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§1 Groups

Before we define groups, we’ll introduce a useful example.

§1.1 The General Linear Group

Definition 1.1. The general linear group, denoted GLn(R), is the set of invertible n× n matrices with
real coefficients.

Recall that a matrix A is defined to be invertible if there exists another n × n matrix, denoted A−1, such
that AA−1 = A−1A = I. A matrix is invertible if and only if det(A) 6= 0.
This set of invertible matrices has an interesting property — if we multiply two invertible matrices A and B,
then we get another, since AB has inverse B−1A−1. This multiplication is not commutative — in general,
AB does not equal BA. But it is associative — we always have A(BC) = (AB)C.

Remark 1.2. It’s generally useful to think of matrices as operations on some space. Given a matrix
A ∈ GLn(R), we can define a function Rn → Rn sending v 7→ Av. This function must be linear; and
conversely, given any linear function, we can recover its corresponding matrix.
In this interpretation, all these facts become much more intuitive — multiplying two matrices corre-
sponds to composing the functions, and function composition is associative but not commutative. (This
is where the definition of matrix multiplication comes from — multiplication is defined to match what
happens when we compose the two maps.)

With this example in mind, we can now define groups in general.

§1.2 What Is a Group?

Definition 1.3. A group is a set G with a composition (or product) operation G×G→ G, denoted by
(a, b) 7→ a · b (or ab), that satisfies the following axioms:

(1) Identity — there exists e ∈ G such that ae = ea = a for all a ∈ G.
(2) Inverses — for each a ∈ G, there exists an element b ∈ G such that ab = ba = e. We call b the

inverse of a, and write b = a−1.
(3) Associativity — we have (ab)c = a(bc) for all a, b, c ∈ G.

One observation we can immediately make from these axioms is that in (1) and (2), the element must be
unique. In (1), if both e and e′ are identity elements, then ee′ must equal both e′ and e, so e′ = e. Similarly
in (2), if b and b′ are both inverses of a, then bab′ must equal both b′ and b, so b′ = b.
In this definition, we’ve only defined the product of two elements. But thanks to associativity, we can talk
about products of many elements, such as g1g2 · · · gn, without having to specify in what order we pair up
the elements when calculating. In particular, for nonnegative integers n we write gn to denote the product
of n copies of g; similarly for negative n we write gn to denote the product of −n copies of g−1.
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Example 1.4
Some examples of groups are:

(1) GLn(R) under matrix multiplication — the identity is I, and the inverse of A is the matrix A−1.
(2) Z under addition — the identity is 0, and the inverse of a is −a.
(3) C× (complex numbers except for 0) under multiplication — the identity is 1, and the inverse of x

is 1/x.

As we’ve seen already, the composition law doesn’t have to be commutative. But if it is, we get additional
structure, so such groups have a name:

Definition 1.5. A group G is abelian if ab = ba for all a, b ∈ G.

Example 1.6
The groups Z and C× are both abelian, while GLn(R) is not (for n ≥ 2).

§1.3 Permutation Groups

Another central example of a group is the permutation group.

Definition 1.7. Given a set S, a permutation of S is a bijection p:S → S.

The set of all permutations of S, denoted Perm(S), is a group under function composition — for two
permutations p and q, we define their product q · p as the permutation q · p(x) = q(p(x)) for each x. The
identity is the identity permutation, for which e(x) = x for all x. Inverses exist because bijections have
inverses — for a permutation p ∈ Perm(S), its inverse p−1 is the permutation where for each x, we define
p−1(x) to be the unique y with p(y) = x.
Note that we can think of Perm(S) as the group of symmetries on S — in much later classes, we will explore
how to think of groups via symmetry in more detail.

Definition 1.8. The group of permutations of {1, 2, . . . , n} is called the symmetric group Sn.

Unlike all our previous examples of groups, Sn is finite.

Definition 1.9. The order of a group is its number of elements.

So the order of Sn is n!, since there are n! permutations of {1, 2, . . . , n}.
It’s often useful to describe permutations using cycle notation — we can draw arrows i 7→ p(i) for each
element i, and write down a permutation by writing down all its cycles.

Page 5 of 121



18.701 — Algebra 1 Class by Davesh Maulik (Fall 2021)

Example 1.10
The permutation p sending 1, 2, 3, 4, 5, 6 to 2, 4, 5, 1, 3, 6, respectively, would have cycle notation
(124)(35)(6). We may also omit cycles of length 1, and write (124)(35).

