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§1 Groups

Before we define groups, we’ll introduce a useful example.

§1.1 The General Linear Group

Definition 1.1. The general linear group, denoted GL, (R), is the set of invertible n x n matrices with
real coefficients.

Recall that a matrix A is defined to be invertible if there exists another n x n matrix, denoted A~', such
that AA™1 = A71A = I. A matrix is invertible if and only if det(A) # 0.

This set of invertible matrices has an interesting property — if we multiply two invertible matrices A and B,
then we get another, since AB has inverse Bt A~!. This multiplication is not commutative — in general,
AB does not equal BA. But it is associative — we always have A(BC) = (AB)C.

Remark 1.2. It’s generally useful to think of matrices as operations on some space. Given a matrix
A € GL,(R), we can define a function R” — R" sending v — Av. This function must be linear; and
conversely, given any linear function, we can recover its corresponding matrix.

In this interpretation, all these facts become much more intuitive — multiplying two matrices corre-
sponds to composing the functions, and function composition is associative but not commutative. (This
is where the definition of matrix multiplication comes from — multiplication is defined to match what
happens when we compose the two maps.)

With this example in mind, we can now define groups in general.

§1.2 What Is a Group?

Definition 1.3. A group is a set G with a composition (or product) operation G x G — G, denoted by
(a,b) — a-b (or ab), that satisfies the following axioms:

(1) Identity — there exists e € G such that ae = ea = a for all a € G.

(2) Inverses — for each a € G, there exists an element b € G such that ab = ba = e. We call b the

inverse of a, and write b = a~ .

(3) Associativity — we have (ab)c = a(be) for all a,b,c € G.

One observation we can immediately make from these axioms is that in (1) and (2), the element must be
unique. In (1), if both e and €’ are identity elements, then ee’ must equal both €’ and e, so ¢/ = e. Similarly
in (2), if b and ¥’ are both inverses of a, then bab’ must equal both ¥’ and b, so &’ = b.

In this definition, we’ve only defined the product of two elements. But thanks to associativity, we can talk
about products of many elements, such as gigo - - - gn, Without having to specify in what order we pair up
the elements when calculating. In particular, for nonnegative integers n we write ¢g" to denote the product

of n copies of g; similarly for negative n we write g” to denote the product of —n copies of g~ .
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Example 1.4

Some examples of groups are:
(1) GL,(R) under matrix multiplication — the identity is I, and the inverse of A is the matrix A~
(2) Z under addition — the identity is 0, and the inverse of a is —a.

complex numbers except for 0) under multiplication — the identity is 1, and the inverse of x
3) C~ 1 b t for 0) und Itiplicati the identity is 1, and the i f
is 1/x.

As we’ve seen already, the composition law doesn’t have to be commutative. But if it is, we get additional
structure, so such groups have a name:

Definition 1.5. A group G is abelian if ab = ba for all a,b € G.

Example 1.6
The groups Z and C* are both abelian, while GL,,(R) is not (for n > 2).

§1.3 Permutation Groups
Another central example of a group is the permutation group.
Definition 1.7. Given a set S, a permutation of S is a bijection p: S — S.

The set of all permutations of S, denoted Perm(S), is a group under function composition — for two
permutations p and ¢, we define their product ¢ - p as the permutation ¢ - p(z) = q(p(z)) for each x. The
identity is the identity permutation, for which e(z) = z for all z. Inverses exist because bijections have
inverses — for a permutation p € Perm(S), its inverse p~! is the permutation where for each x, we define
p~1(z) to be the unique y with p(y) = z.

Note that we can think of Perm(.S) as the group of symmetries on S — in much later classes, we will explore
how to think of groups via symmetry in more detail.

Definition 1.8. The group of permutations of {1,2,...,n} is called the symmetric group S,,.
Unlike all our previous examples of groups, 5, is finite.
Definition 1.9. The order of a group is its number of elements.

So the order of S, is n!, since there are n! permutations of {1,2,...,n}.

It’s often useful to describe permutations using cycle notation — we can draw arrows i — p(i) for each
element ¢, and write down a permutation by writing down all its cycles.
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Example 1.10

The permutation p sending 1, 2, 3, 4, 5, 6 to 2, 4, 5, 1, 3, 6, respectively, would have cycle notation
(124)(35)(6). We may also omit cycles of length 1, and write (124)(35).

1
/\ - '

3. 05 6
2——4

Note that cycle notation can be thought of as taking the composition of disjoint cycles — for example, the
permutation (135)(246) is (135) - (246).
To find the inverse of a permutation p given in cycle notation, we can simply reverse each cycle — in this

example, p~1 = (421)(53) = (142)(35).

We can also compute compositions using cycle notation:

Example 1.11

Let p = (124)(35) and ¢ = (135)(246). Then in order to compute q - p, we first find where p sends ¢,
and then where ¢ sends p(i) — this gives ¢ - p = (143)(26).

Finally, another interesting operation we can perform is conjugation — given two permutations p and ¢, we
can calculate p~! - ¢ - p, which is called the conjugate of g by p.

Example 1.12
If p = (124)(35) and q = (135)(246), then p~! - ¢ - p = (126)(345).

In an abelian group, the conjugate of ¢ by p will always be ¢ itself; but here Sg is not abelian, so we got

a new permutation. We will see conjugation in more detail later; but it’s not a coincidence that p~!-q-p

here has the same “shape” of its cycles as ¢ does.

Finally, we’ll explicitly describe the symmetric group for a small value of n.

Example 1.13

The group Ss contains e, the element = (123), and the element y = (12). The remaining elements
can be described as 2% = (132), zy = (13), and 2%y = (23).

Our elements 2 and y satisfy the relations 23 = e, y? = e, and yz = x%y. These together are enough to

reduce any combination of z and y to one of the six forms listed — for example,

ryr 'y = zyrzy = vriyry = yry = v2y® = 22

§1.4 Subgroups

Given a group, we can also look at smaller groups which sit inside it.
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Definition 1.14. Given a group (G, -), a subset H C G is a subgroup of G if it satisfies the following
conditions:

(1) Closure — if hy,hy € H, then hy - hy € H as well.
(2) Identity — e € H, where e is the identity element of G.
(3) Inverses — for each h € H, we have h™! € H.

Equivalently, H is a subgroup of G if it is also a group, under the same operation.

Example 1.15

Some examples of subgroups are:

(1) (Z,+) is a subgroup of (Q,+).

(2) {e, (123),(132)} is a subgroup of Ss.
(3) As a nonexample, Z>q is not a subgroup of Z, since it is not closed under taking inverses.
(4)

4) The special linear group SL,(R), consisting of matrices with determinant 1, is a subgroup of
GL,(R) — it is closed under both multiplication and taking inverses because determinants are
multiplicative.

Notation 1.16. The notation H < G can be used to denote that H is a subgroup of G.

§1.4.1 Subgroups of Z

It turns out that subgroups of the integers are quite easy to describe.

Theorem 1.17
The subgroups of (Z,+) are exactly {0} and nZ for positive integers n.

Proof. 1t’s easy to check that all such sets are subgroups of Z; now we’ll show that any subgroup of Z must
be one of these.

Let S C Z be a subgroup. We must have 0 € S; if there are no other elements, we’re done. Otherwise, let
a be the smallest positive element (which exists because if x is in 5, so is —z). Now we claim that S = aZ
— first, by closure we must have aZ C S. Now assume for contradiction there is some b € S which is not a
multiple of a. Then by closure, b — ka must be in S for all integers k. In particular, the remainder when b is
divided by a must also be in S. But this remainder is strictly between 0 and a (since a t b), contradiction.
So all elements in S are multiples of a, and therefore S = aZ. O

Corollary 1.18
Given integers a and b, let S = {ai +bj | i,j € Z}. Then S = dZ for some positive integer d.

Proof. We can check that S is a (nonzero) subgroup of Z; but all subgroups of Z are either {0} or of the
form dZ for a positive integer d. O

This leads to an important result in elementary number theory:
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Theorem 1.19 (Bezout's Theorem)

Given integers a and b, there exist integers r and s for which

ar + bs = ged(a, b).

Proof. We’ll show that in the above corollary, we must have d = +gcd(a,b). This suffices because then
ged(a,b) isin S.

First, all numbers ai + bj are multiples of ged(a, b), so since d is in S and therefore can be written as ai + bj
for some ¢ and j, then ged(a, b) must divide d. On the other hand, since a and b are in S, and S consists of
exactly the multiples of d, then d must divide a and b, and therefore must divide ged(a,b) as well. So since
d and ged(a,b) both divide each other, we have d = + ged(a, b). O

Remark 1.20. Bezout’s Theorem can be extended to multiple integers, instead of just two — in general,
given any integers a1, ..., a,, there exist integers r1, ..., r, such that

airy + -+ apry, = ged(ay, ..., ap).

§1.5 Cyclic Groups

One of the simplest examples of a group is a cyclic group.

Definition 1.21. Given an element g of a group G, the cyclic group generated by g, denoted (g), is the
smallest subgroup of G containing g.

Then we have (g) = {..., 972,97}, e,g9', 4%, ...} — if a subgroup of G contains g then by closure it muts
contain all powers of g, while this set is really a valid group.

Example 1.22
Some examples of cyclic groups are:
(1) In any group, we have (e) = {e}.
(2) In Ss3, we have ((123)) = {e, (123), (132)}.
(3) In C*, we have (2) = {..., 3, 1,1,2,4,.. .} and (i) = {1,4, -1, —i}.

Question 1.23. What do cyclic groups look like in general?

To answer this, let S be the set of integers n for which g" = e.

Theorem 1.24

Either S = {0}, in which case (g) is infinite and all the powers g are distinct; or S = dZ, in which case
(g) is finite and contains exactly d elements — more precisely, (g) = {e,g,4¢%,...,9%'}.

Proof. First we claim that S is a subgroup of Z:

e 0isin S by definition, since ¢° = e.
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o If g% = ¢® = e, then g%t = ¢ - ¢ = e as well. So if @ and b are in S, so is a + b.

a 1

o If g =¢, then g% =e™ = e as well. So if a is in .5, so is —a.
But the only subgroups of Z are {0} and dZ for positive integers d, so S must be one of these.

Now note that for two integers a and b, we have g® = ¢° if and only if g>® = e. So if S = {0}, this implies
a = b; therefore all powers of g are distinct, and (g) is infinite. Meanwhile, if S = dZ, then this means
g® = ¢" if and only if a = b (mod d). So every element of (g) is in {e,g,¢?,...,9% '}, and these d powers
are all distinct. O

This gives the following definition:
Definition 1.25. The order of an element g of a group is defined as ord(g) = #(g).

In other words, ord(g) is the smallest positive integer d for which ¢? = e if such an integer exists, and infinite
otherwise.

§1.6 Generators

Given a group G, we’ve seen what happens when we look at the smallest subgroup of G containing one
given element g. But we can also look at the smallest subgroup containing multiple elements:

Definition 1.26. Given a group G and a subset T' C G, the subgroup generated by 7' is the smallest
subgroup of GG that contains 7.

For the same reason as (g) consists of all powers of g, in general (T') consists of all products of powers of
elements in 7" — more explicitly, we have

(T) = {t1't3> - -ty | t; € T, a; € Z for all i}.

(Note that the ¢; do not have to be distinct.)

Definition 1.27. Given a group G and a subset 7' C G, if (T') = G then we say T generates G.

Example 1.28
As we saw in Example , S3 is generated by {(123), (12)}.

Example 1.29

The group GL,,(R) is generated by the elementary matrices — matrices corresponding to the elementary
row operations.

§1.7 Homomorphisms

When we’ve defined a structure — here, a group — we can then ask how two such structures can relate to
each other, by looking at the maps between them.

Definition 1.30. Given groups G and H, a homomorphism from G to H is a map f: G — H such that
for all z,y € G,

f@-y) = fz)- f(y).
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Note that the multiplication z -y occurs in G, while the multiplication f(x)- f(y) occurs in H — these may
be different operations.

Essentially, a homomorphism is a map between two groups which is compatible with their group structures.
There are other conditions it would make sense to include as well to describe compatibility with the group
structure — we would want f to also preserve the identity and inverses. However, it turns out it’s not
necessary to state these conditions in the definition, because they follow from the given one!

Proposition 1.31
For any homomorphism f: G — H, we must have f(eq) = ey, and f(z~!) = f(z)~! for all z € G.

Proof. To prove the first property, for any x € G we have
f(x) = fleg -x) = f(eq) - f(x).
Multiplying by f(z)~! on both sides (on the right), we get that f(eq) = eq.
Now to prove the second, for any x we have
e = fleg) = flz-a7h) = f(x) - fa™),

so f(z~!) must be the inverse of z. O

§1.7.1 Examples

Example 1.32
The map det: GL,(R) — (R*, x) is a homomorphism, since det(A)det(B) = det(AB) for any two
matrices A and B.

Example 1.33
The map exp: (C, +) — (C*, x), which is defined as z ++ €, is a homomorphism, since e*** = e%? for
any a,b € C.

Another important homomorphism, from the group S, is the sign of a permutation.

First, let e; denote the column vector with a 1 in the 7th coordinate and a 0 everywhere else. Then for each
permutation p € Sy, we can associate to it a permutation matriz A,, defined such that A,(€;) = ep(iy for

all i. In other words, A, corresponds to the linear map which permutes the basis vectors e7, ..., €, in the
same way as p permutes {1,...,n}.
Example 1.34

The permutation matrix associated to p = (123) € Ss is

Ap=

o = O
— o O
O O =

Proposition 1.35
The function S,, = GL, (R) sending p — A, for each permutation p is a homomorphism.
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Proof. It’s enough to check that A,, = A,A, for all permutations p and ¢. First, by definition we have

Apq(€7) = epq(:) for each basis vector €;. On the other hand,

ApAq(&7) = Ap(eq@y) = €p(a(i)) = Epali)-

So then A,, and A,A, are the same map. O

But we also have a homomorphism GL,(R) — R*, the determinant. So we can compose these two homo-
morphisms to get a new one:

Definition 1.36. The sign function sgn: S, — R* is defined as sgn(p) = det(A4,) for each p € S,,.

Proposition 1.37
We have sgn(p) = £1 for any permutation p.

Proof. Every permutation can be written as a product of transpositions p = 779 -+ -7 — for example, by
using any sorting algorithm that only involves making swaps. But for any transposition 7, the matrix A,
can be obtained by swapping two rows of the identity matrix, which means sgn(7) = —1 (since swapping
rows multiplies the determinant by —1). So then since sgn is a homomorphism, in general we have

sen(p) = sgn(r) sgn(n) - sen(r) = (—1)". O

Note that this also implies that when we write p as a product of r transpositions, the parity of » must be
fixed! Often, a permutation is called even or odd depending on the parity of r.

Example 1.38
In Ss, the permutations e, (123), and (132) have sign 1, and (12), (13), and (23) have sign —1.

Finally, here is another example of a homomorphism, which in fact we’ve seen already:

Example 1.39

For any z in a group G, there is a homomorphism f,:Z — G sending n + z™. This is a homomorphism
because z%t? = 2 . zb for any integers a and b.

We secretly used this homomorphism when studying the cyclic group generated by z. As in that example,
homomorphisms are useful because they can be used to study complicated groups in terms of simpler ones.

§1.7.2 Image and Kernel
In all definitions here, we assume that f is a homomorphism f:G — H.

Definition 1.40. The image of f, denoted im(f), is the set of elements y € H such that y = f(x) for
some x € G.

Example 1.41

By definition, the image of the homomorphism f, in Example is (x).
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Proposition 1.42
The image of f is a subgroup of H.

Proof. To show that im(f) is closed under multiplication, suppose y and y’ are in the image of f, so we
have y = f(x) and 3/ = f(2') for some z and 2’. Then

yy' = f(x)f(a') = f(za'),

so yy is also in the image of f. It’s possible to check the other conditions — that it’s closed under taking
inverses, and it contains the identity — in a similar way. O

Definition 1.43. The kernel of f, denoted ker(f), is the set of elements x € G for which f(z) = ep.

Proposition 1.44
The kernel of f is a subgroup of G.

Proof. First, if x and y are both in ker(f), then f(z) = f(y) = en, so
flzy) = f(2)f(y) = en

as well, and therefore zy is also in ker(f). So ker(f) is closed under multiplication.
We already showed that any homomorphism must satisfy f(eq) = eq, so ker(f) contains the identity of G.
Finally, if = is in ker(f), then f(x) = ep, so

Fa™) =)~ ="

as well. So ker(f) is closed under taking inverses as well. Therefore ker(f) is a subgroup of G. O

Example 1.45

For the homomorphism f,:Z — G defined as n +— z™ (for a fixed element x € G), the kernel of f, is
precisely the set of n such that 2™ = eq. This is exactly the set S we used in order to describe (x) —
in particular, we used the fact that it’s a subgroup of Z. More explicitly, this kernel is dZ if d = ord(z)
is finite, and {0} if ord(z) is infinite.

Example 1.46
The images and kernels for the other homomorphisms described in the previous section are the following:

(1) For the map det: GL,(R) — R*, the image is R*, and the kernel is SL,(R), which denotes the
group of matrices with determinant 1.

(2) For the map exp: C — C*, the image is C* and the kernel is 2miZ (the cyclic group generated by
27i).
(3) For the map S,, — GL,(R) defined as p — A,, the image is the set of all permutation matrices,

and the kernel is the identity permutation.

(4) For the map sgn: S,, — R*, the image is {£1} and the kernel is the set of permutations with sign
+1. The kernel of sgn is called the alternating group and denoted by A,,. For example, we have
Ag = {e, (123), (132)}.
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In some sense, the kernel measures the failure of f to be injective — if the kernel is trivial, then f is injective.

§1.7.3 Isomorphisms

Definition 1.47. A bijective homomorphism is called an isomorphism.

Recall that a function f: G — H is bijective if it’s both surjective, meaning that all of H is in its image, and
injective, meaning that it sends any two distinct elements of G to distinct elements of H.

Example 1.48
The map exp: (R, +) — (Rxp, X) defined as t — ¢’ is an isomorphism.

Claim 1.49 — Given an isomorphism f:G — H, its inverse f~!: H — G is also an isomorphism.

Proof. First since f is bijective, it has an inverse f~!, which is bijective as well. So it suffices to check that

fHay) = =) ()

for all z,y € H. To check this, we can take f of both sides — we have

FU N ay) =2y = FF @) W) = F(FH @) f ().

But since f is injective, this means f~(zy) = f~1(z)f~(y). O

If we have an isomorphism between two groups, then they’re basically the same — anything that can be
said about one can also be said about the other, by just renaming elements according to the isomorphism.
So understanding the group is essentially the same as understanding a group isomorphic to it.

Example 1.50

For an element g € G with finite order d, the map f, gives an isomorphism between Z/dZ and (g), by
sending a residue n mod d to the element g"”. Meanwhile, for an element g € G with infinite order, the
map f, is an isomorphism between Z and (g).

In order to check that this example (or more generally, any map) is an isomorphism, we’d check that it’s a
bijection and that it’s compatible with the group operations.

Definition 1.51. An isomorphism from a group G to itself is called an automorphism.

Example 1.52

For any group, the identity map g + ¢ is an automorphism. But there are often more interesting
automorphisms as well:

(1) The map Z — Z sending n +— —n is an automorphism. In fact, this map and the identity are the
only automorphisms of Z.

(2) The map on GL,(R) sending A + (AT)~! is an automorphism.

In fact, there’s a general construction that usually produces interesting automorphisms:
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Example 1.53

For any group G and any element a € G, the map ¢,: G — G sending = — axa™
This is called conjugation by a, and these automorphisms are called inner automorphisms.

l'is an automorphism.

Proof. First we’ll check that ¢, is a homomorphism: for any x and y, we have

Pa(2)pa(y) = ava™ - aya™t = azya! = p4(zy),

as desired. Meanwhile to check that ¢, is a bijection, note that its inverse is the map yp,-1:2 — a'za,

since for any x we have a(a™'za)a™! = z. O

This construction always produces some automorphisms but depending on the choice of a, this may or may
not be an interesting one. In particular, if GG is abelian, then ¢, is always just the identity map. However,
when G is not abelian, conjugation can be interesting.

Remark 1.54. Given any group, its automorphisms themselves form a group, under function composi-
tion. This new group can be an interesting object to study.

§1.8 Cosets
Question 1.55. Given a homomorphism f: G — G’, when do we have f(a) = f(b)?

We have f(a) = f(b) if and only if f(a)~'f(b) = e, or equivalently if and only if f(a~!b) = e. This occurs
exactly when a~1b is in the kernel of f, or in other words, when

be aker(f) ={ax |z € ker(f)}.

This motivates us to study what such sets look like.

Definition 1.56. Given a subgroup H < G, a left coset of H is a subset of G of the form aH = {ax |
x € H}.

Example 1.57
In the group S3 = (z,y) where z = (123) and y = (12), find the left cosets of (y) = {e,y}.

Solution. Let H = {e,y}. Taking a to be e, z, and 22, we get the cosets H = {e,y}, 2H = {x,zy}, and
2?H = {22, 2%y}. Now the remaining values of a give yH = {y, e}, which is the same as H; xyH = {xy,},
which is the same as zH; and z?yH = {22y, 2%}, which is the same as z?H.

So the cosets of H are {e,y}, {z, 2y}, and {2, 2%y}. Note that although there were six possible values of a
to shift by, some produce the same coset — so there’s only three different cosets. O

Example 1.58
In the group Z, find the cosets of the subgroup 2Z.

Solution. If we shift by 0, then we get the even integers 27, and if we shift by 1, then we get the odd integers
27 + 1. These are the only two cosets — shifting by any even number produces 27, and shifting by any odd
number produces 2Z + 1. So here there are only two cosets. O
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Proposition 1.59

All cosets of H have the same order as H.

Proof. The function z + ax is a bijection from H to aH, since it has an inverse = — a~'z. O

Proposition 1.60
The cosets of H form a partition of G.

A partition of a set S is a subdivision of S into disjoint subsets — so these subsets don’t overlap, and
together they contain all elements of S.

In order to prove this, we’ll first prove the following lemma:

Lemma 1.61
Given a coset C' of H, then for any element b € C', we have C' = bH.

Proof. Suppose C = aH for some a. Then we have b = ah for some h € H, since b is in aH. This means
bH = {bh' | W € H} = {ahh’ | W' € H}.

But since h and A/ are both in H, so is hh/, and therefore bH C aH. We can show aH C bH similarly, by
writing @ = bh™!. So then aH and bH must be the same coset. O

Using this, we can now prove the proposition:

Proof of Proposition . First, every element is in a coset — since e € H, we have x € xH for all elements
z. Now to show that the cosets are disjoint, suppose C' and C’ are two cosets with nonempty intersection.
Then if both cosets contain y, the above lemma implies that both are yH, so they are actually the same
coset. So distinct cosets of H don’t overlap. O

Definition 1.62. The indez of a subgroup H < G, denoted [G : H], is the number of left cosets of H.

Theorem 1.63
We have #G =[G : H| - #H.

Proof. The cosets of H form a partition of G. But there are [G : H| such cosets and each has size #H,
which gives the desired result. O

As a corollary, we get Lagrange’s Theorem:

Theorem 1.64 (Lagrange's Theorem)
For any subgroup H < G, we have that #H divides #G.
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Corollary 1.65
If #G is prime, then G is cyclic.

Proof. Let #G = p. For any element x € G, we have that (z) is a subgroup of G. Now pick any = € G
other than the identity, so (x) does not have order 1 (as it contains both e and x). However, its order must
divide p, so it must equal p. This means (z) is the entire group, and therefore G is cyclic. Furthermore, this
proof implies G is generated by any one of its non-identity elements. O

This means for every prime p, there’s a unique group of order p up to isomorphism — every such group is
isomorphic to the cyclic group Z/pZ.

We can generalize the argument used here:

Corollary 1.66
For any element x of a group G, ord(x) must divide #G.

Proof. The order of x is the size of (z), and since (z) is a subgroup of G, its size must divide that of G. [

Example 1.67
What are the possible groups of order 47

Solution. The group must contain the identity, and every other element must have order 2 or 4. First, if
there is some element x of order 4, then the group must be (z) = Z/4Z.

Now assume that every element other than the identity has order 2. Take some element x; then since taking
powers of x doesn’t give any new element, there must exist some other element y. Now our group contains
the elements e, =, y, and zy. Note that zy has to be a new element — if 2y = e then since z2
we would have x = y, while if xy were equal to x or y then the other one would equal e.

= e as well

So the group consists of the four elements {e,z,y,zy}. But the same reasoning shows that the group
consists of the elements {e,z,y,yz}, so we must have zy = yx. This means the group is exactly the

elements {e, z,y, vy} with the relations 22 = 3? = e and yaz = 2y, which is enough to completely describe
the group.
This group is abelian but not cyclic. In fact, it’s isomorphic to the group of matrices
+1 0
< .
0 41| =Cl2(R)
So any group of size 4 is either cyclic or isomorphic to this second group. O

With this, we can return to our original question about when we have f(a) = f(b) given a homomorphism
f:G — @G For each y € G, we can consider its pre-image

) ={zeq|flx)=y}
If y is not in the image of f, then f~!(y) is empty; meanwhile if y 4s in the image of f, then we’ve seen that
f~(y) is a coset of ker(f). Then applying what we’ve learned about cosets gives the following corollary:

Corollary 1.68
For any homomorphism f, we have [G : ker(f)] = |im(f)|, or equivalently, |G| = |ker(f)]| - [im(f)].
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§1.9 Normal Subgroups
So far, we’ve only worked with left cosets. But we can define right cosets in the exact same way:

Definition 1.69. Given a subgroup H < G, a right coset of H is a subset Ha = {ha | h € H}.

The same results we've seen for left cosets all apply to right cosets as well — the size of any right coset is
|H|, and the right cosets of H always partition G.

Example 1.70
In the group Ss, find the right cosets of the subgroup (y).

Solution. The right cosets are {e,y}, {z,yz} = {z, 2%y}, and {22, y2?} = {22, 2y}. O

Note that these cosets still partition S3, but this is a different partition than the one we got from the left
cosets {e,y}, {z, vy}, and {22, 2%y}.

Claim 1.71 — There is a bijection between left and right cosets, given by taking the inverse — if C' is
a left coset, then the set C~! = {z~! | 2 € C} is a right coset.

Proof. Let C = aH. Then we have (ah)~! = h='a~! for any h. But h is in H if and only if h~! is, so then
C~! is exactly the right coset Ha~'. O

Question 1.72. For which subgroups H < G do the left and right cosets give the same partition of G?
Subgroups with this property are quite important, so they have a name:
Definition 1.73. A subgroup H < G is a normal subgroup if tH = Hx for all z € G.

Note that we don’t need to consider the case where *H = Hy for different elements x and y — then since
x € Hy we would have Hy = Hz.

It is sometimes convenient to rewrite the condition as H = xHx ! for all € G. So a normal subgroup can
also be thought of as one which is preserved under conjugation by every element z € G.

Proposition 1.74

For any homomorphism f, ker(f) is normal.

Proof. Let k be an element in ker(f), so f(k) = e. But then for any z, we have
Flka ) = @)Y = f@) fa ) = flaat) = e.

So conjugating any element of ker(f) by « still produces an element of ker(f). O
In fact, it turns out the converse is true as well:
Fact 1.75 — Every normal subgroup is the kernel of some homomorphism.

We’ll prove this in a later class.
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Example 1.76

In S3, the subgroup (z) is normal.

Proof. 1t’s possible to check this explicitly, but we don’t have to — (x) = {e, (123),(132)} is the kernel of
sgn, so it must be normal. O

Of course, in an abelian group, every subgroup is normal.

§1.10 The Correspondence Theorem

Consider a homomorphism f:G — G’. As mentioned earlier, we’d like to use homomorphisms to help us
understand more complicated groups in terms of simpler ones.

Question 1.77. How are the subgroups of G and G’ related?

Given any subgroup H < G, we can take its image f(H), which is a subgroup of G. This lets us go from
subgroups of G to those of G'.

Meanwhile, given any subgroup H' < G’, we can take its pre-image
fHH) ={z e G| f(x) € H'}.

This is a subgroup of G — if z and y are both in f~'(H’), then f(x) and f(y) are in H’; then f(zy) =
f(x)f(y) € H' as well, so xy is also in f~1(H'). So this lets us go from subgroups of G’ to subgroups of G.

Question 1.78. Is this correspondence a bijection?

Of course, the answer is no — for example, G could be the trivial group, and G’ could be huge.

There are a few constraints we can see immediately — first, f(H) is always contained in im(f), so the only
subgroups of G’ we can produce from subgroups of G are the ones in im(f). Similarly, f~(H) must always
contain ker(f), so we generally can’t produce all subgroups of G, only the ones containing ker(f).

But it turns out that these are essentially the only things that can go wrong in the correspondence, and
refining the question to account for them gives us the Correspondence Theorem:

Theorem 1.79 (Correspondence Theorem)

Let f:G — G’ be a surjective homomorphism. Then there is a bijection between the subgroups of G
containing ker(f) and the subgroups of G'.

Proof. We use the same map from before — to go from subgroups of G to subgroups of G’ we take the
image, and to go from subgroups of G’ to subgroups of G we take the pre-image. Then we want to check
that these maps are inverses of each other.

Let K = ker(f). Then the two directions we need to check are that if we start with a subgroup K < H < G
then f~1(f(H)) = H, and that if we start with H' < G’ then f(f~1(H')) = H'. We'll only check the first
direction, as the second is similar.

First, f~1(f(H)) is the set of all elements in G such that f(x) € f(H), so clearly H C f~(f(H)) by
definition.

