this is
again a contradiction unless g = .
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But if 8 were either the leftmost or rightmost purple dot, then ‘/T:r’a would be in I. Then, multiplying by

V=5, we must have 2« € I, and therefore S« € I; this is a contradiction (as a has minimal norm).

So B must equal the middle purple dot, which corresponds to 1+T«/5a' |

So in this case, there is only one element of I inside this rectangle, which is 5 = a- %; then I = (o, 8) =
5(2,14+/-5), as desired. O

§5.4.1 Finiteness of the Class Group

Our main theorem regarding the class group is the following.

Theorem 5.37
The class group CI(F) is finite.

As before, this is true for any number field F', but we’ll only prove it in the case of imaginary quadratic
extensions.

We’ll begin by proving a lemma. Let p be % if d=1 (mod 4), and @ ifd#1 (mod 4).

Lemma 5.38

Each ideal I contains a nonzero element o with

aa < uN(I).

Proof. We'll use a few elementary geometric properties of lattices:

Fact — Let L C R? be a lattice generated by v and w, and let Ay, be the area of the parallelogram
spanned by v and w. Then:
e Given L, the area Ay, does not depend on the choice of basis vectors v and w.
o For any lattice L' C L, we have
AL/ = [L 3 L’]AL.

Recall that [L : L'] denotes the index of L' in L.

In our situation, let L be the lattice corresponding to I, and let A = Ay, for convenience.

Claim — If v € L has minimal length, then |v|? - § <A.

Proof. Let w be a vector of minimal length, of the vectors in L which are not multiples of v. Then {v, w}
must be a lattice basis for L (any point inside the parallelogram spanned by v and w must be at most |w]
away from one corner). So if the angle between v and w is 6, then

A = |v| - |w|sin 6.

Without loss of generality, we can assume ¢ < 7 (otherwise, replace w with —w). Then we must have 6 > %
— we have |w —v| > |w]|, |v], so the angle opposite it must be the (weakly) largest among the three angles

\/32\?

of the triangle. Then

A= o] - |wl- o] u
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Now it’s enough to calculate A in terms of N(I). To do so, we’ll relate N(I) to the index of I, so that we
can use the second property of lattices.

Claim — If p is a prime ideal, then [J : pJ] = N(p).

Proof. If p = (q) for an integer prime ¢, then this is clear — the lattice of ¢.J is the lattice of J scaled by a
factor of ¢ in both directions, so [J : ¢J] = ¢? (or in other words, L/nL = (Z/nZ)? for any integer n).

So now assume that pp = (¢) for an integer prime ¢q. Then we have
[T :pJ]-[p] s ppJ] = [J : ppJ) = [T : ¢J] = ¢*.

But neither index can be 1, so both must be ¢ = N(p). [ |
Claim — We have N(I) = [R: 1.

Proof. Factor I into prime ideals, as p1ps - - - pr. Then we have
[R:I)=[R:p]-[pr:papo] o1 pror:pr-pil.
Using the above claim and the multiplicativity of the norm, the right-hand side is

N(p1) N(p2) - - - N(px) = N(I). u
Claim — We have that A is N(I)v/d if d # 1 (mod 4), and 3 N(I)Vd if d =1 (mod 4).

Proof. Let Ag be the area corresponding to the lattice of R (the unit ideal); it’s easy to check that Ap is
Vdif d# 1 (mod 4) and $vd if d =1 (mod 4).

Then using the properties of lattices, we have
A =[R:I|Ar =N(I)Ag,

as desired. [ ]

Combining these claims, if we take « to be the element of I with minimal magnitude, then

V3 {N(I)\/& ifd#1 (mod 4)
aa - — <
2 7 |IN()Vd ifd=1 (mod 4),

which means aa < pN(I). O

Using this lemma, we can prove the following proposition by a clever algebraic trick.

Proposition 5.39
Every ideal class has a representative I with N(I) < p.
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Proof. Suppose we have a nonzero ideal I; we’ll then find an ideal similar to it with norm at most .

First, take a € T with |o|> < uN(I). Now we have (a) C I, so by Proposition (since inclusion implies

divisibility), we must have («) = I - J for some ideal J. But then

which means [J] = [I]. Meanwhile, we have

which means N(J) < p. O
From this proposition, the finiteness of the class group is clear:

Proof of Theorem . By Proposition , every ideal class has some representative with bounded norm.
But for any prime ¢, there’s at most two ideals with norm ¢ — so for any integer n, there’s only finitely
many ideals with norm n. So there’s only finitely many ideal classes as well. O

In fact, Proposition gives an effective way to compute the class group, as well — the ideal class group is
generated by the classes of the prime ideals, so it’s enough to find the prime ideals of norm at most u, which
can be done by analyzing the factorization of (q) for each prime ¢ < p. (Proposition doesn’t guarantee
that I dtself is prime, but if it isn’t, then we can factor it as a product of prime ideals with smaller norm.)

§5.5 Generalizations

So far, we’ve mostly worked with imaginary quadratic fields. Now we’ll see how similar ideas may apply to
a few other fields.

§5.5.1 Real Quadratic Fields

Now let F' = Q[v/d] where d > 0 (previously, we worked with the case d < 0). Define § with 6> = d, so that
F = QJ¢]. In this case (called a real quadratic field), many of these concepts work the same way, but there
are a few differences.

First, we can’t use complex conjugation. However, we still have an operation of conjugation in F', where we
send a + bd — a — bJ.

Similarly, R is no longer a lattice in C. But we can instead embed it as a lattice in R? (instead of thinking of
our plane as C, we think of it as a ring with two coordinates and componentwise addition and multiplication)
via the map a + b — (a + bv/d,a — bv/d). (The reason to use this map is intuitively that we could have
constructed F via the abstract construction Q[z]/(z% — d). In that sense, § is an abstract square root of d,

and can correspond to v/d or —V/d.)

The norm of an element o = a + b§ is now N(a) = (a + bd)(a — b§) = a® — b*d. This is still an integer,
but it’s not necessarily positive (and it’s not equal to |«|). In particular, unlike the case of an imaginary
quadratic field (where there were very few units), there are infinitely many units (or in other words, there
are infinitely many solutions to the Pell equation a® — b*d = 1).

In this framework, many of the arguments we used generalize to the case of real quadratic fields as well; in
particular, the uniqueness of ideal factorization can be proved similarly. Our arguments can be generalized
to rings of algebraic integers in any number field, but this requires significantly more work.
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§5.5.2 Function Fields

Let K be a field. Suppose we replace Q with K (¢) (this notation denotes Frac(K|[t]), the field of rational
functions in ¢). Then in this situation, F' is a field containing K (t), which is finite-dimensional over K (t)
(as a vector space); and R is the set of a € F' for which P(a) = 0 for a monic polynomial P € K[t][z].

Two especially common examples are K = C and K = F,; here we’ll focus on the case K = C.

For concreteness, we’ll again focus on the case where F' is a quadratic extension, so
R =Clt,2]/(z* - P(1))

where P(t) is squarefree (and therefore does not have multiple roots).

Theorem 5.40

In R, every ideal can be uniquely factored as a product of prime ideals.

We won’t prove this, but in the case of number fields, an important question we looked at was how (p)
factors as a product of ideals in R (where p is an integer prime). We can ask the same question here:

Question 5.41. How do the prime ideals of C[t] factor as a product of prime ideals in R?
First, the prime ideals of C[t] are exactly (t —\) for A € C — since C[t] is a PID, the prime ideals are exactly

the ones generated by irreducible polynomials, and irreducible polynomials over C must be linear.

Meanwhile, it’s still true that all nonzero prime ideals in R are maximal (it’s again possible to use a finiteness
argument, but using that the quotient R/I is a finite-dimensional vector space, instead of that it is finite).
So then we can use Nullstelensatz to describe them — all maximal ideals are of the form

mg, = ker(evgy)

for some (a,b) € C? with b* = P(a), where ev,, is the evaluation homomorphism Q(t,z) — Q(a,b). In
particular, each value a € C corresponds to two values of b, namely +,/P(a) — except roots of P, which
correspond to only one value of b. This gives a ramified double cover:

b2

e

b1

The analog of complex conjugation is b — —b.

Then t — X is in m,p, if and only if A = a (since ¢t — A must evaluate to 0 when we plug in (¢,2) = (a,b)). So
t — X lies in two maximal ideals of R if A is not a root of P, and one if A is a root of P. In either case, it’s
possible to check that ¢ — A is the product of these two ideals:

Proposition 5.42
Let b be a complex number with 2> = P()). Then

(t—X) = mymy _p.
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In the case where A is a root of P (so the two prime ideals of R are the same), we again say that ¢t — A is
a ramified prime; and in the case where X is not a root of P (so the two prime ideals are distinct), we say
that ¢t — A is a splitting prime. Note that there are no inert primes, because C is algebraically closed; but if
we instead worked over [, then we would have analogues of inert primes.

Example 5.43
If P(t) = t, then we have R = C[z,t]/(2% — t) = C[z]. In this case, the only ramification point is 0; and
factorization is the familiar equation

(t—A) = (z2— VN (z + V).

To conclude, here is a table of the analogs between quadratic number fields and quadratic extensions of
C(t). For convenience, we assume d # 1 (mod 4).

Q C(t)
7 Clt]

ZIVd) Clt,z]/(z* - P(t))
P t— A

Ramified primes | ¢ — A where P(\) =0
Splitting primes | t — A where P(\) # 0
Inert primes N/A

§6 Modules

We are trying to tell a story where rings are the protagonist, and for a protagonist to be interesting, it must
act. This motivates the concept of modules.

Definition 6.1. Let R be a ring. A module M over R is an abelian group, together with an action map
R x M — M, with (r,m) — rm, subject to the following axioms:

o 1m = m (where 1 is the multiplicative identity of R);

o 71(rom) = (rir2)m;

o Distributivity in both variables: (r1 + r2)m = rim + rom, and r(m; + ma) = rmy + rma.

The first two axioms are very similar to the definition of a group action on a set. So a ring to a module is
like a group G to a G-set (a set with an action by G).

Example 6.2

If R = F is a field, then a module is the same as a vector space.

Remark 6.3. The definition also applies to a noncommutative ring R, in the same way — this definition
does not reference commutativity. We can have more examples of modules over non-commutative
rings: for example, we can take R = Mat,(F') and M = F" (since matrices act on column vectors by
multiplication). As another example, if R = C[G] is the group ring, then a module is the same as a
complex representation of G.

For any ring R, there is a uniquely defined homomorphism Z — R, where 1 — 1. A related fact is that
every abelian group has a unique structure as a Z-module: we know that 1 (in Z) must map m — m, so
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then by distributivity, n =1+ 1+ ---+ 1 must map

(U RV o Vs I el VN
N——————

n

Similarly, —n must map v to —(v+ v+ --- 4+ v). So a Z-module is the same as an abelian group.

Example 6.4

Describe a module over C[z].

Solution. First, we get a C-vector space V by looking at how the constants act. But then we need to see
what x does. We know = must define a linear map A : V — V', where zv = Av. Then every other element’s
action is defined: for a polynomial P = a,x™ + - - - + ag, we get

Pv=qgv+a1dv+---+a, Av.

(The vector space may or may not be finite-dimensional.) O

Example 6.5

Describe a module over Z/n.

Solution. The main point is that if R/I is a quotient of R, then every R/I-module is also a R-module, where
we define r(m) to be 7(m) (where 7 denotes r mod I'). Meanwhile, I must act by 0 in the R/I-module. So
a R/I module is the same as a R-module where every element of I acts in a trivial way (meaning rv = 0
for all r € I).

So a Z/n-module is the same as an abelian group where the order of every element divides n — meaning
na = 0 for all a in the group.

Then for every m, if m denotes m mod n, we can write
my=v+v+---+v.
—_—
m

In order for this to be well-defined, the sum should not depend on our representative for the residue; this is
guaranteed by the condition na = 0. O

For any ring R, there is a simple example of a module: the free module over R is M = R itself, where the
action is multiplication — we have r(z) = rz. This is parallel to the observation that a group G acts on
itself by left multiplication.

§6.1 Submodules

Definition 6.6. Given a module M, a submodule N C M is an abelian subgroup which is invariant
under the R-action — meaning rz € N for all x € N and r € R.

If N C M is a submodule, we can define their quotient M /N, where we take the quotient as abelian groups.
This carries a module structure as well, given by rm = 7m (where m denotes m mod N). This is well-defined
because N is a submodule — we have r(m +n) = rm +rn, and rn € N.

Then the Homomorphism Theorem and Correspondence Theorem work in the exact same way as in abelian
groups.
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Example 6.7

What are the submodules of the free module?

Solution. The answer is exactly the ideals of R — we’re looking for abelian subgroups of R which are
invariant under multiplication by all terms in R, and by definition these are ideals. O

Definition 6.8. Given two modules M and N, their direct sum is
M&N={m,n)|meMneN}
with the action
r(m,n) = (rm,rn).
Definition 6.9. The free module of rank n is

R"=R®R®---®R.

n

In the case where R = F' is a field, the free module of rank n is exactly F", the standard n-dimensional
vector space.

§6.2 Homomorphisms

In linear algebra, we work with matrices. Matrices are also relevant here — they come up when we want to
understand linear maps (the term in this case is different, but it’s the same concept).

Definition 6.10. A homomorphism from a module M to a module N is a homomorphism of abelian
groups ¢ : M — N, which is compatible with the R-action — meaning ¢(rm) = rp(m) for all r € R
and m € M.

In vector spaces, this is the same as a linear map.

We’ll use Homp (M, N) to denote the set of all homomorphisms M — N. Note that homomorphisms can be
added and rescaled, in the same way as linear maps: (¢1+p2)(m) = @1(m) +p2(m), and (rp)(m) = ro(m).
So then Homp(M, N) is a R-module.

It’s easy to understand homomorphisms from the free module Hompg(R, M). In order to give a homomor-
phism R — M, we need to decide where 1 is sent; suppose our homomorphism ¢ maps 1z — m, for some
m € M. But then this uniquely determines where every element is sent: for any r € R, we have

o(r)=¢(r-1g) =r-¢(1g) = rm.

So a homomorphism is determined by ¢(1r), and there are no restrictions on m — this is why R is called a free
module. This means Hompg(R, M) is isomorphic to M: the bijection is given by mapping ¢ € Hompg(R, M)
to ¢(1), and m € M to the homomorphism ¢, : 7 — rm.

Similarly, Homp(R", M) is equally easy to understand. Now R" is generated by the elements 1; which
have a 1 in their ith place, and 0’s everywhere else. So Hompg(R"™, M) is isomorphic to M"™, where the
bijection sends ¢ € Hompg(R", M) to the element (¢(11),¢(12),...,¢(1s)), and (mq,...,my,) € M to the
homomorphism ¢(x1,...,z,) = > x;m;.
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In particular, we have Homp(R", R™) = (R™)"™ = Mat,;;,xn(R) — we can write homomorphisms in the way
we're used to in linear algebra, where A € Mat,x,(R) sends (z1,...,2,)! to A(z1,...,2,)". So as long as
we work with free modules and homomorphisms, there’s many parallels to linear algebra. (But in linear
algebra, there’s various characterizations of matrices that no longer hold here.)

Remark 6.11. The direct sum M & N is the same as M x N. This is true for finite sums and products:
we have
Mi®--- P M, =M x---xM,.

But it’s not true for infinite ones.

§6.3 Generators and Relations

Definition 6.12. A collection of elements my,...,m, € M form a system of generators if every x € M
can be expressed as > r;m; for r; € R.

If such a finite set exists, we say M is finitely generated.

When R is a field, a set of generators is a system of vectors which span the space. In linear algebra, we
could drop some of the vectors to get a basis, where the representation is unique; but that isn’t true here in
general.

§6.3.1 Presentation Matrices

Consider a system of generators ay, ..., a, of M. These define a homomorphism of modules ¢ : R — M
(since every list of n elements defines a homomorphism), and since the a; are generators, the homomorphism
must be onto.

If the presentation as © = ) r;as is unique, or equivalently ker ¢ = {0}, then ¢ is an isomorphism and M
is free. But this is usually not the case.

But we still have M = R"™/ker ¢ by the Homomorphism Theorem, where ker ¢ is another module. If ker ¢
is again finitely generated, then we say M is finitely presented; we’ll need to assume that our modules are
finitely presented for now, but we’ll see later that for a large class of rings, every finitely generated module
is finitely presented.

Now if M is finitely presented, we can choose a set of generators by, ..., b, which generate ker . We can
then use this to completely describe M: each b; is an element of R™, so we can think of it as a column vector
with n entries. Then we can write a n X m matrix

Now we have the onto map 1 : R™ — ker ¢, which gives a map ¢ : R™ — R" with im ¢ = ker . Similarly
to in linear algebra, 1 is given by this matrix: we have ¢ (z) = Bz (for column vectors z).