1

2 4
3 5 6

Note that cycle notation can be thought of as taking the composition of disjoint cycles — for example, the
permutation (135)(246) is (135) · (246).
To find the inverse of a permutation p given in cycle notation, we can simply reverse each cycle — in this
example, p−1 = (421)(53) = (142)(35).
We can also compute compositions using cycle notation:

Example 1.11
Let p = (124)(35) and q = (135)(246). Then in order to compute q · p, we first find where p sends i,
and then where q sends p(i) — this gives q · p = (143)(26).

Finally, another interesting operation we can perform is conjugation — given two permutations p and q, we
can calculate p−1 · q · p, which is called the conjugate of q by p.

Example 1.12
If p = (124)(35) and q = (135)(246), then p−1 · q · p = (126)(345).

In an abelian group, the conjugate of q by p will always be q itself; but here S6 is not abelian, so we got
a new permutation. We will see conjugation in more detail later; but it’s not a coincidence that p−1 · q · p
here has the same “shape” of its cycles as q does.
Finally, we’ll explicitly describe the symmetric group for a small value of n.

Example 1.13
The group S3 contains e, the element x = (123), and the element y = (12). The remaining elements
can be described as x2 = (132), xy = (13), and x2y = (23).
Our elements x and y satisfy the relations x3 = e, y2 = e, and yx = x2y. These together are enough to
reduce any combination of x and y to one of the six forms listed — for example,

xyx−1y = xyxxy = xx2yxy = yxy = x2y2 = x2.

§1.4 Subgroups

Given a group, we can also look at smaller groups which sit inside it.
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Definition 1.14. Given a group (G, · ), a subset H ⊂ G is a subgroup of G if it satisfies the following
conditions:

(1) Closure — if h1, h2 ∈ H, then h1 · h2 ∈ H as well.
(2) Identity — e ∈ H, where e is the identity element of G.
(3) Inverses — for each h ∈ H, we have h−1 ∈ H.

Equivalently, H is a subgroup of G if it is also a group, under the same operation.

Example 1.15
Some examples of subgroups are:

(1) (Z,+) is a subgroup of (Q,+).
(2) {e, (123), (132)} is a subgroup of S3.
(3) As a nonexample, Z≥0 is not a subgroup of Z, since it is not closed under taking inverses.
(4) The special linear group SLn(R), consisting of matrices with determinant 1, is a subgroup of

GLn(R) — it is closed under both multiplication and taking inverses because determinants are
multiplicative.

Notation 1.16. The notation H ≤ G can be used to denote that H is a subgroup of G.

§1.4.1 Subgroups of Z

It turns out that subgroups of the integers are quite easy to describe.

Theorem 1.17
The subgroups of (Z,+) are exactly {0} and nZ for positive integers n.

Proof. It’s easy to check that all such sets are subgroups of Z; now we’ll show that any subgroup of Z must
be one of these.
Let S ⊂ Z be a subgroup. We must have 0 ∈ S; if there are no other elements, we’re done. Otherwise, let
a be the smallest positive element (which exists because if x is in S, so is −x). Now we claim that S = aZ
— first, by closure we must have aZ ⊂ S. Now assume for contradiction there is some b ∈ S which is not a
multiple of a. Then by closure, b− ka must be in S for all integers k. In particular, the remainder when b is
divided by a must also be in S. But this remainder is strictly between 0 and a (since a - b), contradiction.
So all elements in S are multiples of a, and therefore S = aZ.

Corollary 1.18
Given integers a and b, let S = {ai+ bj | i, j ∈ Z}. Then S = dZ for some positive integer d.

Proof. We can check that S is a (nonzero) subgroup of Z; but all subgroups of Z are either {0} or of the
form dZ for a positive integer d.

This leads to an important result in elementary number theory:
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Theorem 1.19 (Bezout’s Theorem)
Given integers a and b, there exist integers r and s for which

ar + bs = gcd(a, b).

Proof. We’ll show that in the above corollary, we must have d = ± gcd(a, b). This suffices because then
gcd(a, b) is in S.
First, all numbers ai+ bj are multiples of gcd(a, b), so since d is in S and therefore can be written as ai+ bj
for some i and j, then gcd(a, b) must divide d. On the other hand, since a and b are in S, and S consists of
exactly the multiples of d, then d must divide a and b, and therefore must divide gcd(a, b) as well. So since
d and gcd(a, b) both divide each other, we have d = ± gcd(a, b).