On the other hand, we have f(x) = f(h) if and only if © = hk for some k € K, meaning that z is in the
same coset of K as h is. But since K is contained in H, this means x must be in H as well. So all elements
of f~1(f(H)) are also elements of H, and therefore we must have f~1(f(H)) = H. O
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This means if we start off with a complicated group G and we find a surjection from G to a simpler group G’,
we can use the subgroups of G’ to understand the subgroups of G. This idea will come up often, especially
in 18.702 in the spring.

Example 1.80

Consider the homomorphism C* — C* given by z ~ 22 (note that this is a homomorphism because
C* is abelian, but this isn’t generally a homomorphism for a nonabelian group). It’s surjective because
all complex numbers have a square root, and its kernel is {£1}.

Then for example, the subgroup R* of the left group corresponds to its image, the subgroup R+ of the
right group.

Meanwhile, the subgroup {£1,+i} of the right group corresponds to its pre-image, the subgroup
{e?ma/8} of the left group (consisting of all eighth roots of unity).

§1.11 Quotient Groups

Recall that a subgroup H < G is normal if it is preserved by conjugation by any element of G, or in other
words, tHx~' = H for all z € G.

Notation 1.81. The notation H < G is sometimes used to denote that H is a normal subgroup of G.

Earlier, we’ve seen that for any homomorphism f, its kernel is always normal. We can ask whether the
converse is true:

Question 1.82. Given a normal subgroup N < G, does there exist a homomorphism f with ker(f) = N?

We'll see that the answer is yes — we’ll construct a new group G’ and a homomorphism G — G’ whose
kernel is N. First, as a motivating example:

Example 1.83
Consider the normal subgroup 27Z of Z. Then we can take the homomorphism from Z to Z/27 (the
integers mod 2) sending x — x (mod 2).

So in general, we’d like to construct a version of the integers mod 2.

Note that if N = ker(f) for some homomorphism f, then each element of im(f) corresponds to a coset of
N — each coset of N is mapped to a different point in im(f). So we can try to take the image to be the
cosets of N — let G’ be the set of cosets of N in G.

Definition 1.84. Given two cosets C and Cs of G, their product is C1-C2 = {y1-y2 | y1 € C1,y2 € Ca}.

Proposition 1.85
If C; and (5 are cosets of a normal subgroup, then so is Cy - Cs.

Proof. Let C7 = aN and Cy = bN; then we’ll show that C - Cy = abN. First, it’s clear that abN C C7 - Co,
by simply taking y; = a.

Now for the other direction, take elements an; and bny in C7 and Cy (with ny,ne € N), so we want to check
that anq - bng is in abN. But since N is normal, we have bN = Nb, so n1b can be rewritten as bng for some
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ng € N. Then we have
anibng = abngns € abN

since nzng € N, as desired. O

Remark 1.86. It’s important that N is normal here — as a counterexample when N is not normal,
take the group S3, and the subgroup H = {e,y}. Then we have xH = {z, zy}, so

zH -zH = {1'2, l'Qy, ryzx, xya:y} = {xQ’ :L‘2y, Y, 8}-
This is not a coset of H since it has four elements, not two.
So we can take the product of two cosets, which lets us put a group structure on the set of cosets!

Definition 1.87. Given a normal subgroup N < G, define the quotient group G/N as the set of cosets
of N, with the group operation [C4] - [C3] = [C} - Co).

Theorem 1.88

The quotient G/N is a group, and there exists a surjective homomorphism m: G — G/N sending = to
the coset containing =, whose kernel is exactly N.

Proof. The fact that G/N is a group is quite straightforward once we know that the operation makes sense.
The identity of G/N is [N], since [aN] - [eN] = [aN] for any coset [aN]. The inverse of [aN] is [a~1N],
since we showed that [aN] - [a"!N] = [aa"!N] = [N]. (Note that in general the inverse of a left coset is
a right coset, but here the left and right cosets are the same.) Finally, associativity follows directly from
associativity of multiplication in G. So G/N really is a group.

Now 7 is the map =z — xN; the fact that 7 is a group homomorphism follows directly from the fact that
[xN]-[yN] = [xyN]. Meanwhile, its kernel is the subset of G which is mapped to [NV]; this is exactly N. [

Remark 1.89. Note that most of this proof was nearly tautological — most of the work was showing
that our multiplication operation really makes sense.

So this answers our question — we’ve produced a group homomorphism with kernel N. This construction is
also useful because if we start with a group and a normal subgroup, we can use it to produce a new group:

Example 1.90

The group SLy(R) has the normal subgroup {£/}. We can then construct a new group by quotienting
out SLo(R) by {#I}; this new group is called PSLy(R). Note that PSLs(R) isn’t really a group of
matrices — it’s a group of matrices up to multiplying by +1.

There’s another perspective on G/N — given a group G and a subgroup N, we can say that a = b (mod N)
if @ and b lie in the same coset of N. This is an equivalence relation, meaning that it satisfies certain axioms.
Then when we turn G/N into a group, we'’re saying that the group operation behaves well under equivalence
— if a = b and ¢ = d, then ac = bd. This lets us put a group structure on the set of congruence classes. As
a familiar example, this is how modular arithmetic works, using the normal subgroup nZ < Z.

We’ve now seen how to construct a homomorphism given a normal subgroup. But earlier, we also saw how
to construct a normal subgroup given a homomorphism — so now suppose we started with a surjective
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homomorphism f: G — G’, which produces the normal subgroup K = ker(f). Then we can try to feed K
into our new construction — we get another surjective homomorphism 7 : G — G//K. But it turns out we
essentially haven’t done anything, and this new homomorphism is essentially the same as the one we started
with. More precisely:

Fact 1.91 (First Isomorphism Theorem) — We have G/ker(f) = G'.

The isomorphism f: G/ker(f) — G’ is just given by f([zK]) = f(z), and in particular f = f o w. Although
this is called a theorem, we should think of it instead as a check that the quotient construction isn’t something
crazy — there’s a correspondence between elements of the image and cosets of the kernel, and that’s all that
this isomorphism is. The only part of the claim that has content is that this correspondence is compatible
with the group structure on both sides.
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§2 Linear Maps

We’ll now pivot to discussing linear algebra.

§2.1 Vector Spaces

Definition 2.1. A field is a set with two operations + and x which satisfy all the rules we’d expect
— the operations satisfy associativity and distributivity, all elements form an abelian group under
addition, and all nonzero elements form an abelian group under multiplication.

Example 2.2
C, R, and Q are all fields; Z is not a field, since we can’t generally divide by any nonzero integers — in
other words, most nonzero integers don’t have multiplicative inverses.

Example 2.3
Z/pZ is a field, denoted F),.

Proof. It’s enough to show that every nonzero a has a multiplicative inverse mod p. But we know that

ged(a,p) = 1, so by Bezout’s Theorem there exist integers r and s such that ar + ps = 1. Then ar = 1
O

(mod p), so r is the inverse of a.

On the other hand, Z/nZ is not a field for composite n — numbers which aren’t relatively prime to n don’t

have inverses.

Definition 2.4. A wvector space V over a field F' is a set with two operations: addition, such that (V, +)
is an abelian group, and scaling: a map F x V — V mapping (a, ) — a@, satisfying the usual axioms.

Example 2.5
Some examples of vector spaces:

(1) The space of column vectors (ay,...,a,) with a; € F for all ¢, denoted F", is a vector space.
(2) For any m x n matrix A with entries in F', the solutions to AT = 0 form a vector space.

(3) Linear homogeneous ODEs (ordinary differential equations) form a vector space.

For most things we’ll do in linear algebra, it’s possible to work over any field, instead of just R — we just
need to be able to divide. So for example, we could work with GL,,(F,) instead of GL,(R) — this is now a

finite group.

§2.2 Linear Combinations

Definition 2.6. Given vectors 7, ..., v, in V, a linear combination of these vectors is a vector of the
form

— —>

v

-~
=a1v1 + -+ apvp

for some aq,...,a, € F.
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Definition 2.7. For a set S = {v1,...,0,}, the span of S, denoted Span(S), is the set of all vectors ¥’
which are linear combinations of v7, ..., U,.

Note that Span(S) is a vector subspace of V' — it’s also a vector space.
We say that a set S = {v1,...,v,} spans V if Span(S) =V, or in other words, if every vector in V can be
written as a linear combination of the vectors vj.
Definition 2.8. A set of vectors v1, ..., v, are linearly independent if the only (a1, ...,a,) for which
a1 + -+ apvy =0

isap=---=a, =0.

Equivalently, o1, ..., v, are linearly independent if and only if there is only one way to write each ¥ as a
linear combination — if there were two ways to write ¥, then we could subtract them to get a nontrivial
solution to ajvy + - -+ + a,v, = 0.

Definition 2.9. If a set S of vectors both spans V' and is linearly independent, then S is a basis of V.

If S is a basis of V, then every vector can be written uniquely as a linear combination of its elements —
there is a unique way to write
T = @i+t iy

for any vector ¥. Then (aq,...,ay) are called the coordinates of ¥ in this basis.

Example 2.10

In the vector space R?, the set {(1,1)T,(3,2)T,(2,1)T} spans R?, but is not linearly independent. But if
we remove the last vector, then the set {(1,1)T,(3,2)T} still spans R? and is now linearly independent;
so it forms a basis of R2.

In linear algebra, a common theme is that a good choice of basis can make the problem easier.

We say V is finite-dimensional if there exists a finite list of vectors which spans V. For a finite-dimensional
vector space, we'd like to actually define its dimension — for example, R? should have dimension 2. For
this, we need the following lemma:

Lemma 2.11

If we have a set S = {v1,...,0,} which spans V, and a set L = {wq,...,ws} which is linearly indepen-
dent, then:

(1) We can remove elements from S to produce a basis of V.
(2) We can add elements of S to L to produce a basis of V.
(3) We have |S| > |L|, or in other words r > s.

Corollary 2.12
If S and L are both bases of V, then they have the same number of vectors.

This lets us define the dimension:

Definition 2.13. The dimension of V is the number of vectors in a basis of V.
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Proof of Lemma . First we’ll prove (1). If S is linearly independent then we’re done; otherwise, we have
o RS

for some scalars a; which are not all zero. Without loss of generality a, # 0; then we have

—> —1 —> —
vy = —a, (a1 + -+ ap_10,-1).
This means v, is in the span of the remaining vectors o7, ..., U,_1; therefore we can remove it from S

without changing Span(S), since any occurrence of v, can be replaced with this expression.

So we’ve deleted one vector from S, without decreasing its span. We can keep doing this until the vectors
are all linearly independent; this must happen at some point, because we can’t delete all the vectors.

Now we’ll prove (2). First, if S is contained in Span(L), then since S spans V', so must L; then L is a basis
and we're done. So now assume vj is in S but not in Span(L). Then add 97 to L.

Then we claim L is still linearly independent — if we have

cv1 + a1y + -+ - + asw, = 0,
then we must have ¢ = 0 since otherwise v would have been in Span(L), and then we must have a; = -+ =
as = 0 since the original set was linearly independent.

We can keep on adding vectors from S to L until we're stuck and L spans V. This must happen at some
point — at the least, if we’ve added everything in S to L then L definitely spans V. Now since L spans V
and is still linearly independent, it is a basis for V.

Finally we’ll prove (3). Since S spans V, we can write each w; as a linear combination of the v;. Let
T
EEDI T
i=1

for each 1 < j < s. Let A be the r X s matrix consisting of the a;;; then in matrix notation, this system of
equations becomes

{5{ ;U;] - {171* 17;} A
Now assume for contradiction that » < s. Then the linear system A7 = 0 has more variables than equations,

so it must have a nontrivial solution for 7 (for example, this can be proven by putting A into row echelon
form). But then we have

—> —> —| > —> —> —
inwi:[wl ws}x:[vl vr}Aaz:().

This contradicts the fact that the w; are linearly independent; so we must have r > s. O

§2.3 Linear Transformations

Definition 2.14. Given vector spaces V and W, a linear transformation between them is a map
T:V — W which is compatible with the vector space operations: we have T'(v; + v3) = T'(v1) + T'(v3)
for all vectors 1 and v3, and T'(a¥) = aT (V) for all vectors v and scalars a.

Note that V' and W must be vector spaces over the same field — when doing linear algebra, we generally
fix the field at the very beginning.

Definition 2.15. An isomorphism between vector spaces is a bijective linear transformation.

Similarly to the case of group isomorphisms, we can check that if T:V — W is a bijective linear transfor-
mation, then its inverse (which exists because it is a bijection) is also a linear transformation.
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Example 2.16

Given a set S = {01,...,0,} of vectors in V, we can define the transformation Ts: F" — V as
al @
an i=1

In fact, we can rewrite all the properties of a set of vectors described into the previous section as
properties of this map — S is linearly independent if and only if T is injective, and S spans V if and
only if T is surjective. In particular, S is a basis for V' if and only if T is an isomorphism.

In order to describe a linear transformation 7', it’s enough to describe what 71" does to a basis of V' — then
v

we can use the fact that T interacts well with linear combinations in order to calculate T(7) for any v.

§2.3.1 Coordinates and Change of Basis

Given a basis w1, ..., w, of V, we can define a linear transformation B: F" — V sending e; — w; for
each ¢. This is an isomorphism (as described in the example), so it has an inverse. In particular, if
B~Y@) = (a1,...,a,)T, then we have @ = ajw; + - - - + a,w,, so B~() gives the coordinates of W in the
basis consisting of wry, ..., w,.

Linear transformations and matrices are closely related, as mentioned much earlier. Given a m X n matrix
A, we can define a linear transformation 7: F" — F™ sending ¥ — A7. On the other hand, given the
transformation 7" we can uniquely recover the corresponding matrix A — the columns of A should be
T(e1), ..., T(en). This means matrices and linear transformations are essentially the same thing — in fact,
matrices and linear transformations both form vector spaces, and this correspondence is an isomorphism of
vector spaces. Then a linear transformation 7: F™ — F" is an isomorphism if and only if the corresponding
matrix A is invertible, meaning that m = n and A € GL,(F).

Question 2.17. If V is finite-dimensional, how can we relate two bases of V'?
Suppose we have one basis {v7,...,0,}, which provides an isomorphism B: F" — V| and another basis

{w;,...,w,}, which also provides an isomorphism B’: F"* — V. We can then set P = B~ o B’, which is an
isomorphism from F™ — F™ such that B’ = Bo P.

P

Since P is an isomorphism F" — F", it corresponds to a n X n invertible matrix; we’d like to figure out the
contents of this matrix. In order to figure out the columns of P, we want to figure out what P does to the
standard basis vectors e;. We have

P(er) = B\ (B'(e}) = B~ (w)),
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which is the coordinates of w; in the basis {v7,...,70,}. So the columns of P are exactly the coordinates of
the w; in terms of the v;. Similarly, the columns of P! are the coordinates of the v; in terms of the w;.

Now suppose we have any vector ¥ € V, and we write down its coordinates in both bases — let ¥ € F"
be the coordinates of ¥ in the basis B, and 3 € F™ be the coordinates of ¥ in the basis B’. Then we have
Z =B (V) and ¥ = B 1(¥), so since P = B~ 0 B', we have P(7) = Z, and conversely P~1(Z) = 7.

By choosing a basis, we can write down everything in terms of coordinates. Suppose we have a linear
transformation 7: V' — W. Then we can pick a basis B = {v1,...,v,} for V, and a basis C' = {wy,...,wn}
for W. This gives an isomorphism A = C~!'oT o B from F" — F™, which corresponds to a m x n matrix.
So the things we study about matrices in F" really allow us to study any linear transformation (assuming
that our vector spaces are finite-dimensional).

Example 2.18

Let V' be the set of complex functions satisfying f”(¢t) = f(t), and W the set of complex functions
satisfying f”(t) = —f(t). Define the linear transformation 7:V — W as f(t) — f(it).

One basis for V is {e!,e™'}, and one basis for W is {cost,sint}. Now to find the corresponding matrix
A, its columns are given by the coordinates of T'(v;) in the basis w;. We have e’ — e = cost + isint,
so the coordinates of its image are (1,4). Similarly, e~ + e~% = cost — isint, so its coordinates are
(1, —4). So we have

We could have produced a different matrix by choosing a different basis — for example, the basis
{eft e~} for W would produce
;|1 0
A

In the above example, we saw that by changing which basis we used, we could make A into the identity
matrix. So we can ask how “nice” we can make the matrix in general:

Question 2.19. Can we choose bases B and C so that the matrix A looks very nice?

We’ll come back to this later.

§2.3.2 The Dimension Formula

Definition 2.20. Given a linear transformation T:V — W, its kernel is the set of vectors ¥ in V for
which T(7) = 0, and its image is the set of vectors @ in W such that @ = T(7) for some .

The kernel and image are vector subspaces of V and W respectively, by the same reasoning as in the case
of groups. So it makes sense to define their dimensions:

Definition 2.21. The dimension of im(7') is called the rank, and the dimension of ker(T) is called the
nullity.

Equivalently, given a matrix A, its rank is the dimension of the span of its columns.

Theorem 2.22 (Dimension Formula)
We have dim ker(7) 4+ dimim(7") = dim V.
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This is also known as the Rank-Nullity Theorem.

Remark 2.23. This is reminiscent of the formula |G| = |ker(f)| - [im(f)| from group homomorphisms.

Proof. Pick a basis 07, ..., vz of ker(T)). Since this set of vectors is linearly independent, we can extend it
to a basis of V, by adding some vectors vg 1, ..., Upn.

We know that T'(v;) = 0 for all 1 < i < k. Meanwhile, let T'(v;) = w; for each k + 1 < i < n; then the
vectors w; are all in im(7T).

Claim — The vectors Wg1, - .., W, form a basis for im(7T).

Proof. First, to show they span im(7"), we have
im(T) = Span(T'(vy),...,T(vn))

by linearity. But T'(vy), ..., T(v7) are all 0, so we can remove them without affecting the span.

Now to show they’re linearly independent, suppose
A1 W1 + - + apwy, = 0.
Then using linearity, we can rewrite this as
T(ags1Vps1 + -+ + anvy) = 0.
But this means ag; 10541 + - - + a0, must be in ker(T'), and therefore we can write

Gk TRE + -+ iy = Q13 + -+« + 0T}

for some aq, ..., ay. But since v71, ..., v, form a basis for V, they must be linearly independent, and
therefore all coefficients are 0. O
Now we’re done, since dim ker(7") = k and dimim(7") = n — k, and these sum to dim V' = n. O
In fact, this proof shows something more. Take a basis Ug11, ..., Upn, U1, ..., Up of V as described. Then
take the basis Wgy1, ..., Wy, of im(T) as described, and add vectors w7, ..., uz to extend this to a basis of

W. In these bases, it’s easy to describe T — it sends v; — w; for each k +1 < i < n, and v; — 0 for all
other i. So then in the matrix corresponding to 7', the first n — k entries on the diagonal are all 1, and all
other entries are 0: so T looks like

1 0 - 0

0?...0 O

00 - 1
0 0

This answers our question from earlier — for any linear transformation, we can choose bases to make the
transformation have this form, which is very nice. As a special case, suppose we started with a linear
transformation F" — F™ which already corresponds to a matrix M. Then we can choose new bases for F"
and F™ in which M has this form; this corresponds to choosing invertible matrices P and @, and writing
the new matrix A = Q' MP.

Page 27 of



18.701 — Algebra 1 Class by Davesh Maulik (Fall 2021)

Corollary 2.24

Given any m x n matrix M, there exist P € GL,(F) and Q € GL,,(F) such that Q=M P has some
number of 1’s at the beginning of its diagonal, and 0’s everywhere else.

This comes back to a remark made earlier, that the choice of basis can often make your life a lot easier.

Remark 2.25. To explicitly tie this back to the Dimension Formula, columns with all zeros correspond
to the kernel, while the columns with a 1 correspond to the image.

Corollary 2.26

Given any m x n matrix M, the rank of M is the same as the rank of its transpose MT.

In other words, the column rank (the dimension of the span of its columns) is the same as the row rank (the
dimension of the span of its rows).

Proof. Write A = Q~'M P in the form described. Then this is clearly true for A — the rank of A is just the
number of 1’s on the diagonal, and its transpose has the same number of 1’s. But A and M are isomorphic
(since we obtained A from M by multiplying by invertible matrices, or equivalently by changing basis), and
AT and M7 are isomorphic. So the rank of A is the same as the rank of M, and the rank of A is the same
as the rank of MT; therefore M and MT have the same rank as well. O

§2.4 Linear Operators

So far, we’ve looked at linear maps between different spaces. But we can also look at linear maps on a fized
space:

Definition 2.27. A linear operator is a linear transformation 7:V — V.

Example 2.28
Some examples of linear operators:
(1) In the vector space R?, rotation by § counterclockwise is a linear operator (for any angle 6).

(2) In the vector space of polynomials of degree at most 2, the derivative is a linear operator.

In order to understand a linear operator 7', we can still choose a basis for V' and write down the matrix
corresponding to T. The only difference between this case and that of general linear maps is that now
since we have V on both sides, we only need one basis instead of two. Then if we have a basis giving an
isomorphism B: F™ — V, this turns T into a n X n square matrix A, whose columns are the images of each
basis vector under 7.
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Example 2.29

In our two above examples:

(1) If we take the standard basis for R?, the corresponding matrix is

cosf) —sind
al= [sin@ cos 6 ] ’

(2) If we take the basis {1,t,¢2}, then the derivative maps 1 + 0, t — 1, and t? > 2t, giving the
matrix

A:

2 e S
o N O

1
0
0

Proposition 2.30
If V is finite-dimensional, then a linear operator T:V — V is injective if and only if it is surjective.

We'll always assume vector spaces are finite-dimensional unless otherwise stated.

Proof. We can use the dimension formula — we know dim ker(7") + dimim(7) = dim V. So dimker(T") = 0
if and only if dimim(7") = dim V', which occurs if and only if im(7") = V. O

So to check that a linear operator is an isomorphism, it’s enough to check only one of injectivity and
surjectivity. In this sense, finite-dimensional vector spaces behave a lot like finite sets.
§2.4.1 Change of Basis

Suppose we have a linear operator T:V — V, and a basis B: F* — V in which T becomes the matrix A.
Now suppose we want to write T in a different basis — take an invertible matrix P: F™ — F™ and use the
new basis B’ = BP, and let A’ be the matrix of T' in this basis.

To follow the arrow corresponding to A’, we’d first go up using P, then right using A, then down using P~!.
So we have A’ = P~'AP, and therefore changing basis conjugates the matrix.

Definition 2.31. Two matrices A and A’ are similar if there exists an invertible matrix P such that
A =P 1AP.
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So two matrices are similar if they correspond to the same linear operator written in different bases.

Note that this means, for example, that we can define the determinant of a linear operator, rather than just
a matrix — given a linear operator T:V — V| we can pick a basis of V' to produce a square matrix A, and
define the determinant of 7' as the determinant of A. This is well-defined because if we chose a different
basis, then we’d get a matrix A’ = P~'AP for some invertible P, and then

det(A’) = det(P~ ') det(A) det(P) = det(P~1P) det(A) = det(A).
So even though the matriz depends on the choice of basis, its determinant doesn’t.

Remark 2.32. This suggests that the determinant is intrinsic to 7', in some sense. In fact, over R, the
determinant has a meaning related to volume. Something similar is true even over other fields (where
volume may not make sense).

§2.5 Diagonalization

Question 2.33. How nice can we make the matrix of a linear operator by changing the basis?
Equivalently, given a matrix A, we’d like to find a matrix similar to A which is nice. In the case of linear

transformations, we could make the matrix really nice by changing the basis on both sides. However, here
we have less flexibility, since we only get to choose one basis.

Example 2.34

Take the matrix
2 3

which is a linear operator on R%. By changing the basis for R?, how nice can we make the new matrix?

Solution. Note that

and similarly we have

=1

So the linear operator does something really nice to (1,1)T and (—1,1)T — it just stretches (or flips) them.
Then if we take (1,1)T and (—1,1)T as our basis — meaning we take the change of basis matrix

1 -1
then we get the new matrix
5 0
I _ p-1 _
wrar-fs 0]
So we’ve produced a diagonal matrix! O
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§2.5.1 Eigenvectors

Definition 2.35. A nonzero vector ¥ is an eigenvector for a linear operator T if T¥ = AU for some
scalar )\, which we call the eigenvalue of U.

So the linear operator T' doesn’t change the direction of ¥ — it just scales ¥. So in some sense, eigenvectors
are the directions in which 7" behaves nicely.

The reason we could make A a diagonal matrix in the above example is that we had enough eigenvectors to
form a basis.

Definition 2.36. A basis o1, ..., v, such that each v; is an eigenvector of T is called a eigenbasis for T

If we have an eigenbasis where T'0; = \;v; for each i, then in this basis T becomes the diagonal matrix

M O - 0
0 X 0
Do 0
0 0 An

Diagonal matrices are really nice — for example, it’s easy to take the nth power of a diagonal matrix.
Definition 2.37. We say T is diagonalizable if there exists a basis in which T is diagonal.

Note that a basis in which T is diagonal is exactly an eigenbasis. Of course, we can also discuss whether a
square matriz is diagonalizable, by the same definition — meaning that it’s similar to a diagonal matrix.

Question 2.38. How can we find eigenvectors, eigenvalues, and an eigenbasis?

We can start by trying to find the eigenvalues. A scalar A is an eigenvalue if and only if there exists some
nonzero U for which AT = A7, or equivalently

(A= ADT =0.

So A is an eigenvalue if and only if ker(A — AI) is nonzero, meaning that A — AI is not invertible; this occurs

exactly when
det(A — A) = 0.

But we can imagine expanding out the determinant; then this is a polynomial equation in A!

Definition 2.39. The characteristic polynomial of A is the degree n polynomial p4(t) = det(tI — A).

Proposition 2.40

The characteristic polynomial of a linear operator does not depend on the choice of basis.

In other words, if A and A" are similar, then pa/(t) = pa(t).

Proof. This follows directly from the fact that the characteristic polynomial is a determinant. More precisely,
if A" = P~'AP, then (tI — A’) = P~1(tI — A)P as well, so their determinants are the same. O

In fact, this observation has another useful corollary — we know that all terms of the characteristic poly-
nomial are independent of the choice of basis. But we can write out a few of the terms — if A consists of
entries a;;, then

pa(t) =t" — (a1 + -+ app)t" L4 -+ (—1) det A.
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The quantity a11 + - - - 4 ann is called the trace of the matrix; this implies that the trace is independent of
the choice of basis, or equivalently, that tr(P~1AP) = tr(A) for any matrix A and invertible matrix P.

Returning to the problem at hand, we know the eigenvalues are exactly the roots of the characteristic
polynomial. Unfortunately, it’s possible that there are no roots:

Example 2.41

Consider the linear operator on R? given by rotation by #. This has characteristic polynomial

t — cosf sin 0

42
—sin 6 t—cos@]_t 2cos0+ 1,

pa(t) = det l

which has no real roots unless 6 is a multiple of 7. So this operator has no eigenvalues or eigenvectors.
(This is unsurprising because when we rotate every vector, we don’t preserve any vector’s direction.)

This is a problem, but we can fix it by working over C instead of R. Then every polynomial factors as a
product of linear terms, so a polynomial of degree n has n roots (with multiplicity). For the rest of this
discussion, we’ll assume we’re working over the field C to take care of this first obstacle.

Question 2.42. Can we always find an eigenbasis?

Unfortunately, the answer is no — we may not be able to find enough linearly independent eigenvectors to
form a basis.

Example 2.43

Take the matrix
0 1
A= [0 0] .
Its characteristic polynomial is p4(t) = t2, so its only eigenvalue is 0 (with multiplicity 2). Then if A

were similar to a diagonal matrix, that diagonal matrix would have to be the zero matrix, making A
itself the zero matrix; this is a contradiction. So A cannot be diagonalizable.

In the above example, we only had one eigenvalue 0; but this eigenvalue corresponded to a 1-dimensional
kernel, not a 2-dimensional kernel. So we couldn’t find enough eigenvectors to form a basis.

Remark 2.44. We'll see later that this is the most important counterexample, in some sense.

Since repeated roots can potentially cause problems, let’s first work with eigenvectors of different eigenvalues.

Proposition 2.45

Suppose a n x n matrix has k eigenvectors w7, ..., v with corresponding eigenvalues A1, ..., A\, which
are all distinct. Then o7, ..., vy are linearly independent.

Proof. We’ll use induction on k. The base case k = 1 is clearly true, since the only way for a set of one
vector to not be linearly independent is if it is the zero vector, and eigenvectors are nonzero by definition.

Now assume it’s true for k — 1 eigenvectors, and we’ll show it’s true for k. Suppose we have a linear relation

@1+ + = 0,
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Now apply A to both sides. Since multiplication by A is linear, we get
ap - Avq + -+ ay - Ao, =0,
and since each v; is an eigenvector, this means
a1 + - - + apApvg = 0.

So we started off with one linear combination that resulted in 0, and now we’ve produced another one! We
can now scale the original linear combination by A and subtract to get

ar(M — Ae)vt + - 4 ag—1(Mk—1 — M) Up—1 = 0.

But this is a linear relation between v7, ..., 51, so by the inductive hypothesis, all the coefficients must
be 0. But we can’t have \; — \;, = 0 for any &, so this means a1, ..., ay_1 are all 0. But then av; = 0, and
since vy, is nonzero, this means ay, is 0 as well. O

Corollary 2.46

If the characteristic polynomial of A factors as
pa(t) = (E=A1)---(t = An)

where all the \; are distinct (in other words, it has no repeated roots), then A has an eigenbasis and is
diagonalizable.

Proof. Let v7, ..., v, be eigenvectors corresponding to A1, ..., A\,. Then by the above proposition, 77, ...,
v, must be linearly independent; then their span has dimension n, so they must form a basis. O

This means if the characteristic polynomial has no repeated roots, then we immediately know the matrix is
diagonalizable, without even having to compute the eigenvectors. This is quite strong — most of the time,
the characteristic polynomial will not have repeated roots (more precisely, the set of matrices for which
there are repeated roots has measuzre 0).