Then ker p = BR™ — another way to think of this is that the kernel is the span of the column vectors b;.
Since we saw that M = R"/ker ¢, we then have M = R"/BR™. We call B the presentation matriz of M.

§6.3.2 Row and Column Operations

Note that the presentation of a given module is not at all unique:
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Example 6.13
If R = Z, the module M = Z/5Z has the obvious presentation Z/ {5} Z, but it also has the presentation

ZQ/E zl,)] 72,

Proof. Let B be the presentation matrix. We have det B = 5. Then BZ? is the lattice spanned by the
column vectors (2,1)% and (1, 3)?. This lattice L has index |det B| as a subgroup of Z? — we mentioned this
earlier, when discussing quadratic number fields — so Z?/L has five elements. The only abelian group with
5 elements is Z/5, so then this presentation gives Z/5. O

Our goal will be to generalize this example, and understand modules over Z more systematically from their
presentations. The idea is to start with an arbitrary presentation matrix, and do some operations on the
matrix which don’t change the module. We can use these operations to reduce the matrix to a specific form,
from where it’s easy to understand the module.

We'll use M = Mp to denote that M is the module with presentation matrix B.

Proposition 6.14

The elementary column operations on matrices over a ring R are the following:
1. Multiply a column by a unit in R.
2. Add an arbitrary multiple of one column to another.
3. Swap two columns.

These operations do not change the span of the columns.

This is true for the same reason as in a field. Then if B’ is obtained from B by elementary column operations,
we have BR™ = B'R™.

Another useful way to think of elementary column operations is in terms of matrix multiplication. If B’
is obtained from B by column operations, then B’ = BC where C is a m X n invertible matrix — this is
because all the elementary column operations correspond to invertible matrices.

Remark 6.15. We still use GL,,(R) to denote the group of invertible matrices. Now C € GL,,(R)
means that det C' is a unit in R — it’s no longer enough to just require that it’s nonzero. In fact, the
converse is true as well.

Now we can write B'R"™ = BCR™, but since C' is invertible, we have CR™ = R™ (since the map defined
by C is an isomorphism), which means B’R™ = BR™. This is the same argument, but in the language of
matrix multiplication instead.

We’ve discussed column operations, so we may wonder about row operations as well. We can define row
operations in the exact same way.

Proposition 6.16

If B’ is obtained from B by elementary row operations, then they are presentation matrices for isomor-
phic modules, meaning Mp = Mp:.
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Proof. We can prove this by an argument exclusively in terms of matrix multiplication. If B’ is obtained
from B by row operations, then B’ = C'B where C' € GL,(R) is an invertible n X n matrix.

Now we want an isomorphism between R"/BR™ and R"/B'R™ = R"/CBR™. But that isomorphism is
just given by multiplication by C"

R"/BR™ R"/CBR™

R™ R™

The map x — Cz is an isomorphism from R™ to itself. But x € BR™ iff Cx € CBR™, so its restriction
gives an isomorphism from BR™ to B’R™, and therefore an isomorphism of quotients as well. O

§6.3.3 Smith Normal Form

In the case where R is a Euclidean domain, we can actually use these elementary row and column operations
to reduce our matrix to a simple form, and get a classification of finitely presented modules.

Theorem 6.17

Evern n x m matrix over a Euclidean ring R can be reduced by elementary row and column operations
to Smith normal form, where there are 0’s everywhere except on the diagonal, and the diagonal entries
satisfy di1 | doo | das | - - .

Remark 6.18. In terms of matrix multiplication, the theorem states that for any B, we can write a
matrix D = ABC of this form, for A € GL,(R) and C € GL,,(R). THen Mp = Mp. This version of
the statement is also true when R is a PID, but it’s possible that D is not the result of elementary row
and column operations.

We can use this to concretely understand finitely presented modules:

Corollary 6.19

A finitely presented module over R is a direct sum of cyclic modules: we have
M=R"®R/di®R/dy®---® R/dp,

where dy | da | -+ | dy.

This is clear from the theorem: it’s easy to compute the image of a diagonal matrix of this form. We have
to assume the module is finitely presented for now, but we’ll later see that in this case, all finitely generated
modules are finitely presented.

A cyclic module is a module generated by one element, which must be of the form R/I.

Before we prove the theorem, we’ll look at a simple example.
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Example 6.20

Describe the modules corresponding to the 2 x 2 presentation matrices
2 0 5 0 2 1
0 3|7 (0 1" |1 3|

Solution. The easy case is when the matrix is diagonal. In the first case, we have Mp = 7Z/2 x 7Z/3, since in
order to find the coset of a vector (x,y)?, we only care about x mod 2 and y mod 3. Similarly, in the second
case Mp = 7/5 — we can kill the second coordinate, since everything is divisible by 1. (In other words, the
second coordinate gives the relation z = 0 on the second generator, which means it’s useless.)

In the third case we have the two column vectors (2, 1) and (1, 3)!. Since det B = 5, the matrix is degenerate
mod 5, and we can make a column divisible by 5: add twice the first column to the second, to get

, 2] 205
sy 3=t )
Now we keep (2, 1), but replace (1,3)* with (5,5)".

Notice that (2,1)! and (1, 1) form a basis in Z2, since their determinant is 1. So in order to get the kernel,
we took a basis, kept one of the vectors, and multiplied the other by 5. So this is actually isomorphic to our
second example — by changing the basis of the lattice, we can get that the kernel is spanned by (1,0)! and
5(0,1)t. So we see Mp = Z/5 again. O

Now we’ll prove the theorem. To motivate the proof, note that the gcd of all matrix entries doesn’t change
under elementary row and column operations, since ged(z, y) = ged(z+cy, y), for instance. So if the theorem
is true, then we know what dy; is — it’s the ged of all the entries.

So even before doing any calculations, we know what dy; is. This suggests the main idea — we want to run
the Euclidean Algorithm to decrease the numbers, and eventually get the ged.

Proof of Theorem . Recall that in an Euclidean domain, we have a size function o : R\ {0} — Z>o,
where given any nonzero a and b, we can write a = bg + r, where r = 0 or o(r) < o(b). We'll write |a]
instead of o(a).

If B =0 then we’re done; so assume B # 0. The key step is to put the ged of all coefficients in the top-left
corner.

Lemma 6.21

By row and column operations, we can arrive at a matrix B’ such that b}; = ged(b;;) = gcd(bgj).

Proof. First, by permuting rows and columns, we can guarantee that by; is the nonzero element of minimal
norm — so |by1|< |b;;| for all ¢ and j (with b;; # 0).

Now if b11 divides all the b;;, then we're done. If not, we want to modify the matrix to find a smaller entry.

If there exists b;; not divisible by b11 in the first row or column, then we can directly apply a row or column
operation to reduce it, using division with remainder: we can write b;; = qbi1 +r, and then subtract ¢ times
the first row or column from this element’s row or column. This is the same as the Euclidean Algorithm.
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If not, then all entries in the first row and column are divisible by b1;. So we can use row and column
operations to kill the entire first row and column, except for by itself:

|-bu o o0 --- 0-|
0 * Sk
0 T I

Now if there is an entry b;; not divisible by b11, we can bring it into the first row — since b;; and by; are
both 0, we can add row 7 to the first row, which brings b;; to bi; without changing b11.

But now we can perform the previous step: add a multiple of the first column in order to make this entry
smaller than bqq.

Now that we’ve created a smaller element, permute the rows and columns to put the smallest element in
the top-left again; this means we’ve strictly decreased the size of the nonzero entry in the top-left.

Now we keep repeating this. We can’t keep decreasing the size, since sizes are nonzero integers; so this must
eventually terminate, at which point b1; divides all other entries. O

Now induct on m + n. By the lemma, we can go from B to B’, where b}, divides all b};. Now since by
divides all elements in the first row and column, we can again use it to kill them. So we’ve transformed the
matrix into the form

|_b’11 0 O O-|
0 * ok *
0 * % *
0 * k... X

Now we’re done with the first row and column, and we can delete them and perform operations only on the
remaining submatrix. By the inductive hypothesis, we can reduce that smaller matrix to the form we want,
so we're done. O

Example 6.22

Convert the matrix
2 1
1 3

to Smith normal form.

Solution. First, permute the rows to get

Bl

Now 1 already divides all other entries, so we can subtract to get

bk
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Example 6.23

Convert the matrix

to Smith normal form.

Solution. We can perform the series of operations

123_)100_)100_)100
4 2 6 4 —6 —6 0 -6 —6 0 —6 0f°

Remark 6.24. In some sense, we're diagonalizing the matrix here. But this is a different kind of diago-
nalization than we saw in linear algebra with Jordan normal form — in that case we used conjugation,
while here we use elementary operations.

§6.3.4 Classification of Abelian Groups

Taking R to be Z, since a Z-module is the same as an abelian group, we can get a classification of finitely
presented abelian groups (we’ll later see how to replace “finitely presented” with “finitely generated”).

Corollary 6.25

A finitely presented abelian group is isomorphic to
Z)dy X Z[dg X -+ X L[dp X Z°,
where d1 ‘ d2 | |dn
It’s possible to rewrite this: the Chinese Remainder Theorem states that if n = ab for relatively prime a

and b, t hen Z/n = Z/a x Z/b. So factoring each d; as a product of prime powers, we can decompose the
terms Z/d; as a product of cyclic groups with prime power order Z/p™.

We can look at some properties of this composition.
Question 6.26. Which parts of the decomposition are unique?

Note that G x H D G — this is because G x H consists of all elements (g, k), while G consists of the elements
(g9,1). So this means Z/dy X --- X Z/d, is a finite subgroup of our abelian group. So the product of the
finite factors is then exactly the set of elements in the group with finite order — since if an element had a
nonzero part in the free term, it wouldn’t have finite order.

Definition 6.27. The set of elements with finite order is called the torsion subgroup Ay, so we have

Af:Z/dl X oo XZ/dn.

On the contrary, the free factor is not uniquely defined as a subgroup. For example, take A = Z/2 x Z, so
Ay = 7/2. But A contains two free groups — one generated by (0,1), and the other generated by (1,1).
Both are complementary to Z/2, but they are not the same.
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But it’s easy to see that the rank a of the free factor is well-defined. This is because Z* = A/Ay, but
Z* 2 7P if a # b. (Otherwise we would have an a x b matrix B and b x a matrix C' with BC' = 1, and
CB = 1. This is impossible even dropping the requirement that they have integer coefficients — if a < b
then rank(CB) < a < b = rank(1;), contradiction.)

We can further analyze the torsion subgroup Ay. By using the Chinese Remainder Theorem and grouping
together factors corresponding to the same prime, we can write

Af:AmXApQX"'XApma

where each factor is of the form A, = [[Z/p’.

Example 6.28
Write Z/36 x Z/6 in this form.

Solution. We can split 36 =4 -9 and 6 =2 - 3, to get (Z/4 x Z/2) x (Z/9 x Z]3). O

Note that A, is a p-Sylow subgroup of Ay. Since the group is abelian, by the Sylow Theorems A, is uniquely
defined. In fact A, is exactly the set of elements whose order is a power of p — this is called the p-torsion
subgroup.

Lemma 6.29
The multiplicities of the powers of p in the decompositions A, = [[Z/p’ are uniquely defined.

For example, this means Z/4 x Z/4 is not isomorphic to Z/2 x Z /8.

Proof. Let A =7Z/p™ x --- x Z/p® . There are two main observations here.

First consider A/pA. Each term contributes Z/p, so A/pA = (Z/p)". This means |A/pA|= p", where n is
the number of factors — so any two decompositions must have the same number of factors.

Meanwhile, we can also look at pA. We have pZ/p® = Z/p®~!. So replacing A with pA reduces each of the
exponents by 1, and

pA=[Z/p" "
(It’s possible that some of these factors are trivial.)

Now use induction on |A|. If
A=Z[p" x - X L™ = Zfp" x - X Tfp™,
then we must have n = m by the first observation, and
pA=]]z/p" "t =] 2/p""

by the second. But by the induction hypothesis, we can match all a; > 1 with a} > 1. Meanwhile, since
m = n, we can also match the a; = 1 with a] = 1. O
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§6.3.5 Polynomial Rings

Now consider the decomposition in the case of R = F'[t], where F is a field. The theorem says that a finitely
presented module is of the form

M= R/(P)x---x R/(P,) x R,
where Py | Py | -+ | P,. Similarly to before, we can rewrite the decomposition as

M = [ R/Q{ x R*,
where the @); are irreducible.

In particular, consider M which are finite-dimensional as a vector space over F. Then there should be no
free factor R“.

When we started discussing modules, we saw that a F'[t] module is the same as a F-vector space V', together
with a linear operator V' — V (the action of ¢). So understanding isomorphism classes of modules is the
same as understanding this situation, which was studied in linear algebra.

If P(t) =t"+a,_1t""' +--- + ap, recall that R/(P) has a basis consisting of 1, #, ..., t"~L. Let e¢; = t=1.
Then we have te; = e'T! for 1 < i <n — 1, while

te, = —ape| — a162 — s — Ap_1€n-

So then the matrix corresponding to ¢ is

000 0 —ao
100 0 —a
010 0 —ay
00 1 0 —as
000 -+ 1 —ap

Now consider F' = C, where the only irreducible polynomials are linear — so we have Q;(t) =t — \;. If
Ai = 0, then using the above basis, we get a matrix with 0’s on the diagonal, 1’s directly below the diagonal,
and 0’s everywhere else — this is exactly Jordan normal form where the diagonal is 0.

Meanwhile, in general, we can use the basis (£ — \;)/ instead of /. Then the situation is the same, except
that we add a scalar to the matrix (because the action of t — A; corresponds to this matrix, so we add the
scalar matrix \; to get the action of t), so we get the same matrix with )\; on the diagonal instead of 0.

So this actually proves Jordan normal form.

§6.4 Noetherian Rings

Definition 6.30. A ring R is Noetherian if every ideal in R is finitely generated.

For example, if R is a field or a PID, it’s clearly Noetherian.

The notion of Noetherian rings is useful for the following reason:

Proposition 6.31

A ring R is Noetherian iff every submodule in a finitely generated R-module is itself finitely generated.
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Corollary 6.32

If R is Noetherian, then every finitely generated module is finitely presented.

So if R is Noetherian, then we can actually replace the “finitely presented” condition above with “finitely
generated.” Meanwhile, the Hilbert Basis Theorem states that if R is Noetherian, so is R[z]. This gives us
a powerful tool for proving that many rings are Noetherian.

Before we prove this, we’ll look at a few observations.

Lemma 6.33

If we have a surjective homomorphism ¢ : M — N of R-modules, then:
1. If M is finitely generated, then N is also finitely generated.

2. If N is finitely generated, and K = ker(y) is also finitely generated, then M is also finitely
generated.

Remark 6.34. This is one place where the intuition from linear algebra is useful: it’s helpful to think
about the case where R is a field, so being finitely generated is equivalent to being finite-dimensional.
In this case, we know more precisely that

dim(M) = dim(N) + dim(K).

We won’t get information this precise in the general case, but proving finiteness is fairly similar.

Proof of Lemma . The first part is obvious — take any set of generators my, ..., m, for M. Then their
images @(mi), ..., ¢(m,) must generate N.

For the second part, let k1, ..., k, be a set of generators for K, and nq, ..., np a set of generators for V.
Now pick 7, ..., 7y such that ¢(n;) = n; (which we can do by surjectivity).

Now we claim that the k; and n; generate M: given any x € M, we can find 71, ..., rp in R such that

o(x) =ring + -+ rpny.

So then we have
o(x —ring — - —mpip) = () —ring — -+ —rpng = 0,

which means x — > r;7; is in K. So we can express x — Y 1;7; = ) s;k;, which gives an expression for z as
a linear combination of the 7; and k;. O

Proof of Proposition . One direction is clear: an ideal of R, by definition, is the same as a submodule of
the free module (which is generated by one element). So if every submodule of a finitely generated module
is finitely generated, then R must be Noetherian.

For the other direction, we want to show that if every ideal is finitely generated, then so is every submodule
of a finitely generated module.

The strategy is to reduce to the case of a free module R", and use induction on n — we know this is true
for n = 1, so we want to reduce to this case.

Let M be a finitely generated module. Then by picking a set of generators, we can find a surjective
homomorphism ¢ : R" — M (fixing such a homomorphism is equivalent to fixing a set of generators).
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Then by the Correspondence Theorem and the above lemma, it’s enough to check that every submodule
of R™ is finitely generated (since the submodules of M are exactly the images of the submodules of R™
containing ker ).