Remark 1.20. Bezout’s Theorem can be extended to multiple integers, instead of just two — in general,
given any integers a1, . . . , an, there exist integers r1, . . . , rn such that

a1r1 + · · ·+ anrn = gcd(a1, . . . , an).

§1.5 Cyclic Groups

One of the simplest examples of a group is a cyclic group.

Definition 1.21. Given an element g of a group G, the cyclic group generated by g, denoted 〈g〉, is the
smallest subgroup of G containing g.

Then we have 〈g〉 = {. . . , g−2, g−1, e, g1, g2, . . .} — if a subgroup of G contains g then by closure it muts
contain all powers of g, while this set is really a valid group.

Example 1.22
Some examples of cyclic groups are:

(1) In any group, we have 〈e〉 = {e}.
(2) In S3, we have 〈(123)〉 = {e, (123), (132)}.
(3) In C×, we have 〈2〉 = {. . . , 1

4 ,
1
2 , 1, 2, 4, . . .} and 〈i〉 = {1, i,−1,−i}.

Question 1.23. What do cyclic groups look like in general?

To answer this, let S be the set of integers n for which gn = e.

Theorem 1.24
Either S = {0}, in which case 〈g〉 is infinite and all the powers gi are distinct; or S = dZ, in which case
〈g〉 is finite and contains exactly d elements — more precisely, 〈g〉 = {e, g, g2, . . . , gd−1}.

Proof. First we claim that S is a subgroup of Z:
• 0 is in S by definition, since g0 = e.
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• If ga = gb = e, then ga+b = ga · gb = e as well. So if a and b are in S, so is a+ b.
• If ga = e, then g−a = e−1 = e as well. So if a is in S, so is −a.

But the only subgroups of Z are {0} and dZ for positive integers d, so S must be one of these.
Now note that for two integers a and b, we have ga = gb if and only if ga−b = e. So if S = {0}, this implies
a = b; therefore all powers of g are distinct, and 〈g〉 is infinite. Meanwhile, if S = dZ, then this means
ga = gb if and only if a ≡ b (mod d). So every element of 〈g〉 is in {e, g, g2, . . . , gd−1}, and these d powers
are all distinct.

This gives the following definition:

Definition 1.25. The order of an element g of a group is defined as ord(g) = #〈g〉.

In other words, ord(g) is the smallest positive integer d for which gd = e if such an integer exists, and infinite
otherwise.

§1.6 Generators

Given a group G, we’ve seen what happens when we look at the smallest subgroup of G containing one
given element g. But we can also look at the smallest subgroup containing multiple elements:

Definition 1.26. Given a group G and a subset T ⊂ G, the subgroup generated by T is the smallest
subgroup of G that contains T .

For the same reason as 〈g〉 consists of all powers of g, in general 〈T 〉 consists of all products of powers of
elements in T — more explicitly, we have

〈T 〉 = {ta1
1 t

a2
2 · · · t

an
n | ti ∈ T, ai ∈ Z for all i}.

(Note that the ti do not have to be distinct.)

Definition 1.27. Given a group G and a subset T ⊂ G, if 〈T 〉 = G then we say T generates G.

Example 1.28
As we saw in Example 1.13, S3 is generated by {(123), (12)}.

Example 1.29
The group GLn(R) is generated by the elementary matrices — matrices corresponding to the elementary
row operations.

§1.7 Homomorphisms

When we’ve defined a structure — here, a group — we can then ask how two such structures can relate to
each other, by looking at the maps between them.

Definition 1.30. Given groups G and H, a homomorphism from G to H is a map f :G→ H such that
for all x, y ∈ G,

f(x · y) = f(x) · f(y).
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Note that the multiplication x · y occurs in G, while the multiplication f(x) · f(y) occurs in H — these may
be different operations.
Essentially, a homomorphism is a map between two groups which is compatible with their group structures.
There are other conditions it would make sense to include as well to describe compatibility with the group
structure — we would want f to also preserve the identity and inverses. However, it turns out it’s not
necessary to state these conditions in the definition, because they follow from the given one!

Proposition 1.31
For any homomorphism f :G→ H, we must have f(eG) = eH , and f(x−1) = f(x)−1 for all x ∈ G.

Proof. To prove the first property, for any x ∈ G we have

f(x) = f(eG · x) = f(eG) · f(x).