In general, suppose the characteristic polynomial factors as
pa(t) = (= Ao (0= M),

where the \; are all distinct. Then we can find the vector spaces V), = ker(A\;I — A). Each of these spaces
has dimension at least 1 (every eigenvalue has at least one eigenvector), so we can produce a basis for each
one. (This is computationally easy — given an explicit matrix, we can find a basis for its kernel by using
row operations.)

Then using Proposition , our set of all these basis vectors is linearly independent as well. So if we can
find n basis vectors in total, then they form an eigenbasis and A is diagonalizable; but if we can’t, then A
is not diagonalizable. We’ll see later that dim V), < e; for each 7, so diagonalization fails if one of these
bounds is strict.

§2.5.2 Jordan Normal Form

We’ve seen that almost all matrices are diagonalizable, but we’d still like to figure out the nicest form we
can put a matrix into even if it’s not diagonalizable.
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Definition 2.47. Given a positive integer a and a scalar A, the Jordan block J,(\) is the a x a matrix
with A’s on the diagonal, 1’s directly above the diagonal, and 0’s everywhere else: so we have

(A
0
0

1
A
0

= O

0
0
0

0
0
0

1

This matrix is not diagonalizable — its characteristic polynomial is (t — A)?, so A is its only eigenvalue, and
€1 is the only M-eigenvector. So if a > 1, then J,(\) doesn’t have an eigenbasis.

So the matrices J,(A) can’t be diagonalized, but in some sense they capture everything that can go wrong
when attempting to diagonalize (assuming we’re working over the field C):

Theorem 2.48

Given a linear operator T:V — V with dim V' = n, there exists a basis for V' and some (a1, \1), ...,
(ar, Ar) such that the matrix corresponding to 7" is the block-diagonal matrix formed by concatenating

Jay (A1), -y Ja, (Ar) along the diagonal.

So this answers our question about how nice we can make a linear operator — we can find a basis in
which it looks like a bunch of Jordan blocks glued together. In fact, these Jordan blocks are unique up to
rearrangement, and this decomposition is called the Jordan decomposition of T

Example 2.49

What are the possible Jordan decompositions when n = 47

Solution. We must have a; + --- + a, = 4. The ways to have positive integers summing to 4 are 4, 3 + 1,

242,2+1+1,and 1+ 1+1.

If a1 = 4, then the Jordan form of our matrix is

A1

o O O

If (a1,a2) = (3,1), then the Jordan form is

oo oXx

If (a1,a2) = (2,2), then the Jordan form is

A

0 0
1 0
Aol
0 A
0 0
1 0
A0
0 A
0 O
0 0
Ay 1
0 A2
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If (a1,a2,a3) = (2,1,1), then the Jordan form is

A 1 0 0]
0 M 0 0
0 0 X 0
0 0 0 X

Finally, if (a1, a2, as,a4) = (1,1,1, 1), then the Jordan form is the diagonal matrix

A&y 0 0 0]
0 X 0 O
0 0 X O -
0 0 0 M

In particular, a matrix A is diagonalizable if and only if all the Jordan blocks have size 1.

Note that the characteristic polynomial of a matrix in Jordan normal form is
pa(t) = (t = Ap)® - (t— A\p)?.

This is closely related to the factorization (t — A1)€ - - (t — \x)* we defined earlier, but it’s not the same —
there may be multiple Jordan blocks corresponding to the same eigenvalue. So it’s not generally possible to
figure out the Jordan decomposition just from the characteristic polynomial. But we do get some information
— for each eigenvalue A, the sizes of the Jordan blocks corresponding to A sum to the exponent of ¢ — A in
the characteristic polynomial.

Every matrix has a Jordan form, but almost every matrix is diagonalizable — if we take any matrix and
perturb its entries a bit, it will be diagonalizable. So Jordan form is necessary 0 percent of the time; but
it’s useful to have a result that works for all matrices.

To set up the proof of Jordan normal form, let’s think about what the Jordan blocks really represent.

Example 2.50

As an operator, the matrix Jy(0) affects the basis vectors by sending
€1+ €3 ex > eg — 0.

In particular, if we denote this linear operator by 7', then T4&; = 0 for all basis vectors &;, which means
T42 = 0 for all vectors .

In general, if T has a Jordan block with eigenvalue 0, then there is some n such that 7% = 0 for all 7 in
the corresponding subspace. Similarly, if 7" has a Jordan block with eigenvalue A, then there is some n such
that (T — AI)"Z = 0 for all 7 in the corresponding subspace.

In the above example, we had a chain of vectors which eventually reached 0. If for example we had two
copies of J5(0) instead, then we’d have two chains — &3 — €1 — 0 and ej — €3 — 0.

Definition 2.51. A vector 7 is called a generalized eigenvector of T if (T — X\I)"Z = 0 for some n.

So Jordan normal form corresponds to chains of generalized eigenvectors, in some sense. In order to prove
Jordan normal form, there’s a few more concepts we’ll make use of:

Definition 2.52. Given a linear operator T:V — V and a subspace W C V, we say that W is
T-invariant if for each W € W, we also have T'(W) € W.

In other words, W is T-invariant if T(W) C W.
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Definition 2.53. Given a vector space V and two subspaces W and W', we say that V is the direct
sum of W and W' if every vector in V' can be written uniquely as the sum of an element of W and one
of W”.

In other words, for V' to be a direct sum of W and W', we should be able to take a basis of W and one of
W', and string them together to get a basis of V. Writing V as a direct sum of W and W' is sometimes
also called a splitting of V.

Fact 2.54 — If dim W + dim W’ = dim V' and the only vector W and W’ have in common is 0, then
V is the direct sum of W and W'.

Proof. The elements of the bases of W and W’ must be linearly independent (or else we’d have some nonzero
vector in both of them), so they must form a basis for V' (since there’s the right number of vectors). O

Definition 2.55. A splitting V =W & W’ is called T-invariant if both W and W’ are T-invariant.

The point of these definitions is that this is essentially what it means for a matrix to be block-diagonal — if
a matrix is block-diagonal, then the vector space corresponding to each block is invariant under the matrix,
and the direct sum of these vector spaces is V.

Finally, we’ll use one more definition:
Definition 2.56. An operator T is nilpotent if T = 0 for some positive integer m.

Note that Jordan blocks J,(0) are nilpotent (and no other Jordan blocks are).

Now we are ready to prove the existence of a Jordan decomposition.

Proof of Theorem . We'll induct on dim V. The main idea is to split the vector space into two T-
invariant pieces and find a Jordan decomposition for each.

First, we may assume that 0 is an eigenvalue of 7' — otherwise let A be some eigenvalue (which must exist),
and replace T with T'— M. (Then if we get a Jordan decomposition for the new operator T'— \I, we can
get a decomposition for 7' by simply adding A\I.)

Claim — There exists a T-invariant splitting V' = W @ U such that the operator T'|y is nilpotent, and
the operator T'|y is invertible.

The notation Ty means T restricted to W — so we view T as a linear operator W — W (which makes
sense since W is T-invariant).

Proof. Consider the chain
VOTVOT?VOTW O ---.

This gives a nesting family of subspaces. But the dimensions of these spaces form a nondecreasing sequence of
nonnegative integers, so they must eventually stabilize; that means eventually the subspaces stop shrinking,
and we have

TV =TV =772y = ...

Now define U = im(T™) (or in other words, U = T™V) and W = ker(T™). We claim that this provides a
T-invariant splitting with the claimed properties.

First we’ll check that both spaces are invariant. It’s clear that U is T-invariant, since T'U = U; meanwhile
W is T-invariant as well since if @ is in ker(7™), then T 1% is zero as well, so TW is also in ker(7™).
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Now T'|y is nilpotent because (T|w)™ = 0 by definition (we defined W = ker(T"™), so applying T to W for
m times will send every vector in W to 0). Meanwhile, T'|;; is invertible because im(7'|7) = U, and therefore
T|y must be a bijection.

Finally, it remains to show that W & U = V. For this, we’ll use Fact : first, T is invertible on U, so
no nonzero vector in U can be in W = ker(7"). Meanwhile we have

dim W +dim U = dimker(7™) + dimim(7™) = dim V'
by the Dimension Formula. So by Fact , we have WU =V. |

Now we’ve split V into a nilpotent part and an invertible part. Note that dim U < dim V', since we assumed
that 0 was an eigenvalue of T'. So by the inductive hypothesis we can find a Jordan decomposition for T'|y,
and it’s now enough to find one for T'|y. So we’'ve reduced the problem to one about nilpotent operators.

Claim — If 7:V — V is a nilpotent operator, then there is a basis of V' in which T' acts by chains —
meaning that T sends e;, +— ex_1 + -+ +> €1 — 0. (There may be several chains.)

Proof. We again use induction on dim V. Set W = im(7"); then W has strictly lower dimension than V'
(since if W =V, then T would be invertible). Then by the inductive hypothesis, we can find a basis for W

in which 7" acts by a bunch of chains:

O+ O+ <+ {)
o+ Dl «+—&)

Now for each chain, insert the pre-image of the top vector at the beginning of the chain — if there are

multiple pre-images of one vector, then choose arbitrarily. Call these vectors o1, v3, ..., U5 — so in this
situation we’d have 7 — €3, vs — €3, and v3 — €g. Additionally, extend the bottom vectors to form a basis
of ker(T), by adding vectors ug, u3, ..., u; which all map to 0.

e3

v

— —

€9 €5

v v

—> —> —> — —

€1 €4 €g U1 U9

0 0 0 0 0

We claim that our basis vectors for W, together with these new vectors, form a basis for V. First, there’s the
right number of them — we started out with dim W = dimim(7") vectors and added in dim ker(7") vectors
(since the vectors at the bottom of each chain in the new picture form a basis for ker(7T"), and we’ve added
one vector in each chain), and we have dim V' = dimim(7") + dim ker(7") by the Dimension Formula. So it’s
enough to show that they’re linearly independent.

Suppose we have some linear combination of these vectors which equals 0.
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€3

¥

29 24

v |

er €1 6 uy u3
' ' ¥ i }
0 0 0 0 0

Now apply T to this linear combination. This pushes all our vectors down one step in the chain.

&3

'

e e

\ v

er er e uy uz
' ' v \ |
0 0 0 0 0

Then the terms a7 for 7 not in ker(T) are all pushed down one step, meaning that 7’ is replaced with a
basis vector of W; meanwhile the terms where @ is in ker(7') all become 0. Then since the basis vectors
for W are all linearly independent, the coefficients of all @ in the first case must be 0. But then our linear
combination of the vectors in the second case also equals zero, and these vectors are linearly independent
as well (since they form a basis for the kernel), which means their coefficients are also all zero. |

Now returning to our original linear operator, we can find a basis of W in which Ty acts by chains; then
each chain e +— €,_1 +> -+ > e1 — 0 corresponds to a Jordan block Ji(0). Meanwhile, we can find a basis

of U in which T'|y consists of Jordan blocks by the inductive hypothesis; concatenating these gives a Jordan

decomposition of T. O
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§3 Symmetry

§3.1 Orthogonal Matrices

We’ll work over the field R.

Definition 3.1. The dot product of two vectors @, ¥ € R" is the real number

n
T-§=2T9 =) iy

i=1
Fact 3.2 — We have 7 - §J = |Z||Y|cos6, where 6 is the angle between ¥ and y. In particular,
7 -y =0 if and only if ¥ and ¥ are perpendicular.
Definition 3.3. A basis o1, ..., U, is orthonormal if v; - v; is 1 whenever i = j, and 0 whenever i # j.

In other words, |0;| = 1 for all 4, and v; - v; = 0 for all i # j.
Definition 3.4. A matrix A € GL,(R) is orthogonal if AV - Aw = v - W for all ¥ and w.

In other words, orthogonal matrices are matrices which preserve the dot product.

There are a few equivalent ways to describe orthogonality:

Theorem 3.5
Given A € GL,(R), the following conditions are all equivalent:

(1) AV - AW for all ¥ and @.

(2) |AV| = |V| for all ¥.
(3) ATA=1.
(4) The columns of A are an orthonormal basis of R™.

Note that if A is orthogonal, by (3) its transpose is orthogonal as well; so the rows of A are also an
orthonormal basis.

Proof. First, (1) implies (2) by taking ¥ = @. On the other hand, we can write

—_

Tw= (1T B TP - @)

so (2) implies (1) as well — the right-hand side is preserved when we apply A, so U - @ must be preserved
by A as well.

To prove (1) and (3) are equivalent, we can write AV - AW = UTATAW, so then (1) is equivalent to
TTATAG

for all ¥ and @W. We claim that this is true if and only if ATA = I. Tt’s clear that this is true if ATA = I.

On the other hand, if we take ¥ = €; and @ = €, then e;Me; = m;; for any matrix M = (m;;), which

means all entries of ATA and I must be the same.

Finally, we’ll show that (3) and (4) are equivalent. The condition ATA = I means that the dot product of

the ith row of AT and the jth row of A is 0 when ¢ £ j and 1 when ¢ = j. But the ith row of AT is exactly
the ¢th column of A, so this is equivalent to stating that the columns of A form an orthonormal basis. [

Page 39 of



18.701 — Algebra 1 Class by Davesh Maulik (Fall 2021)

Orthogonal matrices can be interpreted geometrically using conditions (1) and (2) — they preserve length,
and they preserve angles up to sign (since they must preserve | V||| cos 6, where 6 is the angle between any
two vectors, and since they preserve length they must then preserve cosf as well).

Notation 3.6. The set of orthogonal matrices is denoted O,,.

Note that O, is actually a subgroup of GL, (R) — the conditions of a subgroup can be checked directly using
(3). This group is called the orthogonal group.

Given a matrix A € O,,, we can consider its determinant: we have
1 = det(ATA) = det(AT) det(A) = det(A?),

so we must have det(A) = £1. So det gives a homomorphism O,, — {£1}. This homomorphism is surjective
— for example, we have

10 --- 0 -1 0 --- 0
o1 --- 0 1 --- 0

— 1 and — —1
00 --- 1 0o 0 --- 1

(In the second matrix, only the first 1 is replaced with —1.)
Definition 3.7. The special orthogonal group, denoted SO, is the kernel of the map det: O,, — {£1}.

Note that the index of SO,, in O,, is 2 — the subgroup SO,, has two cosets in O,,.

§3.1.1 Orthogonal Matrices in Two Dimensions

Question 3.8. What are the matrices in O5?

To write down an orthogonal matrix, we can write down two vectors which form an orthonormal basis (and
take these two vectors as our columns). We can write v; = (cos#,sin )T for some angle 6, since v7 must
have length 1. Then v3 must be perpendicular to v7 (and must also have length 1), so it must be either
(—sin#,cos @) or (sinf, — cosh). In the first case, we get the matrix

sinf cosf

lcos f —sin 0]

which has determinant 1; this corresponds to rotation by 6 around the origin, which clearly preserves
distances. In the second case, meanwhile, we get the matrix

cosf sind
sinf —cos@|’

Call this matrix A.

Proposition 3.9

The matrix A corresponds to reflection over a line through the origin.

Proof. First, its characteristic polynomial is

t—cosf —sinb

pa(t) = det [ —sinf ¢+ cosb

]:tQ—lz(t—l)(H—l).
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This means we can find an eigenbasis consisting of a vector v} with eigenvalue +1, and a vector v_ with
eigevalue —1. Then we want to show that A is a reflection over Span(vy) (since all vectors on this line are
fixed). Note that since A preserves the dot product, we have

Avy - AV =0y -0,
But we also have Avy = vy and Av_ = —v_, so then
Avy - AV = —o) - 02,
This means we must have vy - v = 0, and therefore vy and v_ are perpendicular.

So then we have a line Span(v7) which is fixed, and a perpendicular vector v_ which is reflected across this
line. So if we write any vector as a linear combination of v7 and v_, it is sent exactly to its reflection over
the line. =

In fact, we can compute where the line is (by finding v7 and v_ explicitly) — it’s the line at an angle of g.

Remark 3.10. Note that two reflections across different lines through the origin form a rotation about
the origin. We can think of this algebraically (the determinants multiply, and (—1)(—1) = 1) or
geometrically.

§3.1.2 Orthogonal Matrices in Three Dimensions

So far, we’ve found a full description for O,,. The situation in three dimensions is a bit more complicated,
but it’s still possible to describe all of O3 explicitly. We'll start by answering a slightly simpler question:

Question 3.11. What are the matrices in SO37?

The answer will still turn out to be rotation matrices. To describe a rotation in three dimensions, we can
fix a unit vector @ € R? and an angle 6, and let p(%,0) be the 3 x 3 matrix which rotates around the axis
2 by an angle 6. More precisely, p(@) = @, and p(,6) restricted to @+ (the set of vectors perpendicular
to 1) is the matrix corresponding to rotation by 6 counterclockwise (where when we say counterclockwise,
we're looking in the direction that i is sticking out of). This uniquely determines the linear transformation,
since every vector can be written as a linear combination of @ and an element of 7.

Theorem 3.12
The group SOj3 consists of exactly the matrices p(, 6).

Proof. First we’ll show that all matrices p(,6) are in SO3. This is unsurprising if we think geometrically,
since rotations preserve distance.

Choose vectors ¥ and @ which form an orthonormal basis for the plane @+, so then @, 7, and @ form an
orthonormal basis for R3. We can then create the change of basis matrix

L
P=|% ¥ ®|ec0s
ol

Now the transformation written in the basis @, ¥, @ is P~'p(u,0)P. But this transformation is easy to
describe — it fixes @, and in the plane T+ it is just a rotation. So we have

1 0 0
P~ p(2,0)P = |0 cos® —sinf
0 sinf cosf
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It’s clear that the matrix on the right is in SO3; then P~1p(%,0)P must be in O3 (by closure, since P is in
O3) and therefore in SO3 as well (since the determinants of P and P! cancel out, so the determinant of
p(,0) is the same as the determinant of the right-hand side matrix).

Now we’ll show that every matrix in SO3 must be a rotation matrix p(,6) for some @ and 6. The first

step is to find the axis:

Claim — There is a unit vector ¥ with eigenvalue 1.

Proof. 1t’s enough to show that 1 is an eigenvalue of A, or equivalently that det(A — I) = 0. But we have
det(A — 1) =det(AT)det(A —I) = det(ATA — AT) = det(I — AT) = det(I — A),

using the fact that ATA = I and the determinant of a matrix’s transpose is the same as the determinant
of the original matrix. But we have det(I — A) = (—1)3det(A — I), so then we must have det(A — I) = 0
(since it is equal to its negative).

This means 1 is a root of the characteristic polynomial p4(t), so it must be an eigenvalue, and it therefore
has an eigenvector %; by scaling, we may assume u is a unit vector. |

Now we’re mostly done. We can extend % to an orthonormal basis of R? by taking an orthonormal basis
{¥, W} of wt. This again gives us an orthogonal change of basis matrix

L]
P=|7 ¥ #|cO0s
1

We'd like to rewrite the transformation in this basis again, meaning we want to describe the matrix P~tAP.
This matrix is again in SOgz, since A € SOz and P € O3. We know that A sends u to itself, so the
first column of this matrix must be (1,0,0)T; then since (1,0,0)T must be orthogonal to both of the other
columns, their first entries must be 0. So then our matrix is of the form

1 0
P'AP = |0 =«
0 =x

* ¥ O

But then the remaining 2 x 2 matrix must also be orthogonal and have determinant 1, meaning that it must
be in SO2. Using our description of SOq from earlier, this means we have

1 0 0
P AP = |0 cosf —sind
0 sinf cos6

for some 6. So this means we have A = p(u, ) for these values of @ and 6. O

We’ve now described all of SO3. To describe all of Oz, note that SO3 has index 2 in Ogs, so it’s enough to
find its other coset. To do so, we can take the reflection matrix

-1

S = O

0
0 0l,
0 1

which has determinant 1; then the rest of Og is the right coset of SO3 corresponding to this matrix.
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§3.2 Isometries
Definition 3.13. A function f:R™ — R™ is an isometry if | f(¥) — f(V)| = |¥ — V| for all ¥,V € R™.

In other words, an isometry is a function which preserves distance. Note that an isometry does not have to
be a linear transformation, so these are more general than orthogonal matrices.

There’s a few obvious examples of isometries — the maps corresponding to orthogonal matrices, meaning
7 +— AZ for some A € O, are all isometries. All translations @ — 7 + b for some fixed b are also
isometries; note that translations are not linear transformations, since they don’t fix the origin.

Notation 3.14. We use t3 to denote the translation =7+ 7;

Amazingly, it turns out that these are essentially the only ones! Even though an isometry is defined in a
much looser way than orthogonal matrices — the function isn’t required to be linear — there aren’t many
new possibilities we get.

Theorem 3.15

All isometries f are a composition ¢t o A for some A € O,, and b e R

So in other words, every isometry can be written as f(7) = AZ + 7;, where A is orthogonal.

To prove this, we’ll first consider isometries which fix the origin.

Lemma 3.16

If f is an isometry which fixes the origin, then f must be a linear operator.

Then any isometry which fixes the origin must come from an orthogonal matrix — by taking ¥ = 0 in the
definition, we get that |f(W)| = || for all @, and the linear operators which preserve lengths are exactly
the orthogonal matrices.

Proof. First we’ll show that f behaves well with respect to the dot product. We can write the dot product
in terms of distances between two vectors and 0, as

20 - T = U — 0+ |7 —0)* — |7 — T)°.

(This can be shown by expanding the right-hand side using ]5:’|2 = 7 - 7.) But since f preserves distances
and f(0) = 0, if we replace ¥ and @ with f(@) and f(@), then the right-hand side is preserved, and we get

—> , >

Now to show linearity, we can express addition using the dot product: we have Z = 7 + ¥ if and only if

(Z-7-7) (F-7-7)=0,

which we can expand out to

— —

7274774+ Y-yY-22-Z-2y-Z+27-y=0.

— —

But since f preserves dot products, this condition is satisfied for @, ¥/, and Z if and only if it’s satisfied for
f(Z), f(¥), and f(Z); so we have 2 = @ + ¥ if and only if f(Z) = f(Z) + f(¥). So then

f@+79)=f(Z)+ f(¥).
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We can perform the same argument to show that f works well with scalar multiplication — we have § = ¢7’
if and only if (¥ — c¢Z) - (¥ — ¢Z) = 0, and we can expand this out in the same way as before to get that

Y = c@ if and only if f(¥) = cf(7), and therefore f(cZ) = cf(X).

So then f must be a linear operator. O

Now the general case is straightforward:

Proof of Theorem . Given an isometry f, let b = f(0), and consider ¢_3 o f. This is also an isometry,
and it fixes the origin. So by the above lemma we must have t3 o f = A for some A € O, which means
f =t3 o A for some such A. O

So now we have a classification of all isometries. Note that the isometries form a group — every isometry
has an inverse, which is also an isometry (since translations and orthogonal matrices are both invertible).

Notation 3.17. We use M,, to denote the group of isometries of R".

We can think of M, as a subgroup of the group of all permutations of R™ (bijections from R" to itself).

Then the translations form a subgroup of M,,. We can think of this subgroup as just R” under addition,
since tp oty =ty g Meanwhile, the orthogonal matrices also form a subgroup O,, < M,,. Theorem
then says that M,, is generated by these two subgroups.

The theorem writes isometries in the form tzo A. It’ll often be useful to convert isometries written in the
opposite order to this form. In order to simplify A o ¢, note that for any 7,

Aotp(Z) = A(Z+b) = AT + A,
which means that
Aoty =t,poA (1)

It’ll sometimes be useful to just focus on the orthogonal matrix part of an isometry, and ignore the translation
(the constant term):

Notation 3.18. We use 7 to denote the homomorphism M,, — O,, sending t3 o A — A.

To see that this is a group homomorphism, note that

(tyoA)o(tyod)=tyo(tyoA)od =tp oAl

by applying (1). So if 7 maps two isometries to A and A’, then it maps their product to AA’, and therefore
7 is a homomorphism.

Note that 7 is surjective, since it maps each orthogonal matrix to itself. Meanwhile, ker(m) is the set of
translations. In particular, this means the translations form a normal subgroup of M,,. (It’s also possible to
see this by using (1), which implies that for any translation ¢, its conjugate Aoto A~! is also a translation).

§3.2.1 Isometries in Two Dimensions

Question 3.19. What do the isometries of R? look like?

Page 44 of



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

Definition 3.20. An isometry t3 o A is orientation-preserving if det(A) = 1, and orientation-reversing
if det(A) = —1.

So in two dimensions, an isometry is orientation-preserving if A is a rotation matrix, and orientation-reversing

if A is a reflection matrix.

Similarly to our description of orthogonal matrices in two dimensions, it’s possible to describe all isometries
in two dimensions as well.

Theorem 3.21

Every isometry of R? is of one of the following forms:
(1) A translation;
2) A rotation about any point p;

(2)
(3) A reflection across a line ¢ (which does not necessarily pass through the origin);
(4) A glide reflection, where we reflect across a line £ and then translate by a vector U parallel to /.

Note that (1) and (2) are orientation-preserving, and (3) and (4) are orientation-reversing.

Proof. The main idea is that given an isometry f, we can shift the origin — the isometry tz o fot_3 is the
same isometry, but with the origin shifted to P (for instance, if f fixed the origin, then this new isometry
would fix p). So we’d like to choose some p for which our isometry becomes nicer.

Let f be the isometry f(7) = A7 + b. We can then use our classification of O, from earlier:
Then f is just a translation by Z), corresponding to (1).

Then we’d like to find a point P fixed by the isometry. First,
we know that 1 is not an eigenvalue of A (since rotation matrices don’t fix any vectors), so the kernel of
A — T is trivial. But then this measn A — I is invertible, and therefore there is a unique solution for p to

(A-DP =-b,

which rearranges to f(P) = P. Then we can shift P to the origin — we can write f =tz o got_z for an
isometry ¢ fixing the origin. Then g must be a rotation about the origin; so f is a rotation about 7.

We can again use a similar idea of shifting the origin — first write
f =t7oA, where A corresponds to reflection across some line ¢ through the origin. Now we shift the origin

by % b — consider the isometry
g=t_gpofolgpy=tgpodoty, =ty ot z,cAd=tmoAi,
where m = %(_b) + A_b)) Note that m is the average of b and its reflection over ¢, so m is necessarily

parallel to £. If m = 0 then g is a reflection about ¢, while otherw_i’se g is a glide reflection about £. Then
=ty /209 oty /2 is the same isometry with the origin shifted to % b — a reflection or glide reflection about

¢ shifted by 35 0

§3.3 What Is Symmetry?

Question 3.22. What isometries of R? fix some pattern in R??

Definition 3.23. Given a figure P, the symmetries of P are the isometries that fix P.
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Example 3.24

What are the symmetries of a regular pentagon? What about a circle?

Solution. For the pentagon, we can rotate by 27k /5 for any integer k, or reflect across any line through one

vertex and the center:
\\—

Meanwhile, for the circle, all rotations and reflections work. O

Note that the symmetries of a pentagon are discrete, and the symmetries of a circle are not. (We will make
this notion more precise later.)

We can also consider the symmetries of an infinite figure. For example, an equilateral triangular lattice
has symmetries of each kind — translations, reflections, rotations, and glide reflections. Meanwhile the
symmetries of the following shape are translations and glide reflections:

In both cases, the set of symmetries is infinite, but still discrete.

Question 3.25. What kinds of subgroups of My can we get in this way?

To make this question more precise, we’ll try to describe all discrete subgroups of Ma.

§3.4 Discrete Subgroups of O,

First we’ll first look at discrete subgroups of Os. To begin with, we’ll define discrete subgroups in a simpler
setting, the real numbers.

Definition 3.26. A subgroup G < (R, +) is discrete if there exists ¢ > 0 such that for all nonzero g € G,
we have [g] > .

This is equivalent to requiring that no two points in G' can be too close together — for any two elements «a
and b with a # b, we must have |a — b| > € (since a — b is in G).

Theorem 3.27
If G < (R,+) is discrete, then either G = {0} or G = Za« for some a > 0.
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Proof. Assume G is not zero. Then we claim it has a smallest positive element o — take any positive
element g > 0 in G. Then since every two elements are a distance at least € apart, there are finitely many
elements in [0, g), and therefore one of them is the smallest nonzero element.

Then since G is a group, it contains na for every integer a. We claim that there are no other elements —
assume there is some = with na < z < (n+ 1)a. Then we have 0 < x — na < a. But # — na must be in G,
contradicting the choice of a as the smallest element. O

Remark 3.28. This is very similar to our proof that the only subgroups of Z are {0} and nZ for positive
integers n — the only difference here is that here we used discreteness in order to prove that there exists
a smallest element.

We'll start with a slightly simpler questoin:

Question 3.29. What are the finite subgroups of O5?

There’s a few obvious examples. If z is a rotation by 27 /n, then the cyclic group C,, = (z) = {1,z,..., 2" '}
is a finite subgroup of O9; in fact, it’s a finite subgroup of SO, as well.

We can also let y be the reflection across some line ¢ through the origin, and consider the group (z,y). We
have the relations yz = 2~ 'y and 2" =y = ¢, so

n

D, = (z,y) ={e,z, 2%, ..., 2" oy, 2%y,..., 2"y}

is also a finite subgroup of Oz (but not SO3).

Definition 3.30. The group D,, (generated by a rotation by 27 /n and a reflection) is called the dihedral
group.

For example, we have D1 = (9, Dy = (s x (o, and D3 = S3. For n > 3, the dihedral group D,, is the group
of symmetries of a regular n-gon. Note that C), is always a subgroup of D,, with index 2.