Now we can argue by induction on n. First, the base case n = 1 follows directly from the definition of a
Noetherian ring, since submodules of R are exactly ideals.

For the inductive step, consider a submodule N C R", with n > 1. Now split R” = R x R" !, and take the
projection homomorphism 7 : R® — R"~! which sends (r1,...,7,) + (ro,..., 7).

Then 7(N) is a submodule of R*~!, so by the induction assumption, it’s finitely generated. Meanwhile, the
kernel K of 7 is the set of elements of the form (r,0,0,...) which are in N. But this is a submodule of the
free rank-1 module R, so K is also finitely generated.

So by the lemma, since K and (V) are both finitely generated, N is finitely generated as well. O

Remark 6.35. For example, when considering submodules of Z?, we’d take the points on the z-axis as
K, and the projections onto the y-axis as w(N). Note that N is not necessarily K x w(N).

So now we have that if R is Noetherian, any finitely generated module is also finitely presented:

Proof of Corollary . If the module is finitely generated, then there is a surjective map ¢ : R — M.
Then ker ¢ is a submodule of R", so it must be finitely generated as well. O

This means the classification we saw earlier is actually a classification of all finitely generated abelian groups.

So we’ve seen why this notion is useful. But in order to use it, we want to see how to produce more examples
of Noetherian rings, beyond just fields and PIDs.

First, there is a simple observation we can make:

Lemma 6.36

A quotient of a Noetherian ring is again Noetherian — if R is a Noetherian ring and I an ideal of R,
then the ring S = R/I is also Noetherian.

Proof. This is immediate from the Correspondence Theorem: an ideal in R/ is of the form .J, where J C R
is an ideal containing I (here the bar denotes taking mod I). Then we can just take the images of the
generators — if J = (z1,...,2y), then J = (T1,...,T,). So all ideals of R/I are finitely generated. O

Remark 6.37. A subring in a Noetherian ring is not necessarily Noetherian — so this is more subtle
than the dimension of a vector space.

For example, C[z,y| is Noetherian. But the subring C + xC[z, y] consisting of polynomials which are
constant mod z is not Noetherian — the ideal C[z, y| is not finitely generated.

§6.4.1 Hilbert Basis Theorem

There’s actually a powerful tool that shows many rings are Noetherian:

Theorem 6.38 (Hilbert Basis Theorem)
If R is Noetherian, then R[] is also Noetherian.
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Remark 6.39. When Hilbert proved this theorem in 1890, there’s a legend that a famous mathe-
matician Paul Gordan (referred to as the king of invariant theory) said this is not mathematics, it’s
theology. Previously, people had to work with rings case by case, and concretely produce finitely many
elements generating an ideal. In contrast, this theorem has a very abstract proof that doesn’t give much
information about how to actually write down the generators.

This theorem has useful implications:

Corollary 6.40
If R is Noetherian, then R[x1,...,xz,]/I is also Noetherian, for any ideal I.

Corollary 6.41

Any algebraic subset in C™ (a subset given by a collection of polynomial equations) is always given by
a finite set of polynomial equations.

Proof of Theorem . Let I C R[x] be an ideal, so we want to check that I is finitely generated. It’s
enough to find a finite collection of polynomials P, ..., P, in I and a bound d, such that every element in
I can be reduced to a polynomial of degree d — meaning that

IC (Pl, - ,Pn) + R[x]gd.

In other words, once the polynomials and d are fixed, then for every P € I, we need to be able to find Q1,
.., Qpn in R[z] such that

deg(P — > QiP;) < d.
If we know this, then
I C (Pl, - ,Pn) + (I N R[x]gd).

But the second term is finitely generated over R, since R[z|<q4 is a free module of rank d + 1 over R, and R
is Noetherian. So if it’s generated by S1, ..., Sm, then I is generated by the P; and S;.

So now we want to figure out how to do this — in some sense, this is generalized division with remainder.

Consider the ideal T in R consisting of the leading coefficients of polynomials in I (along with 0). Then

I is finitely generated. Let Pp, ..., P, be polynomials whose leading coefficients generate I, and let
d = max(deg F;).

Now if we have a polynomial P of degree greater than d, we can cancel its leading coefficient — we can
find @; such that > Q;F; has the same degree and same leading coefficient as P, and then subtract them
to decrease the degree of P by at least 1. We can then repeat this until P has degree at most d. Ul

Remark 6.42. This proof is not very constructive — it’s not an effective way of finding generators.

§6.4.2 Chain Conditions

Proposition 6.43

A ring is Noetherian iff every increasing chain of ideals stabilizes. In other words, if
iy € My € aov,

then from some point on, we have I,, = I,,11 = ---.
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Example 6.44
Consider the case R = 7.

Solution. Here a chain of ideals amounts to a list of integers dy, da, ... where d; | d;—1 for all i. Clearly the
sequence must stabilize, since it’s a decreasing sequence of positive integers. O

Proof of Proposition . First suppose R is Noetherian, and we have a chain I; C I C ---. Then their
union I = I; Uy U--- is an ideal. Since R is Noetherian, then [ is finitely generated, so we can write
I =(ay,...,ay). Then for each i, a; must be contained in some ideal (since it’s in their union). But there’s
finitely many a;, so some I, must contain all of them (since I C Iy, once a; appears in one ideal, it
appears in all following ones). So then I,,, = I, and the sequence must stabilize at I, — we must have
Ip, = m+1:"':I-

For the other direction, suppose R is not finitely generated, and let I C R be an ideal that’s not finitely
generated. Pick a; € I, and define a,, inductively such that a,, € I but a,, € (a1,...,a,—1) — this is possible
because otherwise I would be finitely generated. Now we can take I, = (aq,...,a,), which gives an infinite
non-stabilizing chain of ideals. O

Remark 6.45. Sometimes the chain condition is given as the definition of Noetherian rings.

This has an application to unique factorization in PIDs. Previously, we proved uniqueness but not existence
— it’s nontrivial to prove existence in an abstract PID with no concept of a norm. But now if we can’t
factor an element into irreducibles, then we have an infinite factorization process, which produces an infinite
chain of ideals. So this chain condition implies factoring terminates.

Proposition 6.46

In a Noetherian ring, every (non-unit) ideal is contained in a maximal ideal.

This is actually true in any ring, but the proof requires set theory. The rings which we are interested in are
all Noetherian, so are covered by this.

Proof. Let I C R be an ideal, and assume [ is not contained in a maximal ideal. Set I; = I. Now find
I, D I (not equal to I or R), which is possible since I is not maximal. But I is not maximal either, so we
can similarly construct I3 D Iz, and inductively build a chain Iy C Iy C I3 C --- C R — this is possible at
every step because if not, I,, would be a maximal ideal containing I. This contradicts chain termination. [J

Remark 6.47. As a final remark on modules: an important tool in studying modules is an upgrade on
the presentation with generators and relations. The idea is that once we have generators and relations,
we can also look at the relations between relations, and so on. First construct a surjective map R" — M
by fixing generators. This map has a kernel K;, and we can construct a surjective map R™ — K; by
fixing its generators. This map has a kernel K5, and we can construct a surjective map R’ — Ky, and
so on. This is called the syzergy or free resolution.

§7 Fields
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Definition 7.1. A field extension is a pair of fields L D K. The extension is written as L/K.

The theory of field extensions developed from trying to understand how to systematically solve polynomial
equations. We know a formula for solving quadratics; people were interested in seeing whether more general
formulas existed.

An important example of a field extension is L = K («), where « is the root of an irreducible polynomial. If
P is a generic polynomial in Q[x] of degree at least 5, and K = Q(«) for a root « of P, then we’ll see that
K is not contained in a field of the form Q(f,...,[,) where Bidi € Q(f,...,Bi—1) for each i (and some
positive integers d;). So it follows that there is no formula for the roots of P involving just radicals.

Another application is to compass and straightedge construction: let {;,, € C be a primitive nth root of unity.

Question 7.2. When is Q((,) contained in a field of the form Q(ay, ..., a,) where o? € Q(a1, ..., ;1)
for all 77

In other words, we want to find out whether we can obtain (,, by the regular operations along with extracting
square roots. This is interesting because it happens iff a regular n-gon can be constructed by a compass and
straightedge. We’ll see how to get a complete answer — this characterization was proved by Gauss. For
example, the answer is yes for n = 17 and no for n = 19.

§7.1 Field Extensions
Definition 7.3. An extension L/K is finite if L is finite-dimensional as a vector space over K.

Essentially, what this means is that if we forget that we can multiply by elements of L, but remember that
we can add them and multiply by elements of K, then we should get a finite-dimensional vector space.

We've already seen how to construct examples of finite extensions: if P € K|z] is an irreducible polynomial,
then we saw that K[z]/(P) is a field. (This is because K|z| is a PID, so (P) is a maximal ideal.) In this
case, the dimension of the vector space is d = deg P, since we saw the monomials 1, z, ..., %! form a
basis.

Definition 7.4. The degree of the extension L/K, denoted [L : K], is the dimension of L as a vector
space over K.

On the other hand, suppose we start with an extension L/K, and pick an element o« € L. We say « is
algebraic over K if it satisfies a polynomial equation — meaning that P(«) = 0 for some nonzero P € K|z].

If « is algebraic, then we can take its minimal polynomial P (the monic polynomial of smallest degree
with P(a) = 0 — this is unique because all polynomials with P(«) = 0 form an ideal, and all ideals are
principal and generated by their minimal-degree element). The minimal polynomial has to be irreducible
— if P = P, P, then P(a) = Pi(a)Py(a) = 0, but since we're in a field, this would imply one of the factors
is 0, contradicting minimality.

Then we have a homomorphism K[x]/(P) — L sending = + «. But any homomorphism of fields is injective
(alternatively, the kernel of the map f : K[zx] — L sending = — « is exactly the set of polynomials
P with P(a) = 0, which is generated by the minimal polynomial of «). So we have an isomorphism
K[z]/(P) = K(«), where K («) is the subfield of L generated by a.

Remark 7.5. This isomorphism is important: later we’ll look at automorphisms of fields, and this
is the trick that will let us build such maps. For example, start with K = Q and L = C, and take
a = /2 and f = /2w for a primitive third root of unity w. Then o and S are both roots of the

irreducible polynomial 23 —2 = 0. So Q(a) = Q(B), since both extensions are isomorphic to the
abstract construction Q[z]/(z3 — 2).
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Lemma 7.6

If we have a field extension L/K, then « is algebraic iff K («) is finite-dimensional over K.

Proof. We've already seen that if « is algebraic, then K(«) is finite-dimensional. Meanwhile, a polynomial
relation can be thought of as a linear relation between the powers of a. If m > dimg K(«), then 1, a, ...,
a™ must be linearly dependent; that linear dependence corresponds to a polynomial over K. O

Corollary 7.7
If L/K is finite, then every « € L is algebraic over K.

§7.2 Towers of Extensions

Proposition 7.8

Suppose that we have a tower of field extensions K D E D F, where K/E and E/F are finite. Then
K/F is finite, and
[K:F]=[K:E]-|E:F]

Proof. Let a1, ..., a, be a basis for E as a vector space over F', and 31, ..., B, a basis for K as a vector
space over E. Then we’ll show that the terms «;/3; form a basis for K/F.

But this is clear if we substitute notation. First, in order to see that this is a generating set, every x € K
can be written as x = > \;3;, while each \; € E/ can be written as A\; = >_ a;j;, which gives

Tr = Z aijaj 52
Similarly, to prove independence, if we have ) a;jo;8; = 0, we can collect terms into
Z (Z CLijOéj> Bl =0.
If the a;; are not all 0, then one of the terms > a;;a; must be nonzero (since the a; are linearly independent),

and therefore the entire sum must be nonzero (since the §; are linearly independent). O

Example 7.9
Find [Q(a, B) : Q], where a = /2 and 8 = V/2w.

Solution. We saw o and 3 both have minimal polynomial z® — 2. Then [Q(«) : Q] = 3. Meanwhile, 2° — 2
factors in Q(a) as (z — a)(z? + ax + a?). So [Q(«, B) : Q(a)] = 2, which means [Q(«, 3) : Q] = 6. O

We have the following useful fact about fields:

Fact 7.10 — Every field is a (possibly infinite) extension of either Q, or F, for a prime p.
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Proof. Recall that for any ring R, there is a unique ring homomorphism Z — R, where 1 — 1r and
n—1lp+---+1p =ng.
—_——
n

The image is a quotient of Z. Meanwhile, we can look at the kernel. If R is a domain, then the kernel either
is trivial (meaning the homomorphism is injective) or is (p) for a prime p — otherwise the image would be
Z/n for n not prime, which is not a domain (as it has zero divisors).

Now if R = F' is a field, the generator of the kernel is called the characteristic of the field.

If char(F') = 0, then Z is a subring of F. But then we must have a copy of Q = Frac(Z) inside F', where
this copy of Q is the set of fractions :Ti'

On the other hand, if char(F') = p, then we have Z/p C F. O

Now we’ll return to towers of extensions E/F /K — here E/K is called the composite extension, while E/F
and F'/K are called intermediate extensions. We saw that [E : K] = [E : F] - [F : K|; in particular, E/K is
finite iff E/F and F/K are finite.

Corollary 7.11
If o, B € L are algebraic over K, then a + 3, af, and % are also algebraic.

Proof. If « and f are algebraic, then K(«a)/K and K(a,()/K(a) are both finite — since [ satisfies a
polynomial relation with coefficients in K, it satisfies the same polynomial relation with coefficients in
K (a). So we can conclude that K (a, () is finite, and therefore any element in it is algebraic. O

Corollary 7.12

Given an arbitrary extension, the set of elements in L which are algebraic over K form a subfield of L,
called the algebraic closure of K in L.

This is an abstract argument that doesn’t exactly tell us how to construct the polynomial; but it’s possible
to come up with a procedure to write down an equation as well.

Example 7.13
Let a = v/2 and 3 = /3, and v = o + 3. Write down a polynomial equation for ~.

Solution. One possible way is to consider 1, v, 42, .... These are all linear combinations of 1, v/2, /3,
and /6, with coefficients in Q. So they lie in a vector space of dimension at most 4, and we can use linear
algebra to find the linear relation between 1, v, ..., .

Alternatively, we’d like to find a polynomial with + as a root, so we can try to think about what the other
roots should be. We want v/2+ v/3 to be a root, so we can guess that V2 —+/3 should also be a root — from
an algebraic perspective, we should be able to switch the sign of the square root. Similarly, —v/2 + v/3 and
—+/2 — /3 should be roots. We can expand the polynomial with these four roots, and see that this does in
fact work.

Essentially, the idea we used here is that there’s a group of symmetries acting on the roots (by multiplying
them by +1); we’ll discuss this more in Galois theory. O
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§7.2.1 Compass and Straightedge Construction

We can consider another corollary of Proposition

Corollary 7.14
If E/F/K is a tower of finite extensions, then [F': K] | [E : K].

It’s a fact (mentioned earlier) that a regular n-gon is constructible with compass and straightedge iff ¢, lies
in an extension Q(ay, o) such that o € Q(ay, ..., a,—1) for all i — we won’t discuss the details here. This
means we have a tower of extensions F,,/F,_1/---/F1/Fy where Fy = Q, and [F; : F;_1] = 2 for all i (the
degree could be 1, but this is not useful).

Theorem 7.15
Let n = p be prime. Then a regular p-gon can be constructed iff p = 2% + 1.

Primes p = 2% + 1 are called Fermat primes. There’s only 5 known Fermat primes (3, 17, 257, and 65537);
it’s conjectured that there are no others, but we don’t even know whether there’s finitely or infinitely many.

We’ll show one direction: that if ¢, is constructible, then p is a Fermat prime.

Proof of necessity. First we want to find deg((p), or the degree of the extension [Q((p) : Q] (which is called
a cyclotomic extension).

We know ¢, is a root of the polynomial ¥ — 1, which we can immediately factor as
P —1=(z—1)(aPt+2P 24 1)

We claim that the factor on the right is irreducible — we’ll prove this via Eisenstein’s criterion. First, it’s
primitive, so in order to show that it’s irreducible over Q, it suffices to show that it’s irreducible over Z.
But we can shift to t = x — 1, so then

(t4+1)P -1

Q) =

All non-leading coefficients of Q(t) are divisible by p, and the free term p is not divisible by p?. Eisenstein
gives that such polynomials are always irreducible — to prove this, if Q = Q1Q2 where ()1 and Q2 have
positive degree, then we can reduce mod p to get P! = Q1Q2, where both factors have nonzero degree. So
both factors must have free term divisible by p, and the free term of their product must be divisible by p?,
contradiction.