Multiplying by f(x)−1 on both sides (on the right), we get that f(eG) = eH .
Now to prove the second, for any x we have

eH = f(eG) = f(x · x−1) = f(x) · f(x−1),

so f(x−1) must be the inverse of x.

§1.7.1 Examples

Example 1.32
The map det: GLn(R) → (R×,×) is a homomorphism, since det(A) det(B) = det(AB) for any two
matrices A and B.

Example 1.33
The map exp: (C,+)→ (C×,×), which is defined as z 7→ ez, is a homomorphism, since ea+b = eaeb for
any a, b ∈ C.

Another important homomorphism, from the group Sn, is the sign of a permutation.
First, let #»ei denote the column vector with a 1 in the ith coordinate and a 0 everywhere else. Then for each
permutation p ∈ Sn, we can associate to it a permutation matrix Ap, defined such that Ap( #»ei) = #     »ep(i) for
all i. In other words, Ap corresponds to the linear map which permutes the basis vectors #»e1, . . . , #»en in the
same way as p permutes {1, . . . , n}.

Example 1.34
The permutation matrix associated to p = (123) ∈ S3 is

Ap =

0 0 1
1 0 0
0 1 0

 .

Proposition 1.35
The function Sn → GLn(R) sending p 7→ Ap for each permutation p is a homomorphism.
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Proof. It’s enough to check that Apq = ApAq for all permutations p and q. First, by definition we have
Apq( #»ei) = #       »epq(i) for each basis vector #»ei. On the other hand,

ApAq( #»ei) = Ap( #     »eq(i)) = #           »ep(q(i)) = #       »epq(i).

So then Apq and ApAq are the same map.

But we also have a homomorphism GLn(R) → R×, the determinant. So we can compose these two homo-
morphisms to get a new one:

Definition 1.36. The sign function sgn:Sn → R× is defined as sgn(p) = det(Ap) for each p ∈ Sn.

Proposition 1.37
We have sgn(p) = ±1 for any permutation p.

Proof. Every permutation can be written as a product of transpositions p = τ1τ2 · · · τr — for example, by
using any sorting algorithm that only involves making swaps. But for any transposition τ , the matrix Aτ
can be obtained by swapping two rows of the identity matrix, which means sgn(τ) = −1 (since swapping
rows multiplies the determinant by −1). So then since sgn is a homomorphism, in general we have

sgn(p) = sgn(τ1) sgn(τ2) · · · sgn(τr) = (−1)r.

Note that this also implies that when we write p as a product of r transpositions, the parity of r must be
fixed! Often, a permutation is called even or odd depending on the parity of r.

Example 1.38
In S3, the permutations e, (123), and (132) have sign 1, and (12), (13), and (23) have sign −1.

Finally, here is another example of a homomorphism, which in fact we’ve seen already:

Example 1.39
For any x in a group G, there is a homomorphism fx:Z→ G sending n 7→ xn. This is a homomorphism
because xa+b = xa · xb for any integers a and b.

We secretly used this homomorphism when studying the cyclic group generated by x. As in that example,
homomorphisms are useful because they can be used to study complicated groups in terms of simpler ones.

§1.7.2 Image and Kernel

In all definitions here, we assume that f is a homomorphism f :G→ H.

Definition 1.40. The image of f , denoted im(f), is the set of elements y ∈ H such that y = f(x) for
some x ∈ G.

Example 1.41
By definition, the image of the homomorphism fx in Example 1.39 is 〈x〉.
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Proposition 1.42
The image of f is a subgroup of H.

Proof. To show that im(f) is closed under multiplication, suppose y and y′ are in the image of f , so we
have y = f(x) and y′ = f(x′) for some x and x′. Then

yy′ = f(x)f(x′) = f(xx′),

so yy′ is also in the image of f . It’s possible to check the other conditions — that it’s closed under taking
inverses, and it contains the identity — in a similar way.

Definition 1.43. The kernel of f , denoted ker(f), is the set of elements x ∈ G for which f(x) = eH .

Proposition 1.44
The kernel of f is a subgroup of G.

Proof. First, if x and y are both in ker(f), then f(x) = f(y) = eH , so

f(xy) = f(x)f(y) = eH

as well, and therefore xy is also in ker(f). So ker(f) is closed under multiplication.
We already showed that any homomorphism must satisfy f(eG) = eH , so ker(f) contains the identity of G.
Finally, if x is in ker(f), then f(x) = eH , so

f(x−1) = f(x)−1 = eH

as well. So ker(f) is closed under taking inverses as well. Therefore ker(f) is a subgroup of G.