So we’ve seen a few finite subgroups of Os. It turns out these are the only ones!

Theorem 3.31

Every finite subgroup of O, is isomorphic to C,, or D,, for some n.
To prove this, we’ll first prove a more specific case.

Lemma 3.32

Every finite subgroup of SOs is isomorphic to C), for some n.

Proof. We know that SOg consists exactly of the rotation matrices

__|cos —sinf
PO = lsing cosf |-

Let our subgroup be H, and let S = {0 € R| pg € H} be the set of angles which appear in H. Then since
H is a group, S must be a subgroup of R; and since H is finite, S must be discrete. So by Theorem ,
S must be of the form Za for some o > 0. But we also know 27 € S| since rotation by 27 is the identity;
therefore we must have 2m = na for some positive integer n, and therefore H is generated by a rotation by
27 /n. O
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Now using this, we can prove the theorem for all subgroups G < Os.

Proof of Theorem . First, if G < SOg, then the above lemma implies that G = C), for some n. So now
assume G is not contained in SOs, so G has a reflection, or equivalently an element of determinant —1.

Now consider the determinant, which gives a homomorphism det: G — {£1}. Then since G has elements of
determinant —1, this homomorphism must be surjective. So its kernel H is a normal subgroup of G with
index 2, and its two cosets are H itself and Hr for some reflection r.

But since H is a finite subgroup of SOz, we must then have H = C,, for some n. Then we have G = (rpaz/p, 1),
which means G = D,,.

So we’ve classified all finite subgroups of Oy. We really wanted to classify all discrete subgroups. First we
need a more precise definition of a discrete subgroup of Os:

Definition 3.33. A subgroup G < Os is discrete if there exists some € > 0 such that all rotations pg in
G have |0] > e.

Now with this definition, the same argument as the one we used in the finite case works; in particular, the
conclusion is the same.

§3.5 Discrete Subgroups of Isometries

Now that we’ve understood the discrete subgroups of O9, we can try to understand the discrete subgroups
of My (the group of isometries).

Definition 3.34. A subgroup G < M5 is discrete if there exists € > 0 such that all translations ty in G
have | b| > ¢, and all rotations pp in G have 6] > .

Intuitively, this means the angles of rotation and the translations must both be discrete. So we’re avoiding
groups like the symmetries of a circle (where we had all rotations, for example), but the symmetries of most
“reasonable” shapes (such as a triangular lattice) are discrete.

As we’ll see later, this ends up being quite a strong constraint.

§3.5.1 Finite Subgroups of Isometries

As with the case of Og, we’ll start by asking a simpler question:
Question 3.35. What are the finite subgroups of Ms?

Of course, all the finite subgroups of O are still finite subgroups of M. It turns out that these are still the
only ones.

Theorem 3.36

Every finite subgroup of Ms is isomorphic to C,, or D,, for some n.

Proof. Let the group be G < Mj. The main idea is to find a point fixed by all isometries in G; then we can
shift coordinates so that this fixed point is the origin, which reduces the question to finite subgroups of Os.
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Claim — Any finite group of isometries has a fixed point.

Proof. First we’ll find a finite set S which is preserved by G, meaning that g(S) = S. Fix any point p € R?
and take the set

S=1{g(p) | ge€qG}.

As we’ll see later, this set is called the orbit of p. Then S is finite since G is finite. But if we take a point
s = h(p) € S and apply g to s, then we get

9(s) = g(h(p)) = (gh)(p) € S
as well, since G is closed. (Technically we’ve only shown that g is a map from S to itself; but this map must
actually be a bijection, since g has an inverse, so g(.5) is genuinely equal to S.)

Now we’ve found a finite set fixed by G, and we want to find a single point fixed by G. To do so, we can
simply take the average of all points in .S — take

1
(s14 -+ sn).

Sg — —
n

Isometries play well with averages — if f =t o A is some isometry, then we have

SEE

(Asy + -+ Asp) =

S|

Fso) =T+ S8+ As) = 2(#(e0) 4o+ Flsw)
=1

So for each g € G, we have that g(sg) is the average of all points in ¢(S). But since ¢(S) = S, this means
9(so) is also the average of all points in S, which is just sg. So sg is a fixed point of all g € G. |

Now we can shift our coordinate system so that the fixed point sy is the origin. Then all our isometries
correspond to orthogonal matrices, which means G < Oo, and therefore G must be C,, or D,, for some n by
Theorem . O

Remark 3.37. The reason finiteness was needed here is so that we could take the average.

Unlike the case of Og, though, it turns out that the discrete subgroups of Ms are more complicated.

§3.5.2 Discrete Subgroups of R?

We’ve already looked at the discrete subgroups of Os. Another fairly simple subgroup sitting inside Mj is
the group of translations, which we can think of as R?. So we can try to analyze the discrete subgroups of
these translations first.

Question 3.38. What are the discrete subgroups of R??

We've already answered this question for R — all discrete subgroups of R are either {0} or Za for some
a > 0. The answer for R? turns out to be fairly similar.

Theorem 3.39
If G is a discrete subgroup of R?, then G is either {0}, the group Za for some vector a, or the group

Zao + 7,6 for some linearly independent vectors a and /3.

In the third case, G is called a lattice; it looks like a parallelogram grid.
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Proof. The proof is very similar to the one-dimensional case. Assume G is not 0, and pick some nonzero
element o in G. First we consider G N Ra, the elements of G which lie on the line spanned by a. This is a
discrete subgroup of R, so by the one-dimensional case (in Theorem ), it must be of the form Za« for
some .

Now if there are no other vectors in GG, we’re done. So assume that G does contain other vectors.

Claim — There exists a vector 8 € Ra with minimal distance to the line Ra.

Proof. First, in any bounded region, there can only be finitely many elements of G (since all elements of G
are at distance greater than € from each other, so we can tile any bounded region with finitely many balls
which can each contain at most one point).

Now take any E not on the line Ra. Then it suffices to consider points inside the parallelograms with sides
a and 8 and with sides @ and —f — any point can be brought inside each parallelogram by subtracting
multiples of o and 3, and one of these new points is at least as close to Ra as the original point.

But since these parallelograms are bounded, there are finitely many points inside them, so we can pick some
B which is closest to the line. |

Now let 5 be such a point; then we claim G = Za + ZS. Assume not, so G contains some point not in
Zo + Z3. Then we can shift by a and § to bring this point inside the parallelogram with sides « and f.
Either this point is on Ra — contradicting the choice of a as the element of the line with smallest magnitude
— or it’s strictly closer to Ra than f is, contradiction. O

§3.5.3 The Point Group
Now we’ve studied discrete subgroups of both Oy and R?, and we can return to our general question:
Question 3.40. How do we study the discrete subgroups of Ms?

Recall that in some sense, all elements of M, can be built from Oy and R?. More precisely, as mentioned
earlier, we have a surjective homomorph_i)sm m: My — O which ignores translations and just keeps track
of the linear term (so if f(7) = A7 + b, then 7 sends f — A), and ker(7) is precisely the subgroup of
translations.

Since G < Ms, we can restrict m to G. Then the image of 7 is a subgroup of Oy consisting of the linear parts
of elements in G, called the point group of G — so the point group keeps track of the angle of rotation or
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the slope of the line used for reflection, but it doesn’t keep track of any gliding, or the location of the point
or line. Meanwhile, the kernel of 7 consists of exactly the translations inside G.

Notation 3.41. We use G to denote the point group of G (or equivalently, the image of 7 restricted to
G), and L to denote the kernel of 7 restricted to G.

Then since G is a discrete subgroup of Ms, the point group G must be a discrete subgroup of Oz, and we’ve
already solved what these are! Meanwhile L must also be a discrete subgroup of R?, and we’ve solved what
these are as well. So there’s two possibilities for G — it can be C,, or D,, for any n — and three for L — it
can be {0}, Za, or Za + Z for some vectors o and .

Example 3.42
Find L and G for the following (infinite) picture:

Solution. First, L is a lattice — we can translate both horizontally and vertically.

[

J J
Lo

J J
Lo

I

Now we’ll find G. First, G contains rotation by 180° about the center of any of the integrals, so G contains
a rotation by 180° (since G doesn’t keep track of the point we’re rotating about).

Meanwhile, G also contains a glide reflection — we can reflect about a line between two columns, and then
glide vertically to align the reflected picture with the initial one.
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L XT
I

[
I

[
R

So then G contains a reflection (the point group doesn’t keep track of any gliding).

This means G contains a rotation by 180° and a reflection, so G = D. O

Example 3.43
Find L and G for the following picture:

C W,

Solution. First, no nontrivial translations preserve the shape, so L = {0}. Meanwhile we can rotate by 120°,
but we can’t reflect (since reflections change the orientation of the semicircles), so G = Cs. O

Example 3.44
Find L and G for the following (infinite) picture:

N N N N
/ _/ _/ /

Solution. First, we can translate horizontally, so L = Z« where « is the vector between two arcs on the
same side of the line:

D S\ I\ D
J / / J

This figure doesn’t have any rotational symmetries. It doesn’t have any reflections either, but it does have
a glide reflection:

2 2 I\ 2
-z / / )
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Example 3.45
Find L and G for an (infinite) equilateral triangular grid:

Solution. First, the translations form a lattice:

Meanwhile, we can rotate by 60° about one of the points in the lattice. We can also reflect:

So then we have G = Dg. O

§3.5.4 Crystallographic Restriction

So far, we’ve described the possibilities for G and L separately. But it turns out that we can get a lot more
information by looking at how they interact with each other.

Theorem 3.46
The point group G must map L to itself.

In other words, if A € Gand b € L, then we must have Ab € L as well.
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Proof. Since A is in C:’, there is some vector ¢ for which ¢z o A is in G. Meanwhile since b is in L, it must
also be in G.

But L is the kernel of the homomorphism 7: G — G, so L is a normal subgroup of G. Then L is preserved
under conjugation by any element of GG, so in particular we have

(tzoA)otpol(tzo A~ telL.
But we can now expand this out as

tgvotgoA_lot%l:tgotA-t;oAA_lot,g:tgotAgot,g:tAj;.

So we must have Ab € L, as claimed. O

This is a very strong constraint! Given a group G , most possible lattices won’t be preserved by it — knowing
that a lattice is preserved tells us something special about its angles.

Theorem 3.47 (Crystallographic Restriction)
If L is nonzero, then G must be C,, or D,, for some n € {1,2,3,4,6}.

Proof. Let o be a nonzero vector in L of minimal length (which exists because L is discrete), and suppose
we have a rotation pg € G. Then since the rotation must preserve L, then we must have pga € L as well.

But since L is a lattice, their difference pgav — o must be in L as well. But if § < 7/3, then this vector is
strictly shorter than «, contradiction.

pPot — Q

So G cannot contain any rotations by 6 < 7/3. Since we know G must be C,, or D,, for some n, this means
we must have n < 6.

It now remains to eliminate the case of n = 5. Let p be the rotation by 47 /5, and consider « + pa. By the
same reasoning as before, this vector is again shorter than a.

o+ po
So then we must have n € {1,2,3,4,6}. O
All such G are possible — for example, the equilateral triangular lattice in Example has point group

Dg, and a square lattice has point group Djy.

In fact, given which group G is, we can constrain L further, and use this to constrain G as well. It turns
out that when L is a lattice (meaning G contains two independent translation vectors), there are only 17
possible groups G! (On the other hand, when L is {0}, there are infinitely many — G can be C), or D,, for
any n.)
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Example 3.48
If G = Cy4, what can we say about G7

Solution. First, we have a surjective homomorphism m: G — Cy with kernel L, so [G : L] = 4.

Now let p € G be the rotation by 90°. Then if « is the shortest vector in L, we must also have pa € L, and
we can show that these two vectors generate L, so L = Za + Z(pc).

Then we can take p € G such that w(p) = p. By our classification of isometries in Theorem , we know p
is a rotation by 90° about some point; we can choose our coordinate system so that this point is the origin.

Now we can use the fact that the square lattice L has index 4 — its four cosets are given by multiplication
bypi for 0 <14 < 3, so then .
G={tpop' |V €Land0<i<3}

We also know how to multiply elements of G — we can repeatedly use the fact that
poly =1,z 0p.
So then G (up to isomorphism) is completely determined from the fact that G is Cy (and L is nonzero)! [

In this case, we could completely determine G. The case where G is Dy instead of Cy is more subtle — if 7(p)
is a rotation then p must also be a rotation, but if 7(p) is a reflection then p may be a glide reflection instead.
In fact, G may not even contain any reflections, as in Example (which only has a glide reflection).

But it’s still possible to perform a similar analysis. If we take a reflection 7 € G z_x_r}d take some r with
m(r) =7, then we can write r = t3 o ry, where ry is a reflection across the line £, and b is parallel to £ (and
may or may not be zero).

We can get additional constraints on b — if we compose a glide reflection with itself, then we get

tporgotypor,=1i,7p,

using the _f}a(:t that b is parallel to £. So then 9% must be in the square lattice we obtained for L, and
therefore b is either in the lattice, or halfway between two of its points.

Remark 3.49. We've essentially seen how to classify all discrete subgroups of isometries in R2. It’s
possible to perform a similar analysis for discrete isometries of R, but there are a lot more possibilities.
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8§84 Group Actions

§4.1 Definitions

We’ve seen many situations where elements of a group are acting on some other objects.

Example 4.1

Given a matrix g € GL,(R) and a column vector ¥ € R", we can produce a new vector gv € R™. So
we can think of matrix multiplication as a map GL,(R) x R™ — R" sending (g, V) — gv.

Example 4.2

The elements of S,, are permutations of {1,2,...,n}. So each o € S,, defines a function on {1,2,...,n},
and we can think of this as a map S, x {1,2,...,n} — {1,2,...,n} given by (0,7) — o (7).

Example 4.3
Isometries are functions on R?, so we can define a map My x R? — R? as (f, Z) — f(2).

This leads to the concept of a group action:

Definition 4.4. Given a group G and a set S, an action of G on S is a map G x S — S, denoted by
(g,8) — gs, which satisfies the following axioms:

(1) es=sforall se S.
(2) g(hs) = (gh)(s) for all g,h € G and s € S.

Many of the groups we’ve seen so far already come with an action on some set. But we can take the same
group and have it act on many different sets at the same time, and we can use this to study the group.

Example 4.5
The group Sy acts on the set S = {1,2,3,4} in the obvious way. But it also acts on the set

= {{1’ 2}7 {17 3}’ {17 4}7 {Qa 3}7 {27 4}’ {37 4}}a
where o({i,j}) = {o(i), 0 (4)}.

Example 4.6
The group Dy acts on the following set S of nine points (by rotating and reflecting the figure):
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Example 4.7

Every group G acts on itself, with the action (g,¢’) — ¢ -¢’. (This is an action G x G — G, where we
think of the second copy of G as a set.)

Example 4.8

Given a vector space V over a field F', the group F'* (the nonzero elements of F' under multiplication)
acts on V by sending (a, U) — a¥. (The conditions for this to be a group action are a subset of the
conditions for V' to be a vector space.)

For each g € G, the group action defines a map 74:.S — S given by s — g(s) — so 7, keeps track of what a
fixed element g does to S.

Proposition 4.9

The map 7, is a bijection.

Proof. The map 7, has an inverse 7,-1, since for any s we have

9(g7"s) = (g9~ ") (s) = e(s) =s,

and similarly g~ 1(g(s)) = s. O
So then 7, € Perm(S) for all g, which means we can define a map 7: G — Perm(S) sending g — 74. The
axioms then imply that 7 is a group homomorphism — so another way we can think of a group action is as

a homomorphism from G to Perm(S). Note that 7 doesn’t have to be injective though — it’s possible that
some g € G other than the identity fix all elements of S.

§4.2 Orbits and Stabilizers
Question 4.10. Given a group action of G on S, what kind of structure do we get?
Definition 4.11. Given an element s € S, the orbit of s, denoted Oy or Gs, is the set {gs | g € G}.

So for each s € S, the orbit of s is a subset of S. Note that s is in its own orbit, since es = s.

Example 4.12

Consider the action of Dy on the set S of nine points in Example 4.6, where Dy consists of rotation by
180°, reflection across the z-axis and y-axis, and the identity. What are the orbits of this action?
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Solution. First, the origin is fixed by all elements of Do, so it is in its own orbit.

For each of the points on the diamond, the rotation and one of the reflections both send it to the opposite
point; meanwhile the other reflection fixes it. So its orbit consists of itself and the point opposite it.

Meanwhile, the square forms an orbit — for any point of the square, the two reflections send it to adjacent
points on the square, and the rotation by 180° sends it to the opposite point.

So then we have four orbits — one orbit of size 1, containing the origin; two orbits of size 2, containing pairs
of opposite vertices of the diamond; and one orbit consisting of the entire square. O

Note that the orbits don’t necessarily have the same size.

Definition 4.13. If there is some s € S with Oz = S, then we say G acts transitively on S.

It’s possible to check from the axioms that if the orbit of some s € S is the entire set S, then the orbit of
every s is also S.

Example 4.14

The action of S, on {1,2,...,n} is transitive, since the orbit of 1 consists of all elements 1, ..., n (for
each k, there is some permutation sending 1 +— k).

There’s also another piece of information we can look at from a group action:

Definition 4.15. Given an element s € S, the stabilizer of S, denoted Stab(S) or G, is the set

{g19(s) = s}

In other words, the stabilizer of s consists of the elements g € G which fix s. Note that the stabilizer of any
s is a subgroup of G (this is straightforward to check from the axioms).
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Example 4.16

In the group action of D5 in Example 4.6, the stabilizers are the following;:
o The stabilizer of the origin is all of Ds.
e For each point on the diamond, its stabilizer consists of the identity and one reflection.

e The stabilizer of each point on the square is trivial.

Proposition 4.17
The orbits of G form a partition of S.

Proof. First, the orbits cover all elements of S, since each element s € S is in its own orbit O;.

Now it remains to show that the orbits are disjoint — meaning that if two orbits have some element in
common, they must be the same orbit. Suppose the orbits O and Oy both have an element ¢, so we have
t =gs = g's' for some g and ¢’ in G. Then

s=g ') =g (¢ (s) = (979,
so s is in Oy. But then Oy C Oy as well, since for any hs € Os we have
hs = h(g™g(s") = (hg™'g)s" € Os.

The same reasoning also shows that Oy C Og, so they must be the same set. O

For example, the action of Dy split the set S of nine points into four orbits, as described in Example

Corollary 4.18

If S is finite, then its size is the sum of the sizes of the distinct orbits.

For example, in the action of Dy we had 9 =142+ 2 + 4.

Question 4.19. What does each orbit Oy look like?

To answer this, we’ll look at the stabilizers.

Proposition 4.20

Fix some element s € S, and let H = Stab(s). Then there is a bijection ¢ from the left cosets of H to
O, sending gH +— gs.

This has an important corollary:

Corollary 4.21
For each s € S, we have |Os| = [G : Stab(s)]. In particular, if G is finite then

|G| = [Stab(s)] - |Os|,

and therefore all orbits have size dividing |G]|.
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Proof of Proposition . First we’ll figure out when two elements of G send s to the same element of its
orbit. Given two elements g and v of G, we have gs = s if and only if s = g~!ys. This occurs exactly
when ¢~y € H, or equivalently when v € gH.

So then g and 7 send s to the same element if and only if they’re in the same coset of H. This means ¢ is
well-defined and injective.

Meanwhile, € is surjective as well, since every s € Oy is of the form gs for some g € G. So ¢ is a bijection. [J

This corollary is quite useful — as we’ll see in the following example, it can let us deduce information about
a group by looking at its actions.

Example 4.22
Let G < SOg3 be the group of rotational symmetries of a cube. Find |G|.

Solution. We can consider the action of G on the faces of the cube; let the set of faces be S. Given any two
faces, there exists a rotation sending one to the other, so this action is transitive. Since |S| = 6, this means
there is one orbit of size 6.

Meanwhile, we can also calculate the size of the stabilizers. Consider some face s. For a rotation to fix s,
its axis must be perpendicular to s, and its angle must be a multiple of 90°. So Stab(s) is the cyclic group
of order 4.

So then using Corollary , we have |G| =4-6 = .

We could have performed this argument using vertices or edges instead. For example, let T" be the set
of vertices, and consider the action of G on 7. This action is still transitive, and we now have |T| = 8.
Meanwhile, for a rotation to preserve a vertex v, its axis must be the long diagonal through v, and there are
three possible rotations (since the rotation must preserve the three edges from v). So Stab(v) = C3, and we
get |G| =3-8 =24. O

It’s possible to perform similar arguments to find the number of rotational symmetries of other shapes as

well, such as a regular tetrahedron or icosahedron.

There’s another interesting question to analyze about the structure of orbits and stabilizers:

Question 4.23. How does the stabilizer change across different elements of the same orbit?

Take some element s’ € O, and suppose s’ = as for some a € G. Then for any g € Stab(s), we have gs = s,
which means
aga~'(s') = aga™'(as) = ag(s) = as = .

So if g € Stab(s), then aga—! € Stab(s’), and the converse can be shown similarly. So then the stabilizers
of s and s’ are conjugate — we have

Stab(as) = a Stab(s)a™!.

Note that if Stab(s) is normal, then s and s’ have the same stabilizer; but Stab(s) generally does not have
to be normal.

§4.3 Finite Subgroups of SO;

Recall that SO3 consists of exactly the rotation matrices — every matrix in SOg is a rotation around an
axis U by an angle #, and this matrix is denoted p(%,6).
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Question 4.24. What are the finite subgroups of SO3?

We’ve previously answered this question for SO,. The case of SO3 is more difficult, but it turns out that
with the tool of group actions, we can now answer it here as well.

Theorem 4.25

Every finite subgroup of SO3 is of one of the following forms:
e The cyclic group C,,, obtained by (p(u,2m/n)) for some u;
e The dihedral group D,,, obtained by (p(@,27/n), p(v,n)) for some v L u;

e The rotational symmetries of a regular polyhedron — a tetrahedron, cube, octahedron, dodeca-
hedron, or icosahedron.

Note that reflection across some axis in two dimensions corresponds to a 180° rotation about that axis in
three dimensions — this is why (p(@,27/n), p(U,m)) is Dy,.

In fact, the last case is somewhat redundant. The cube and octahedron are dual — if we start with a
cube and draw the midpoint of each face, this gives an octahedron, and doing the same to an octahedron
gives a cube. So any rotational symmetry of the cube gives a rotational symmetry of the octahedron, and
vice versa; so their groups of rotational symmetries are the same. Similarly, the rotational symmetries of a
dodecahedron and icosahedron are also the same. So there’s only three additional subgroups (other than C,,
and D,,), and it’s possible to analyze these subgroups the same way as we did for a cube in Example

Let G be a finite subgroup of SO3. Then the main idea is to find an action of G, and study its orbits.

Definition 4.26. Given a non-identity element g € SOj, its poles are the two unit vectors it fixes.

So the poles of a rotation p(u, ) are +71.

Now let P be the set of poles of all the non-identity elements of G.

Lemma 4.27
Our group G acts on P. In other words, for any p € P and g € G, we have gp € P as well.

Proof. Suppose p is the pole of some h € G, so then we have hp = p. Now let p’ = gp, so we want to show
that p’ is also a pole of some element of G. But we have

ghg ' (p)) =ghp=gp=17.

(Note that this is the same reasoning we used to analyze the stabilizer of s’ = as.) We know ghg™! € G,
and ghg~! cannot be the identity (since h is not the identity). So p’ = gp is also in P. O

Example 4.28

When G is C),, all rotations are about the same axis, so the only poles are p and —p for some point p.

Example 4.29

When G is the group of rotational symmetries of the octahedron (which is denoted O), we have one
pole corresponding to each face, vertex, and edge (since each gives a rotation axis).
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Now that we have an action, we can analyze its orbits and stabilizers. Let |G| = n, and suppose P

decomposes into orbits as
P=01N0yN---N0Og.

Let |O;| = n; for each i, and let O; be the orbit of the pole p;. Finally, let |[Stab(p;)| = 7, so then we have
n;r; = n for each 1.

Example 4.30

When G is C,,, there are two poles and both are fixed by all elements of G, so we have two one-element
orbits, and the stabilizer of each pole is all of G.

Example 4.31

When G is O, we can rotate any vertex to any other vertex, any face to any other face, and any edge to
any other edge. But we can’t rotate between objects of different types — for example, we can’t rotate
a face to a vertex. So the poles form three orbits, based on whether they correspond to a face, vertex,
or edge.

Now we can use this action to prove our classification.

Proof of Theorem . Consider the set S of pairs (g, p) such that g is not the identity, and p is a pole of
g. The main idea is to count |S]| in two ways.

First, we’ll count |S| by looking at g. Every g other than the identity has exactly two poles, so we have

S| =>"2=2(n-1). (2)
g#e

On the other hand, we can also count by poles. For every p, the g for which p is a pole of g are exactly the
elements of Stab(p), other than the identity. So we have

S| = _(IStab(p)| — 1)

p

as well. Now we can group this sum by orbit — all stabilizers of poles in the same orbit have the same size,
so for each orbit O; there are n; poles p each with |Stab(p)| = r;, which means we can rewrite this as

k k
n
S| =) ni(ri—=1) =) —(ri—1). (3)
i=1 ‘
Now setting our expressions for |S| in (2) and (3) equal to each other and dividing by n, we get

()

=1

Now note that each stabilizer has size at least 2 — if p is a pole of g, then both ¢ and the identity are in
Stab(p). So then r; > 2 for all ¢, which means 1 — r% is always in [%, 1). Meanwhile, 2 — % is always in [1, 2).
This immediately implies we must have exactly 2 or 3 orbits (meaning k is 2 or 3)! This is already quite a
strong constraint, and now we can split into cases.

Then we have

l——+1-——=2—
1 T2

9

1 1 2
n

Page 62 of



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

which means that
1 1 2

T1 (] n
But we must have r1,ry < n, since the size of any stabilizer is at most the size of the entire group. So the
only way for equality to hold here is if 11 = ro = n. In that case, we have ny = ne = 1, so there’s exactly
two poles, and both are fixed by the entire group. This means all rotations are about the same axis. Then
G is actually a finite subgroup of SO, which means it must be C,,.

The equation we get is still quite constraining — we have

1 1 1 2

—F — 4+ —=1+—.

T 79 rs3 n
Without loss of generality, we can assume 1y < 1o < r3. If r{ > 3, then the left-hand side is at most 3 % =1,
so then we must have r; = 2 (since it must be greater than 1).

Then if ro > 4, the left-hand side is again at most 1, so o must be 2 or 3.

n

If ro = 2, then we get o = 5. Finally, if ro = 3, then we cannot have r3 > 6 (or else the left-hand side
would again be at most 1), so r3 must be 3, 4, or 5.

So this gives a full classification of all possible stabilizer sizes: (2,2,7), (2,3,3), (2,3,4), and (2, 3,5). These
correspond to n being 2r, 12, 24, and 60, respectively.

It’s possible to show that the first case implies the group is D,, the second implies the group is 7' (the
rotational symmetries of a tetrahedron), the third implies the group is O (the rotational symmetries of an
octahedron), and the fourth implies the group is I (the rotational symmetries of an icosahedron). Intuitively,
it’s unsurprising that we have three orbits in each case — for the symmetries of a regular polyhedron, we
should have one orbit corresponding to the faces, one for the vertices, and one for the edges.

We won’t work out the details in each of the cases — there’s still some work to do, since it’s possible that
there could be different groups with the same orbit structure — but we’ll show how to prove this for the
case (2,3,4), and the other cases can be handled similarly.

Suppose we have three orbits, with stabilizer sizes (2,3,4). Then G has size 24, so we must have ng = 6.
The six elements of this orbit are all unit vectors in three dimensions, so we can attempt to see what they
look like.

Let one element of the orbit be p. Then —p must be in the orbit as well — p and —p have the same
stabilizer, but here the stabilizers of elements in different orbits have different sizes. Then we must have
Stab(p) = Stab(—p) = C4, since the stabilizer has size 4 and consists of rotations about the axis through p.

Now let another element of the orbit be q. By the same reasoning, —q is also in this orbit. But since our
group contains Cy (consisting of rotations about the axis through p), the rotations of ¢ by multiples of 90°
about this axis must all be in the orbit as well, and the same is true for —gq.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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Now if ¢ were not perpendicular to p, this would give 10 distinct vectors in the orbit, but there can only be
6. So then g must be perpendicular to p (so that —q is one of the rotations of ¢), and this accounts for all
six vectors of the orbit.

But then G must fix this set of six vectors, so it must fix the octahedron whose vertices are the endpoints
of these vectors. So then G < O; but both G and O have order 24, so we must have G = O. 0

Remark 4.32. The hardest part of this proof was finding the idea to consider an action on the set of
poles. Once we had the group action, we were then able to really strongly limit the possibilities for G
by counting |S| in two ways and messing around with the resulting equation.

§4.4 Conjugation

We’ll now look at an action of G on itself. Of course, there’s one obvious action — the ation G x G — G
sending (g, z) — gz. This action is transitive, and the stabilizer of any = consists of exactly the identity. So
this is not very interesting.

But there’s another, more interesting, way that G can act on itself — by conjugation. Here the action

G x G — G is defined by

(g,2) + gzg™".

It’s possible to check that this satisfies the axioms for a group action.

§4.4.1 The Class Equation

Definition 4.33. The orbit of z under conjugation is called the conjugacy class of x and is denoted

C(x).
In other words, C(z) is the set {gzg~! | g € G}.

Definition 4.34. The stabilizer of x under conjugation is called the centralizer of z and is denoted

Z(x).

In other words, Z(x) is the set of g € G such that gzg~! = z, or equivalently gz = g — so the centralizer

of x consists of exactly the elements which commute with x.

All our theory about group actions still applies here — in particular, for all  we have
G| =[C(x)] - |Z(x)].