So we have deg(¢,) = p — 1. On the other hand, if (, € F), for a field extension of the form described, then
deg((p) must divide [F, : Q], which is a power of 2. So p — 1 must be a power of 2. O

=t (mod p).

With our current tools, we can only show one direction — to show the other direction, we need a better
extension of which fields can be obtained as the top floor of such a tower (it’s necessary that the degree is
a power of 2, but this may not be sufficient). In the case of Q((,), the condition turns out to be sufficient
as well.

§7.3 Splitting Fields

We’ve seen the construction where we start with an irreducible polynomial P € F[z], and construct E =
F[x]/(P). This is an extension of F' of degree n = deg(P), and we can think of it as adjoining a root of the
polynomial.

But there’s another construction which produces a finite extension from a polynomial, which is harder to
control.
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Definition 7.16. Given a (not necessarily irreducible) polynomial P € F[z], a splitting field of P is an
extension F/F such that:

1. P splits as a product of linear factors in E[z];

2. E=F(aq,...,ap), where the «; are the roots of P (in the above splitting).

Example 7.17

Find the splitting field of P(z) = 2% — 2 over F = Q and F = Q(w), where w is a primitive 3rd root of
unity.

Solution. The splitting field of P over F = Q is E = Q(¥/2,w+/2), and we saw earlier that [E : F] = 6.

On the other hand, if F' = Q(w), then P is still irreducible. But if we add one root then it becomes reducible
— if a is a root, we have 2% — 2 = (x — a)(z — wa)(r — w?a). So E = F(¥/2), and we have [E: F] =3. O

Example 7.18
Find the splitting field of P(z) = 2771 + ... + 1 over F = Q.

Solution. All roots of P are of the form CI’; for some i. So the splitting field is Q((p), and [E : F]=p—1. O

The splitting field is actually unique:

Proposition 7.19

If Fis a field, and P a (not necessarily irreducible) polynomial in F', then there exists a unique extension
E/F up to isomorphism, such that P splits as a product of linear factors in E[z| as P(z) = [[(z — ),
and £ = F(ay,...,ap).

Proof. The idea of the proof is fairly easy: we essentially add in roots one by one, and uniqueness follows
from uniqueness in adjoining a root of an irreducible polynomial.

Use induction on the degree of P. Let P; be an irreducible factor of P, and let Fy = F[z]|/(P;). Then in
F1[z], we have a factorization P(z) = (z—a)Q(x), where « is a root of P; (since this construction essentially
adjoins a root of P to F).

Now let E be the splitting field for () over F;. Then we claim F is also a splitting field for P over F. This
follows directly from the definition: P splits completely in E[z], and we know that E = Fi(ag,...,ap)
where ag, ..., a, are the roots of Q. But F} = F(«1), so then E = F(ay,...,ap).

So we’ve proved existence of the splitting field. To prove uniqueness, suppose that E’ is another splitting
field; we’ll construct an isomorphism between E’ and E.

First, we can find a root o/ of Py in E’. Then if we set F] = F(a/) C E’, we know that F(a/) = F(«), since
both are isomorphic to F[z]/(P). This isomorphism sends @ € Fi[z] to Q" € F{[z], where P = (x — /)Q’.
Now E' is a splitting field for Q' over F]. So uniqueness of the splitting field of @ implies that the isomorphism
between F; and F] extends to an isomorphism between E and E'. O
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§7.4 Finite Fields

Previously, we discussed the primary fields — every field contains either Q or F,, for some p. If F' is now a
finite field, then it can’t contain Q; so it contains I, for some p.

Meanwhile, F'/IF,, must be finite as well — i.e. F' is finite-dimensional as a F),-vector space. If this dimension
is n = [F : Fp], then we have |F|= p". (We can forget about multiplication and choose a basis for F as a
[Fp-vector space; this identifies F' with F)), which has size p".)

So all finite fields have order g = p™ for some n.

Theorem 7.20

For every prime p and every n > 1, there exists a field of ¢ = p™ elements; and any two such fields are
isomorphic.

So there exists a unique field of ¢ elements, denoted by F,.
Remark 7.21. This field is not Z/qZ (if n > 1) — they are not isomorphic even as additive groups.

We could construct a field of g elements if we could find an irreducible polynomial of degree n in F)[x]. For
example, if p = 4k + 3, then Fy[z]/(2? 4+ 1) = F2; similarly for p = 2, we have Fa[z]/(z® + 22 + 1) = Fs.
It’s possible to prove that an irreducible polynomial of degree n always exists, by a counting argument; but
this is not the approach we will use here.

Instead, we’ll use a sort of magic trick:

Definition 7.22. The Artin-Schreier polynomial is the polynomial A(z) = 27 — x.

Lemma 7.23

If F'is a field containing I, then
{reF|az?—2=0}

is a subfield in F'.

Proof. 1t suffices to check two properties: for o and § in F with A(a) = A(B) = 0, we have A(af) =
A(a + ) = 0. (We also need to check that A(a~!) =0.)

The multiplicative properties are obvious, and work even with an arbitrary exponent: we have a? = o and
p1 =, so
(aB)? = a9B% = ap.

Meanwhile, A(a + 8) = 0 follows from the identity that in a ring containing F,, we have
(x+y)P = 2P 4¢P

This follows from the Binomial Theorem, since (7;) is divisible by p for all 1 < ¢ < p — 1. Now by induction
we get (z +y)? =29+ y9, so
(a+p8)!=a+p'=a+p,

as desired. O

We can use this to prove the theorem:
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Proof of Theorem . First we’ll show uniqueness: suppose F'is a field of ¢ = p™ elements. Now consider
the multiplicative group F*, which is an abelian group of ¢ — 1 elements. The order of any element divides
|F*|=q— 1, s0 a9~ =1 for all nonzero o. This means

al=a = A(a) =0

for all a € F.

Now A(z) is a polynomial of degree ¢, which has ¢ roots in a field. It follows that x —a | A(x) for all & € F,
and by unique factorization, we then have

Alz) = H (x — ).
a€cF
So F'is the splitting field of A over F,, and uniqueness of F follows from uniqueness of the splitting field.
Meanwhile, for existence, let F' be the splitting field of A. So we need to check that F has exactly ¢ elements.

From the lemma, we see that A(a) = 0 for all & € F' — this is because F' is generated by the roots of A,
but the roots form a subfield. In particular, this means |F|< deg A = q.

In order to check that we actually have |F|= ¢, we need to see that A has no multiple roots in F' (since
counting elements of F' corresponds to counting roots of A without multiplicity). We can do this by using
derivatives: in analysis, we’ve seen that a root of higher order means the polynomial is tangent to the z-axis.
In this setting we can’t use limits, but we can use formal derivatives: the formal derivative of the polynomial
P(z) = apz™ + -+ ag is
P'(z) = napz" '+ - +ai.

Then it’s easy to prove that (P + Q) = P’ + @', and (PQ) = P'Q + PQ’. But then if P has a multiple
root a, we can write P(r) = (z — a)?Q(x), which means

P'(z) = 2(z — )Q(a) + (z — a)*Q'(x),
which is divisible by z — . So it’s still true that a multiple root is a root of the derivative.

In particular, if ged(P, P’) = 1, then there are no multiple roots. But in this case, we have A’(z) =
qr9~' —1 = —1, since F has characteristic p | g. (Note that we had a nonlinear polynomial whose derivative
is constant.) So clearly ged(A4, A’) = 1, and A has no multiple roots. This means |F|= ¢ = p™. O

There is more that we can say about the structure of finite fields.

Lemma 7.24
If F' is any field, and G is a finite subgroup of F*, then G is cyclic.

Example 7.25
If F' = C, then finite subgroups of F* are the nth roots of unity

{oo ) = Gy 2 2/m.

Proof of Lemma . By the classification of finite abelian groups, we know G = [[Z/p;". So it’s enough
to check that no prime appears twice — then we can use the Chinese Remainder Theorem.

But suppose p appears twice. Then G contains a subgroup Z/p®* x Z/ p®. But then G has at least p? elements
of order dividing p (since there’s p choices for the coordinate in each). This would mean the polynomial
2P — 1 has at least p? roots; but it has degree p, so this is impossible. O
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Corollary 7.26
For any finite field [, its multiplicative group Fy is cyclic, meaning F; = 7Z/(q — 1).

Remark 7.27. Although we know in theory that F; = Z/(q — 1), in practice it is difficult to find a
generator, or to figure out what power to raise the generator to in order to get a given element. Many
cryptography and encryption protocols are based on this.

Corollary 7.28

We have F, = F,(a), and therefore, there exists an irreducible polynomial of any degree over F,,.

Proof. There exists o € Iy, which generates the multiplicative group; then ov must generate F, as an extension
of [F,, since every element of F, is a power of a. (The converse is false — it is possible to find o which
generate the extension but not the multiplicative group.)

Then F, = F,[z]/(Q) where @ is the minimal polynomial of a. So @ is an irreducible polynomial of degree
n, where ¢ = p". O

§7.4.1 Application to Number Theory

Finite fields arise in many areas of math and computer science; in particular, in number theory. If R is
the ring of algebraic integers in a finite extension of Q, then we can consider R/(p). For example, if p = 3
(mod 4) and R = Z[i], then R/(p) = ..

In particular, we’ll look at the extension Q((), where £ is a prime. This extension is Q[z]/(z/~! 4 --- 4 1),
and we have

R=17[z]/(z" 4 +1).
So then
R/(p) = Fpla] /(a1 +--- + 1),
so its dimension over [, is £. So if it is a field, it must be [F ..
Assume p # /£.

Proposition 7.29
In this case, R/(p) is a field iff ordp: p = £ — 1.

Proof. We can find a maximal ideal m containing (p) in R. Then we have R/m = Fj. for some a. Let the
image of (; in R/m be (,. Then we know Zﬁ = 1; so since it lies in Fpe (whose multiplicative group has size
p® — 1), we get that ¢ | p® — 1.

Now if the order of p in F} is £ — 1, then we must have a > ¢ — 1. So then a = ¢ —1, and R/m = R/(p),
which means R/(p) is a field. (We can prove the converse similarly.) O

Example 7.30

Consider the case where p = 3 and ¢ = 5.

Solution. Then ords 3 =4, so R/(3) is a field. O
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§7.5 Multiple Roots

Previously, we used the fact that a multiple root of P is also a root of P’ in order to show that the
Artin-Schreier polynomial doesn’t have multiple roots.

Question 7.31. Let P € F[z] be an irreducible polynomial. Can P have multiple roots in its splitting
field (or equivalently, in any extension)?

If « is such a root, then « is also a root of P’; and therefore a root of ged(P, P') as well (where ged(P, P’)
is the polynomial ) which generates (P, P') as an ideal).

But P is irreducible, and deg P’ < deg P. So if P’ # 0, then this means ged(P, P') = 1, and no such « can
exist. However, it’s possible that P’ = 0.

Question 7.32. When can we have deg P > 1 and P’ = 07

We have (z") = na™"!, and if the field has characteristic 0, then this is always nonzero. Meanwhile, if the
field has characteristic p, then this is zero iff p | n. So if P’ = 0, then we must have

P(.’E) = Q(.’L’p) = anmpn + an—1$p(n_1) +-- 4 ao,

where p = char(F'). So we want to see when such a polynomial is irreducible.

If F' =T, is finite, then we know a? = a for all @ € F'. This means we can extract pth roots of the coefficients,
since (apnil)p =a — so we can write a; = b? for some b; € F. Then we have

P =bPaP" + bﬁilxp(nfl) + o+ Bh.
But this allows us to extract a pth root of the polynomial: we then have

P = (bpx™ + by 12" 4 - 4 bg)P.

On the other hand, there exist examples of such irreducible P in infinite fields. Take F' = [F4(t) to be the
field of rational functions over ¢, and P(z) = 2P — t. This is irreducible, but its derivative is identically 0.

Definition 7.33. An extension E/F is separable if the minimal polynomial (over F') of every algebraic
element o € E has no multiple roots.

So if F' has characteristic 0 or is finite, then every extension is separable. We’ll only look at these instances,
so we will generally assume all our extensions are separable.

§7.6 Primitive Element Theorem

Theorem 7.34

If E/F is a finite separable extension, then E = F(«a) for some a.

This means even if we obtained F by adjoining several elements, we can actually obtain it by adjoining just
one element.

Proof. If F is finite, then F is finite as well; so E = F(«) for any generator « of the multiplicative group
B
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The more interesting case is when F' is infinite. Then it is enough to prove the statement in the case where
E is generated by two elements « and 5 — then we can induct on the number of generators to finish (since
E =F(ai,..., o) for some n).

Suppose E = F(a, ). Now set 74 = at + . We claim that for all but finitely many values of ¢, we have
E = F(n).

Let P be the minimal polynomial of o and @) the minimal polynomial of 3, and let K D E be a field where
both P and @Q both split completely. Then we can write

Plz)=(z—a1)(z—a2) - (z — apn),
Q(x) = (x = p1)(x = B2) -+~ (x — Bm),
where the «; are all distinct, and the 3; are all distinct (by separability); assume a1 = o and 51 = 5.

Choose t such that the mn elements to; + f; are pairwise distinct (clearly there are finitely many ¢ for which
this fails — every possible equality corresponds to at most one value of t).

Now let v = ; it suffices to check that o and § are both in ' = F(v). In order to do this, we will look at
polynomial equations for a over E’.

First, by definition « is a root of P(z). But « is also a root of the polynomial Q1(z) = Q(y — tz), which
also has coefficients in E' — since plugging in a gives Q(ta + 8 — ta) = Q(8) = 0.

Let S = ged(P, Q1) (so S is the generator of the ideal (P,Q1)), working in the ring E’[z]; then « is a root
of S(x). But S must also be a generator of (P, Q1) in the larger field K[z]. And since our polynomials split
completely, we can look at this factorization to determine S — by the condition on ¢, P and ()1 have the
unique common linear factor  — a.. This means S(x) = ¢(z — «) for some c. So since S € E’[z], this means

a € E'; then 8=+ —ta € £ as well. So we must have F' = E. O
Example 7.35
Let F=Qand F = Q(\@, N4 ). Then all but finitely many linear combinations « = 3+ 7 generate
E. The exceptions correspond to ratios BizBi ohtained by taking different square roots of 3 and cube

O —0y
roots of 7; in this case, these ratios are not even real, so there are no exceptions.

§7.7 Geometry of Function Fields

Another important example of field extensions is extensions of C(t), and we can think of such extensions
via geometry. Let F' = C(t), and suppose E = F[z]/(P) is a finite extension of F. We can assume that P
is a primitive polynomial with coefficients in C[t] (by scaling appropriately).

We can instead think of P as a polynomial in C[t,z]. So another way to think of these extensions is that F
is the fraction field of CJt], and E is the fraction field of the ring R = C[t, z]/(P). To connect these rings to
geometry, we consider the maximal spectrums

X = MSpec(R) = {(a,b) € C* | P(a,b) = 0},

Y = MSpec(C[t]) = C.

Then we can construct the map X — Y which sends (a, b) — a.

Example 7.36
Consider P(t,z) = 2" —t.
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Solution. Then R = Clz], and the map X — Y raises a complex number to its nth power (since points in
X are of the form (¢,z) where ¢t = 2", and we’re mapping (¢,z) — t, so we can think of this as mapping
x +— z™). This gives a ramified covering — every point in C except for 0 has n complex nth roots. One way
to represent this geometrically is to draw the ¢-plane (which corresponds to Y') and the x-plane (which in
this case corresponds to X). In the t-plane, we make a cut along the x-axis, turning it into two half-planes
glued together.

For a point on the z-plane, raising it to the nth power multiplies the angle by n. So we cut the x-plane into
2n pieces (colored by which half-plane their points are mapped to):

T

This describes the geometry of the map of raising a complex number to the nth power. O

Example 7.37
Consider P(x,t) = 22 — t(t + 1)(t — \). For simplicity, assume \ € R.

Solution. We can again draw the C-plane corresponding to t, and consider which values of = each t corre-
sponds to. We again have a ramified double covering, with three ramification points — ¢ = 0, —1, and A
(for every other point, there are two square roots). So in the t-plane (corresponding to Y'), we can again
make a cut and create two half-planes.
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We’d now like to draw X, which consists of pairs (t,z) for which 2% = ¢(t + 1)(¢ — A). This is no longer
a plane — in fact, it can be drawn in the shape of a bagel. To color this bagel, for each half-plane in Y,
its pre-image splits into two pieces — there’s two values of = corresponding to each ¢ (depending on which
branch of the square root we take). We can then glue these pieces together on the bagel, by thinking more
precisely about these maps. O

Here, we can also think of X as a Riemann surface (in the first example, X was simply a plane, and in the
second, X was a bagel). We can then think of F as the field of rational functions on this Riemann surface.