Example 1.45
For the homomorphism fx:Z → G defined as n 7→ xn (for a fixed element x ∈ G), the kernel of fx is
precisely the set of n such that xn = eG. This is exactly the set S we used in order to describe 〈x〉 —
in particular, we used the fact that it’s a subgroup of Z. More explicitly, this kernel is dZ if d = ord(x)
is finite, and {0} if ord(x) is infinite.

Example 1.46
The images and kernels for the other homomorphisms described in the previous section are the following:

(1) For the map det: GLn(R) → R×, the image is R×, and the kernel is SLn(R), which denotes the
group of matrices with determinant 1.

(2) For the map exp:C→ C×, the image is C× and the kernel is 2πiZ (the cyclic group generated by
2πi).

(3) For the map Sn → GLn(R) defined as p 7→ Ap, the image is the set of all permutation matrices,
and the kernel is the identity permutation.

(4) For the map sgn:Sn → R×, the image is {±1} and the kernel is the set of permutations with sign
+1. The kernel of sgn is called the alternating group and denoted by An. For example, we have
A3 = {e, (123), (132)}.
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In some sense, the kernel measures the failure of f to be injective — if the kernel is trivial, then f is injective.

§1.7.3 Isomorphisms

Definition 1.47. A bijective homomorphism is called an isomorphism.

Recall that a function f :G→ H is bijective if it’s both surjective, meaning that all of H is in its image, and
injective, meaning that it sends any two distinct elements of G to distinct elements of H.

Example 1.48
The map exp: (R,+)→ (R>0,×) defined as t 7→ et is an isomorphism.

Claim 1.49 — Given an isomorphism f :G→ H, its inverse f−1:H → G is also an isomorphism.

Proof. First since f is bijective, it has an inverse f−1, which is bijective as well. So it suffices to check that

f−1(xy) = f−1(x)f−1(y)

for all x, y ∈ H. To check this, we can take f of both sides — we have

f(f−1(xy)) = xy = f(f−1(x))f(f−1(y)) = f(f−1(x)f−1(y)).

But since f is injective, this means f−1(xy) = f−1(x)f−1(y).

If we have an isomorphism between two groups, then they’re basically the same — anything that can be
said about one can also be said about the other, by just renaming elements according to the isomorphism.
So understanding the group is essentially the same as understanding a group isomorphic to it.

Example 1.50
For an element g ∈ G with finite order d, the map fx gives an isomorphism between Z/dZ and 〈g〉, by
sending a residue n mod d to the element gn. Meanwhile, for an element g ∈ G with infinite order, the
map fx is an isomorphism between Z and 〈g〉.

In order to check that this example (or more generally, any map) is an isomorphism, we’d check that it’s a
bijection and that it’s compatible with the group operations.

Definition 1.51. An isomorphism from a group G to itself is called an automorphism.

Example 1.52
For any group, the identity map g 7→ g is an automorphism. But there are often more interesting
automorphisms as well:

(1) The map Z→ Z sending n 7→ −n is an automorphism. In fact, this map and the identity are the
only automorphisms of Z.

(2) The map on GLn(R) sending A 7→ (Aᵀ)−1 is an automorphism.

In fact, there’s a general construction that usually produces interesting automorphisms:
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Example 1.53
For any group G and any element a ∈ G, the map ϕa:G→ G sending x 7→ axa−1 is an automorphism.
This is called conjugation by a, and these automorphisms are called inner automorphisms.

Proof. First we’ll check that ϕa is a homomorphism: for any x and y, we have

ϕa(x)ϕa(y) = axa−1 · aya−1 = axya−1 = ϕa(xy),

as desired. Meanwhile to check that ϕa is a bijection, note that its inverse is the map ϕa−1 :x 7→ a−1xa,
since for any x we have a(a−1xa)a−1 = x.

This construction always produces some automorphisms but depending on the choice of a, this may or may
not be an interesting one. In particular, if G is abelian, then ϕa is always just the identity map. However,
when G is not abelian, conjugation can be interesting.

Remark 1.54. Given any group, its automorphisms themselves form a group, under function composi-
tion. This new group can be an interesting object to study.