We also know that the orbits partition the set, which here is G. This gives the class equation:

Proposition 4.35 (Class Equation)
If the conjugacy classes of G are C1, ..., Cy, then |G| = |C1| + - - - + |Cy|, and each |C;| divides |G].

Note also that C'(z) has size 1 (meaning it contains only x) if and only if Z(z) = G, meaning that x
commutes with every element of G. Such elements have a name:

Definition 4.36. The center of GG, denoted by Z, is the set of elements which commute with everything
in G.
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Using this, we can get constraints on |C(z)| and |Z(x)|. For every z, both Z and (x) must be subgroups of
Z(x) (elements of Z commute with everything, and « commutes with itself). This can be quite powerful —
the second constraint implies that ord(x) | |Z(x)|, and therefore

G
ord(z)’

C)] |

Note also that any two elements in the same conjugacy class have the same order — since conjugation is an
automorphism, we have gzFg~! = (gzg~")*, which means z* = ¢ if and only if (gzg~')* = e.

We can often use these facts to constrain the class equation of a given group.

Example 4.37
What is the class equation of Ds5?

Solution. We can write Dj as {e,z, 22, 23, 2%, y, vy, 2%y, 23y, 2y}, where z is a rotation and y a reflection

— 80 we have the relations z° = y2 = e and yxyfl =g =2t
First, we have C(e) = {e}, since the identity commutes with everything.

Next we look at orders — all elements in one conjugacy class must have the same order. The reflections
(elements of the form 2*y) all have order 2, and the non-identity rotations (elements of the form z*) all
have order 5. So we cannot have a rotation and a reflection in the same conjugacy class.

First consider the reflection y. We have
(y) < Z(y) < Ds,

so then |Z(y)| must be a multiple of 2 and a divisor of 10. This means it must be either 2 or 10. But if
|Z(y)| were 10, then this would mean y commutes with the entire group, which is false. So then |Z(y)| = 2,
which means |C(y)| = 5. So all the reflections are conjugate to each other — we have

Cly) = {y,zy. 2%y, 2y, 2"y}
Now we want to describe the conjugacy classes of the rotations — consider C'(x). We know C(x) contains

x, and it also contains z*, since x* = yry~!. But |C(z)| must divide 10, and it can be at most 4 (since we
only have 4 elements left), so it can’t contain any other elements. So we have

C(x) = {z,2'} and C(2?) = {22, 23}.

So the class equation is
10=1+4+5+2+2. O

Remark 4.38. Note that the conjugacy classes of a group generally have different sizes — the behaviour
of the partition into conjugacy classes is quite different from the behaviour of the partition into cosets.

§4.4.2 p-groups
One example of how conjugation can be useful is in analyzing p-groups.

Definition 4.39. Given a prime p, a group G is a p-group if |G| = p® for some e > 0.
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Example 4.40

Any cyclic group Cx is a p-group, and so is any product of such cyclic groups.

Example 4.41

An example of a non-abelian p-group (with order p?) is

1
0 < GL3(F,).
0

S ¥ ¥
— %

Theorem 4.42

Every p-group has nontrivial center.

In other words, this theorem states that |Z| > 1 — there is a non-identity element which commutes with
everything. From our class equation for D5 in Example , we can see that the center of Dj is trivial —
an element is in the center if and only if its conjugacy class has size 1, and the only conjugacy class of size 1
there is {e}. So the theorem states that this doesn’t happen for p-groups — for example, the class equation
of Dy (which is a 2-group) is 8 = 1+ 1 + 2+ 2 4+ 2, which means the center has size 2.

Proof. We use the class equation for G. We know that
pe=[Cif 4+ [Chl,

where each |C;| divides p°, and is therefore a power of p. But now grouping the conjugacy classes by size,
we have

Pr=1+1+-+1+(p+-+p)+@+ - +p°)+ .
———

|Z| times
Now reducing mod p gives
0=1Z] (mod p).
But |Z| > 1 (since Z necessarily contains e), so then |Z| > p, and Z is nontrivial. O
Example 4.43
The center of the p-group described in Example consists exactly of matrices of the form

S O =
S = O
—_ O %

(this can be checked by explicit computation), which has order p.

Corollary 4.44
If |G| = p?, then G is abelian.
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Proof. Since Z is a subgroup of G, its order must be p or p? (it must divie |G|, and it can’t be 1 by the
above theorem). If | Z| = p?, then Z = G, and therefore G is abelian.

Now assume for contradiction that |Z| = p. then pick an element = € G which is not in Z, and look at the
centralizer of z.

On one hand, Z(z) must contain Z. But we can’t have Z(x) = Z, since Z(z) must also contain x (which is
not in 7).

But Z(x) is a subgroup of G, and |Z(x)| > |Z| = p, so then we must have |Z(z)| = p?. This means
commutes with all elements of G, and therefore  must be in the center of G; this is a contradiction. O

The main point here is that p? is not very big, so there’s not much room for things to happen. Note that
Example is a group of order p® which isn’t abelian, so 2 is the largest exponent for which this statement
holds.

In fact, it’s possible to push this a bit further.

Proposition 4.45
If |G| = p?, then G is isomorphic to either Cp2 or Cp x Cy,.

Recall that C, x (), consists of pairs of elements in C),, with the operation performed componentwise.

Proof. We can consider the orders of elements in G, which must all divide p?. First, if there exists some
element a of order p?, then G must be the cyclic group (a) (since (a) must be a subgroup of G, but they
have the same size).

Otherwise, every element a # e has order exactly p. We can now use the following general claim:

Claim — If G is an abelian group such that every non-identity element has order exactly p, then we
can think of G as a vector space over F,,.

Proof. To turn G into a vector space, we can define addition using the addition operation in G (since we
know that it’s commutative). Meanwhile, we can define scalar multiplication by an element 7 € I, by

n-g=g+g+---+g.
N—————
n times

This is well-defined because g has order p, so two elements n and n + p (which produce the same residue
n € FP) also produce the same element mg. With these two operations, G becomes a vector space. |

Now in our situation, the dimension of the vector space must be 2 (since it must have exactly p? elements),
so then the vector space is F% and G = C), x C,,. O

§4.4.3 The lcosahedral Group

Another example of how we can use the class equation is in analyzing the icosahedral group I, the group of
rotational symmetries of an icosahedron.

Earlier we mentioned that |I| = 60. To prove this, recall that all elements of I are rotations {p(u,0)},
where the poles U correspond to the faces, edges, and vertices. Note that there is some redundancy —
rotating by 6 around ¥ is the same as rotating by —6 around —u. This pairs up the face rotations, edge
rotations, and vertex rotations (note that this is different from the case of a tetrahedron, where if we have
a pole corresponding to a vertex, its negative actually corresponds to a face).

We can now list all elements of I based on their axis of rotation. We then get the following rotations:
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e The identity is in I.

o For each of the 20 faces, we can rotate by 27/3 or 47 /3 about the corresponding axis, giving 2 nontrivial
rotations.

e For each of the 30 edges, we can rotate by m around the axis to the center of the edge, giving 1
nontrivial rotation.

o For each of the 12 vertices, we can rotate around the axis to that vertex by a multiple of 27/5, giving
4 nontrivial rotations.

This overcounts every nontrivial rotation twice, so in total, [I| =14 20 + 15 + 24 = 60.
Question 4.46. What is the class equation for I?
We'll start by figuring out what conjugation does to I. Take some g and some p(,#), and let

p=gp(i,0)g".

This must be a rotation by the same angle, around a different axis — we first rotate the icosahedron, then
perform our original rotation, and then reverse the first rotation, which in total is the same angle of rotation
(we can also see this by the fact that the angle of rotation is determined by the trace, which is preserved
by conjugation). We can also describe what the new axis is — if the original rotation p(, ) fixes p, then

p fixes g(p).

This implies that all face rotations by 27 /3 are conjugate to each other. But rotation by 47/3 about an
axis U is the same as rotation by 27/3 about the axis —%. So then all 20 face rotations form one conjugacy
class.

Similarly, there exist elements g mapping any edge to any other edge, so then the edge rotations are all
conjugate to each other. So the 15 edge rotations make up another conjugacy class.

Finally, we consider the vertex rotations. We can again rotate any vertex to any other vertex. The rotations
by 27/5 and 87 /5 correspond to the same rotation angle, so these 12 vertex rotations are conjugate; similarly
the rotations by 47 /5 and 67/5 are also conjugate. So the class equation is

60 =1+20+15+ 12+ 12.
So I has 5 conjugacy classes, and its center has size 1 (since every element of the center corresponds to a

conjugacy class of size 1 in the class equation).

We can now use this class equation to analyze the normal subgroups of I.

Definition 4.47. A group G is simple if the only normal subgroups of G are {e} and G itself.

Equivalently, G being simple means that any surjective homomorphism from G to another group is either
an isomorphism or trivial (since the kernel of a homomorphism is always a normal subgroup).

Simple groups are important because in some sense, they’re building blocks for all finite groups. If we have
a group G that isn’t simple, then we can write down a surjection G — G’, and analyze G in terms of the
kernel and image of this surjection. We can analyze those by splitting them up again in this way, and so
on — we keep decomposing the groups until they become simple (at which point we stop because we can’t
split them in a useful way).

Example 4.48

The cyclic group C), is simple if and only if n is prime.
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Theorem 4.49

The icosahedral group [ is simple.

So I has a lot of subgroups, but it turns out that it doesn’t have any interesting normal subgroups!
Proof. Suppose that N is a normal subgroup of I. Then gNg~—! = N for all g € I. So if an element z is in
N, then its entire conjugacy class C(z) is also in N; this means N is a union of conjugacy classes.

But we also know |N| divides 60. Now consider the class equation
60=1+20+15+12+12.

Then to build N, we must take 1 (since N must contain the identity) and some subset of the remaining
terms. But we can check that the only ways to do so and end up with a factor of 60 are to take none or all
of the remaining conjugacy classes, so we must have |N| be 1 or 60. O

Remark 4.50. This proof is quite soft, in some sense. We don’t have to grapple with the structure of
N that much — we just look at its size in terms of the sizes of conjugacy classes.

Even when a group is not simple, it is sometimes possible to understand how to build normal subgroups by
looking at the class equation. For example, we could use this to find the normal subgroups of D5 (which is
not simple, but doesn’t have many normal subgroups).

The analysis of I has another interesting use.

Theorem 4.51

The icosahedral group I is isomorhpic to the alternating group As.

Recall that Ag is the subgroup of S5 consisting of permutations with sign 1. Since S5 has size 5! = 120 and
As has index 2, then As has size 60. So I and As have the same size; but it turns out that they’re actually
the same group.

Proof. We want to describe I as a set of permutations of five objects, so we first want to find a group action
of I on a set of size 5 — this will define a group homomorphism I — S5.

We can describe this action geometrically. Think of I as the group of rotational symmetries of a dodecahedron
instead. Then inside this dodecahedron, we can produce five cubes, where the vertices of the cube are also
vertices of the dodecahedron, and the edges of the cube are diagonals of the faces (which are all pentagons).
There are five cubes because given any face, we have 5 choices for which diagonal of the face is used, and
each uniquely determines the rest of the cube.
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Let S be the set of these five cubes. Then rotating the dodecahedron must send one cube to another, so it
gives a group homomorphism

f:I — Perm(S) = Ss.

This homomorphism is nontrivial — rotating around a face changes the diagonal we use from that face,
which changes the corresponding cube. So its kernel cannot be I, which means its kernel is {e}, and therefore
the homomorphism f is injective.

Now we want to show that the image of f is As. Consider the homomorphism ¢ = sgnof, which maps
I — S5 — {£1}. Then ker(y) must again be {e} or I. But if ker(yp) were trivial, then ¢ would be injective
— this is impossible because we can’t have an injection from a set of size 60 to a set of size 2. So then
ker(y) = I, which means that all elements of I are mapped to permutations with sign 1, and therefore

f(I) C ker(sgn) = As.
So then we can think of f as a homomorphism I — As. But this homomorphism is injective, and I and As

have the same size, so it must be surjective as well. So f is an isomorphism between I and As. Ul

Corollary 4.52
The alternating group As is simple.

In fact, A, is simple for all integers n > 5. But the proof we saw here only works for n = 5; for larger n we
really do need to get our hands dirty working with permutations and conjugacy classes.

§4.4.4 Conjugacy Classes of Permutations

We’ll now consider the conjugacy classes in S, and A,. It’ll often be useful to use cycle notation, where
we write permutations as a product of disjoint cycles. For example, (123)(45) corresponds to the following

permutation:
1
SN
2—3
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Elements which aren’t mentioned in the cycle notation of a permutation are mapped to themselves — for
example, if we considered (123)(45) € Sg, then 6 would be mapped to itself.

Fact 4.53 — The sign of a permutation ¢ is (—1)¥, where k is the number of even-length cycles in o.

Proof. By definition, if we can write o as a product of n transpositions, then sgn(c) = (—1)". But we can
write a m-cycle as

(123---m) = (Im)---(14)(13)(12),
so the sign of a m-cycle is (—1)™~!. This means each even-length cycle in ¢ multiplies its sign by —1, and

each odd-length cycle doesn’t affect its sign. O

Equivalently, if ¢ has cycle lengths kq, ..., ky, then

n

sgn(o) = H(—l)ki_l.

i=1

Question 4.54. What are the conjugacy classes in S,,7

It turns out that cycle notation is really good at describing conjugacy classes.

Example 4.55
Let 0 = (123), and take a permutation p € S,. What is the cycle notation of 7 = pop~1?

Solution. Let p(1) =i, p(2) = j, and p(3) = k. Then we have

7(i) = pop~ " (p(1)) = po(1) = p(2) = j.

Similarly we have 7(j) = k and 7(k) = i. We can use the same reasoning to check that 7 fixes all other
elements. So we have 7 = (ijk) — the conjugate of our 3-cycle is another 3-cycle, with different elements. [

If we started off with a more complicated permutation for o, the same thing would happen — for example,
if o = (123)(47) - - -, then we would have

pop~! = (p(1)p(2)p(3) (p(4)p(7)) - --

So the cycles in any conjugate of o are the same as the cycles in o, except with different numbers. To keep
track of this more precisely, we can use the concept of cycle type — the cycle type of a permutation keeps
track of the number of cycles of each length.

Proposition 4.56

Two permutations o and 7 are conjugate if and only if they have the same cycle type.

Proof. We've already seen one direction — if 7 = pop~!, then the cycle notation of 7 is obtained by writing
down the cycle notation of o and replacing each i with p(7).

For the other direction, we can just match up corresponding cycles. For example, if o = (145)(23) and
7 = (234)(15), then we can define p to be the permutation sending 1+ 2, 4 — 3, and so on. O
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Example 4.57

In Sy, the conjugacy class of (1234) consists exactly of 4-cycles. To write down a 4-cycle, we can first
write down some ordering of 1234 (in 24 ways); then this counts every cycle 4 times. So the conjugacy
class has 6 elements.

There’s another way to find the size of a conjugacy class — we can use the fact that |C(z)| - |Z(z)| = |G|.

Example 4.58

To find the size of the conjugacy class of z = (1234) in Sy, we can first find Z(z). A permutation p is
in Z(z) if and only if prp~! = x, meaning that relabelling the cycle notation of 2 by replacing i — p(4)
doesn’t change the permutation. We can relabel (1234) to any of (2341), (3412), and (4123). So then
|Z(z)| =4, and |C(x)| = 24/4 = 6.

Example 4.59

In S13, what is the size of the conjugacy class of

z = (123)(456)(78910)(11)(12)(13)?

Solution. We’'ll start by finding |Z(x)|. We again want to find the number of ways to relabel the elements in
this cycle notation which produce the same permutation. First, there’s only one 4-cycle, so the relabelling
of (78910) must be the same cycle — then there’s 4 ways to relabel it (since we have 4 choices of which
element to write first).

For (11), (12), and (13), any reordering of these three elements will give the same permutation — for example,
we could replace 11, 12, and 13 with 12, 11, and 13, and this would still correspond to the permutation
fixing all of them. So this gives 3! = 6 ways to relabel.

Finally, with the two 3-cycles (123) and (456), both of the above situations happen — for each cycle there’s
3 different starting points, and we can also swap the two cycles in our relabelling .This gives 3 -3 - 2! = 18
ways.

So then we have |Z(x)| =4 -6 - 18 = 432, and therefore |C(z)| = 13! /432. O

We now know how to compute the sizes of conjugacy classes, which we can use to compute the class equation.

Example 4.60

To find the class equation of Sy, we can list all possible cycle types, calculate |Z(x)| in the same way
as above, and calculate |C(x)| using the fact that |C(x)| - |Z(z)| = 24:

Cycle Type | |Z(z)| | IC(a)]
4 4 6
3+1 3 8
2+1+1 | 2-21=4 6
2+2 20.2.2=8| 3
I+1+1+1 24 1

So Sy4 has class equation
24=1434+64+8+6.
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We can also analyze the conjugacy classes of A,. Since A,, = ker(sgn) is a normal subgroup of S,,, it must
be a union of conjugacy classes of 5,.

In the case of Ay, using Fact , the cycle types corresponding to even permutations are exactly 3 + 1,
24+ 2,and 14+ 141+ 1, so the conjugacy classes of S, which make up A, give

|Ag| =12=8+3+1.

However, note that this is not the class equation of A4 — 8 doesn’t divide 12, so we can’t have a conjugacy
class of size 8.

What went wrong is that two permutations o and 7 can be conjugate in S,, without being conjugate in A,
— if they’re conjugate in S,, then we know 7 = pop~! for some p € S, but for them to be conjugate in
A, we need 7 = qog~! for some ¢ € A,,. So if the only relabelling permutations p are odd, then 7 and o
may no longer be conjugate in A,,.

However, the conjugacy classes in S,, and A, are still closely related. Consider some = € A,. Then its
conjugacy class in A,, must be a subset of its conjugacy class in S,, — we have

Ca(x)={yc A|y=prp ' for some p € A,} C Cs(x) ={y € A, | y=pap ! for some p € S,}.
Similarly, we can look at the stabilizers as well; then Za(z) < Zg(x), since any element of A, which

commutes with z is also an element of .S,, which commutes with x.

But we also have 1 !

Ca(@)] - 1Za(@)] = [4An] = 5 |5n] = 5 |Cs(2)] - [Zs(2)].
Then since Z4(x) must divide Zg(z), we must either have |Ca(z)| = |Cs(z)| and |Za(z)| = 1 |Zs(z)], or
|Ca(z)] = 1 |Cs(z)| and |Za(z)| = |Zs(x)|. So each conjugacy class in S, either remains the same or splits
into two in A,, and we just need to figure out which conjugacy classes split.

Example 4.61

In the case of Ay, we had 12 =8+ 3 4+ 1. The conjugacy class of size 8 must split because 8 { 12, while
the conjugacy classes of sizes 3 and 1 cannot split (since their sizes are odd). So the class equation is

12=4+4+3+1.

Note that the second case |Z4(z)| = |Zs(x)| occurs if and only if every permutation which commutes with
x is even. Equivalently, the first case |Cs(x)| = |Cs(x)| occurs if and only if there is an odd permutation
commuting with x (since if the conjugay class doesn’t split, then the stabilizer must shrink).

For example, in our conjugacy class of size 8 — which consists of 3-cycles — the conjugacy class does split,
so all permutations commuting with (123) must be even. We could have checked this directly — the only
permutations which commute with (123) are ((123)) = {e, (123), (132)}, which are all even.

It’s possible to perform a similar analysis for S5 as well:
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Example 4.62

In S5 there are 7 conjugacy classes, giving the class equation
120 =1+ 10+ 15 + 20 + 20 + 30 + 24.
The conjugacy classes corresponding to even permutations are 1, 15, 20, and 24, giving
60 =1+ 15+ 20+ 24.

We know that 24 must split (since it doesn’t divide 60), and 1 and 15 can’t split. We can check that
20 doesn’t split either, so the class equation of As is

60=1+15+20+ 12+ 12.

§4.5 The Sylow Theorems

Recall that if G is a finite group, and H is a subgroup of G, then |H| divides |G|. In general, the converse
is false — we can’t necessarily find a subgroup of size d for every d | |G|. For example, A4 has size 12, but
it does not have a subgroup of order 6 (this can be checked using the class equation, as any such subgroup
would have to be normal).

But surprisingly, this ¢s true in general for certain values of d.

Theorem 4.63 (Sylow )

Let G be a finite group with |G| = n = p®m, where p { m. Then there exists a subgroup H < G such
that |H| = p°, called a Sylow p-subgroup of G.

Example 4.64

The group Sy has order 24 = 8 - 3, so the first Sylow theorem implies there is a subgroup of order 8.
One such subgroup is the subgroup ((12), (34), (13), (24)).

Example 4.65

The group D5 has order 10 = 5- 2, so the first Sylow theorem implies there is a subgroup of order 5 and
a subgroup of order 2. One subgroup of order 5 is the subgroup C5 generated by a rotation by 2m/5,
and one subgroup of order 2 is the subgroup D; generated by a reflection.

The power of this theorem is how general it is — amazingly, we can start off not knowing anything about
the group, and even without knowing anything specific about the structure, we can know that a bunch of
subgroups exist.

Corollary 4.66

For any prime p dividing |G|, there must exist an element of G with order p.

So for example, if we have a group of order 1, we must have an element of order 7 — we can’t just have the
identity and 13 elements of order 2.

Proof. From the first Sylow theorem, we know there exists a subgroup H < G with |H| = p© for some e.
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Then pick some y in H, so ord(y) = p/ for some f. Now z = ypf_1 must have order p. O

Theorem 4.67 (Sylow II)

Any two Sylow p-subgroups are conjugate. More generally, for any Sylow p-subgroup H < G and any
p-group K < G, there exists g € G such that gKg~' < H.

Example 4.68

In Ds, every reflection generates a Sylow 2-subgroup, and the second Sylow theorem points out that
these subgroups are all conjugate to each other.

Note that the second statement implies the first (by taking K to be another Sylow p-subgroup).

Theorem 4.69 (Sylow Il1)
The number of Sylow p-subgroups of G divides m and is 1 mod p.

Example 4.70

In Ds, if we take p = 2, we have five Sylow 2-subgroups (one generated by each reflection); and 5 divides
5 and is 1 mod 2. Meanwhile, if we take p = 5, there’s only one Sylow 5-subgroup, and 1 divides 2 and
is 1 mod 5.

Before we prove these theorems, we’ll see a few examples of how useful they are.

§4.5.1 Classifying Groups of Small Order

Since the Sylow theorems give us information about a group given only its size, we can use them to analyze
what all groups of a given size can look like.

Example 4.71

There is only one group of size 15, up to isomorphism.

Proof. By the first Sylow theorem, we know G has a Sylow subgroup of order 5, and one of order 3.

First we can look at the subgroups of order 5. By the third Sylow theorem, the number of such subgroups
must divide 3 and be 1 mod 5, which means it must equal 1. But if H is a subgroup of order 5, then all of
its conjugates gHg ! are also subgroups of order 5; so then these all must give the same subgroup, and H
must be normal.

Similarly, we can look at the subgroups of order 3. The number of such subgroups must divide 5 and be 1
mod 3, so again there is exactly one subgroup K of order 3, which must be normal.

Note also that H and K cannot share any non-identity element, since the non-identity elements of H have
order 5 and the non-identity elements of K have order 3.

Claim — The groups H and K commute — for any h € H and k € K, we have hk = kh.
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Proof. Since K is normal, we must have hkh~! € K, and therefore hkh~'k~' € K as well. Similarly since
H is normal, kh~'k~! must be in H, and therefore hkh~'k~! must be in H as well. But then hkh~1k™!
must be in both K and H, so it must be the identity. |

Claim — There is an isomorphism H x K — G.
Recall that H x K is the product group H x K = {(h,k) | h € H,k € K}.

Proof. Consider the map f: H x K — G sending (h, k) — hk. First we’ll check that f is a homomorphism:
for any (h, k) and (h', k') we have

f((h,E) - (h’,k’)) =hk-h'EkE =hh' - kK = f(h, k)f(h’,k’),
since H and K commute.

Now to show f is an isomorphism, note that ker(f) consists of elements (h, k) with hk = 1, which implies
that & = A~ must be in H. But since K and H don’t intersect except at 1, this requires that h = k = 1.
So ker(f) is trivial, and therefore f is injective.

Finally, H x K and G both have order 15, so since f is injective, it must be a bijection. |
So then any group of order 15 is isomorphic to C5 x Cj. O
Example 4.72

What are the possible groups of order 10 (up to isomorphism)?

Solution. We have 10 = 5 - 2. The number of Sylow 5-groups divides 2 and is 1 mod 5, so there must be
exactly one Sylow 5-group K, and it must again be normal. Meanwhile, we know there exists some Sylow
2-group H, which may or may not be normal.

Both K and H must be cyclic, so we can write K = (z) where ord(z) = 5, and H = (y) where ord(y) = 2.
Then we again have K N H = {1}, and since K is normal, we have yzy~! = 2" for some r.

Now we can try to write down elements of our group using x and y — our group must contain the elements
{2%y7 |0<i<4,0<5 <1}
But this gives 10 distinct elements, so then G must consist of exactly these elements. So then we have
G=(z,y|z*=y*=eyz=2a"y).
This completely determines the group, so it remains to figure out what values of r are possible. Every r

gives at most one group, but some r may not work — for example, if » = 2 then we have

r = ylx = yyr = ya’y = a'y® = 2,
so z has order dividing 3, contradiction. We can make the same argument in general: we have

2 2

x:y2m:yxry:mr yQZxT

by repeatedly applying yx = 2"y to move the y’s to the right, so then 27°~1 = 1 and we must have 5 | r2—1,
and therefore r must be 1 or 4.

So there’s at most two possible groups. Both work — when r = 1 we get xy = yx, so K and H again
commute and we get C5 x Co = C1g9. Meanwhile, the case r = 4 gives the group Ds. So the only two groups
of order 10 are C1g and Ds. O

Page 76 of



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

Note that the situation for 10 was somewhat more subtle than for 15 because the Sylow theorems only
guaranteed that one of the subgroups was normal.

In general, we can use the same argument to analyze groups with order pq for distinct primes p < q. If ¢ Z 1
(mod p), then similarly to Example (where we had order 3-5 = 15) the only group up to isomorphism is
Cp x Cy = Cpq. Meanwhile, if ¢ =1 (mod p), then similarly to Example (where we had order 2-5 = 10)
there will be two possible groups — (), and some non-abelian group. The proof is the exact same — we
look at the Sylow p-groups and g-groups.

§4.5.2 Classifying Abelian Groups

Question 4.73. What can we say about finite abelian groups?

It turns out that we can perform an analysis very similar to the one we did in Example for general
groups of order 15.

Suppose G is a finite abelian group with order p{* - - - p¢~. Then for each prime, we can take a Sylow subgroup
H; with order p;’. The choice of each H; must be unique — any two Sylow p;-subgroups must be conjugate,
but conjugation doesn’t have any effect since the group is abelian.

Now we can consider the product group Hi X --- X H,, which is again an abelian group. Define the map
f:Hy X x H, — Gby (x1,...,2,) = x1 + -+ + x,. (Here we use addition instead of multiplication to
denote the group operation because the group is abelian.)

Claim — f is an isomorphism.

Proof. First, f is a homomorphism because G is abelian, so all elements commute. But now note that
H; <im(f) < G for all ¢, which means p;* must divide |im(f)| for all 7. But then their product []p;* = |G|
must divide |[im(f)| as well, which means im(f) = G and f is surjective.

On the other hand, H; X --- x H, and G have the same size. So since f is surjective, it must be injective
as well, and therefore f is an isomorphism. O

This gives the following result:

Proposition 4.74

Any finite abelian group is isomorphic to a product of abelian groups with prime power order.

So then in order to understand finite abelian groups, it’s enough to understand finite abelian groups of order
p¥ for primes p. In fact, this is fully understood, and we’ll see a full classification in 18.702.

§4.5.3 Proofs of Sylow Theorems

Now we’ll prove the Sylow theorems. The main idea in all of the proofs will be to find a useful action of
G on some set, and exploit this action to get information about G. We’ve been doing this for the past few
weeks, but the main difference is that here we don’t know anything about the group to start with.

We'll start with the first Sylow theorem.

Proof of Theorem . First, we need a set S that G acts on — take S to be the set of subsets of G with
size p°, so |S| = (;ﬁ) Then G acts on S by left translation — an element g maps a subset U to the subset

gU ={gu|uweU}.
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Our goal is to find a subgroup of a certain size. We can obtain subgroups from a group action by looking
at stabilizers, and we can analyze the sizes of stabilizers by analyzing the sizes of the corresponding orbits.

Fact — (;e) is not a multiple of p.

This is possible to prove just by writing out the explicit formula and counting the powers of p in the
numerator and denominator. In fact, a stronger statement is true — we always have (;Le) =m (mod p) —
but we won’t need this here.

Lemma 4.75
If U is a subset of G and H < G stabilizes U, then |H| divides |U]|.

Proof. Since H stabilizes U, then by definition, for every h € H and u € U we must have hu € U as well.
But this means for each u € U, the coset Hu is contained in U, so then we can partition U into right cosets
of H. Each coset has size |H|, so then |H| must divide |U|. (The reason it’s important here that H stabilizes
U is because otherwise, the cosets of H may not be contained in U.) |

Now we’ll find a Sylow p-subgroup by looking at stabilizers. Consider the partition of S into orbits, with
S| = 01| +--- + 10, ].

Then since |S| is not divisible by p, some orbit must also have size not divisible by p. Let this orbit be O,
and let U be some element of the orbit; then we have

|G| = p®m = O] - [Stab(U)] .