§7.7.1 Ramified Coverings and Permutations

For each point of Y, we can look at the points of X which are mapped to it. In general, if we let n = deg(P),
then there are exactly n points of X mapped to each point in Y — but there are finitely many exceptions.
This gives a ramified covering of Y.

Remark 7.38. It isn’t a coincidence that the word ramified here is the same as the one used to describe
the behavior of primes which factor as p? — it’s the same phenomenon.

Let ai, ..., a; be the ramification points (in Y'), meaning that |f~*(a;)| < n for all 4, and |f~!(a)| = n for
all a not equal to any of the a;. Now take a generic point a (not equal to any a;). Then there are n points
in the pre-image of a (these points are in X):

Qe

Now suppose we have a closed loop v : [0,1] — Y, such that v(0) = (1) = a, and v avoids all the
ramification points of Y.
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Now let’s try to lift v up to X — starting at a point x in the pre-image of a, we can uniquely define a
continuous map 7 : [0,1] — X where 3(0) = z, and f(5(¢)) = v(¢) for all t. (We're essentially drawing the
path in X corresponding to the loop v in Y — if we’re given the starting point, there’s a unique way to lift
the loop continuously, since it doesn’t pass through any of the ramification points.)

At the end of this lifted path, we’ll still end up in the pre-image of a. But we may end up at a different
point in this pre-image.

So then the loop defines a permutation o on the n points in the pre-image of a, defined by where the path
starting at « ends up — if setting 7(0) = x gives J(1) = y, then we let o, (z) = v.

Example 7.39
Consider the example P(xz,t) = 2™ — t, and let v be the unit circle (the standard loop).

Solution. Here, both X and Y are C, and we have f(z) = 2. Suppose that a = 1, so the points in the
pre-image are the nth roots of unity ¢¥, where ¢, = exp(2mi/n).

t T
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If we start at ¢¥ in X, then we need to walk n times slower in X than in Y (since we’re raising « to the nth
power), so when we complete a full circle on Y, we complete % of a circle on X. This means we end up at

Cn - exp(2mi/n) = (F.
So then o, is the permutation ¢k Cﬁ“. O

So given y, we can obtain a permutation of the pre-images of a specific point a. But it turns out that in
certain cases, even more is true:

Theorem 7.40

If E/F is a splitting field, then the permutations o can be extended to an automorphism of X which
fixes Y, coming from a field automorphism of £ which fixes F.

Example 7.41

In the example P(z,t) = 2™ — t, where E = C(t)/(z™ — t), the automorphism corresponding to 7 (the
unit circle) is the map = — (,z. This automorphism fixes t, as 2™ = ({,z)".

Example 7.42

In the example P(z,t) = 22 — t(t + 1)(t — ), we have a ramified double cover (with two points in the
pre-image of each point, other than 0, —1, and ). The automorphism on X we get from a loop can
either be the identity, or (¢, z) — (t, —x).

Note that if v is deformed continuously (with a still fixed), while avoiding the ramification points, then the
permutation described doesn’t change. In our example P(xz,t) = 2™ — t, any closed loop which goes around
0 exactly once will give the same permutation:

t T
A

§7.8 Main Theorem of Algebra

There is a proof of the Main Theorem of Algebra using ideas similar to the ones we’ve seen here.

Theorem 7.43

The field C is algebraically closed — in other words, every nonconstant polynomial P € C[z] has a root.

The proof uses the concept of a winding number — informally, the winding number of a loop 7 (which avoids
0) is the number of times it goes around 0.

We can define winding numbers more precisely, by looking at permutations — let f: C — C be the exponen-
tial map x — e®. Then for any nonzero z € C, its pre-image consists of the points {log z + 2min | n € Z}.
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Definition 7.44. Given a loop 7, the permutation o, it defines (for the exponential map) sends =
x + 2min for some integer n; we define n to be the winding number of v, denoted as w(7).

Lemma 7.45

If v = 7172, then
w(y) = w(y) + w(y2)-

Proof. This is clear, as we must have J(t) = 71(t) + 72(¢). O
With this definition, we can now prove the theorem.

Proof of Theorem . Let P € Clz], with P(z) = 2™ + ap—12" ! + - - - + ag, and assume for contradiction
that P has no complex roots. Now for each r > 0, consider the loop

Y it P(re%it)

(which is the image of the circle of radius r under P).

Then w(+y,) must be the same for all r, since we can deform all the loops to each other by gradually increasing
r (we’ll never pass through 0 because P has no complex roots).

But it’s clear that w(y,) = 0 for sufficiently small r (since =, is a tiny loop near P(0) # 0). On the other
hand, we can show that large loops have nonzero winding number:

Claim — If r is sufficiently large, then w(v,) = n.

Proof. We can write

P(:c)—x"(l—i—anm_l—k---—i—ao).

This means we can split v, = 172, where

n 2mint
YL =T -€ y
an—1 ap
724_-1_+ re2mit ..‘+_Tn62ﬂhn‘

It’s clear that w(y1) = n. On the other hand, 2 is trapped in a small circle around 1: we have

an—1

ag
[72(t) — 1] < et

and if 7 is sufficiently large, this is much less than 1.

A

A

A
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But this means 72 can’t go around 0 at all, so w(y2) = 0. Then w(y,) = w(y) +w(y2) = n, as desired. W

So then w(~,) is not constant over all r, contradiction. O

Remark 7.46. One intuitive way to visualize the proof that w(y,) = n for large r is that since P(z)
is approximately a" for large |z|, then ~, is approximately the circle of radius r (winding around the
origin n times). We can imagine a person walking along the circle of radius r, with a dog on a leash
(the dog’s movement corresponds to the remaining terms a, 12" ' 4 --- 4 ag). As long as the leash
is short enough, no matter how the dog moves, it must walk around the center of the circle the same
number of times as the person.

§8 Galois Theory

§8.1 The Galois Group

Our main object of study is the Galois group:

Definition 8.1. The Galois group of an extension E/F, denoted Gal(E/F), is the group of automor-
phisms of E which are the identity on F.

Example 8.2
The Galois group Gal(C/R) consists of two elements — the identity and complex conjugation.

The Galois group can store a lot of information about the structure of the field extension. But it only works
well for some classes of extensions — more precisely, for splitting fields.

Theorem 8.3

Suppose that E/F is a splitting field of some polynomial. Then for any o € F, the minimal polynomial
of a must split completely in F.

Example 8.4

Take F = Q, and E to be the splitting field of 2° — 2; then E = Q(V/2,(5). Let o = v/2 + (5, which
generates E by the Primitive Element Theorem; then the minimal polynomial of a over Q has degree
20 (we have [E : Q] = 20, since v/2 has degree 5 over Q and (5 has degree 4).

The theorem then states that all 20 complex roots of this minimal polynomial are inside £. We can
actually explicitly describe these roots — they’re of the form \5/§Cg + ¢{ for some integers 0 < i < 4 and
1 < j <4, which are indeed in F.

Proof of Theorem 5.3. The idea is to use the fact that any given polynomial has a unique splitting field.

Suppose E is the splitting field of some polynomial @, and fix o € F with minimal polynomial P; then we
want to show that P splits completely in E.

Let K O F be the splitting field for P over E. Then in K, we have

P(r) = (2 —a)(x —az) - (r — an),
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where «; € K for all i and ay = o It suffices to check that «; € E for all i (and we already know a € E).

But we have that F(«;) = F(«), since a; and « have the same minimal polynomial. Now consider the
perspective of these two intermediate fields. We know that FE is the splitting field for @ over F/(«). Mean-
while, E(«q;) is the splitting field for @ over F(«;) — this is clear from the definition of the splitting
field (in general, if £ = F(B1,...,03n) is the splitting field of @ (where the §; are the roots of @), then
E(a;) = F(a, B1,- -, Bm) is the splitting field of @ over F(«y)).

But by the uniqueness of the splitting field, we can then extend the isomorphism between F(«) and F'(a;)
to an isomorhpism between F and F(«;) (since the isomorphism between F'(«) and F(«;) is the identity on
F, which means @ is the same polynomial in both fields). This means

[E:F] = [E(a) : F),

and since E(q;) D E, this means we must have E(«;) = E, and therefore «; € E. O

Proposition 8.5

For any finite (separable) extension E/F, we have
|Gal(E/F)| < [E : F],

with equality iff E is the splitting field of some polynomial.

Proof. Using the Primitive Element Theorem, we can let £ = F(«) for some «. Then
[E: F] = deg(a) = deg P,

where P is the minimal polynomial of «.

Meanwhile, an automorphism o : E — E which fixes F is uniquely determined by o(«) (since o generates
the extension), so it suffices to find the number of possible choices for o(«). But o(a) can be any root of
the minimal polynomial of «; so |Gal(E/F)| is equal to the number of roots of P in E.

The number of roots of P in E is at most deg P, which immediately proves
|Gal(E/F)| < [E: F].

If equality holds, then P must split completely in F; this immediately implies that F is the splitting field
of P (since F is also generated by a root a of P).

On the other hand, if F is a splitting field, then by Theorem &.3, P must split completely in E. Since P
cannot have multiple roots, this means it has exactly deg P roots, and therefore there are exactly deg P
automorphisms. O

Remark 8.6. It’s possible to show that |Gal(E/F)| < [E : F| without using the Primitive Element
Theorem (by induction on the number of generators), so it’s true even without separability. But we do
need separability to show that if F is a splitting field, then equality holds.

Definition 8.7. A finite extension E/F is Galois if [E : F] = |Gal(E/F)].

The main theorem we will discuss is the following:
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Theorem 8.8

If E/F is a Galois extension with Galois group Gal(E/F), then there is a bijection between subgroups
of (G, and intermediate subfields /' C K C E — where a subgroup H C G is mapped to its fized field

K=FE% ={rc E|o(z)=xforall o € H},

and a subfield K is mapped to the subgroup of o € G which fix all elements of K (which is Gal(E/K)).

In this bijection, note that if H — Kp, then |H| = [E : K] — this follows immediately from the fact that
H = Gal(E/Kp), and Proposition

Remark 8.9. Any finite group is the Galois group of some extension — we’ll show later that S, is the
Galois group of some extension, and any finite group is a subgroup of S;, for some n. However, whether
any group can be a Galois group of an extension over Q is still open.

We will discuss the proof and some applications later; first, we will discuss how to compute the Galois group
in a few examples.

§8.2 Examples of Galois Groups

For a polynomial P with splitting field E (over F'), we use Gal(P) to refer to Gal(E/F).

Proposition 8.10

The Galois group Gal(P) acts on the roots of P; and if P is irreducible, this action is transitive.

Proof. We've already seen that elements of the Galois group must permute the roots of P (since F' is fixed,
o(a) must satisfy any polynomial equation over F' that « satisfies). Now if P is irreducible, we can write
P(z) = (x —aq)--- (x — ay); then to show transitivity, it suffices to show that for any ¢ and j, there exists
o € Gal(P) such that o sends a; — «.

But we know F(a;) = F'(«j) (since o; and o have the same minimal polynomial). Further, F is the splitting
field of P over both F'(«;) and F(a;). So by the uniqueness of the splitting field, the isomorphism between
F(cy) and F(a;) extends to an isomorphism o : E — E whih sends «; — «;. O

Remark 8.11. This argument is fairly similar to the one used in the proof of Theorem

However, we can’t say much more than this in general — even knowing that Gal(P) acts transitively on a
set of n elements, its size can be anywhere from n to n!.

Example 8.12
Compute the Galois group Gal(Q(¢,,)/Q), where ¢, = exp(%). For simplicity assume n = p is prime
(although a similar argument is still true in the general case).

Solution. Let ¢ = (,. We proved earlier that [Q(¢) : Q] = p — 1, and Q(() is the splitting field of the
irreducible polynomial zP~! + 2P~2 4 ... 4+ 1.

Any automorphism o € Gal(Q(¢,)/Q) must send ¢ + ¢* for some 1 < i < p — 1; this uniquely determines
the automorphism, which we denote by o;.
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In order to compute the group, it suffices to understand how these automorphisms compose — we have
00 (C) = C”v
which means o;0; = 0;5. So in this case, we have

Gal(Q(¢)/Q) = (Z/p)* = Z/(p - 1) [

In this case, we were lucky because all roots of the polynomial were powers of one root (. In general, after
fixing one root and sending it to another root, we still need to figure out what we can do with the remaining
roots (which depends on the algebraic relations between the roots).

Remark 8.13. This fact can be used to solve the problem of which regular polygons can be constructed
by a ruler and compass; we will see this proof later.

So this is an example of a case where the Galois group is as small as possible. There are also examples
where the Galois group is as big as possible:

Example 8.14

Let P be an irreducible polynomial (over Q) of degree p, with exactly p — 2 real roots and 2 roots which
are complex conjugates (where p is prime). Then if E is the splitting field of P,

Gal(E/Q) = S,.

Proof. The proof uses the following group-theoretic lemma:

Lemma 8.15

Suppose p is prime, and G is a subgroup of S, such that G acts transitively on [1,...,p] and G contains
a transposition. Then G' = 5.

Proof. Since G acts transitively on [1,...,p], it follows that p | |G| (this is because if G acts transitively on
X, then |G| = | X]| - |Stabg(z)| for any = € X, by splitting the elements of G by where they send z). So by
the Sylow Theorems, G has an element o of order p. The only elements of S, with order p are long cycles
(meaning cycles of p elements); so o is a long cycle.

WLOG the transposition G contains is (12). Then there exists 1 < i < p such that ¢’ sends 1 — 2 (by
starting at 1, and following the arrows in o until we reach 2); and v = ¢* is still a long cycle (since 7 is
relatively prime to p). So we can WLOG assume vy = (123 - - p).

But now we can conjugate to produce more transpositions — we have v(12)y~1 = (23), v2(12)y~2 = (34),
and so on. So G contains all the standard transpositions (12), (23), (34), .... These transpositions generate
Sp, s0 G = 5. O

In our setting, we know Gal(E/Q) acts by permutations on the p roots. Since P is irreducible, we know
this action is transitive (we can send any root to any other root, since the abstract procedure of adjoining
a root is equivalent to adjoining any specific root).

Meanwhile, complex conjugation is a transposition — first, to show it’s an element of the Galois group, it
must permute the roots of P; therefore the splitting field £ = Q(a,...,qp) is invariant under complex
conjugation. Then it’s clearly a field automorphism which fixes Q, so it’s an element of the Galois group.
Then it swaps the two complex roots and fixes all the real roots, so it corresponds to a transposition.

So Gal(E/Q) acts transitively and contains a transposition; by the lemma, this means it’s 5. O
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Remark 8.16. This particular trick of showing the Galois group is .S, relies on the specific conditions
given. But given a random polynomial (even if it doesn’t satisfy those conditions), its Galois group is
probably S, — in order for the Galois group to not be S,,, we’d need conditions on the roots.

Remark 8.17. A similar argument can be used to produce an extension of C(¢) with Galois group S,.
The analog of the condition on real roots is that P(t,z) € C(t)[x] should have exactly one ramification
point, which should be simple (meaning that the point has p—1 pre-images, and the map f is isomorphic
on all but one of them and looks locally like the square map on the last). Then if E is the splitting
field of P, we have Gal(E/C(t)) = S, as well, by a similar argument (the condition on ramification is
now used to produce a transposition).

§8.3 The Main Theorem

Earlier, we stated the main theorem:

Theorem 8.18

If E/F is a Galois extension with Galois group Gal(E/F), then there is a bijection between subgroups
of GG, and intermediate subfields /' C K C E — where a subgroup H C G is mapped to its fized field

K=F% ={zecE|o(z)=uxforalocc H}

and a subfield K is mapped to the subgroup of ¢ € G which fix all elements of K (which is Gal(E/K)).
In order to prove this map is a bijection, we’ll first prove the following equality:

Lemma 8.19
In both correspondences, we have [E : K| = |H]|.

Proof. For the second correspondence, this is clear — if K — H, then H = Gal(E/K) by definition. But
E/K is a Galois extension (if E is the splitting field of some polynomial over F', it’s also the splitting field
of the same polynomial over K), so we have |H| = |Gal(E/K)| = [E : K].

Now we’ll prove the equality for the first correspondence — suppose H — Ef. Then it’s clear from the
definition that H C Gal(E/E), so

\H| < ‘Gal(E/EH)‘ = [E: EH]
(since E/E! is a Galois extension for the same reason as F/K was earlier). So it suffices to show the other

direction of this inequality.

By the Primitive Element Theorem, we know E = E (a) for some o; so it suffices to check that « is a root
of some polynomial in E*[z] of degree |H]|.