§1.8 Cosets

Question 1.55. Given a homomorphism f :G→ G′, when do we have f(a) = f(b)?

We have f(a) = f(b) if and only if f(a)−1f(b) = e, or equivalently if and only if f(a−1b) = e. This occurs
exactly when a−1b is in the kernel of f , or in other words, when

b ∈ a ker(f) = {ax | x ∈ ker(f)}.

This motivates us to study what such sets look like.

Definition 1.56. Given a subgroup H ≤ G, a left coset of H is a subset of G of the form aH = {ax |
x ∈ H}.

Example 1.57
In the group S3 = 〈x, y〉 where x = (123) and y = (12), find the left cosets of 〈y〉 = {e, y}.

Solution. Let H = {e, y}. Taking a to be e, x, and x2, we get the cosets H = {e, y}, xH = {x, xy}, and
x2H = {x2, x2y}. Now the remaining values of a give yH = {y, e}, which is the same as H; xyH = {xy, x},
which is the same as xH; and x2yH = {x2y, x2}, which is the same as x2H.
So the cosets of H are {e, y}, {x, xy}, and {x2, x2y}. Note that although there were six possible values of a
to shift by, some produce the same coset — so there’s only three different cosets.

Example 1.58
In the group Z, find the cosets of the subgroup 2Z.

Solution. If we shift by 0, then we get the even integers 2Z, and if we shift by 1, then we get the odd integers
2Z+ 1. These are the only two cosets — shifting by any even number produces 2Z, and shifting by any odd
number produces 2Z + 1. So here there are only two cosets.
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Proposition 1.59
All cosets of H have the same order as H.

Proof. The function x 7→ ax is a bijection from H to aH, since it has an inverse x 7→ a−1x.

Proposition 1.60
The cosets of H form a partition of G.

A partition of a set S is a subdivision of S into disjoint subsets — so these subsets don’t overlap, and
together they contain all elements of S.
In order to prove this, we’ll first prove the following lemma:

Lemma 1.61
Given a coset C of H, then for any element b ∈ C, we have C = bH.

Proof. Suppose C = aH for some a. Then we have b = ah for some h ∈ H, since b is in aH. This means

bH = {bh′ | h′ ∈ H} = {ahh′ | h′ ∈ H}.

But since h and h′ are both in H, so is hh′, and therefore bH ⊂ aH. We can show aH ⊂ bH similarly, by
writing a = bh−1. So then aH and bH must be the same coset.

Using this, we can now prove the proposition:

Proof of Proposition 1.60. First, every element is in a coset — since e ∈ H, we have x ∈ xH for all elements
x. Now to show that the cosets are disjoint, suppose C and C ′ are two cosets with nonempty intersection.
Then if both cosets contain y, the above lemma implies that both are yH, so they are actually the same
coset. So distinct cosets of H don’t overlap.

Definition 1.62. The index of a subgroup H ≤ G, denoted [G : H], is the number of left cosets of H.

Theorem 1.63
We have #G = [G : H] ·#H.

Proof. The cosets of H form a partition of G. But there are [G : H] such cosets and each has size #H,
which gives the desired result.

As a corollary, we get Lagrange’s Theorem:

Theorem 1.64 (Lagrange’s Theorem)
For any subgroup H ≤ G, we have that #H divides #G.

Page 15 of 121



18.701 — Algebra 1 Class by Davesh Maulik (Fall 2021)

Corollary 1.65
If #G is prime, then G is cyclic.

Proof. Let #G = p. For any element x ∈ G, we have that 〈x〉 is a subgroup of G. Now pick any x ∈ G
other than the identity, so 〈x〉 does not have order 1 (as it contains both e and x). However, its order must
divide p, so it must equal p. This means 〈x〉 is the entire group, and therefore G is cyclic. Furthermore, this
proof implies G is generated by any one of its non-identity elements.

This means for every prime p, there’s a unique group of order p up to isomorphism — every such group is
isomorphic to the cyclic group Z/pZ.
We can generalize the argument used here:

Corollary 1.66
For any element x of a group G, ord(x) must divide #G.

Proof. The order of x is the size of 〈x〉, and since 〈x〉 is a subgroup of G, its size must divide that of G.

Example 1.67
What are the possible groups of order 4?