But p doesn’t divide |O], so then p® must divide |[Stab(U)|. On the other hand, by the above lemma,
|Stab(U)| must divide |U| = p®. So then we must have |[Stab(U)| = p®, which means |Stab(U)| is a Sylow
p-subgroup. O

Remark 4.76. This is a very clever proof. The most important leap is the first one — picking the set
S on which the group acts. As we’ve seen many times so far, group actions can be really useful, and
finding a good set for a group action can take some amount of trial and error.

Now we’ll prove the second Sylow theorem — more precisely, we’ll show that given any Sylow p-subgroup
H, any p-group K < GG must be conjugate to a subgroup of H.

Proof of Theorem . Fix the Sylow p-subgroup H and the p-group K < G, and let |K| = p/.

Let X be the set of left cosets of H in G, so |X| = m. Now consider the action of K on X given by left
translation — an element k maps aH — kaH. We again have a set and a group acting on it, so we can
decompose the set into orbits, giving

m = |X[ =[O0+ +[0].

Then each |O;| must divide |K| = p/, but p doesn’t divide m, so some orbit O must have size 1. This means
some coset aH € X is fixed by all elements of K.

But then kaH = aH for all k € K. This means a~'kaH = H for each k, and therefore a='ka € H for all
k € K. So then a~!'Ka is a subgroup of H, as desired. O
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Remark 4.77. Again, we see the common theme that when we have a group action, it’s really useful
to look at the orbit decomposition.

Finally, we’ll prove the third Sylow theorem — this is the sneakiest proof.

Proof of Theorem . We again consider a group acting on a set. This time, our set Y will be the set of
Sylow p-subgroups of G (so we’re interested in |Y]).

To prove the first part of the theorem, consider the action of G on Y by conjugation — an element g maps
H +— gHg~' (which is another Sylow p-subgroup). Then by the second Sylow theorem, this action only has
one orbit. So for any Sylow p-subgroup H, we have

|G| = |O(H)| - [Stab(H)| = |Y] - [Stab(H)| .
This immediately tells us that |Y| must divide n, and we can gain more information from analyzing |Stab(H)|.
By definition, Stab(H) is the set of g for which gHg~! = H. But it’s clear that H < Stab(H), since for any
h € H we have hHh™! = H. So then |Stab(H)]| is divisible by |H| = p®. Then
p'm=1Y|-p
for some ¢, which means |Y| must divide m. This proves the first part of the theorem.

Now for the second part, we take the same set Y, but instead of considering the action of G, we instead
consider the action of H, where H is any Sylow p-subgroup. (The action is still given by conjugation.)

Lemma 4.78
A Sylow p-subgroup H' € Y is fixed under conjugation by H if and only if H = H'.

In other words, we have hH'h~! = H' for all h € H if and only if H' = H.

Proof. 1t’s clear that H is fixed under conjugation by any of its elements, so it suffices to show the other
direction — that if H’ is fixed by conjugation by all elements of H, then we must have H' = H.

Consider the group action of G on Y again, and consider the set Stabg(H'), which consists of g € G for
which gH'g~! = H’. This is also denoted N(H’) and called the normalizer of H'.

Then we must have H' < N(H'). Meanwhile since H' is fixed by H, we must have H < N(H') as well.

Then since N(H’) is a subgroup of G, its order must be a multiple of |H| = p® and must divide |G| = p®m,
so the power of p dividing N(H’) is exactly p°. But this means H and H' are both Sylow p-subgroups of
N(H') as welll Then we can use the second Sylow theorem — there must exist some element n € N(H')
such that nH'n~! = H. But by the definition of N(H’), we must have nH'n=! = H’ for any n € N(H'), so
then we must have H = H'. [ |

So then our group action by H on Y has exactly one fixed point, which is H. We can again consider the
decomposition into orbits, which gives

Y] =101]+---+10x].

Each orbit has size dividing |H| = p°, and exactly one has size 1, so all the other orbits have size divisible
by p, and therefore |Y| =1 (mod p). O

Remark 4.79. This proof was quite sneaky because we used the previously shown Sylow theorems on
a different group in order to prove the third Sylow theorem on G.

Page 79 of



18.701 — Algebra 1 Class by Davesh Maulik (Fall 2021)

§5 Bilinear and Hermitian Forms

§5.1 Bilinear Forms

Let V be a vector space over R.

Definition 5.1. A bilinear form is a function V' x V' — R, denoted by (v, w) — (v, w), such that:
(1) (v, cw) = c{v,w) for all scalars c,
(2) (v,w1 +w2) = (v, w1) + (v, wa),
(3) (cv,w) = c{v,w) for all scalars c,
(4) (

4) (v1 + v, w) = (v1,w) + (v2,w).

The properties (1) and (2) mean the form is linear in the second variable, and the properties (3) and (4)
mean it’s linear in the first variable — this is why the form is called bilinear.

Example 5.2
The function R3 x R? — R defined as

(1,22, 23)7, (y1,Y2,y3)T) = x1y1 + 221y2 + 3x2y1 + 422ys + dz3y:

is a bilinear form.

Intuitively, all bilinear forms should look something like this example — all terms should be of the form
cr;yj, and we shouldn’t have any constant terms or higher order terms.

Definition 5.3. A bilinear form is symmetric if (v, w) = (w,v) for all vectors v and w.

Example 5.4

The form given in Example is mot symmetric, while the form

(w1, 22, 23)7, (Y1, y2,¥3)7T) = T1y1 + 2T2y1 + 2212 + 32212

is symmetric.

Example 5.5

The dot product is a symmetric bilinear form.

§5.1.1 Bilinear Forms in Matrices

Similarly to in the case of linear transformations, we can explicitly describe bilinear forms using matrices.

Suppose our vector space is R™. Then the dot product is a symmetric bilinear form. More generally, given
any n X n matrix A, we can define a bilinear form

(7.7) = TTAT

(here 7 and Y are column vectors, and the output is a real number). This satisfies the axioms for a bilinear
form because of properties of matrix multiplication.
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Definition 5.6. A n x n matrix is symmetric if it equals its transpose.

Given a general matrix A, for any 7 and 7/ we have
(7.%) = AT = (J7AZ) = TTATY.

So then if AT = A, we have (¥, 7) = (2, %), and the form is symmetric. Similarly to the case of linear
transformations, the converses of both statements are true:

Proposition 5.7

Every bilinear form on R™ corresponds to a matrix — given a form (—, —), there is a unique matrix A
such that (Z,y) = ZTAY. Furthermore, (—, —) is symmetric if and only if A is.
Example 5.8

The dot product corresponds to the identity matrix.

Example 5.9
The bilinear form in Example can be written as
1 2 0]
(Z,7)=27|3 0 4|7,
5 0 0]
and the bilinear form in Example can be written as
1 2 0]
(Z,7)=27|2 3 0|7
0 0 0]

We can see that the entries of the matrix come from the coefficients of the form.

Proof of Proposition 5.7. Let €1, ..., &, be the standard basis of R™ (so €; has a 1 in its ith position and
0’s everywhere else). Then let a;; = (e;,¢€;) and create a matrix A = (a;;). Now for any Z = Y z;e; and
Y = Y. wy;e;, by using bilinearity we have

(5,5} <zxia,zy@> Y @y = 3 ways

But this is exactly ZTA7Y, so every bilinear form is of the form ZTAY.

Then (—, —) is symmetric if and only if (€;,e;) = (€7, &) for all i and j, or equivalently if a;; = aj; for all ¢
and j. This occurs exactly when A is symmetric. O

§5.1.2 Choosing a Basis

We’ve now seen how to describe bilinear forms in R™, and as usual we can use this to describe bilinear forms
in any vector space V by picking a basis {v1,...,v,} of V.

Once we fix a basis, Proposition is true for a general vector space as well — every bilinear form corre-
sponds to a matrix, and the bilinear form is symmetric if and only if the matrix is. More explicitly, we take
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the matrix A = (a;;) where a;; = (v;,v;), and then for two vectors v and w with coordinates @ and ¥ in
our basis, we have (v, w) = TTAY.

In some ways, this may remind us of the situation when we studied linear operators — we started with a
linear operator T:V — V', and by picking a basis for V, we turned the operator into a n X n matrix. Here
we start with a bilinear form, and by picking a basis we can also turn the form into a n x n matrix. But
these correspondences are quite different in some ways.

Question 5.10. What happens to the matrix if we change basis?

Suppose we have two bases B:R"™ — V and B":R"™ — V, so that B’ = BP for an invertible matrix P.

R™ « R

Then if a pair (v, w) corresponds to coordinates (7, %) in B’, it corresponds to (P?, P¥) in B. So if our
form corresponds to A’ in the basis B’ and A in the basis B, we have

FTAY = (PZ)TA(PY) = TTPTAPT.
So then when we change basis, the new matrix is A’ = PTAP.

Remark 5.11. Note that this relation is different from the one we get for linear operators, where we
have A’ = P~1AP.

In particular, we can check explicitly that if A is symmetric, then so is A’. This is unsurprising, since
symmetry is a property of the bilinear form itself, and shouldn’t depend on which basis is used.

Now that we know how to change basis, we can ask a question similar to the one we asked for linear
operators:

Question 5.12. Given a vector space V' with bilinear form (—,—), how nice can we make the corre-
sponding matrix A by choosing a basis?

We'll return to this question later; it turns out that for symmetric bilinear forms, the answer is very nice.

§5.2 Hermitian Forms

So far, we’ve worked over the field R, but we can also work over the field C.
The definitions in the previous section still work over any field. But there’s a special property that they

have in R — the dot product has the property that @ - Z > 0 for all vectors 7.

Definition 5.13. A symmetric bilinear form (—, —) is positive definite if (v, v) > 0 for all nonzero vectors
v.
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The dot product in R™ lets us talk about the lengths of vectors, so we’d like some version of this property
in a form over the complex numbers as well. It turns out that if we’re willing to loosen the bilinearity
restriction a bit, then there’s a way of doing this.

First we can extend the dot product in a way that captures our notion of distance — for a single complex
number, we have \z|2 = z-Z. So in general, we can use complex conjugation to define our form:
Definition 5.14. The standard Hermitian form on C" is the map C™ x C" — C given by
(T, 9)=Z1- 1 +T2- Y2+ + Tn  Yn.

This is similar to the dot product, but we conjugate all entries of the first vector. The standard Hermitian
form for C has the same property as the dot product for R — when 3 = 7, we get

<?p’7§;’>:Tl.ggl_|_..._|_fn.3;n:|$1‘2+...+|xn|27

which is a positive real number whenever 7 is nonzero. So then we’ll use the standard Hermitian form as
our central example for a form on C-vector spaces, similarly to how the dot product was our central example
for a form on R-vector spaces.

To describe this construction a bit more efficiently, we’ll use the following definition:

Definition 5.15. For a matrix M over C, the adjoint of M, denoted M*, is the matrix MT.
The adjoint has similar properties to the transpose — in particular, we have (AB)* = B*A* for any matrices
A and B. Using this notation, the standard Hermitian form can be described as
(Z,7)=7"Y.
Notice that in the standard Hermitian form, we have
(@, %) =a(Z, 7),

instead of a(¥, ). So because of the complex conjugation, the standard Hermitian form isn’t exactly linear
in the first entry.

With this in mind, let’s now define a general form for a C-vector space.
Definition 5.16. For a vector space V over C, a Hermitian form is a function V' x V' — C denoted by
(v,w) — (v, w), such that:
(1) <U7 w1 + ’LU2> = ('U,’UJ1> + ('U,’UJ2>,
(2) (v,0w) = afv,w) for all scalars «,
(3) (w,v) = (v,w).
So Hermitian forms over C are somewhat similar to symmetric bilinear forms over R, except that we have

complex conjugation thrown in.

Note that if (—, —) is any Hermitian form, then

(v, w) = (w, av) = a{w,v) = a@(v,w),

which is the same property we observed earlier for the standard Hermitian form. In particular, we have the
following important property:

Fact 5.17 — For any Hermitian form (—, —), we have (v,v) € R for all vectors v.

Proof. We have (v,v) = (v,v), and a complex number is self-conjugate if and only if it is real. O
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§5.2.1 Hermitian Matrices

Question 5.18. What does the matrix for a Hermitian form look like?

As in the case of bilinear forms, given a Hermitian form (—,—) on V| we can choose a basis {v1,...,v,}
of V and set A to be the matrix consisting of the entries a;; = (v;,v;) for all ¢ and j. Then for any
v =2x101 + -+ Tpv, and w = y1v1 + - -+ + YnvUp, we must have

(v,w) = T*AY.

So we can again describe the Hermitian form by a matrix (determined by the form’s behaviour on the basis
vectors), but here we use the adjoint rather than the transpose. We also have the condition that

aij = (vi, vj) = (vj,vi) = @i
for each ¢ and j, which means A* = A.
Definition 5.19. A matrix A is called a Hermitian matriz if A* = A.

So then Hermitian forms on C" are the same as Hermitian matrices.

When we looked at bilinear forms over R, we saw that changing our basis changes the corresponding matrix
from A to PTAP for an invertible matrix P. Unsurprisingly, for Hermitian forms, changing basis changes
the matrix to P*AP.

Example 5.20

One example of a 2 x 2 Hermitian matrix is

[ 5 242
A‘l2—2¢ 3

This corresponds to the Hermitian form
(Z,9)=2"AY =5T1-y1 +3T2 - Y2 + (2+ 20)T1 - y2 + (2 — 20)T3 - 1.
Note that (7, Z) is always real, as

(Z,T) = 5a1[* + 5 |za|* + 2Re((2 + 20)T7 - go).

Note that for any Hermitian matrix, the entries on the diagonal must all be real (as they must equal their
own conjugates).

It turns out that Hermitian matrices have nice properties. We’ll see more of these properties later, but
here’s one:

Proposition 5.21

If A is Hermitian, then all its eigenvalues are real.

Proof. Suppose X € C is an eigenvalue of A, so we have A7V = A7 for some ¥ € C". Then we have

VAT = TA\T = W'D,

But v* A7 is real since A is Hermitian, and 7*7 is also real and nonzero. So A must be real — in fact, it’s
the ratio between the pairing (U, ¥) given by A and the pairing given by the standard Hermitian form. [
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Even if all entries of A are real, this is a nontrivial fact — in general, a matrix with real entries can still
have complex eigenvalues. But this guarantees that for symmetric real matrices, all their eigenvalues are
necessarily real!

§5.3 Orthogonality

We’ll now study symmetric bilinear forms in R and Hermitian forms in C in parallel, since the theory in the
two cases is quite similar.

Earlier, when working with the vector space R™, we defined a matrix to be orthogonal if it preserves the
dot product — meaning that M7 - My = @ - ¥ for all vectors  and 7. We saw that this is equivalent
to MTM = I, or to the column vectors v; of M being orthonormal (meaning that v; - v; is 1 if i = j and 0
otherwise). We can define a similar notion in the case of C™:

Definition 5.22. A matrix M with entries in C is unitary if for all vectors Z,y € C" we have
(MZ,M7Y) = (Z,Y), where (—, —) denotes the standard Hermitian form on C".

Similarly to the case of orthogonal matrices, a matrix M is unitary if and only if M*M = I, or equivalently
if its column vectors v; are orthonormal, again meaning that (v;, v;) is 1 if ¢ = j and 0 otherwise.

§5.3.1 Orthogonal Complements

In R™, the dot product gives us a way of describing when two vectors are perpendicular. In a general
vector space, if we have a pairing “similar to” the dot product — a symmetric bilinear form for R, or a
Hermitian form for C — then we can use that form to define perpendicularity in the same way. So we’ll
now assume that V is either a real vector space with a symmetric bilinear form, or a complex vector space
with a Hermitian form; we’ll denote this form by (—, —).

Definition 5.23. Two vectors v and w are orthogonal, denoted as v L w, if (v, w) = 0.

We can also describe when a vector is perpendicular to a subspace — given a subspace W C V, we say
v L Wif (v,w) =0 for all w € W.

The dot product in R™ captures our geometric notion of perpendicularity. However, this won’t necessarily
be true in general. In particular, a vector may be perpendicular to itself!

Example 5.24
Consider the bilinear form on R* defined by
-1 0 0 O
0 1 0 0
A= 0 0 1 0f”
0 0 0 1

which comes up in special relativity. Then (1,0,0,1)T is orthogonal to itself.

Definition 5.25. Given a subspace W C V, we define its orthogonal complement W+ as the subspace
{veV|vLl W}

Question 5.26. When can we split V' as a direct sum of W and wit?
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In R3, we always have R3 = W @ W+ — for instance, if W is a plane, then W is the line perpendicular
to all lines in the plane. We’d like to make a similar statement for a general vector space and symmetric
bilinear form. But this isn’t true — we may have a vector v which is orthogonal to all of V. So we’d like
to impose a condition on our form to avoid such behaviour, and for that we’ll use the following definition:

Definition 5.27. The null space of (—, —) is the space of vectors v for which v+ = V.

In other words, the null space is the subspace of V' consisting of vectors orthogonal to all of V. We’ll denote
the null space by N.

Example 5.28

In the form given by A = I (the dot product or standard Hermitian form), we have N = {0}. Meanwhile
in the form given by A =0, we have N = V.

Definition 5.29. If N = {0}, then we say that (V, (—, —)) is nondegenerate.

So the form corresponding to I is nondegenerate, while the form corresponding to 0 is degenerate (as we
would expect). More generally, we can describe the null space explicitly using the matrix A — we have
v € N if and only if w*Av = 0 for all w € V. This occurs if and only if Av = 0, meaning that v € ker(A).
In particular, the pairing is nondegenerate if and only if A is invertible.

But V being nondegenerate doesn’t exactly guarantee that the pairing is “well-behaved” — the pairing in
Example is nondegenerate, but it still has the weird behaviour that some vectors are perpendicular to
themselves. This is because even if (—, —) is nondegenerate on V', its restriction to a subspace W C V may
be degenerate.

Example 5.30

The pairing in Example is nondegenerate as a pairing on R*. But it becomes degenerate if we
restrict it to Span((1,0,0,1)T), since any two vectors in this span are orthogonal.

By definition, the restriction of (—, —) to W is nondegenerate if and only if for all w € W, there exists
another vector w’ € W such that (w,w’) = 0. This is equivalent to stating that W NW+ = {0} — if we had
a vector w in both W and W, then by the definition of W+, w would have to be orthogonal to all of W.

Now we're ready to answer the question on when we can use (—, —) to split V' as a direct sum:

Theorem 5.31
If the restriction of (—, —) to W is nondegenerate, then V = W @ W+,

Recall that the statement V. =W & U means every v € V can be written uniquely as a sum w + u where
weWandueU.

It’s clear that the nondegeneracy condition is necessary — if (—, —) were degenerate, then we would have
W N W+ # {0}, and therefore we could not have V =W @ W+,

Proof. First, the condition that (—, —) restricted to W is nondegenerate means that W N W+ = {0}, so it
suffices to show that V' = W + W, — or equivalently, that every vector v € V can be written as the sum
of a vector in W and one in W+.

We’ll work over C, but the same argument works over R as well.
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Pick a basis {w1,...,w;} for W, and define a map ¢: V' — C* sending
V= (<wla U>7 ce <wkvv>)'

Then ¢ is linear by the properties of Hermitian forms. Meanwhile, ker(y) is the set of v € V for which
(w;i,v) = 0 for all the basis vectors w;, but since the vectors w; span W, this is true if and only if (w,v) =0
for all vectors w € W. So then ker(yp) = W.

Now we can use the dimension formula — we have
dim V' = dimker(¢) + dimim(¢p).
But we know ker(¢) = W+, and dimim(yp) < dim W (since im(¢p) is a subspace of C¥). So
dimV < dim W + dim W+,

On the other hand, since W N W+ = {0}, then W @ W+ must be a subspace of V' — more explicitly, we
have a map W @ W+ — V given by (w,u) + w + u, and this map must have kernel {0} since W and U
only have 0 in common, so it must be injective and therefore it identifies W @ W+ with a subspace of V.

So then we must have dimV > dim W + dim W+ as well. This implies equality holds in both statements,
and therefore W @ W+ = V. O

Remark 5.32. We used nondegeneracy only in the beginning, to show W N W+ = {0}. In particular,
we don’t need the form to be nondegenerate on V for this argument to work.

§5.3.2 Orthogonal Bases

Theorem is quite powerful; one implication it has is the following.

Theorem 5.33

Given any symmetric bilinear form (for R) or Hermitian form (for C) on V', we can find an orthogonal
basis for V' — a basis {v1,...,v,} such that (v;,v;) = 0 for all ¢ # j.

Concretely, an orthogonal basis is one where the matrix for (—, —) is diagonal (since all the entries not on
the diagonal must be 0).

Proof. We use induction on dim V' = n.

To motivate the proof, we can use our geometric intuition — if our form makes sense geometrically, then
we can take any vector u and the space u. Then by induction we can find an orthogonal basis for u',
and combine this basis with u to get an orthogonal basis for V. This idea almost works in general, but
we have to be careful, since being able to split V' into a line and its orthogonal complement depends on

nondegeneracy.

Then let W = Span(u), which is a one-dimensional

vector space. Since (u, ) # 0, the restriction of (—, —) to W is nondegenerate (since its corresponding matrix
is the 1 x 1 matrix consisting of (u,u)). So then by Theorem , We can write
V=WwaoWw,

where W is one-dimensional and W+ is (n — 1)-dimensional. By the inductive hypothesis W+ has an
orthogonal basis {va,...,v,}, and adding in u gives an orthogonal basis for V.
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This is a very strong constraint, and we’ll show it implies (v, w) = 0 for
any two vectors v and w. Then we’re done, since any basis is an orthogonal basis.

Consider the equation

0= (w+w,v+w) = (v,v) + (v,w) + (w,v) + (w, w) = (v,w) + (W, v).

In the case of R, since (—, —) is symmetric, this immediately implies (v,w) = 0. Meanwhile in the case of
C, this implies (v, w) has a real part of 0, and we can perform the same argument with v + iw instead to
get that (v, w) has imaginary part 0 as well. O

In fact, we can slightly strenghten this statement.

Corollary 5.34
We can find an orthogonal basis {v1,...,v,} for V such that (v;,v;) € {1,—1,0} for each .

Proof. We can start with any orthogonal basis {z1,...,x,} and simply scale it — scaling any vector x;
preserves orthogonality. For each 4, if (x;, z;) = 0 then we can take v; = x;. Otherwise we can take v; = cx;
for some real ¢ which makes (v;,v;) = £1 — more explicitly, we take

1

(s, 24|

v; = ZTi. O
This tells us that up to a choice of basis, there aren’t actually that many possibilities for a symmetric bilinear
or Hermitian form — we can always find a basis in which the form is a diagonal matrix with diagonal entries
all £1 and 0. In particular, (—, —) is nondegenerate if and only if the diagonal only consists of £1 — if we
had a 0 on the diagonal, then the matrix would not be invertible.

Using these matrices, we can also describe another useful property:
Definition 5.35. The form (—, —) is positive definite if (v,v) > 0 for all nonzero vectors v.

In the orthogonal basis as described in Corollary , we can see that (—, —) is positive definite if and only
if the diagonal only consists of +1 (since a —1 or 0 would correspond to a basis vector with (v;, v;) < 0).
Conversely, if we have a basis for which the matrix only consists of +1’s, then in that basis the form is just
the dot product or standard Hermitian form, and is therefore positive definite.

There are many different orthogonal bases which we could use to write (—, —) as a matrix with the described
property. But interestingly, the way this matrix looks doesn’t depend on the choice of basis!

Fact 5.36 (Sylvester's Law) — Given (—, —) on V, for any choice of orthogonal basis as described in
Corollary , the number of 1’s, —1’s, and 0’s on the diagonal are fixed.

These numbers are called the signature of (—, —). For example, the dot product written in any orthogonal
basis will consist of only +1’s on the diagonal, and the pairing in Example will always consist of one
—1 and three +1’s.

Finally, we can also translate these results into ones about matrices, in the same way as we did for linear
maps and operators, by starting off with a matrix A representing a form on R"™ and changing basis.

Theorem 5.37

If A is a symmetric n X n matrix over R, then there exists a matrix P € GL,,(R) such that PTAP is
diagonal, and all its diagonal entries are 1, —1, or 0. Furthermore, A is positive definite if and only if
A = Q7Q for an invertible matrix Q.
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The first statement follows directly from our observation earlier that changing the basis corresponds to
replacing A with PTAP. To see the second, we’ve seen that the form corresponding to A is positive definite
if and only if the rewritten matrix PTAP is actually I. We can let Q = P~! and multiply by QT and Q on
the two sides, to get that this occurs if and only if A = Q7Q.

An analogous statement is true for matrices over C instead (using Hermitian matrices and taking the adjoints
instead of transposes).

§5.3.3 Orthogonal Projection

Suppose we have a vector space V over R or C with a symmetric bilinear form or Hermitian form (—, —),
and a subspace W C V for which (—, —) restricted to W is nondegenerate. Then Theorem tells us that
V =W @ W, so every vector v € V can be written uniquely as a sum w + v with w € W and v € W+,

Question 5.38. How can we compute w and u?

In a geometric setting, computing w and w corresponds to splitting v into a piece which lies in W, and
another piece perpendicular to W.

Definition 5.39. The orthogonal projection w:V — W is the linear map sending v — w.

Note that by definition, v — 7w(v) L W.

Orthogonal projection is really useful. In geometric situations, w is the vector in W closest to v. So
calculating w given v comes up a lot in data analysis, especially in using least squares approximation.

It turns out that there’s a nice way of finding the map 7 assuming that we have an orthogonal basis for
W. (If we don’t already have an orthogonal basis for W, then we’d start by finding one — next class we’ll
discuss how to do this in the special case where the form is positive definite.) Let this orthogonal basis be
{wiy, ..., w;}; then since the form is nondegenerate on W, we have (w;, w;) # 0 for all 7.

Now take our vector v € V', so we want to find the coefficients ¢; for which
v=cwy+ - t+cwg t+u

with v L W. To find these coeflicients, we can simply pair v with the basis vectors — if v is in this form,
then we have
(wi,v) = er{wy, wi) + ca(wr, w2) + - -+ = er(w, w),
since w; is orthogonal to all the other w; (since they form an orthogonal basis) and to u (since u € W+).
The same occurs for all other indices, so we get
_ <wi7v>
b (wi, wy)

for each i, and then m(v) = cyw; + - - - 4+ cpwy, for these values of ¢;.

Example 5.40

Consider the vector space R? with the dot product, and let W be the span of w; = (1,1,1)T and
wy = (1,1,—2)T (which form an orthogonal basis of W). Find the projection of v = (1,2,3)T onto W.

Solution. We can compute (wy,w;) = 3, (w1, ws) = 6, (wy,v) = 6, and (w2, v) = —3. So then we have
s [t 3/2
1 —2 3
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One interesting application of this formula is that if we take W to be the entire vector space V, then this
tells us how to find the coordinates of any vector v with respect to a given orthonormal basis of V.

§5.4 Euclidean and Hermitian Spaces

Definition 5.41. A Fuclidean space is a vector space over R equipped with a positive definite symmetric
bilinear form. Similarly, a Hermitian space is a vector space over C equipped with a positive definite
Hermitian form.

We’ve seen already (in Corollary ) that if V' is Euclidean or Hermitian, then it has an orthonormal basis:

Definition 5.42. An orthonormal basis is a basis {v1,...,v,} such that

v M_{o if £ 5
Yy ap - o
1 ifi=j.

This is because Corollary implies we can find an orthogonal basis in which each (v;,v;) is £1 or 0, and

then positive definiteness guarantees that they are all 1.

Many of the results we proved earlier rely on nondegeneracy. It turns out that nondegeneracy always holds
in this situation:

Proposition 5.43

If V with (—, —) is Euclidean or Hermitian, then (—, —) restricted to any subspace W is nondegenerate.

Proof. Recall that by definition, (—, —) restricted to W' is degenerate if and only if there are nonzero vectors
w € W which are orthogonal to all of W. But each vector w is not orthogonal to itself, since (w,w) > 0. [

So then everything we’ve proved regarding splitting V = W @ W+ and calculating orthogonal projections
does hold in any Euclidean or Hermitian space.

§5.4.1 The Gram—Schmidt Algorithm

Question 5.44. Given a Euclidean or Hermitian space, how can we find an orthonormal basis?

Suppose we have a Euclidean or Hermitian space V, and we start off with some basis {v1,...,v,}. We'd
like to turn this basis into a basis {u1,...,u,} which is orthonormal.

We’ll inductively build this basis, by going through our original basis and correcting it one vector at a time.
More precisely, let Vi, = Span(vy,...,vg) for each k. Then we’ll construct uy, ug, .. .so that Span(uq, ..., ux)
is also V}, for all k, and the u; form an orthonormal basis for V.

First we’ll find ;. We can “fix” v1 by simply scaling it — we take

which produces an orthonormal basis for V.

We now want to find an orthonormal basis for V3, building off the one we have for V;. The problem
with our original basis is that v2 may not be orthogonal to vi. So we first set z3 = projy, v2 (this denotes
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the projection of ve onto V1), and y2 = vy — x2. Then yo is orthogonal to all of V; (and therefore to uy),
and Span(u,y2) = Va. So finally, we can scale y2 to get our basis vector

1
U = —F77——=Y2.
<y27y2>

We can essentially perform the same construction for all the following steps:

Suppose we've constructed an orthonormal basis {ui,...,ux} for Vi, and we now want to find
Ug+1- First set xp1 = projy, vg+1 and Yxy1 = Vg1 — Tpyp1 — SO Yg41 IS essentially the part of viy1 which
is orthogonal to V. Note that replacing vi41 with yr+1 doesn’t change the span of our first £ + 1 vectors,
since xy1 is in V; also note that yi1 is nonzero, since vg1 cannot be in Vi. Then we can scale again and

take our new basis vector to be 1

Ukl = 77—
<yk+17 yk+1>

Yi+1-

Repeating this process eventually produces an orthonormal basis for the entire space V.