To construct such a polynomial, we use the averaging trick — let

P(z) = [] (= - g(a)).

geH

(For example, if E = C and H consists of the identity and complex conjugation, then P(z) = (z — 2)(z — %)
is a familiar polynomial.) A priori, we only know P(z) € E[z]. But it’s actually in E¥ [x] — to show this, it
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suffices to show that for every h € H, the coefficients of P are preserved by h. Let P(z) = 2" +a,_12" ' +ao;
then we have
2+ h(an_1)a™ 4+ hag) = [[ (@ — hg(e))) = P(a),
geH
as desired (where the first equality follows from the fact that h is an automorphism, and the second from
the fact that multiplication by any h € H permutes the elements of H).

Clearly, « is a root of P(x) (since 1 € H), so then « is the root of a polynomial in E¥ [z] of degree |H],
which means [E : EH] < |H|, as desired. O

Once we have this equality, the remainder of the proof is mostly just formal:

Proof of Theorem . To show that both maps are bijections, it suffices to show that one is the inverse of
the other.

First, if we have H — Ef — H’ then by definition H C H’ (since H' consists of all elements E¥, but we
know by the definition of E¥ that all elements of H fix it). But we must have |H| = |H’|, so then H = H'.

Similarly, if we have K — H +— K’  then we know K C K’ (since K’ consists of the field fixed by H, but H
was defined so that K is fixed by it). But [F: K| = [E : K'], so then K = K. O

Remark 8.20. Note that this correspondence reverses inclusion — a larger subgroup corresponds to a
smaller fixed field.

§8.4 Intermediate Extensions

Consider a Galois extension E/F, and let K be an intermediate subfield. Then E/K is a Galois extension
(if E is the splitting field of P over F, it is also the splitting field of P over K); we've seen that [E : K] =
|Gal(E/K)|. On the other hand, the extension K/F may or may not be Galois.

Proposition 8.21

Let E/F be a Galois extension, and let G = Gal(E/F). For a field E D K D F, the extension K/F is
Galois iff K is invariant under all g € G, which occurs iff the subgroup H corresponding to K is normal.
In that case, we have Gal(K/F) = G/H.

Note that invariance means that for all ¢ € G, we have x € K iff g(z) € K; or in other words, g(K) = K
for all g € G.

Proof. First we’ll show that K/F is Galois iff K is invariant under Gal(E/F'). On one hand, if K is Galois,
then it’s the splitting field of some polynomial; so we have K = F(a1,...,q,) where g, ..., o, are the
roots of a polynomial. But any automorphism of F preserving F' must permute the roots of any polynomial
over F'; and therefore any such automorphism must preserve K.

On the other hand, if K is invariant under all g € G, then there is a homomorphism Gal(E/F) — Gal(K/F),

obtained simply by restricting every automorphism over E in the Galois group to an automorphism over K.

The kernel of this homomorphism is Gal(F/K), so by the homomorphism theorem, its image has cardinality
|Gal(E/F)] [E : F|

Gal(E/K)|  [E:K] K2 F).

But the image can have cardinality at most |Gal(K/F)|, which is necessarily at most [K : F|; therefore
equality must hold, and K/F is Galois.
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Now we’ll show that K is invariant under all g € G iff H is normal. Note that an automorphism -~y fixes an
element = € K iff gyg~! fixes g(z); so for any g € G, the subgroup corresponding to g(K) is exactly gHg .
In particular, g(K) = K for all g € G iff gHg™! = H for all g € G, meaning H is normal.

Finally, to show that Gal(K/F) = G/H if H is normal, again consider the homomorphism G — Gal(K/F’)
where we restrict each automorphism to K. We’ve shown that this homomorphism is surjective, and its
kernel is Gal(E/K) = H; so then Gal(K/F) = G/H. O

Remark 8.22. In some sense, the proposition states that Gal(K/F') makes sense iff G/H does; and in
that case, they’re the same.

§8.5 Some Applications and Examples

We’ll now consider two important examples of Galois extensions.

§8.5.1 Cyclotomic Extensions

It’s possible to use Theorem to finally answer the remaining direction of our question about compass
and straightedge constructions:

Proposition 8.23

If p = 2¥ +1 is a Fermat prime, then a regular p-gon can be constructed by a compass and straightedge.

Proof. Let ¢ be a primitive pth root of unity; then it suffices to show that Q({) can be obtained by iteratively
taking quadratic extensions — in other words, that there exists a tower of field extensions

Q=FRCF C--CF,=Q()

such that [F; : F;_1] = 2 for each i. (This is because quadratic extensions can always be obtained by
extracting a square root; so this condition means we can obtain all elements of Q(¢) through arithmetic
operations and taking square roots.)

But this is fairly clear from the Galois correspondence — we know that

Gal(Q(¢)/Q) = (Z/p)* =Z/(p—1) = Z/2".

Take the chain of subgroups Gy = Z/2"Z, G = 2Z/2F7, Gy = 47/2FZ, ..., Gy = 2FZ/27 — then
G;i/Gi—1 = Z/2Z for all i. Then let F; be the fixed field of G; for all i. We’ve seen that the correspondence
reverses inclusion, while we have [Q(¢) : F;] = 2¢ for all i, which means [F; : F;_1] = 2 for all i. O

We can make this idea a bit more concrete:

Example 8.24

Describe how to compute Fj, the quadratic extension of Q contained in Q(().

Solution. In the above construction, we took F to be the fixed field of Gy, which is the subgroup of (Z/p)*
consisting of the quadratic residues.
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Consider the element

a= ) ¢,

acQR
which is invariant under all automorphisms in G; (since such automorphisms multiply all exponents by a

quadratic residue).

In order to find its Galois conjugate, we can apply an automorphism not in G1; this gives

s= > ¢

beNQR

(In the case of p =5, we have a = ( + (* and 8= ¢? + (3.

We now want to compute the quadratic equation satisfied by o and 8. We know o + 8 = —1. Meanwhile,
we can write
O‘B = Z ncgca
C

where the coefficients n. are the number of solutions (a,b) to ¢ = a + b such that a is a quadratic residue
and b a quadratic nonresidue.

Claim — We have ng = 0, while ny =ng =--- =n,_1.

Proof. First, since —1 is a quadratic residue mod p, there are no solutions to 0 = a+b where « is a quadratic
residue and b is not, so ng = 0.

On the other hand, for any nonzero ¢ and ¢/, there is a bijection between solutions with a + b = ¢ and
solutions with a +b = ¢/ — suppose ¢ = tc. If ¢ is a quadratic residue, then for any solution (a,b) for ¢, the
pair (ta,tb) is a solution for ¢/. Meanwhile, if ¢ is a quadratic nonresidue, then for any solution (a,b) for ¢,
the pair (tb, ta) is a solution for ¢ O
Meanwhile, ng + - - - + n,—1 is the total number of possible pairs (a,b), which is (%)2. So then n. = p;—l
for all nonzero ¢, which means

p—1 c p—1
a+ﬁ:TZC =0

This gives the quadratic equation

9 p—1
+a——=0.
o o 1

Using the quadratic formula gives F1 = Q(,/p). O

Remark 8.25. The same argument for computing the quadratic extension of Q contained in Q(¢p)
works for any p =1 (mod 4), not just Fermat primes. When p =3 (mod 4), the argument works very
similarly (except that ng is now % instead of 0, since —1 is not a square), and gives that the extension

is Q(v=p).

The description of Gal(Q(¢)/Q) can be generalized to the case where ( is a primitive nth root of unity for
any positive integer n (not necessarily prime).

Definition 8.26. The nth cyclotomic polynomial ®,, is the monic polynomial in Z[z] whose roots are
exactly the primitive nth roots of unity.
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We then have
2" —1= H@d(m),

din

by doing casework on the order of each nth root of unity (in C*), which must divide n. This formula makes
it clear that ®,, € Z[z] (by induction), and lets us compute ®,, for a given n.

Example 8.27

A few examples of ®,, are

q)l(m) =T — 17
Bp(z) = 2P L+ 2P 2441,
@12(:]3) = .1’4 — a:2 + 1.

Remark 8.28. It isn’t true that for every n, the coefficients of ®,, are always 0 or +1; but the first
counterexample is n = 105.

Fact 8.29 — For all n, ®,, is irreducible in Q|z].

We’ve already proved this fact for n prime; the proof is somewhat longer in general.

Note that deg(®,,) is the number of elements of order n in Z/nZ, which is
(2/n2)*] = @(n) = [T —pf),

where n =[] pgi. Since ®,, is irreducible, we then have

Meanwhile, we know that Q(() is a splitting field, for the same reason as in the case where n was prime (it’s
still the splitting field of ®,,).

In this case (for the same reason as in the prime case), we have

Gal(Q(¢)/Q) = (Z/nZ)".

Note that this group is abelian (and therefore a product of cyclic groups), but is not necessarily cyclic — in
fact, it’s not cyclic unless n is 2, 4, or p* or 2p* for an odd prime p.

§8.5.2 Kummer Extensions

Definition 8.30. If F is a field containing a primitive nth root of unity (equivalently, if F' contains
exactly n elements with 2" = 1), then a Kummer extension E is an extension F = F(«) for some «
such that o™ = a is a nonzero element of F'.

Intuitively, we start with a field that already contains all nth roots of unity, and then attach a nth root
of some other element. If char(F) = p, then we need the additional assumption that p f n; but our main
examples will be in characteristic 0.
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Proposition 8.31

Any Kummer extension E/F is Galois, and
Gal(E/F) 2 Z/mZ

for some m | n. In fact, if ™ — a is irreducible in F[x], then m = n.

Proof. First, we have
n—1

2" —a=[[(@—(a),

i=0
where ( is a primitive nth root of unity. Since ( € F', this means F is the splitting field of 2" — a.

Now any o € Gal(E/F) is determined by o(a), and we must have o(a) = (' for some i; let o; be the
automorphism mapping o +— (a, if such an automorphism is in the Galois group.

Then we have ' o
oioj(a) =oi((’a) = a

(since ¢ € F, all o must fix ). This means Gal(E/F) is isomorphic to a subgroup of Z/nZ, and every such
subgroup is of the form Z/mZ for some m | n.

We then have m = deg(E/F); this means m = n iff " — a is irreducible. O

§8.6 Solutions to Polynomial Equations

Galois theory has applications to solving polynomials — in particular it was motivated by proving the
impossibility of a solution in radicals to a general polynomial equation of degree at least 5.

§8.6.1 Impossibility of Solving Quintics

In order to prove that it’s impossible to solve a general quintic (or polynomial of higher degree) in radicals,
we’ll first introduce the notion of a solvable group. The main idea is to show that any polynomial which
can be solved in radicals must have a solvable Galois group; while S,, is not solvable.

Definition 8.32. A finite group G is solvable if there exists a sequence of subgroups
G=GpD>G1  DG2D--- DG, =A{1},

such that for each i, G; is a normal subgroup of G;_; and G;_1/G; is abelian.

Lemma 8.33
If G/K = H (or equivalently, if there is a surjective map G — H with kernel K), then:

1. If K and H are solvable, then G is solvable.
2. If G is solvable, then H is solvable.

Proof. For the first direction, start with the filtration H = Hy D --- D H,, = {1} for H. Then take G; to
be the pre-image of H; (under the homomorphism), so we have G = Gy D -+ D G, = K. Finally, we can
append the filtration K = Ky D --- D K, = {1} to the end in order to get a filtration of G.
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For the second direction, given a filtration G = Gy D G1 D -+ D G, = {1} of G, let H; be the image of G;.
Then H;_1/H; is a quotient of G;_1/G; for all i, and a quotient of any abelian group is abelian. OJ

Lemma 8.34

Sy is not solvable; in fact, As is simple.

This lemma is true for all n > 5 — it’s not true for n = 3 since As = Z/3Z is abelian, and it’s not true for
n = 4 since the Klein 4-group K4 is a normal subgroup of Sy (consisting of the elements (12)(34), (13)(24),
(14)(23), and the identity). It’s possible to prove it in the general case by analyzing conjugacy classes, and
proving that if we have all the elements of one conjugacy class, we can generate elements from any other
conjugacy class. However, for the sake of time, we’ll here present a simpler proof that only works for n = 5.

Proof. The class equation for As is
60=1+15+20+12+ 12

(corresponding to the conjugacy classes of the identity, (12)(34), (123), (12345), and (13245), respectively).

Then if N is a normal subgroup, it must be a union of conjugacy classes; furthermore, for any 5-cycle in
one of the conjugacy classes of size 12, its square is in the other; so N must contain both or neither of the
two classes.

Now this means
‘N‘:1+€1'15+€2‘20+83'24

(where the ¢; are all 0 or 1). But we also know |N| | 60. If N contains some conjugacy class other than the
one of the identity, then we must have £; = 1 (or else |N| would be odd, and therefore would need to divide
30, which is impossible); then we must have e3 = 1 (or else |N| would not be divisible by 3, and therefore
would need to divide 20); then we must have e3 = 1 as well (or else |N| would not be divisible by 5). This
means N = As. O

Now we will apply the concept of solvability to the Galois group of our polynomial.

Definition 8.35. A finite extension E/F is a radical extension if E = F(aq,...,ay), where there exist
positive integers n; such that o € F(a,...,a;—1) for all 4.

In other words, a finite extension is radical if each of its elements can be obtained by starting with F' and
performing the arithmetic operations (addition, subtraction, multiplication, and division) and extracting
radicals.

Example 8.36
The field

@(33+€/7+\/§>

is a radical extension of Q.

Proposition 8.37

Every radical extension of F' is contained in a Galois extension with a solvable Galois group.
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In this proof, we’ll assume that char(F) = 0 (although it is possible to generalize this).

For the proof, it will be convenient to generalize Proposition to allow us to simultaneously extract
multiple nth roots:

Lemma 8.38

Let F be a field containing a primitive nth root of unity. Then if E = F(fi,..., k), where 5" € F' for
all 7, then
Gal(E/F) C (Z/nZ)*.

In particular, Gal(E/F) is abelian.

Proof. The proof is essentially the same as before — each automorphism must map 3; — (% 3; for some j,
.., Jr; and composing automorphisms corresponds to componentwise addition. O

Proof of Proposition . We use induction on n.

For the base case n = 1, we have E C F(¢,a) where ( is a nth root of unity, and o € F for some k. This

extension is Galois, as it is the splitting field of 2* — o*.

Now consider the tower of field extensions F'(¢,«)/F(¢)/F. We know that both extensions are Galois, and
Gal(F(¢,a)/F(()) is a subgroup of Z/kZ, while Gal(F'(¢)/F) is a subgroup of (Z/kZ)*. Both are abelian,
so Gal(F'(¢,a)/F) is solvable, by taking the chain of subgroups

Gal(F(¢, )/ F) 5 Gal(F(¢,a)/F(¢)) > {1}
and using the fact that

Gal(F(¢, )/ F)/Gal(F (¢, a)/F(¢)) = Gal(F(¢)/F).

Now for the inductive step, suppose we know that F(ai,...,a,—1) C E', where E'/F is a Galois extension
and Gal(E’/F) is solvable; and suppose that o € F(ay,...,a,_1) (where a = ay,).

Let ¢ be a primitive kth root of unity; then we want to add ¢ to E’, as well as a. However, if we just added

a, it’s possible that the resulting extension wouldn’t be Galois (as the polynomial z* — o is necessarily in
F(aq,...,an-1), but is not necessarily in F'). To avoid this issue, we add all the Galois conjugates of « as
well — let B1, ..., B4 be the Galois conjugates of o, meaning the images of o under all automorphisms in

Gal(E'/F). Then we take
E=FE (¢, /81, /B2 ... /Ba) -

Now if E’ is the splitting field of a polynomial Q over F, then F is the splitting field of the polynomial

Q@) (" =1 [ (@ —ga),

geGal(E/F)

where a = o¥ (we've seen earlier, in the proof of Theorem , that this polynomial is in F[x]).

Now we can again consider the tower of extensions E/E'({)/E’/F. We know that Gal(E’/F) is solvable
by the inductive assumption, E'({)/E’ is a subgroup of (Z/kZ)* and is therefore abelian, and E/E’'(() is a
subgroup of (Z/kZ)?% (here d is the number of Galois conjugates of a¥; in particular d = |Gal(E/F)|). O

Remark 8.39. This proof is essentially a direct application of Proposition (on the Galois group of
the radical extension F'(«)/F'), except for the technicality of needing to add in all Galois conjugates in
order to make F a splitting field.

Combining these observations gives us the conclusion:
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Corollary 8.40

There are many polynomials whose splitting fields are not radical extensions of Q, and therefore for
which we cannot write their roots in terms of radicals.

Example 8.41

The polynomial 22° — 52 — 10 has Galois group S5 (as seen earlier), which means its splitting field
cannot be radical (as Sy is not solvable).