Solution. The group must contain the identity, and every other element must have order 2 or 4. First, if
there is some element x of order 4, then the group must be 〈x〉 ∼= Z/4Z.
Now assume that every element other than the identity has order 2. Take some element x; then since taking
powers of x doesn’t give any new element, there must exist some other element y. Now our group contains
the elements e, x, y, and xy. Note that xy has to be a new element — if xy = e then since x2 = e as well
we would have x = y, while if xy were equal to x or y then the other one would equal e.
So the group consists of the four elements {e, x, y, xy}. But the same reasoning shows that the group
consists of the elements {e, x, y, yx}, so we must have xy = yx. This means the group is exactly the
elements {e, x, y, xy} with the relations x2 = y2 = e and yx = xy, which is enough to completely describe
the group.
This group is abelian but not cyclic. In fact, it’s isomorphic to the group of matrices[

±1 0
0 ±1

]
≤ GL2(R).

So any group of size 4 is either cyclic or isomorphic to this second group.

With this, we can return to our original question about when we have f(a) = f(b) given a homomorphism
f :G→ G′. For each y ∈ G′, we can consider its pre-image

{f−1(y) = {x ∈ G | f(x) = y}.

If y is not in the image of f , then f−1(y) is empty; meanwhile if y is in the image of f , then we’ve seen that
f−1(y) is a coset of ker(f). Then applying what we’ve learned about cosets gives the following corollary:

Corollary 1.68
For any homomorphism f , we have [G : ker(f)] = |im(f)|, or equivalently, |G| = |ker(f)| · |im(f)|.
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§1.9 Normal Subgroups

So far, we’ve only worked with left cosets. But we can define right cosets in the exact same way:

Definition 1.69. Given a subgroup H ≤ G, a right coset of H is a subset Ha = {ha | h ∈ H}.

The same results we’ve seen for left cosets all apply to right cosets as well — the size of any right coset is
|H|, and the right cosets of H always partition G.

Example 1.70
In the group S3, find the right cosets of the subgroup 〈y〉.

Solution. The right cosets are {e, y}, {x, yx} = {x, x2y}, and {x2, yx2} = {x2, xy}.

Note that these cosets still partition S3, but this is a different partition than the one we got from the left
cosets {e, y}, {x, xy}, and {x2, x2y}.

Claim 1.71 — There is a bijection between left and right cosets, given by taking the inverse — if C is
a left coset, then the set C−1 = {x−1 | x ∈ C} is a right coset.

Proof. Let C = aH. Then we have (ah)−1 = h−1a−1 for any h. But h is in H if and only if h−1 is, so then
C−1 is exactly the right coset Ha−1.

Question 1.72. For which subgroups H ≤ G do the left and right cosets give the same partition of G?

Subgroups with this property are quite important, so they have a name:

Definition 1.73. A subgroup H ≤ G is a normal subgroup if xH = Hx for all x ∈ G.

Note that we don’t need to consider the case where xH = Hy for different elements x and y — then since
x ∈ Hy we would have Hy = Hx.
It is sometimes convenient to rewrite the condition as H = xHx−1 for all x ∈ G. So a normal subgroup can
also be thought of as one which is preserved under conjugation by every element x ∈ G.

Proposition 1.74
For any homomorphism f , ker(f) is normal.

Proof. Let k be an element in ker(f), so f(k) = e. But then for any x, we have

f(xkx−1) = f(x)f(k)f(x−1) = f(x)f(x−1) = f(xx−1) = e.

So conjugating any element of ker(f) by x still produces an element of ker(f).

In fact, it turns out the converse is true as well:

Fact 1.75 — Every normal subgroup is the kernel of some homomorphism.

We’ll prove this in a later class.
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Example 1.76
In S3, the subgroup 〈x〉 is normal.

Proof. It’s possible to check this explicitly, but we don’t have to — 〈x〉 = {e, (123), (132)} is the kernel of
sgn, so it must be normal.

Of course, in an abelian group, every subgroup is normal.

§1.10 The Correspondence Theorem

Consider a homomorphism f :G → G′. As mentioned earlier, we’d like to use homomorphisms to help us
understand more complicated groups in terms of simpler ones.

Question 1.77. How are the subgroups of G and G′ related?

Given any subgroup H ≤ G, we can take its image f(H), which is a subgroup of G. This lets us go from
subgroups of G to those of G′.
Meanwhile, given any subgroup H ′ ≤ G′, we can take its pre-image

f−1(H ′) = {x ∈ G | f(x) ∈ H ′}.