What’s nice about this algorithm is that when we’re attempting to project vgq onto Vi, we already have
an orthonormal basis for Vj, which means we know how to do the projection — we have

. Ui, Vg
Projy, k41 = Y Wul = (U4, Vig1) s
7y Y1

So this algorithm is quite computationally feasible.

We can also rewrite the result of the Gram—Schmidt algorithm in terms of matrices. Suppose we start
off with a matrix M € GL,(R), so we can think of the columns of M as a basis {v1,...,v,} for R".
The algorithm tells us that we can correct this basis to turn it into an orthonormal basis {u,...,u,}
with respect to the dot product. More specifically, it tells us that we can correct the basis in a way such
that Span(ui,...,ux) = Span(vy,...,vg) for all & — so then we have u; = aj1v1, us = a1av1 + avs,
uz = a13v1 + a3v2 + aszvs, and so on, for some coefficients a;;. We can rewrite this as

ai 0 0
‘ ‘ ‘ aip a2 - 0 ‘ ‘ ‘
Uy U2 - Ug| = . . . . |1 V2 - Up
Alp A2n *° Apn

So this gives the following statement in terms of matrices:
Proposition 5.45
Given any M € GL,(R), there exists a lower triangular matrix ¢ and an orthogonal matrix R such

that M = QR.

Here R is the matrix of the u; (corresponding to the new basis), and @ is the inverse of the matrix (a;;).
This result can be computationally useful.

§5.5 The Spectral Theorem

We’ll now work specifically over C — let V' be a Hermitian space with pairing (—, —).
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§5.5.1 Some Definitions

Definition 5.46. Given a linear operator T:V — V| its adjoint is the linear operator T*:V — V defined
as follows: Take an orthonormal basis {uq,...,u,} of V. Then if the operator T' corresponds to the
matrix M, its adjoint 7™ is the linear operator corresponding to the matrix M*.

So we're essentially using our definition of the adjoint for matrices, working over C" with the standard
Hermitian form, to define the adjoint for linear operators in abstract Hermitian spaces (since choosing an
orthonormal basis maps V' — C™ and (—, —) to the standard Hermitian form).

This definition is quite weird, because it asks us to pick an orthonormal basis — if we picked a different
basis, would we still get the same operator T*? Fortunately, the answer is yes — it’s possible to describe
T* without referencing a basis at all.

Proposition 5.47
The operator T™* has the property that (Tv,w) = (v, T*w) for all v and w.

Proof. We can translate this statement to one about C™ by picking an orthonormal basis {u1,...,u,}.
Suppose that in this basis, v corresponds to a column vector Z and w to i. Then Tw corresponds to M7,
so using properties of the adjoint, we have

(Tv,w) = (MZ)'y ="My =2 (MY) = (v, T"w),
since we defined T™* to correspond to M*. O

This uniquely determines the linear operator — if we take an orthonormal basis {ui,...,u,} and set v = u;
and w = u;, then (u;, T*u;) gives the ith coordinate of T*u;, so over all ¢ and j this determines the value
of T™ on each basis vector, and therefore on all of V. So this means the definition of T™ is independent of
the choice of basis.

Now that we have the concept of an adjoint in an abstract Hermitian space, we can take some of the
definitions we had in C™ that referenced adjoints, and move them to our Hermitian space as well.

Definition 5.48. A linear operator T:V — V is a Hermitian operator if T* =T.

If we fix an orthonormal basis, then a Hermitian operator corresponds to a Hermitian matrix (one with the
property that A* = A). Note that this condition is equivalent to stating that for all v and w we have

(Tv,w) = (v, Tw).

Definition 5.49. A linear operator 1:V — V is a unitary operator if T*T is the identity operator.
Equivalently, if we fix an orthonormal basis, then a unitary operator corresponds to a unitary matrix (a

matrix such that U*U = I). We’ve seen that unitary matrices are the matrices which preserve the standard
Hermitian product, and the same is true here — 7' is Hermitian if and only if for all v and w we have

(Tv, Tw) = (v,w).

There is a more general property that encapsulates both of these:
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Definition 5.50. A linear operator T:V — V is normal if TT* = T*T.

Hermitian operators are normal because 7% = T, and unitary matrices are normal because 7% = T~ —
any matrix commutes with itself and with its inverse. But this property is more general than being either
Hermitian or unitary — there exist operators which are normal but neither Hermitian nor unitary.

Example 5.51

Consider the matrix

A=

===

1 0
11
0 1
This is normal, but not Hermitian or unitary — A* isn’t A or A1, but it does commute with A.

We can also rewrite this condition in terms of the pairing — if 7" is normal, then for all v and w we have
(Tv, Tw) = (v, T*Tw) = (v, TT*w) = (T*v, T w).

The converse is true as well (since if (v, T*Tw) = (v, TT*w) for all v and w, we must have T*T = TT™).

§5.5.2 The Spectral Theorem

Theorem 5.52 (Spectral Theorem)

Let V be a Hermitian space, and let T: V' — V be a normal linear operator. Then V has an orthonormal
basis {u1,...,u,} where each u; is an eigenvector of 7T'.

We’ve previously discussed how to diagonalize a linear operator 7', and how to find an orthonormal basis
for a Hermitian space V. But the Spectral Theorem tells us that we can do both at once — we can find a
basis that answers both questions simultaneously. In particular, it means a normal linear operator is always
diagonalizable — we don’t need to use the more complicated Jordan normal form.

We can rewrite the Spectral Theorem in terms of matrices as well — assume that V' is C™ under the standard
Hermitian product. Then the theorem tells us that given a matrix M such that M*M = MM?*, we can
find an orthonormal eigenbasis — this means we can find a unitary matrix P such that P~'M P is diagonal
(here the columns of P are the eigenbasis, and P is unitary since its columns are orthonormal). Note that
since P is unitary, we also have P~'MP = P*MP.

In this section we’ve been working over C because the theorem at this level of generality is false over R.
There is a version of the Spectral Theorem over R — given a Fuclidean space V and a symmetric linear
operator T:V — V', we can find an orthonormal eigenbasis.

But this isn’t true in as much generality as it is for C (we can think of symmetric as the analog of Hermitian).
For example, we can’t even necessarily diagonalize an orthogonal matrix in the first place (we’ve seen that
rotations in R? are orthogonal, and they have no eigenvectors).

Example 5.53

Consider the symmetric matrix
3 -1
. [_1 g ] |

Then the vectors %(1, 1)T and %(1, —1)T form an orthonormal eigenbasis, with eigenvalues 2 and 4.
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Now we’ll prove the Spectral Theorem. First we’ll prove some useful properties of the adjoint.

Lemma 5.54

Let T:V — V be a linear operator, and let W be a subspace of V' such that T" preserves W. Then T
preserves W+,

Recall that T preserving W means that T (W) C W — or in other words, for all w € W, we have Tw € W
as well.

Proof. Tt suffices to show that for any u € W+, we have T*u € W+ as well, meaning that (w,T*u) = 0 for
all w € W. But by Proposition , we have
(w, T*u) = (Tw, u).

Since T preserves W, we have Tw € W and u € W+, which means this pairing must be 0. So (w, T*u) = 0
for all w € W, and therefore T*u is in W+, OJ

Lemma 5.55

Let T be a normal linear operator. If Tv = Av, then T*v = \v.

In other words, this states that 7" and T™ have the same set of eigenvectors, and their eigenvalues are complex
conjugates.

Proof. First we'll solve the specific case where A = 0. Then we know v is in ker(T"), and we want to show v
is in ker(7T™) as well. Since Tv = 0 and T is normal, we have

(T*v, T*v) = (T'v,Tv) = 0.
But since V' is Hermitian, (—, —) is positive definite, so we must have T*v = 0.

Now for the general case, let S = T — AI. Then v is in ker(S), and meanwhile we have S* = T* — \I. We
can check that S is still normal — S and S* commute because T" and 7™ do. So then by the special case
shown earlier, we have that v is in ker(S*) as well, which means T*v = Av. O

Remark 5.56. The main idea here, of studying a general eigenvector by shifting its eigenvalue to 0, is
one that came up quite frequently when we studied eigenvectors previously.

Now with this, we can prove the Spectral Theorem.

Proof of Theorem. We’ll use induction on the dimension of V' — we’ll break V' as a direct sum of two smaller
pieces, and inductively find an orthonormal eigenbasis of each piece.

Since we’re working over C, we know we can find at least one eigenvector w € V and a corresponding
eigenvalue A, so that Tw = Aw. Since (w,w) > 0, we can scale w such that (w,w) = 1.

Now let W = Span(w), and split V = W @ W+ (we can do this by Theorem since (—, —) is positive
definite and therefore nondegenerate). We know T preserves W (since T scales w), so in order to be able to
induct, we want to show that T preserves W= as well.

We know that Tw = Aw, so by Lemma (since T' is normal), w is an eigenvector for T as well. So then
T* also preserves W, and by Lemma this means (T*)* = T preserves W=.

So now we can split V =W @ W. Since T preserves both W and W, it acts separately on the two pieces.
So by the inductive hypothesis, we can find an orthonormal eigenbasis for T acting on W; then adding w
to this list gives an orthonormal eigenbasis for V. O
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In the case of Euclidean spaces over R, most of the argument still works as written. The one part which
doesn’t work is the beginning, where we find an eigenvector and an eigenvalue — the argument breaks if we
can’t find any real eigenvectors. This is why the Spectral Theorem does hold for symmetric matrices — we
showed in Proposition that for any symmetric matrix (or more generally any Hermitian matrix), all its
eigenvalues are real. So we can always find one eigenvector w and eigenvalue A to get started, and the rest
of the argument works in the exact same way.

Remark 5.57. In fact, in the case of symmetric matrices over R, there’s another proof of the Spectral
Theorem via Lagramge multipliers to find w and A — the value of A which comes from using Lagrange
multipliers is actually an eigenvalue.

§5.5.3 Application to Quadratic Forms

Suppose we have a quadratic form f(z,y) = az? + bry + cy? (a function in = and y which only contains
terms of degree 2). Then we can rewrite f in terms of a symmetric matrix — if we take

a b/ﬂ

M= b/2 ¢

then we have
f(x,y) = (z,y)M(z,y)T.

Example 5.58
The quadratic form f(z,y) = 322 — 2xy + 3y? corresponds to the matrix

M:l_f”l —31].

By the Spectral Theorem, there is an orthogonal change of coordinates — meaning we write (z,y)T =
P(z',y/)T for an orthogonal matrix P — such that we have

A 0
T =
PTMP [0 )\21 .

Then using this change of coordinates, we can rewrite

Flzy) = (@) + ),

which makes it much easier to understand what the original quadratic form does.

Example 5.59
For the form given in Example , we can set x = %(CL‘/ +¢') and y = %(,I/ —4/), and in the new
coordinates we have
Fla,y) = 2)2 + A(y))2
We can do this with more than two variables as well — if we have a quadratic form f(x1,...,2,) = an123, +
oot A Toan + 2 ZKj ai;r;T;, then we can again choose an orthogonal matrix P such that (X1, .., 2p)T =
P(z),...,2})T, and our original quadratic form becomes A1 (x})? + -+ + A\n(2),)? — so we can eliminate all

the cross-terms z;x;. More explicitly, we can obtain P by taking the symmetric matrix M of the a;;’s and
using the Spectral Theorem to find a new coordinate system (which is still orthonormal, and in which M
becomes diagonal).

In two and three dimensions, this has a nice geometric interpretation as well:
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Question 5.60. Consider a curve ax? + bxy + cy? +dz + ey + f = 0. What can this curve look like?

There’s a few familar possibilities:
« An ellipse, for example given by az? + by? = 1;
« A hyperbola, for example given by az? — by? = 1;
« A parabola, for example given by axz? — y = 0;
o Two intersecting lines, given by (a1z + b1y)(asz + bey) = 0;
« Two parallel lines, for example given by 22 = a;
« A single line, for example given by 22 = 0;
« A single point, for example given by z2 + y? = 0;
o The empty set, for example given by z? + 3% = —1.

The first three cases — ellipses, hyperbolas, and parabolas — are called conics; the remaining cases are all
degenerate.

Theorem 5.61
After an isometry, all curves az? + bxy + cy? + dx + ey + f = 0 look like one of the curves on this list.

Proof. Let ¥ = (z,y)T, so then we can rewrite the equation as
TTAT+BU + f=0

for matrices A and B. First we’ll deal with the quadratic part using the Spectral Theorem — we can find
an orthogonal change of basis in which A becomes diagonal, so then our equation becomes

M2+ Xyl + bz +boy+ f=0

(note that we’re now using x and y to refer to the new variables). First, if A\; and A2 are nonzero, then we
can complete the square to get rid of the linear terms — if we send x — x + by /21 and y — y + by /e, then
we get an equation of the form

ANz + )\2y2 =c.

If ¢ is nonzero then we either get an ellipse, hyperbola, or the empty set; if ¢ = 0 then we either get one
point or two intersecting lines (depending on whether A; and A2 have the same or opposite sign).

We can perform a similar analysis when one of A\; and Ay is 0, and this will give the remaining cases — for
instance, if Ay = 0 and Ay # 0, then we get a parabola. O

The importance of the fact that our new basis is orthogonal is that the transformations we perform on x
and y are isometries — we’ve essentially just rotated (or reflected) the coordinate axes. So our original
curve has the same shape as the new one, and if we want to return to the original coordinate system, we
can simply rotate back.

Page 96 of



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

§6 Linear Groups

§6.1 Introduction

So far, we’ve been studying group theory and linear algebra. We’ll now study a topic related to both — we’ll
look at groups of matrices with certain properties. The group of all invertible matrices, GL,,(R), has several
interesting subgroups: the special linear group SL,(R), the matrices with determinant 1; the orthogonal
group O, consisting of matrices such that AT = A~!; and the special orthogonal group SO,,, which is their
intersection. All of these are groups of matrices which preserve some linear algebraic property — SL, (R)
preserves volume, and O,, preserves the dot product.

We can also work over C instead of R, and consider subgroups of GL,,(C). One interesting subgroup is still
SL,(C). Another is the unitary group U, consisting of matrices such that A* = A~! — similarly to how O,
preserves the dot product, U, preserves the standard Hermitian product. We also have their intersection,
the special unitary group SUsy, which consists of matrices which both have determinant 1 and are unitary.

These are all examples we’ve seen before, but there are many others. We could also look at matrices
preserving other bilinear forms — for example, the form defined by

'1 0 0 7
0 1 0
. 0
Ipg= Ié’ _(}q =10 0 1
—1 0
0 z
i 0 —1]

These matrices would satisfy the equation ATI, A = I, ;; they form another interesting subgroup of GL,,(R).

What’s special about working with R or C (as opposed to a finite field) is that they have a notion of
distance. We can think of matrices in GL,(R) as a subset of R™, so then we have a way of measuring the
distance between two matrices — this means subgroups G < GL,,(R) inherit a metric. The same is true for
G < GL,(C), since we also have a definition of distance between complex numbers. This means that the
group structure and topology can interact.

In particular, note that in all these cases, the group operation of multiplication of matrix multiplication is
continuous, and so is its inverse. Previously when studying groups, we looked at homomorphisms between
them, which preserved the group structure. Now we have both a group structure and a topological structure,
so we’ll look at continuous homomorphisms.

Example 6.1

There is a continuous homomorphism (R, +) — SOs, given by sending 6 — pg. We can think of this
homomorphism geometrically — since SOy consists exactly of rotation matrices, we can think of it as
R/277Z, or as a circle. Then this homomorphism maps the line R to the circle by wrapping it around
the circle infinitely many times.

Example 6.2

We can think of Oy geometrically as two circles — one circle represents SO2, and the other represents
the set of reflections.

Both these examples are one-dimensional, but we’ll soon see an example of a group which geometrically is
a higher-dimensional figure, and where this geometric intuition is really useful in understanding the group.
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§6.2 The Geometry of SU,

Recall that SUs is the set of 2 x 2 matrices over C which have determinant 1 and are unitary (meaning
A* = A~1). We'd like to figure out what SUjy “looks like.”

§6.2.1 An Explicit Description

To start with, we’d like to get a more explicit description for SUs. Suppose we have a matrix

A= [?Y‘ ?] € SU,.

1 o —B| |0 =B
A _detA[—v al_[—y a]

(since A is supposed to have determinant 1), while

Then we can calculate

Setting these equal gives that we must have

a @
A=L5ak

and then the condition det(A) = 1 becomes |o|* 4 |8> = 1.

We can now write @ = xg + ix1 and S = z9 + ix3, so then we have

1 : 1 :
amaly iy Sealti e[

0 1 0 —
with 22 + 22 + 23 + 2% = 1. The first matrix is I, and we can name the others i, j, and k. These satisfy the
properties that i> = j> = k? = —1I, ij = k and its cyclic variants, and ji = —k and its cyclic variants. This
actually gives rise to an interesting structure:

+ Z9

Definition 6.3. The quaternions, denoted by H, are the group of elements xol + x1i 4+ x2j + x3k for
g, T1, T2, 3 € R under multiplication.

Since we know how to multiply any two of these matrices, H is closed under multiplication, so it is a valid
group — we can think of it as a four-dimensional version of C, except that multiplication isn’t commutative.
But what’s important for our purposes is that H is a four-dimensional vector space over R, and SUj; is a
subset of this four-dimensional vector space. More specifically, it’s the subset satisfying the equation

25, 2. 2 2
Ty + 71 +ry + a3 =1,

which defines a three-dimensional sphere (in a four-dimensional space). So geometrically, SU; is the 3-sphere.

§6.2.2 Geometry of a Sphere

The 3-sphere is hard to picture, so we’ll start by thinking about the 2-sphere S? — the set of solutions in
R? to 3 + 2% + 23 = 1. One natural way to think of points on S is in terms of latitude and longitude.
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Definition 6.4. The latitudes of a sphere are the sets of points on the sphere with fixed x(; we use Lat,
to denote the set of points with g = c.

Geometrically, the latitudes of the 2-sphere come from taking horizontal slices of the sphere.

So the latitudes of the 2-sphere are all circles — if we start at the top of the sphere and move down, then
the latitudes start at a point, grow larger until the equator of the sphere, and then shrink back to a point.

Definition 6.5. The longitudes of a sphere are the circles of radius 1 which pass through the north and
south poles.

So longitudes correspond to slicing the sphere at different angles.

Now we can do the same for the 3-sphere. The latitudes are still defined as
Lat. = {(x0, 21, T2, 23) | g = ¢} N S3,

the set of points with fixed first coordinate. Note that now the latitudes are 2-spheres. The latitudes at

c = %1 are single points, and the latitude at ¢ = 0 is the largest sphere; this is called the equator, and
denoted E.

We can also consider the longitudes of the 3-sphere. We'll define these more precisely later, but they will
still be circles of radius 1 passing through the north and south poles (£1,0,0,0).

We can use latitudes and longitudes to describe our 3-sphere — every point lies on a unique latitude,
and every point except the north and south poles lies on a unique longitude. Meanwhile, each latitude
and longitude intersect at two points. We’ll now see how this description of S? in terms of latitudes and
longitudes can be used to understand the group structure of SUs.
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§6.2.3 Latitudes of SU>

Theorem 6.6

The conjugacy classes of SUy are precisely the latitudes.

This has a useful corollary — recall that an element is in the center of a group if and only if its conjugacy
class has size 1. But the only latitudes which consist of just one element are the latitudes at 41, so this
implies that the center Z(SU,) is precisely +1.

Proof. The key observation is that I has trace 2, while i, j, and k all have trace 1. So then if a matrix
A € SU, has coordinates (xg,x1, x2,z3) on the sphere, we have tr(A) = 2xy. So then latitudes correspond
exactly to slices of SUsy with fixed trace.

So it suffices to show that two matrices A and A’ in SUy are conjugate if and only if they have the same
trace. One direction is clear — trace is preserved by conjugation, so if A and A’ are conjugate, then they
must have the same trace.

For the other direction, we want to show that if tr(A) = tr(A’), then A and A’ are conjugate to each other —
meaning that A’ = P~1 AP for some P € SU,. First note that A and A’ both have characteristic polynomial

t2 —t-tr(A) +1,

since their traces are tr(A) and their determinants are 1. Let A\; and A9 be the roots of this polynomial.
Then by the Spectral Theorem, we can diagonalize A using an orthonormal basis, which means we can find
a unitary matrix @ such that

A0
-1 _ M
But then we can do the same for A’. This immediately implies that A and A’ are conjugate to the same

matrix in Us, and therefore to each other.

But we actually need to show that they’re conjugate in SUs. It turns out this isn’t much harder — we can
scale the matrix @) described above to have determinant 1. More explicitly, suppose @ is a unitary matrix,
with det Q = §. Then since @ is unitary, we have Q*Q = I, so

1 = det(Q*) det(Q) = 46,

which means |J| = 1. Now scale @) to the matrix @ = ~v(@ for one of the two complex numbers ~ such that
42 =671, Then Q is still unitary, as Q*Q =7Q" -7Q = Q*Q =1 (since ¢ has magnitude 1, so v must have
magnitude 1 as well). But now @ also has determinant 1.

So then A and A’ are both conjugate to the described diagonal matrix in SUs as well, and therefore they
are in the same conjugacy class. O

Remark 6.7. When studying conjugacy classes of finite groups, we had the class equation

7

where the C; denote the conjugacy classes of G. Here SUs is infinite, so it doesn’t make sense to discuss
the size of sets. But it does make sense to discuss volume, so the analog of the class equation here is

1
Vol(SUz) :/ Vol(Conj,.) de.
—il

This idea is quite useful when studying SUs more deeply — if we want to integrate a geometric quantity
over the entire group, we can first integrate over each conjugacy class.

Page 100 of



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

§6.2.4 Longitudes of SU,

When discussing the geometry of the 2-sphere, we also discussed longitudes. We’ll now define the longitudes
of S more precisely:

Definition 6.8. Given a point x € E, its corresponding longitude, denoted Long,, is the circle passing
through the north pole, the south pole, and =x.

Alternatively, we have Long, = Span(I,z) N .S3 — here Span(/, z) is the plane passing through the north
and south pole and z, and intersecting it with the sphere gives the unit circle of this plane.

Theorem 6.9
For each z € E, the longitude Long, is a subgroup of SUs.

Proof. We'll first prove this for the specific case x = i. Suppose we have two points ¢l + si and ¢'T + §'i
in Long;. Then since i> = —1, their product is still a linear combination of I and i, and is therefore in
Span([, i) as well. But their product is also in SUs since SUs is a group, so it’s in Long; as well. This means

Long; is closed under multiplication, so it’s a group (the identity is I, and the inverse of ¢ + si is ¢ — si).

But now if we take any point x € E, we know x is conjugate to i (since the conjugacy classes are precisely
the latitudes). Then Long, is conjugate to Long; as well, so it’s also a subgroup. O

This proof shows that not only are the longitudes all subgroups, but they’re also conjugate to each other.

In fact, we have an isomorphism from the circle group R/27Z to Long, given by 6 + cos@ - I +sin -z (this
can be shown in the same way — it’s true for x = i by straightforward computation, and we can extend the
result to all z € E using the fact that E is a conjugacy class).

The longitudes have other applications as well:
Fact 6.10 — For any = € E, the centralizer Z(z) is exactly Long,.

It’s clear that Long, must be contained in Z(x) — it’s a subgroup of SUy containing = which is abelian
(since the circle group R/27Z is abelian), so all its elements must commute with z. But it turns out that
equality holds.

§6.2.5 Connection to SOj3

In Proposition , we saw that in any group action, given some s € S there is a bijection between left
cosets of the stabilizer of s and elements of the orbit of s. In particular, taking the action to be conjugation,
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for each g € G, there is a bijection between the left cosets of Z(g) and elements of C(g). Here, if we take g
to be i, then we get a bijection between its conjugacy class E and the cosets of Long;, which are all circles
(not necessarily through the north and south poles). We can actually take this further using group theoretic
terms.

We know SUs acts on E by conjugation, since E is a conjugacy class. In fact, conjugation by each element
of SUy defines a linear operator on the subspace of H with zp = 0 (since conjugation preserves trace, and
therefore x¢g — the linearity of this operator follows directly from the distributivity of matrix multiplication).
So this defines a group homomorphism p: SUs — GL3(R), where for each g € SUjy, we define p(g) as the

linear operator on H given by v — gvg~!.

But we know that this linear operator preserves E, which is the unit sphere inside H. So this means p(g)
preserves the length of unit vectors, and therefore the length of all vectors — so it’s actually an isometry,
and our homomorphism is actually a homomorphism p: SUy — Oj.

But we can actually say even more. We know all orthogonal matrices have determinant 1 or —1. But SUs
is connected (we can start at any point and reach any other point by taking a continuous path), and p
is continuous, so det(p(g)) cannot ever jump from 1 to —1. This means det(p(g)) is constant over all g;
and since the determinant of the identity is 1, this means det(p(g)) = 1 for all g. So then p is actually a
homomorphism SUs — SOs3.

In fact, it’s possible to show that as the homomorphism p: SUy — SOg is surjective, and its kernel is {+1}.
So this gives the following result:

Fact 6.11 — The quotient SUy/{=£I} is isomorphic to SOs.

§6.3 One-Parameter Groups

Definition 6.12. A one-parameter group in GL,(R) or GL,(C) is a differentiable homomorphism
@:R = GL,(R) or p: R — GL,(C).

This means we have a function ¢ from R to GL,(R) or GL,(C) such that (s +t) = p(s)p(t) for all real
s and t, and if we consider our matrices as subsets of R™ or R2% (by taking the real and complex part of
each matrix entry), the function giving each component is differentiable.

To motivate this definition, when we studied groups, one important example of a subgroup was cyclic
subgroups, the subgroups generated by one element. We can think of cyclic subgroups as homomorphisms
7 — G, where the homomorphism maps 1 to the generator of the subgroup. In some sense, this construction
makes sense because Z is the simplest (nontrivial) example of a group — it has one generator and no relations.

Here, the groups we’re studying also have some sort of topological structure. The simplest such group is R —
it’s “one-dimensional” and has no extra relations. So in this situation we can consider homomorphisms from
R — and we require these homomorphisms to be differentiable so that they play well with the topological
structures on both sides.

Example 6.13

When studying SUs, we saw that for any « € E, the map 6 — cos6 - I +sinf - x is a homomorphism
R — SUs. Its kernel is 27Z, and its image is Long,,.

§6.3.1 Matrix Exponentials

First we’ll start by trying to find an example of a one-parameter group.
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Example 6.14

When n = 1, a one-parameter group is a differentiable homomorphism ¢:R — C*. We can take
o(t) = e for any o € C — this is differentiable, and we have

o5 +1) = €260 = e0et = o(5)o(t).

Question 6.15. Is there a version of this construction that works for general n?

The answer is yes — we can define e for a square matriz A as well. Of course the usual definition of e*
doesn’t make sense for matrices, but we also have the power series
2 3
x x
" =14az+ "+ -+
2 3!

This is a very nice power series — it converges everywhere — so we could take it as the definition of e*.
And this definition does generalize well to matrices:

Definition 6.16. For a n x n matrix A, its exponential e is defined as the n x n matrix

A? A3

A
=J4+A+—4+—+---.
e ++2+3!+

Each entry A¥/k!is a n x n matrix, and it’s possible to show that for each of the n? matrices, the sum we
get is convergent (this can be made more precise by placing a metric on the space of n x n matrices), so this
gives a well-defined n X n matrix.

Example 6.17

Find e? and e? for
10 0 1
A= lo 01 and B = [0 01.
Solution. For the first matrix, we have A™ = A for all n > 1, so we get
1 0 111 0 e 0
A __ - _
¢ _[o 11+Zn! [o 1]_[0 1]'
n>1

For the second, we have B% = 0, so then

10 0 1 11

B _ _

e_lo 1]+l0 0]‘[0 1]‘ -
This definition gives us a few useful properties of the matrix exponential:

Proposition 6.18

For any n x n matrix A and invertible matrix P, we have

_ =il
Elefp = AR
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Proof. This essentially follows considering the power series term-by-term — we have
Plakp = (P71AP)*
for each k. This means the power series of P~1e4P and e’ AP are equal if we truncate both at the first k

terms, so they’re equal in the limit as well. O

This is quite useful — it means it’s easy to calculate the exponential of any diagonalizable matrix.

Example 6.19
Find e for

Solution. The eigenvalues of A are +27i, so we can find some P such that

et |2m 0
B=PAP [0 _m].

Then we have

1 0
Ap—-1_ B __
Pe*P " =e¢ —lo 11.

So e is conjugate to the identity, which means it must be the identity. O

Here we didn’t have to calculate what P was, since e® turned out to be very nice — but in general, it’s
possible to recover e/ from e? by calculating P (which is the matrix corresponding to the new eigenbasis).

Proposition 6.20

If v is an eigenvector of A with eigenvalue ), then v is also an eigenvector of e with eigenvalue e*.

Proof. We can use a similar argument — we have
k- qe k- ye
A AT AT
ev—hmg —v—hmg Ev—ev. O

|
k—o0 =0 /! k—o0 =0

Finally, the following result will be useful in our analysis of one-parameter groups (since it lets us make use
of differentiability):

Proposition 6.21
We have %e“‘ = Aet4,

Proof. We can again calculate term-by-term using the series — we have

d 40 d 2

and because of uniform convergence, we can take the term-by-term derivative to get

2
%em:0+A+tA2+%A3+~-:A6tA. ]
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§6.3.2 Characterization of One-Parameter Groups

Of course, the reason we started thinking about matrix exponentials is because we wanted to find a one-
parameter group of GL,(C), similarly to how x +— e* was a one-parameter group of GL;(C) = C*. The
property we need for this to work is the following:

Proposition 6.22

A+B _ (sH)A _ gsAGtA

If A and B commute, then e e4eP . In particular, we have e

Proof. By definition, we have
A+ B)"
6A+B § : ( ) )

|
"0 n!