§8.6.2 Symmetric Polynomials

We’ve seen that it’s impossible to solve a general polynomial of degree at least 5 (in radicals). But Galois
theory can give us more than a result about impossibility — it can also be used to find solutions when
possible?

Question 8.42. Given a polynomial, how can we compute its Galois group and find its roots (if it is
possible to do so)?

In order to answer this, we’ll use symmetric polynomials.

Definition 8.43. Symmetric polynomials in n variables are polynomials which are invariant under
permutations of the variables; we denote the ring of symmetric polynomials as

R, =Z[xy,... ,ajn]s" C Z[z1,. ..,z

Example 8.44
If n = 3, then we have 2§ + 23 + 23 € R, while 23 ¢ R;.

It is easy to write down polynomials in R, — we can start with any monomial, and average it over all
permutations of variables. The most obvious example is the power sums z¥ + - - - + % but it turns out that
the most useful example is actually the elementary symmetric functions:

Definition 8.45. The elementary symmetric functions, denoted agn), e ar(Ln) (where n is the number

of variables), are defined as
o™ — T o e
k 1112 e
1 <---<ip

We will drop the superscript when the number of variables is unambiguous.

Example 8.46

3
‘We have aé ) — 129 + X123 + Tox3.
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Example 8.47

For any n, the first elementary symmetric function is
U@ =T+ T2+ -+ Ty,

and the last is

UT(L") = T1% " Tn.
Elementary symmetric functions arise naturally from polynomials — the coefficients of a polynomial are
elementary symmetric functions in the roots. More precisely, we have

(z—x1) (2 —22) (2 —ap) = 2" — 012" L 4 092" 2 — o 4 (=1)"0,

(which follows immediately from considering what happens when we expand the left-hand side). Meanwhile,
they are extremely useful for the following reason:

Theorem 8.48

We have R, = Z|o1,032,...,0,] — in other words, every symmetric polynomial can be written (uniquely)
as a polynomial in the elementary symmetric functions.

Example 8.49

When n = 3, we can write

2 2 2 2
] + x5 + x5 = 07 — 209,

23+ 23 + 25 = 03 — 30109 + 30s.

Before we prove the theorem, we’ll describe a useful observation — the formulas in the above example don’t
actually depend on n, and for any n > 3 it’s true that

2 2 2
x]+ -+, =01 — 209,

234+ 2 =0} — 30109 + 303.

In order to see this, we can consider the obvious homomorphism r,, : Z[z1,...,z,] — Z[z1,...,Ty—1] sending
xn — 0 (so we essentially just eliminate the extra variable). This homomorphism sends R,, — R, (since
if a polynomial was invariant under permutations of all n variables, then when we eliminate one variable,
it’s still invariant under permutations of the remaining n — 1).

This homomorphism interacts well with the elementary symmetric functions — it’s clear that o*l-(n) — O'i(nil)

for all 1 < ¢ < n, while O'»ELn) — 0 (since we essentially just eliminate all of the terms containing z, when

performing the homomorphism).

Meanwhile, the power sums ac‘lj—i—- . -—|—$§i have the same property — the homomorphism sends ng—l—- . "HL’% —
x¢+---+2¢ . This immediately proves that if we have a formula for ¢+ --+2¢ in terms of the elementary
symmetric functions for some number of variables n, then we can deduce the same formula for all m < n.

On the other hand, we also have degree considerations — o; is a homogeneous polynomial in x1, ..., T,
of degree i, so the possible ¢ for which ¢; can be in the formula is restricted by the degree of our original
expression. For example, the formula for x$ + 3 + x% must have degree 3, so it can only contain o1, o2, and
o3. This means if we have a formula for n = 3, then the same formula must hold for all n > 4 as well. (It’s
not enough to have a formula for n = 2 in this case, since when n = 2, o3 has been sent to 0.)

We’ll now prove the theorem.
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Proof of Theorem . We use induction on n (the number of variables). We want to check both that every
symmetric polynomial can be expressed as a polynomial in the elementary symmetric functions, and that

(n),

this expression is unique. In other words, we can define the map ¢, : Z[t1,...,t,] = R, sending t; — o, ';

then we want to check that ,, is an isomorphism.

First we’ll check that ¢, is injective; it suffices to show that it has trivial kernel. Suppose we have a
polynomial @Q such that ¢, (Q) = 0. Then write Q = t2Q’, where ¢, { Q’. We then have

0= ¢n(Q) = Pu(tn)9n(Q) = (122 - 20) n(Q").

Since the first factor is nonzero, this means we must have ¢, (Q’) = 0; so

Ql(ala s 7Jn) =0.

Now we can use our observation to eliminate one variable — let

Q(tl, Ce 7tn—1) = Ql(tl, Ce. ,tn_l,O) = Tn(Q/).

Note that @ is nonzero, as @’ is not divisible by ¢,. But then we have

Pn1(Q) = Q" V..o D) =0,

contradicting the inductive assumption. (The base case of induction is n = 1, which is trivial.)

Now we’ll check that ¢, is surjective, or in other words, that every P € R[z] can be written as a polynomial
in oy, ..., 0,. We can assume that P is homogeneous of degree d; we now use induction on d as well.

First, by the inductive assumption, we can write

for some polynomial T'. Then we have

P — T(O’Yb), o ) € ker(ry,) = (xn),

n—1

which means that x,, must divide this difference. But since it’s symmetric, then all other variables must
divide the difference as well, and by unique factorization their product must divide the difference as well.
So we can write

P—T(U%n),...,a(n) ) 207(1”)-@

n—1

for a polynomial ), which must be a symmetric polynomial which is homogeneous and has degree d — n.
By the inductive assumption, we have @ = S(o1,...,0,), which means

P=T(o1,...,0n-1) + 0p,S(01,...,00)

is a polynomial in the o;, as desired. O

§8.6.3 The Discriminant
An especially important example of a symmetric polynomial is the discriminant:

Definition 8.50. The discriminant of a polynomial P(z) = (z —a1) -+ (z — ay) is
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In particular, D(P) = 0 iff P has a double root.

Note that the discriminant is a symmetric polynomial in the roots of P. By Theorem , we can write
H(:IZZ — xj)z = An(O'l, . ,O’n)
1<J

for some polynomial A,; then if P(2) = 2" 4+ a, 12" + -+ + ag, we have

D(P) = A(—ap—1,an-2,...,(—1)"ap).

Example 8.51

The discriminant of z? + bx + ¢ is the familiar expression

D = b — 4c.

Example 8.52

The discriminant of 2® + pz + ¢ is
D = —4p® — 274°.

Proof. 1t’s possible to explicitly compute D, but we can simplify the computation greatly by using degree
considerations — we know that D is a polynomial in p and ¢; but D has degree 6 in the roots, while p and
q have degree 2 and 3 respectively. The only ways to write 6 as a sum of 2’s and 3’s are 242+ 2 and 3 + 3;
therefore we must have

D = ap® + bg?

for some a and b. We can now plug in different values of p and ¢ to find a and b — if we take P(z) = 23 —z,
then D = 4, p = —1, and ¢ = 0, which implies that @ = —4. Then if we take P(z) = (v — 1)%(x + 2) =
2% — 32z + 2, we have D =0, p = —3, and ¢ = 2, which gives b = —27. O

Remark 8.53. Note that 22 + px + ¢ is a depressed cubic, since its x? coefficient is 0. The formula
for a general cubic is more complicated; but it’s actually enough to consider this case, since it’s always
possible to eliminate the z? coefficient by shifting the variable.

The discriminant plays an important role in Galois theory — consider the expression

on = H(x] — Ti),

1<j

where the discriminant is D = 2. Note that 6, isn’t symmetric; in particular, swapping two adjacent vari-
ables will flip its sign. Since transpositions of adjacent elements generate S5, this means for any permutation
T € Sy, we have

(T (1)s -+ s Tr(ny)) = (1) 52y, ... my).

Now consider a polynomial P € F[z], and suppose P has roots ai, ..., o, which are all distinct (although
P does not necessarily have to be irreducible). Let the splitting field of P be E = F(ay,...,ay), and let its
Galois group be G = Gal(E/F). Since all elements of G must permute the roots «;, we know that G C S,,.
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Proposition 8.54
We have G C A, iff the discriminant of P is a square in F.

Proof. Consider the element

6= H(aj—ai) SO

1<j
so that 62 = D is the discriminant of P (and in particular, lies in F). An element ¢ € G then fixes ¢ if o is
even, and sends § — —¢ if o is odd.

But by Theorem , 0 € Fiff ¢ is fixed by all elements o € G (since F' is exactly the fixed field corresponding
to G). So § € F iff all such o are even, or equivalently if G C A,,. O

§8.6.4 Cubic Polynomials

We’ve seen that the discriminant can be used to gain information about the Galois group. In the case n = 3,
we can make this extremely concrete:

Corollary 8.55

If P is an irreducible polynomial of degree 3, then Gal(P) is As if the discriminant of P is a square,
and S3 otherwise.

Proof. The Galois group must be a transitive subgroup of S3, and the only two transitive subgroups are As
and S3. Then this follows immediately from the fact that Gal(P) C As iff D(P) is a square. O

Example 8.56
Find the Galois group of 23 — 3z — 1.

Solution. The discriminant is
D =4.27-27 =281,

which is a square; so the Galois group is Ag = 7 /3Z. O

Example 8.57

If F contains a primitive cube root of unity w, find the Galois group of x* — a.

Solution. The discriminant is D = —27a?. But since F' contains w = —% + —V2_3, then —3, and therefore
—27, is a square in F. So D is a square, and G = Z/3Z. (Note that this is a special case of Proposition
, on Kummer extensions.) O

So this gives a nice and effective way to find the Galois group of a cubic polynomial. We’ll now discuss more
comcretely how to actually solve the polynomial.
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Proposition 8.58

If F contains a primitive cube root of unity w, and E/F is a Galois extension with Gal(E/F) = Z/3Z,
then £ = F(a) for some a with o € F.

Proof. It’s enough to find some nonzero ainE such that o(a) is either wa or w?a, where o is a generator

of Gal(E/F). Then we have o(a?) = o?; since o generates Gal(E/F), this implies that o is fixed by
all elements of Gal(E/F), so a® € F. Meanwhile « itself cannot be in F (as it is not fixed by o); so
[F'(a) : F] = 3. But we have [E : F] = 3 as well, so we must then have £ = F'(«a).

In order to construct such an «, pick any g € E with § ¢ F, and consider the two elements

ar = B+ wo(B) +wo’(B),
as = B+ w?o(B) +wo(B).

2

It’s clear (since o3 is the identity) that o(a;) = w?a; and o(az) = wasg, so it remains to check that one of

a1 and «o is nonzero.

But if both were zero, then (3, (), 02(3)) would be a solution to the linear system

a+wb+w?c=0
a+ w?b + we = 0.

But the orthogonality of characters for Z/3 (from representation theory) implies that the only solution is
a = b = c. This would mean S is fixed by o, and therefore by all elements of Gal(E/F'), contradicting the
fact that 5 & F.

So one of a; and s is nonzero, and is therefore a generator with o € F. O

Remark 8.59. The same proof works if we replace 3 by any prime, and with a bit more work, it can be
generalized to work for any positive integer n.

This can be used to prove the converse to Proposition — we’ve seen that every radical extension
is solvable, but this can be used to prove that if E//F has solvable Galois group, then it is radical.

We know that E contains F(§), where § = /D (it’s possible § € F, but it usually isn’t), and
Gal(E/F(6)) = 7Z/3Z.

(We are assuming F' contains a cube root of unity. We’re also assuming char(F') = 0, although similar ideas
work as long as char(F) # 2,3.) The proposition implies that E = F(§)(a) for some o with o® € F(§).
This shows theoretically that it’s possible to express all roots of P in terms of radicals (in fact, in terms of
square roots and cube roots), but it’s actually possible to turn our construction into an explicit formula for
the roots.

Let (31, B2, and 33 be the roots of P, with ; € E for all i. Then Gal(F/F(0)) must contain the cycle (123),
which means we can take
a =B +whs +wBs

in the above construction. We've already seen that a® € F(d), but it’s actually possible to find an explicit
expression for it using symmetric polynomials. We can compute

o = 33+ B3 4 B3 + 681623 + w(B B2 + 5363 + B351) + w? (8153 + 233 + B37).
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We've seen earlier how to compute 57 + 85 + B3 and (18283 from symmetric polynomials — if P(x) =
22 + px + ¢, then these are —3¢ and —q respectively. Let the remaining two expressions be A and B. Then
A+ B is symmetric, and we can write

A+ B =o0109 — 303 = 3q.
Meanwhile, A — B is not symmetric, but we have

A—B = (p1—B2)(B1 — B3)(B2 — B3) = 0.

With this, we’re almost done — we can calculate A and B in terms of the coefficients of P and J, and use
this to compute «, as well as its counterpart

o = By + w?Bs + wphs.
Then we have
a+ad
/81 = 3 )

and we can calculate the other two roots similarly. Writing out these computations more explicitly results
in Cardano’s formula.

Remark 8.60. The fact that o could be expressed using symmetric polynomials and 6 can be shown
more theoretically as well — in fact, we always have

Q[z1, - - ,mn]A” = Qlo1,...,00] +Qo1,. .., 00].

In other words, we know that if instead of considering polynomials fixed by all permutations (which
are the symmetric polynomials), we instead consider polynomials fixed by even permutations, then we
get the new element 0. But this states that § essentially accounts for all the new elements.

Remark 8.61. Cardano’s formula was discovered in 1545, well before Galois theory. The method
described here was found by Legendre — it’s possible to find without using Galois theory, by just
noticing that if & = 81 + wBs + w?Bs, then a® can be written in terms of the symmetric polynomials
and 9.

But the formula was discovered not only before Galois theory, but also before complex numbers. Work-
ing with roots of negative numbers previously gave people a lot of trouble, and was considered contro-
versial until the 19th century.

In fact, suppose P has 3 real roots, so 0 is real. But then o = 1 4+ wfB2 + w? B3 is not real — when you
write down the formula in radicals, the final answer will be real, but inside the formula, you’ll need to
work with the cube root of a complex number. (This was known as casus irreducibilis.)

A book by Barry Magzur, called Imagining Numbers, Especially /—15, discusses the history of how
the understanding of such concepts developed — people were working with complex numbers centuries
before they were fully realized and accepted as existing.

§8.6.5 Quartic Equations

In the case of quartic equations, it’s again possible to analyze solutions by analyzing the Galois group.
We know the Galois group is a subgroup of Sy, and Sy has the normal subgroup K, (the Klein 4-group
— as a group, it's Z/27Z x 7Z/27), consisting of the elements (12)(34), (13)(24), and (14)(23). Meanwhile,
Sy/Ky = Ss.

We can use this to construct the resolvent cubic:
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Definition 8.62. Given a quartic polynomial P with roots aq, ..., ag, its resolvent cubic is the (monic)
cubic polynomial with roots ayag + agay, aras + asas, and ajay + asas (which we denote by S1, Sa,
and ﬂg)

Clearly, every element of the Galois group permutes (1, B2, and $3. We know that the coefficients of Q)
are symmetric polynomials in the roots of P, so if P(x) = 2* + a32® + asz? + a1x + ag, then we can write
Q(x) = 2® + baa® + by + by where the b; are polynomials in the a; (concretely, the exact formulas are
by = —ag, by = ajas — 4ag, and by = 4agaz — a3 — apa3).

In order to compute the roots a; of P, we first compute the roots of 3; of (). Then we have

(a1 + ag) (a3 + o) = B1 + fs,
(a1 + ag) + (a3 + aq) = —as.

This gives a quadratic equation which can be used to compute a; + a9, and we can compute the other
pairwise sums in the same way. Then we have a system of linear equations, which can be used to solve for
the roots «;.

Remark 8.63. The fact that all we have to do (once we’ve solved the cubic) is solve a few quadratics
follows more theoretically from Galois theory as well — this happens because Ky = Z /27 x 7./27.

This shows how to find formulas for the roots of P, but similarly to the case of cubics, we can also ask about
the Galois group:

Question 8.64. For a given irreducible polynomial P of degree 4 with splitting field E, how can we
compute Gal(E/F)?

In degree 3, there were only two possibilities, and we could differentiate between them by considering whether
the discriminant was a square or not. In this case, the process is longer, but uses similar ideas.

First, there are five transitive subgroups of S; — these are Sy, A4, K4 (consisting of (12)(34), (13)(24), and
(14)(23)), C4 (the cyclic group, generated by (1234)), and Dy (the dihedral group, generated by (1234) and
(24), which we can think of as the set of symmetries of a square).

It’s still possible to calculate the discriminant from the coefficients of the polynomial (although the expression
is very messy). Then as we’ve seen earlier, VD € F iff the Galois group is a subgroup of Ay; these subgroups
are K4 and Ay itself.

We can obtain more information by looking at the resolvent cubic. Note that @Q(x) splits completely in F
iff G = K4 (since the permutations which preserve each of 1, f2, and (3 are exactly Kj).

Meanwhile, if Q(z) has exactly one root in F' (meaning that the Galois group preserves exactly one of (i,
B2, and (3), then the Galois group must be Cy or Dy. Intuitively, this is because Cy and D4 both represent
a set of symmetries of a square:

o] — 0y

a2 —— O3

Any symmetry of the square must preserve or swap the diagonals, and therefore must fix oy ag + agary (while
the other two roots (3; may be permuted).

This information allows us to distinguish between all cases except C4 and Dy, which we won’t discuss.
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§8.7 The Main Theorem of Algebra

Earlier, we saw a proof of the Main Theorem of Algebra using winding numbers. We’ll now give another
proof using Galois theory.

First, we need the following group-theoretic result:

Proposition 8.65

Every p-group is solvable. Furthermore, if G is a finite group of order p™, then there exists a chain of
subgroups
G=GpD>DGi D DG, ={1}

such that for all 4, G;4+1 is a normal subgroup of G; with G;/G;11 = Z/pZ.

Proof. We’ll start constructing the sequence from the rightmost end.

Claim — @ has nontrivial center.

Proof. Consider its class equation — every conjugacy class has size p™ for some m, and in particular, p | |C|
for every conjugacy class C' with size greater than 1. But we have

Pt =14+ |Cil,

where the sum is over all conjugacy classes except the identity. So we must have |C;| = 1 for some i (or else
the right-hand side would be 1 mod p), and the element of that conjugacy class is then in the center. O

Now we can induct on n. Pick an element g € Z of order p (which exists because the center is a p-group, so
every non-identity element has a power with order p). Then G = G/(g) has order p"~! (note that we can
take the quotient because g is in the center of G, and therefore (g) is normal). By the inductive assumption,
we can then write

GZGO Do Dédz{l}
for a chain of subgroups with G;/G;1 = Z/pZ for all i.

Now let G; be the pre-image of G; (under the homomorphism sending G — G corresponding to quotienting
out by (g)), and take G441 = {1}. This works by the homomorphism theorem (and the fact that the
pre-image of G4 = {1} is (9) = Z/pZ). O

Using this, we can prove the Main Theorem of Algebra (in a slightly different formulation, which is equivalent
to the usual formulation that every polynomial has a complex root):

Theorem 8.66

C is the only finite extension of R.

Proof. Let E/R be a finite extension, and WLOG assume that E is a splitting field (we know E is obtained
by adjoining the roots of some polynomial, and we can add all the other roots as well), and is therefore a
Galois extension; let G = Gal(E/R).
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Claim — |G| is a power of 2.

Proof. Let H C G be a Sylow 2-subgroup (if the greatest power of 2 dividing |G| is k, then H is a subgroup
of order 2% — this argument still works if k = 0 and H is trivial). Then

_lél

|H|
is odd, so [E¥ : F] has odd degree. But every odd-degree polynomial over R has a real root, so this is a
contradiction unless H = G. (For any a € B we've seen that deg(a) | [E¥ : F], so deg(a) would have to

be odd, and therefore the minimal polynomial of o would have odd degree. This is impossible unless it has
degree 1.) O

[EH . F)

Then we can use the previous proposition — we know we can write
G=Gy>G D DG, ={1},
and considering the fixed fields of these subgroups gives a chain of extensions
R=FD>FND> --DF,=F
(where Fj is the fixed field of G; for all i), where [F; : F;_1] = 2 for all .

But it’s clear that C is the only quadratic extension of R, and there are no quadratic extensions of C — any
quadratic extension is obtained by adding a square root, and it’s easy to check that every complex number
has a square root in C (by using its trigonometric form).

So G must be {1} or Z/27Z, and therefore £ must be R or C. O

§8.8 Galois Theory for Finite Fields

We’ve seen that when F' is a number field (a finite extension of Q), Galois groups Gal(E/F") can be compli-
cated.

But Q is only one of the primary fields; the others are F, for primes p. So we can also consider Galois
extensions for finite extensions of F,. Any finite extension of F), must be of the form F, where ¢ = p™ for
some m, and a Galois extension of F, must again be of the form F,» for some n.

In this case, the answer is much easier, and in some sense we’ve seen it already.

Theorem 8.67

The extension Fyn /F, is always Galois. Its Galois group is cyclic, and is generated by the Frobenius
automorphism Frq : x — x9.

Proof. We've already seen that Fr, is an automorphism, since
(a+b)?=a?+ b
Meanwhile, its fixed points are the set {z | 2?7 = x}, which is exactly F,. This means Fr, € Gal(Fgn /F,).

But we can also compute the order of Fr, — we have Fry : x — 27", This means Fry = 1d (since z7" =z for
all x € Fgn). Meanwhile, for all 1 < a < n, there exist elements of Fy» with 29" # x, which means Fry # 1d.
So then ord(Fr,) = n.

But we know (Fr,) C Gal(Fgn/F,), so |Gal(Fgn/Fg)| > n. On the other hand, we have
|Gal(Fgn /Fy)| < [Fgn : Fy] = n.
So equality must hold; this means Fyn /IF, is Galois, and Gal(Fyn /Fq) = (Frg). O
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Remark 8.68. The Frobenius automorphism is quite important. In particular, in order to count the
number of solutions to a system of polynomial equations over F,, one first considers solutions over its

algebraic closure o
Fq=|JFqm.
n

Then the solutions in (F,)" (allowing polynomials in multiple variables) are exactly the fixed points of
Frg: (z1,...,20) — (2f,...,29).

It’s possible to use intuition from a similar problem in topology, of counting te number of fixed points
of an automorphism of a geometric shape X (which relates to the Lipschitz Fixed Points Theorem and
the Weil conjectures).

8§89 Final Remarks

To conclude the class, we’ll review the topics covered and discuss further directions in which they can be
taken.

§9.1 Representation Theory

The first topic we discussed was the representations of finite groups; the class 18.715 develops this topic
further.

We’ve seen the main general theorem about the representations of finite groups. But one further direction
is to study the characters of a specific group — in particular, the group S,.

In general, we know that the number of irreducible representations equals the number of conjugacy classes.
In the case of S, it’s actually possible to index both by the same set:

Definition 9.1. A partition of n is a nondecreasing sequence of positive integers (A1,...,\;) with
AL+ X =n.

As we’ve seen earlier, the conjugacy classes of S, correspond to cycle types, which can be described as
partitions of n — for example, the conjugacy class of (12)(345) can be described by the partition 5 = 3 + 2.
Meanwhile, it turns out that the irreducible representations are also in bijection with partitions, where this
bijection has nice properties.

One way to describe partitions is by Young diagrams, where for a partition A = (A1,..., \x), we draw A\;
boxes in the first row, A2 in the second, and so on.

Example 9.2
The Young diagram

corresponds to the partition 15 =645+ 2 + 2.

The properties of this correspondence between irreducible representations and Young diagrams can be used
to answer questions about these representations — for example, a question we answered earlier by looking
directly at the characters.
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Example 9.3

For which n is 7 ® sgn = 77 (Here 7 is the tautological representation of S, where elements of S,, act
on the space with 1 + - -- + x, = 0 by permuting the coordinates; and 7 ® sgn is the representation
o 1(0)sgn(o).)

Sketch of Solution. In the correspondence between Young diagrams and irreducible representations, the
Young diagram

corresponds to the trivial representation; the Young diagram

corresponds to sgn; and the Young diagram

HEEN

corresponds to 7. In fact, for any irreducible representation p, the diagram corresponding to p ® sgn is the
transpose of the diagram for p. So 7 ® sgn = 7 if and only if the last Young diagram shown, corresponding
to (n — 1,1), is its own transpose, which occurs if and only if n = 3. O

§9.1.1 Compact Lie Groups

We studied representations of finite groups, but it’s also possible to study representations of compact Lie
groups.

Definition 9.4. A compact Lie group is a closed compact subgroup of GL,,(C).

Example 9.5

Examples of compact Lie groups include the unitary groups U(n), the special unitary groups SU(n),
the special orthogonal groups SO(n), and the quaternionic unitary groups Sp(n).

There’s actually a classification of all compact Lie groups, with some exceptions — the exceptions are named
Go, Fy, Eg, Er, and Eg (the largest, Eg, has dimension 248). These groups are studied further in 18.745
and 18.755.

For each compact Lie group, there’s also a classification of its irreducible representations. For example, the
irreducible representations of U(n) can be indexed by sequences of n integers d; > - -+ > d,,.

Example 9.6

The irreducible representations of SU(2) are indexed by nonnegative integers n. For each n, the cor-
responding irreducible representation acts on the space V,, of homogeneous polynomials of degree n in
two variables. (This space has basis ", x,_1vy, ..., y", and therefore has dimension n + 1.)
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Since SO(3) = SU(2)/{=£1}, then for even n, this construction can be used to form an irreducible represen-
tation of SO(3) as well. This actually relates to the structure of the periodic table — the rows of the tables
have lengths 2, 8, 8, 18, 18, 32, 32. These are all of the form 2n?, and n? arises as 1 +3+---+ (n — 1) —
where the odd numbers come from the dimensions of irreducible representations of SO(3).

To describe the connection further, recall a problem from an optional problem set, on greedy monsters:

Problem 9.7. At each vertex of a cube, there is a greedy monster. Each monster starts with some
amount of gold. Every minute, the gold of each monster is evenly distributed among its three neighbors.
After a long time, what does the distribution of gold look like?

The process described here can be generalized:

Definition 9.8. Given a graph with certain weights assigned to each vertex, the Laplace operator
redistributes the weight of each vertex equally among its neighbors.

Here, the operator is defined in discrete settings; but it’s also possible to define it in continuous ones. For
example, in R?, the Laplace operator is

d? d?
- da? + dy?’
In the discrete version, the operator vanishes (i.e., does nothing) when the weight at each point is the average
of its neighbors; a similar statement is true for A.

In certain situations, it’s possible to understand the eigenvalues and eigenvectors of the operator using
representation theory (as we did in the solution to the greedy monsters problem). In particular, for the
Laplace operator on the sphere 52 its eigenvalues can be analyzed using the representation theory of SO(3).
These eigenvalues also have connections to quantum physics.

On a different note, another important identity we saw in the representation theory of finite groups was

Gl =>_d;,

where d; are the dimensions of the irreducible representations of G. To prove this, we looked at the regular
representation on C[G], and decomposed it as

ClG] = P V™.

We can think of Vidi as End(V;) (since V; has dimension d;, so specifying a linear operator on V; is the same
as specifying the images of the d; basis vectors), so then we can write

ClG) = @ End(V;).

This generalizes to compact groups — a typical function can’t be written as a finite sum, but it can be
written as an infinite series.

Example 9.9

In the case of U(1) (which is just the unit circle), the irreducible representations are indexed by integers,
where p,, : 6 — €™, Decomposing functions in this way turns into the theory of Fourier series.

Another possible direction is to study @ End(V;) — we then have

MSpec (@ End(Vi)) = G,
where G is an algebraic group — this is studied in 18.737.

Beyond the theory of representatinos of compact groups, one can also work with non-compact Lie groups —
closed but not necessarily compact subgroups of GL,,(C), such as SL,,(R). In this case, most representations
are infinite-dimensional. This is also studied in 18.755 and its continuations.
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§9.2 Factorization

We’ve seen a story about factorization in quadratic number fields, or more precisely, in their rings of algebraic
integers. This generalizes to factorization in rings of algebraic integers in more general number fields. This
is studied in number theory, especially by using the action of the Galois group. An important question is
often the following:

Question 9.10. Given a prime ideal in a number field, how does it factor in a larger number field?

One example of such a result is quadratic reciprocity. Quadratic reciprocity is a classical result in elementary
number theory; for example, it is taught in 18.781. One part of the theorem is the following;:

Theorem 9.11

If p and g are primes with p =1 (mod 4), then p is a square mod ¢ if and only if ¢ is a square mod p.

Quadratic reciprocity has many proofs, including elementary ones. But there’s also a proof that connects
well to algebraic number theory in general, which actually uses ideas similar to ones we’ve seen in class —
the main idea is to consider Q((,), where (, is a primitive pth root of unity. As we proved in class, Q({p)
contains Q(y/E£p) (where we have \/p if p =1 (mod 4), and \/—p if p =3 (mod 4)). Quadratic reciprocity
can be proven by analyzing the factorization of ¢ in the rings of algebraic integers of these two fields Q(,/%£p)
and Q((p), and using the description of the Galois group to look at this factorization in two different ways.

In number theory, this generalizes to higher reciprocity laws as well.

§9.3 Rings and Modules

When discussing rings and modules, one of the main theorems we saw was the classification of the finitely
generated modules over a PID. THe class 18.705 on commutative algebra develops this much further.

Commutative algebra is also closely related to algebraic geometry. If we have a ring R which is a quotient
of Clxy,...,x,], then as mentioned earlier, we can study its maximal spectrum MSpec(R), which (as we’ve
seen before) is a subset of C™.

Now suppose we have a R-module M and an element # € MSpec(R) corresponding to the maximal ideal
m,. Then by Nullstelensatz, we have R/m, = C. This means M/m,M is a C-vector space, and if M is
finitely generated, then this vector space is finite-dimensional. So if we fix the module M, then we get a
family of vector spaces corresponding to M, indexed by elements x € MSpec(R). This idea is also studied
in topology and differential geometry.

§9.4 Galois Theory

We’ve seen a story relating field extensions to groups — our key examples here were extensions of number
fields, and extensions of C(¢) (the latter was only sketched, but it’s an important example as well).

As we’ve seen, Galois theory can be used to prove the impossibility of solving a general quintic in radicals.
At around the same time Galois worked on this problem, another mathematician, Abel, also worked on the
same problems, but from a different perspective — involving Riemann surfaces (which relate to complex
analysis). Galois theory allows us to say that for a specific polynomial equation, there’s no formula for the
solution in radicals; Abel’s proof showed that there’s no universal formula (such as the quadratic equation).

Page 116 of



	Introduction
	Group Representations
	Definitions
	A Basis-Free Definition

	Characters
	Building Blocks of Representations
	The Direct Sum
	Irreducible Representations
	Maschke's Theorem

	Main Theorem
	More on Characters
	The Theorem
	Examples of Characters
	Schur's Lemma
	Proof of Orthonormality
	The Regular Representation
	Proof of Span
	Proof of Divisibility

	Final Remarks

	Rings
	Definitions
	Homomorphisms
	Ideals
	Building New Rings
	Product Rings
	Adjoining Elements
	Ideals in Polynomial Rings

	Maximal Ideals
	Hilbert's Nullstelensatz

	Inverting Elements and Fraction Fields

	Factorization
	An Example
	Principal Ideal Domains
	Euclidean Domains
	Factorization in Polynomial Rings
	Greatest Common Divisor
	Gauss's Lemma
	Factorization of Integer Polynomials

	Gaussian Integers
	Fermat's Last Theorem

	Factorization in Number Fields
	Algebraic Numbers and Integers
	Ideal Factorization
	Motivation
	Prime Ideals
	Ideal Multiplication
	Ideals and Lattices
	Proof of Unique Factorization

	List of Prime Ideals
	Ideal Classes
	Finiteness of the Class Group

	Generalizations
	Real Quadratic Fields
	Function Fields


	Modules
	Submodules
	Homomorphisms
	Generators and Relations
	Presentation Matrices
	Row and Column Operations
	Smith Normal Form
	Classification of Abelian Groups
	Polynomial Rings

	Noetherian Rings
	Hilbert Basis Theorem
	Chain Conditions


	Fields
	Field Extensions
	Towers of Extensions
	Compass and Straightedge Construction

	Splitting Fields
	Finite Fields
	Application to Number Theory

	Multiple Roots
	Primitive Element Theorem
	Geometry of Function Fields
	Ramified Coverings and Permutations

	Main Theorem of Algebra

	Galois Theory
	The Galois Group
	Examples of Galois Groups
	The Main Theorem
	Intermediate Extensions
	Some Applications and Examples
	Cyclotomic Extensions
	Kummer Extensions

	Solutions to Polynomial Equations
	Impossibility of Solving Quintics
	Symmetric Polynomials
	The Discriminant
	Cubic Polynomials
	Quartic Equations

	The Main Theorem of Algebra
	Galois Theory for Finite Fields

	Final Remarks
	Representation Theory
	Compact Lie Groups

	Factorization
	Rings and Modules
	Galois Theory