But now we can expand out (A + B)" by the Binomial Theorem — since A and B commute, in each
monomial we can move all the A’s to the left, so (4 + B)" = A" + (])A" !B +--- 4+ B", and therefore

=>. Z()A’“B”’“ ZZ % Akpt — ij Zf;f _ AGB -

n>0 k>0 Z>O k>0 >0

In particular, we have e - e=4 = €0 = I, so then e € GL,,(C) for all matrices A € Mat,,x,,(C).

tA

This proposition immediately implies that the homomorphism ¢t — e** is a one-parameter group. But we

can also ask if the converse is true:

Question 6.23. Is every one-parameter group of the form t — e*4 for some A?

It turns out the answer is yes!

Proposition 6.24

Every one-parameter group in GL,,(C) is of the form o:t — et for a unique matrix A.

So the constraints in the definition of a one-parameter group are a lot stronger than they might seem. This
also means there’s a bijection between matrices A and one-parameter groups.

tA

Proof. We've already seen that t — e is a one-parameter group — it’s differentiable, and it’s a homomor-
phism because e(s1t1)4 sA

=% . et for all s and t. So it suffices to prove the other direction.

First we’ll prove the uniqueness of A. Suppose ¢ is the map ¢t — e for some matrix A. Then we have
@' (t) = Aet4, so in particular ¢'(0) = A. This means that it’s possible to recover A from ¢ — so given ¢,
there’s at most one A for which ¢ is the map t +— e*4. (Note that this result is not as obvious as it may
seem, since the map e? is not injective.)

Now we’ll prove the existence of A. Given a one-parameter group ¢, set A = ¢/(0); we’ll then show that we
must have o(t) = e4 for all t.

The main idea is to obtain a differential equation — we have ¢(s+t) = ¢(s)p(t) for all s and ¢, and taking
the derivative with respect to s (while holding ¢ constant) gives

(s +1) = ¢ (s)(t).

Now plugging in s = 0 gives
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for all t. So then we have an ordinary differential equation for ¢(t), and since ¢ is a homomorphism, we
also have the initial condition ¢(0) = I. But it’s a fact that the solution to a given first-order differential
equation is uniquely determined by one point, so there’s only one solution to ¢'(t) = Ap(t) with ¢(0) = I.
We already know that e/ is a solution, so this means o(t) = e*4. O

The same argument works for GL,,(R) as well.

§6.4 Lie Algebras
§6.4.1 One-Parameter Subgroups

Given a group G which is a subgroup of GL,,(R) or GL,,(C), we can think about the one-parameter groups
in G — meaning one-parameter groups ¢: R — GL,(C) or GL,(R) such that ¢(t) € G for all t. (This is
somewhat similar to the notion of a cyclic subgroup from earlier.)

Example 6.25

The longitudes of SUy < GL,,(C) are one-parameter groups in SUy, with the homomorphism R — Long,,
given by 6 — cos6 - I 4 sinf - z.

Question 6.26. Given a group G, how can we describe all one-parameter groups in G?

Since one-parameter groups are exactly homomorphisms ¢ — et this is equivalent to describing the matrices
A for which e is in G for all A.

We’ll answer this question in a few examples.

Example 6.27
When G < GL,(R) or GL,(C) is the group of diagonal matrices

0 Ag
0 0 - M\

the one-parameter groups in G are precisely €' for diagonal matrices A.

Proof. First, any diagonal matrix A does define a one-parameter group in G — if A is diagonal then so is

tA for each ¢, and therefore so is et4.

On the other hand, suppose we have a one-parameter group ¢(t), with diagonal entries A (¢), ..., An(%).
Then by differentiating, we get that A = ¢/(0) is also diagonal, with entries A (0), ..., X/,(0). So A must
be diagonal. 0

Remark 6.28. Note that there exist many matrices A for which A is not diagonal but e*4 is. So it’s
important that we know e*” is diagonal for all ¢, since this allows us to differentiate.
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Example 6.29
When G < GL,(R) or GL,,(C) is the group of upper triangular matrices

)\1 * *
0 )\2 *
0 0 --- \,

the one-parameter groups in G are precisely €' for upper triangular matrices A.

Proof. This is quite similar to the previous example. First, if A is upper triangular, then A" is upper

triangular for all n, so et is upper triangular as well (since it’s the sum of upper triangular matrices).
Meanwhile, if ¢(t) is upper triangular for all ¢, then so is ¢(t), and therefore so is ¢’(0) = A. O
Example 6.30

When G < GL,(R) or GL,(C) is the group of upper triangular matrices with diagonal consisting
entirely of 1’s, meaning

1 %
0 1
00 --- 1
the one-parameter groups in G are precisely et/ for upper triangular matrices A with diagonal consisting

entirely of 0’s.

Proof. First, to show that any A must be of this form,we can again differentiate at 0 (since the entries of 0
and 1 are all constants, they correspond to entries of 0 in ¢’(0) = A). Meanwhile, if A is of this form, then
A™ is upper triangular for all n, and its diagonal entries are all 0’s for n > 1, so then e'4 = I + (tA)+---is
of the described form. O

Now we’ll look at a few harder examples.

Example 6.31

The one-parameter groups in U, are precisely e’ where A is skew Hermitian, meaning that A* = —A.

Recall that U, < GL,(C) is the group of unitary matrices M, matrices for which M* = M1,

Proof. Exponentiation and taking adjoints behave well with each other — we have

2 * *\2
(eh) = <I+A+é+---) :I+A*+(A2) too=et

Now to show that all such A define a valid one-parameter subgroup, we have (etA)* = ¢!" since t is real.
So if A* = —A, then e/ = 74 = (e!4)~1 which means e/ is unitary.

On the other hand, if we have (e!4)* = (e!4)~! for all ¢, then we can rewrite this as e!4” = ¢4 for all ¢.
Then taking the derivative at 0 gives A* = —A. O
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Example 6.32

The one-parameter groups in O,, are precisely e!4 where A is skew symmetric, meaning that AT = —A.

The argument here is identical to the previous example — in fact, we can prove this statement directly from
the previous example, using the fact that O,, = U,, N GL,(R).

Example 6.33
What are the one-parameter subgroups of SL, (C)?

It turns out that there is a very clean — and surprising — answer!

Lemma 6.34
For any A € Mat,»,(C), we have det e? = ¢4,

This statement may be unexpected, but it’s possible to guess by thinking about diagonal matrices. In fact,
that’s essentially how we’ll prove it as well — it would be hopeless to attempt to prove it directly from
definitions, since the determinant doesn’t behave well with sums. But we can take advantage of the fact
that all the operations involved here behave well with conjugation.

Proof. We know that if A and B are conjugate to each other, then tr A = tr B, and e and e? are conjugate
to each other as well (by Proposition ), so det e = det P as well. So if the statement is true for some
matrix A, then it’s also true for all matrices conjugate to A.

So then we can assume that A is in Jordan normal form, and is therefore upper triangular, so

Al k% - %
0 X * - %
0 0 A3 --- =
O 0 0 - A\
But then as we’ve seen earlier, e is of the form
eM * * *
0 e «x *
0 0 e *
0 0 0O etn
So then we have
deted = eMet2 .. e — T A O

Now with this, we can answer our question about SL,,(C):

Solution to Example . The matrix A defines a one-parameter group in SL, (C) if and only if det e!4 = 1
for all t € R, and by the above lemma this occurs exactly when e *4 = 1, or equivalently when trtA € 2miZ.
But 2miZ is a discrete group and ¢ can be any real number, so this only happens when tr A = 0. O
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Example 6.35
What are the one-parameter subgroups of SU5?

Solution. Combining Examples and , the one-parameter groups in SU,, are exactly those defined
by matrices A such that A* = —A and tr A = 0. In the case of SUs, this means A must be of the form

121 To + 173
—To + 13 —1T1

A= = x1i+ 22§ + z3k.

So then A is a point in H which can be written as ¢¥ for some v in the equator of SUs. Now plugging into
the definition of the exponential, we get that

etd = I costc+ v -sinte.

So if ¢ = 0 then this gives just the identity matrix, and otherwise it gives the longitude Long,. O

Question 6.36. In general, what properties do the matrices A have?

In all these examples, we can see that the set of matrices A is actually a vector space! This is surprising, since
in general, exponentiation doesn’t behave well with addition (it only does when the matrices commute).

§6.4.2 Tangent Vectors

To build on this, given a group G < GL,(R) (we can do the same for GL,(C) as well), we can consider
the set of vectors which are tangent to G at the identity matrix. There are a few different ways to define
tangent vectors at the identity:

(1) A tangent vector is a n x n matrix A such that ¢4 € G for all ¢t € R.

(2) Given any differentiable path f:(—¢,e) — GL,(R) such that f always lies inside G and f(0) = I, the
matrix A = f/(0) is a tangent vector.

(3) If G is defined by a bunch of polynomial constraints on the entries of its matrices, then there’s a
more algebraic way of thinking about tangent vectors: work in R[e], where e2 = 0. Then we have
a more algebraic way of thinking about tangent vectors — if f is a polynomial, then f(z +¢) =
f(x)+ f'(x)e. (The intuition here is that 2 = 0 allows us to ignore all higher-degree terms in a power
series expansion.) So then we can consider the system of polynomial equations used to define G, and a
tangent vector is a n X n matrix A such that I 4+ A satisfies the same polynomial constraints in R[e].

These definitions are all equivalent (we won’t prove this). They have different benefits — the first gives a
bijection between one-parameter groups and tangent vectors. The second definition has a lot of redundancy,
but it makes it easier to see why the set of tangent vectors is always a wvector space. The third definition
is somewhat less general, but many of the groups we’ve seen so far are defined by polynomial constraints.
This definition is useful because it makes sense even if we’re not working over R or C — we can talk about
tangent vectors to subgroups of GL,(IF,), for instance.

Definition 6.37. The set of tangent vectors to G at the identity is denoted Lie(G).
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Example 6.38

We’ll look at the three definitions in the case of O,, < GL,(R). We’ve already seen that using the first
definition, Lie(O,,) is the set of matrices A for which AT = —A.

Using the second definition, suppose we have a differentiable function f:(—¢,e) — O,, with f(0) = I.
Then we have f(¢)7- f(t) = I for all t. Taking the derivative gives

F@OTFE) + F@)TF () =0.

Setting t = 0 gives ATA+TA =0, so AT = —A.

Using the third definition, the constraint MTM = I can be described as a bunch of polynomial con-
straints on the entries of M. So then tangent vectors are precisely matrices A such that

I+eA)TI+eA) =1

Expanding and using the fact that 2 = 0 gives I + AT 4+ A + 0 = I, which means AT = —A.

In this language, our observation that the sets of matrices A are always vector spaces translates to the
following statement:

Proposition 6.39
The set Lie(G) is a vector subspace of Mat,, x,(R).

§6.4.3 Manifolds
One useful geometric way to think about tangent vectors is in terms of manifolds.

Definition 6.40. Given M C R", we say M is a manifold of dimension d if for each point x € M, there
exists an open subset V' C M containing z, an open ball U C R?, and a bijection f:U — V which is
continuous and differentiable.

This definition essentially states that around each point of M, we can find an open subset of M which “looks
like” an open ball in R — so locally (but not globally), M looks like R

Example 6.41

The circle S' € R? is a manifold — we can take any small arc and straighten it out into an interval.

Example 6.42

The union of the x-axis and y-axis is not a manifold, since any open subset around the origin looks like
+ instead of an interval.

In fact, all our examples of subgroups of GL,(R) are manifolds.
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Example 6.43

The group SUs, is a manifold — we’ve seen earlier that we can think of it as S3 € R*. For any point
in the upper hemisphere, we can take the open subset V = {zg > 0} N S3, and map the open ball
U= {2? + 23 + 23 < 1} C R3 to it by sending

2 2 2
(z1,x23) — <\/1 — i — x5 — $3,x1,x2,x3) )

This makes the fact that the tangent vectors form a vector space a bit more intuitive, since we can “carry
over” the vector space of tangent vectors from an open ball U to a neighborhood of I.

§6.4.4 The Lie Bracket and Lie Algebras

As we’ve seen, Lie(G) is a vector space, which means we can add and scale its elements. But it consists of
matrices — it’s a subspace of Mat,, x,(R) — and we don’t just know how to add and scale matrices, we also
know how to multiply them. Unfortunately, matrix multiplication doesn’t work well here — it’s possible
that A and B are in Lie(G) and AB is not. But there is a related construction which does work well:

Definition 6.44. Given two matrices A and B, their Lie bracket, denoted [A, B], is the matrix AB— BA.

Of course, if G is abelian, then [A, B] is just 0 on Lie(G). So in some way, we can think of the Lie bracket
as measuring the failure of G to be abelian.

Theorem 6.45
If A and B are in Lie(G), then so is [A, B].

We'll first look at a few examples:

Example 6.46
In the case of O, we have Lie(O,) = {A| AT = —A}. Now if A and B are both in Lie(O,,), then

[A,B]" = BTAT — ATBT = BA— AB = —[A, B],

so [A, B] € Lie(O,,) as well.

Example 6.47

In the case of SL,(R), we have Lie(SL,(R)) = {A | tr A = 0}. But it’s true in general that tr AB =
tr BA, so then
tr[A,B] =tr AB —tr BA=0,

and therefore tr [A, B] € Lie(SL,(R)).

Sketch of Proof of Theorem . Suppose we have two matrices A, B € Lie(G). Then e*4 and e? are in G

for all £ € R, so the matrix
€tAesBe—tAe—sB

is also in G. Now we can expand this out using the series definition, to get

t2A2 QBQ t2A2 QBQ
<I+tA+2+---> <I—|—3B—|—82 o) (T=tA - I—sB—I—S2 — ).
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All the linear terms cancel out, and most of the quadratic terms cancel out as well — we end up with
I + st[A, B] + - - - where the remaining terms have degree at least 3. So since this matrix is in G for all s
and t, we can deduce that [A, B] is also a tangent vector to G at I, and is therefore in Lie(G). O]

The Lie bracket satisfies a few important properties: we have [A, B] = —[B, A], and the Jacobi identity
[[4, B],Cl +[[B,C, A] + [[C, A], B] = 0.

(This can be proven by expanding out everything, but it also has meaning in terms of the group structure.)
So we can define a new algebraic object that comes up naturally from this setting:

Definition 6.48. A Lie algebra is a vector space V with a bilinear pairing [-, -]: V XV — V (called its
Lie bracket) which satisfies [4, B] = —[B, A] and the Jacobi identity.

So far, we’ve only focused on subgroups of GL,(R). But we could have performed the same construction
for any group which is also a manifold — such groups are called Lie groups.

It turns out that the Lie algebra of a group carries a lot of information:

Theorem 6.49

Given a finite-dimensional Lie algebra V over Rj there exists a Lie group G for which Lie(G) = V.
Furthermore, if we require that G is simply connected, then there is a unique such group G.

Remark 6.50. The condition that G is simply connected is necessary for uniqueness — as shown in
the homework, SU, and SO3 have the same Lie algebra. But they “differ by a finite amount” — we’ve
seen that SOj3 is isomorphic to SUs/{#1} — and a similar statement is true in general.

This can be used to understand Lie groups by first understanding Lie algebras (which is often an easier
problem).

§6.5 Simple Linear Groups

Recall that a group is simple if its only normal subgroups are the trivial group and the entire group. Simple
groups are important because in some sense, they’re “building blocks” for more complicated groups — since
if we have a group which isn’t simple, we can analyze it by looking at a normal subgroup and its quotient

group.
Question 6.51. Are any of our examples of linear groups simple?

We’ll focus on two examples — SUj and SLa(C).

§6.5.1 Normal Subgroups of SU>

Question 6.52. Is SU, simple?

Of course, the answer is no — the center of SUj is {£7}, and the center is always a normal subgroup. But
it turns out this is essentially the only thing that happens.

Theorem 6.53
If N is a normal subgroup of SUy, then N is either I, {1}, or SUs.
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Corollary 6.54
The quotient SUs/{%1} = SOs3 is simple.

Proof. We can use the correspondence theorem — we have a surjective homomorphism ¢: SUy; — SO3 (given
by mapping each element of SUy to the linear operator defined by conjugation on the 3-dimensional space
with g = 0), whose kernel is {+=1}. Then for any normal subgroup of SOs, its pre-image is a normal
subgroup of SUs containing {47}, and the only two such subgroups are {7} and SU;. So then the only
normal subgroups of SO3 are their images {I} and SOs. O

Proof of Theorem . We’ll use our geometric intuition of what SUsy looks like — it’s a 3-sphere, where
the latitudes are conjugacy classes and the longitudes are subgroups.

Let N be a normal subgroup of SUs, and suppose N contains a matrix () not equal to &I — our goal is to
show that then N = SUs. First, since N is normal, it must also contain all elements conjugate to @, so it
contains the entire latitude Lat, (where tr Q = 2¢).

Now we can translate this latitude to pass through the identity — consider Q! Lat,, which is a (tilted)
2-sphere passing through the north pole. This 2-sphere must be contained in N as well.

Now we can take a nontrivial path f(t) starting at I and staying in Q! Lat.. This path must be contained
in N, and it must contain some matrix of every trace in some interval (2 — 4, 2|, for some §. But since N is
normal and the conjugacy classes are precisely the latitudes, then N must contain all such matrices!
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For each v € E, we can look at the longitude through v, which is a subgroup of SU,. Since every point in
SU, is in some longitude, it suffices to show that Long, is contained in N. But Long, consists of elements
pg = cosB - I +sinf- T, and we know py is in N for all # in some nontrivial interval (—¢,¢). But then for
any angle ¢, we can find some positive integer m such that |p/m| < €, and then since p,/p, is in N, so is
its mth power p.

So for all v € E, the longitude Long, is contained in NN; since every point in SUs is in some longitude, this
means N = SUs. [l

§6.5.2 Normal Subgroups of SLo

Question 6.55. Is SLy(C) simple?

Of course, the answer is again no — its center is {7}, so the most we could ask for is that the quotient
SLo(C)/{£I} is simple. It turns out that this is true, and in fact, it’s true for almost any field, not just C!

Theorem 6.56
For any field F' with |F| > 4, the quotient group SLo(F')/{£I} is simple.

This quotient group has a name — it’s called PSLy(F).

Since we’re no longer in a geometric setting — F' can even be a finite field — the proof won’t be geometric
like in the case of SUs. Instead, we’ll look at conjugacy classes and attempt to use them to generate all of
the group.

Remark 6.57. The theorem is false for Fo and F3 — this is somewhat similar to how A,, is simple for
all n > 5, but the smaller groups A,, aren’t simple.
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Proof. We'll assume that |F'| > 5 — there’s only two cases this doesn’t cover, and they can be checked by
hand. Similarly to the case of SUy, it suffices to prove that the only normal subgroups of SLy(F') are {I},
{£I}, and SLy(F) itself.

2

Claim — Given any a € F, the equation * = a has at most two solutions.

Proof. If 22 = y2, then (z +y)(z —y) = 0. But since F is a field, this implies # + ¥ or  —y must be 0. This
means if we have one solution to z2 = a, there’s at most one other solution (which is —x). [ |

Claim — If |F'| > 5, then there exists some r € F such that r? ¢ {0, £1}.

Proof. There are one square root of 0, two square roots of 1, and at most two square roots of —1; since
|F'| > 5, this means there must be an element r which is not a square root of any of these numbers. |

Now fix some 7 with 72 ¢ {0,41}. Suppose we have a normal subgroup N which contains some element
other than +7 — so we want to show N is the entire group SLa(F).

Claim — There exists some B € N with distinct eigenvalues.

Proof. Take some A € N with A # +1. Then A cannot be a scalar matrix, so there is some vector v; € F?
which is not an eigenvector of A. Let vo = Avy, so then v; and vy form a basis for F? (since they’re not
linearly dependent).

Now define P € GLy(F) with the property that Pv; = rv; and Pvs = r~'vy. Then the eigenvalues of P are
r and r~1, so det P = 1 and therefore P € SLy(F).

Now we can take B = APA~'P~!. This must be in N — since A is in N, so is A™!, and then since N is
normal, so is its conjugate PA~'P~!. But we have

Bvy = APAilpfl’UQ = APAilrvg = APrv, = AY’2U1 = T22}1,

so then 72 is an eigenvalue of B, and since det B = 1, its other eigenvalue must be 2. Since r? # +1, we
have 72 # r~2, so the eigenvalues of B are indeed distinct. |

Now let s = 72, so B has eigenvalues s and s~ 1.

Claim — The matrices in SLy(F) with eigenvalues s and s~! form a conjugacy class.

Proof. Take any such ). Then ) has distinct eigenvalues, so it is diagonalizable, which means we can find
L € GLy(F') for which

_ s 0
LQL™' = [o 8_1].

So these matrices are conjugate to each other in GLy(F'), but we can in fact show they’re conjugate in
SLo(F) as well by choosing L to have determinant 1 — given any L with det L = ¢, we can take

which is in SLy(F') and has the same property. |
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So then since N contains one matrix B with eigenvalues s and s~!, it must contain all of them. Finally, we
can show that these matrices generate SLo(F') — for example, it’s possible to write down explicit formulas

producing the elementary matrices
1 =z 1 0

for all x, and these matrices generate SLy(F') (by using row reduction, for instance). O

Although these two proofs had quite different settings, they had the same general idea — we find an element
in N, conjugate it to find a whole bunch of elements in N, and use these elements to generate the entire

group.

Remark 6.58. These examples of simple linear groups actually generalize to higher dimensions. In
fact, for linear groups defined by polynomial constraints (for example, the determinant is a polynomial
in the entries, but complex conjugation isn’t), there’s actually a full classification of which ones are
simple. For example, SO,, and SL,, mod their centers work. The proof involves Lie algebras — you first
understand what the Lie algebra of a simple group looks like, and use that to characterize the groups.

It’s also possible to use this classification to produce finite simple groups, by taking F' to be a finite
field instead of R or C.
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§7 Hilbert’s Third Problem

§7.1 Polygons in the Plane

Definition 7.1. Two polygons P and @ are scissors-congruent if using finitely many cuts, we can divide
each of P and @ into the same collection of polygons R, ..., R,.

In other words, we can cut P up into pieces and rearrange these pieces to form Q. If P and @) are scissors-
congruent, we denote this by P ~ Q.

Question 7.2. Given two polygons P and (), when are they scissors-congruent?

Of course, if P ~ @, then P and ) must have the same area. It turns out this is the only obstruction:

Theorem 7.3
If P and @ have the same area, then P ~ Q.

Proof Sketch. We'll show that if P has area a, then P is scissors-congruent to the rectangle of dimensions
1 X a; then it follows that P and () are scissors-congruent to the same shape, and therefore to each other.

First, we can cut P into triangles 17, ..., T;,. Then each triangle is scissors-congruent to some rectangle:

Then it’s possible to show that any rectangle with area c is scissors-congruent to a rectangle with dimensions
1 x ¢ (this part is finicky and involves a lot of cases, so we’ll skip it). Then we can concatenate all our
height-1 rectangles to get that P is scissors-congruent to a 1 X a rectangle. O

§7.2 Hilbert’s Third Problem

Question 7.4. What happens in three dimensions?

Now instead of polygons, we work with polytopes (or polyhedra) — which have finitely many vertices, edges,
and faces. The definition of scissors-congruence is the same — two polytopes P and () are scissors-congruent
if we can use finitely many straight cuts to decompose P and @ into the same polytope pieces.

Of course, we have the same obvious constraint on scissors-congruence as in the two-dimensional case — if

P ~ @, then they must have the same volume. The question we’ll study today is the following;:

Question 7.5 (Hilbert's Third Problem). If two polytopes have the same volume, are they necessarily
scissors-congruent?
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As some historical background, in 1900 Hilbert made a list of around twenty problems, which he considered
the most important problems in modern mathematics. This was one of the problems on the list, and he
expected the answer was no. In fact, this was the first problem to be answered — in 1901, by his student
Max Dehn. More precisely, Dehn showed that a cube and a tetrahedron of the same volume are not
scissors-congruent.

§7.3 The Tensor Product

At the heart of this problem is a certain algebraic construction.

Definition 7.6. Given two abelian groups G and H, their tensor product is the abelian group G ® H
generated by elements denoted by g ® h for g € G and h € H, which satisfy the relations

(g+d)®h=gh+gd ®h
g Mh+h)=g@h+g®hH.

One way to think of the tensor product G ® H is as

@Z(g ®h)/S
g,h

where S is the subgroup generated by all the elements (9+¢')@h—g®@h—¢ ®h and g (h+h')—gR@h—gQh
— we essentially take all formal linear combinations of elements g ® h, and quotient out by all the relations.
Intuitively, the elements of G ® H are all combinations of the terms g ® h, which we know how to simplify.

Our definition has a few immediate consequences:

Proposition 7.7

The tensor product has the following properties:
e 0®g=9g®0=0.

o For any integer a, we have (ag) ® h = a(g ® h) = g ® (ah). (Here ag denotes g added to itself a
times.)

o If G is generated by g1, ..., g and H by hq, ..., hs, then G ® H is generated by g; ® h; over all
i and j (since we can use the relations repeatedly to reduce any g ® h to a sum of such terms).
This works even if the set of generators is not finite.

Example 7.8
For any group G, we have Z ® G = (G, with the isomorphism a ® g — ag.

Example 7.9
For any group G, we have Z? ® G = G x G, with the isomorphism (a,b) ® g — (ag, bg).

Note that in these two examples, we could write all elements of G ® H in the form g ® h, but this isn’t true
in general — we can have elements such as g1 ® h1 + g2 ® hy which can’t be simplified any further.
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Example 7.10
We have Cy ® C3 = 0 — to see this, take any x ® y. Then we have 3z = x (since z € C3) and 3y =0

(since y € C3), so
TRY=3TRQy=2xQ3y=xx0=0.

So it’s possible to tensor together two nontrivial groups and end up with a trivial one — so the tensor
product is somewhat subtle.

§7.4 The Dehn Invariant

To answer our question, we want another property of polytopes which is preserved under scissors congruence.

Given a polytope, each edge has a length ¢ € R and a dihedral angle 0 € R/2nZ (the angle between the two
faces that meet at the edge — or more precisely, the angle between the perpendiculars to the edge on those
two faces).

Then ¢ ® 6 defines an element in R ® R/27Z.
Definition 7.11. The Dehn invariant of a polytope P, denoted d(P), is the sum of ¢; ® 6; over all edges
i in P.

Theorem 7.12
The Dehn invariant is preserved by scissors congruence — if P ~ @ then d(P) = d(Q).

Proof Sketch. It suffices to show that cutting the polytope preserves scissors-congruence. When we cut,
there’s a few different things that can happen. We won’t carefully go through all the cases, but we’ll see a
few of them to see why this “should” be true.

4

\‘\

Then we originally have one edge (¢, 0), and we end up with two edges (¢1,0) and (¢2,0). But 1+ = ¢, so
R0+6LR0=(1+l)20=>(30.
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\

Then we start with (¢,0) and end up with (¢,60;) and (¢,02), where 61 + 02 = 6, so
(R0 +0R0=0®(01+02) =(R86.

/

Then we started with no edge, and we produced (¢,6;) and (¢, 63), where 6; + 62 = w. Here we have

(R0 +1® 0 :€®7r:§®27720.
It’s possible to cover the remaining cases similarly. O
This now gives us a property other than volume which is invariant under scissors-congruence. But for this

to be useful, we need to check that it actually does differentiate between polytopes — it happens scarily
often that a complicated invariant turns out to just always be 0.

Theorem 7.13

Any cube and regular tetrahedron have different Dehn invariants.

Proof. Call the cube C' and tetrahedron 7. Then C has 12 edges, each with dihedral angle /2. So then
d(C) = 12%@%:6@6%:0.

So any cube has Dehn invariant 0.

On the other hand, T" has 6 edges of some length ¢ (not necessarily the same as the edge lengths of the
cube) and the same dihedral angle a, so d(T) =6 - £ ® «. To find «, we can drop a few perpendiculars:

\\
J AN
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Then we can see that cosa = % (since all the triangles have the same height, and the center of a face occurs
% of the way along its height).

Claim — « is not a rational multiple of 7.

Proof. If a were a rational multiple of 7, then we would have cosna = 1 for some positive integer n. But
by trig identities, cos na is a polynomial in cos o with leading coefficient 2" 1. So cos na must have a power
of 3 in its denominator, contradiction. |

Claim — If « is not a rational multiple of 7w and / is nonzero, then ¢ ® « is nonzero.

Proof. We can think of R as a vector space over Q (with uncountable dimension). Then 7 and « are linearly
independent, so we can fill them out into a basis for R — we can write R = Qa + Qm + W for a Q-vector
space W. Then we can define the linear map f:R — Q (as a map between Q-vector spaces) sending « — 1,
and every other basis element to 0.

This gives a group homomorphism R ® R/27Z — R defined by z ® x — zf(Z), where Z is * mod 27 (note
that f(z) is well-defined because 27 is in the kernel of f). Then ¢ ® « is mapped to ¢, which is nonzero; so
{ ® o must be nonzero as well. |

This implies d(T") is nonzero, and therefore d(C') # d(T). O
So a cube and tetrahedron cannot be scissors-congruent, even if they have the same volume.

Remark 7.14 (Historical Note). This result was proven in 1901 by Dehn. In 1968, Sydler showed the
converse — if two polytopes have the same volume and Dehn invariant, then they’re scissors-congruent.
The same result is true in four dimensions as well, but we don’t have a characterization in higher
dimensions of when two polytopes are scissors-congruent.
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