This is a subgroup of G — if x and y are both in f−1(H ′), then f(x) and f(y) are in H ′; then f(xy) =
f(x)f(y) ∈ H ′ as well, so xy is also in f−1(H ′). So this lets us go from subgroups of G′ to subgroups of G.

Question 1.78. Is this correspondence a bijection?

Of course, the answer is no — for example, G could be the trivial group, and G′ could be huge.
There are a few constraints we can see immediately — first, f(H) is always contained in im(f), so the only
subgroups of G′ we can produce from subgroups of G are the ones in im(f). Similarly, f−1(H) must always
contain ker(f), so we generally can’t produce all subgroups of G, only the ones containing ker(f).
But it turns out that these are essentially the only things that can go wrong in the correspondence, and
refining the question to account for them gives us the Correspondence Theorem:

Theorem 1.79 (Correspondence Theorem)
Let f :G → G′ be a surjective homomorphism. Then there is a bijection between the subgroups of G
containing ker(f) and the subgroups of G′.

Proof. We use the same map from before — to go from subgroups of G to subgroups of G′ we take the
image, and to go from subgroups of G′ to subgroups of G we take the pre-image. Then we want to check
that these maps are inverses of each other.
Let K = ker(f). Then the two directions we need to check are that if we start with a subgroup K ≤ H ≤ G
then f−1(f(H)) = H, and that if we start with H ′ ≤ G′ then f(f−1(H ′)) = H ′. We’ll only check the first
direction, as the second is similar.
First, f−1(f(H)) is the set of all elements in G such that f(x) ∈ f(H), so clearly H ⊂ f−1(f(H)) by
definition.
On the other hand, we have f(x) = f(h) if and only if x = hk for some k ∈ K, meaning that x is in the
same coset of K as h is. But since K is contained in H, this means x must be in H as well. So all elements
of f−1(f(H)) are also elements of H, and therefore we must have f−1(f(H)) = H.
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This means if we start off with a complicated group G and we find a surjection from G to a simpler group G′,
we can use the subgroups of G′ to understand the subgroups of G. This idea will come up often, especially
in 18.702 in the spring.

Example 1.80
Consider the homomorphism C× → C× given by z 7→ z2 (note that this is a homomorphism because
C× is abelian, but this isn’t generally a homomorphism for a nonabelian group). It’s surjective because
all complex numbers have a square root, and its kernel is {±1}.
Then for example, the subgroup R× of the left group corresponds to its image, the subgroup R>0 of the
right group.
Meanwhile, the subgroup {±1,±i} of the right group corresponds to its pre-image, the subgroup
{e2πia/8} of the left group (consisting of all eighth roots of unity).

§1.11 Quotient Groups

Recall that a subgroup H ≤ G is normal if it is preserved by conjugation by any element of G, or in other
words, xHx−1 = H for all x ∈ G.

Notation 1.81. The notation H E G is sometimes used to denote that H is a normal subgroup of G.

Earlier, we’ve seen that for any homomorphism f , its kernel is always normal. We can ask whether the
converse is true:

Question 1.82. Given a normal subgroup N E G, does there exist a homomorphism f with ker(f) = N?

We’ll see that the answer is yes — we’ll construct a new group G′ and a homomorphism G → G′ whose
kernel is N . First, as a motivating example:

Example 1.83
Consider the normal subgroup 2Z of Z. Then we can take the homomorphism from Z to Z/2Z (the
integers mod 2) sending x 7→ x (mod 2).

So in general, we’d like to construct a version of the integers mod 2.
Note that if N = ker(f) for some homomorphism f , then each element of im(f) corresponds to a coset of
N — each coset of N is mapped to a different point in im(f). So we can try to take the image to be the
cosets of N — let G′ be the set of cosets of N in G.

Definition 1.84. Given two cosets C1 and C2 of G, their product is C1 ·C2 = {y1 ·y2 | y1 ∈ C1, y2 ∈ C2}.

Proposition 1.85
If C1 and C2 are cosets of a normal subgroup, then so is C1 · C2.

Proof. Let C1 = aN and C2 = bN ; then we’ll show that C1 ·C2 = abN . First, it’s clear that abN ⊂ C1 ·C2,
by simply taking y1 = a.
Now for the other direction, take elements an1 and bn2 in C1 and C2 (with n1, n2 ∈ N), so we want to check
that an1 · bn2 is in abN . But since N is normal, we have bN = Nb, so n1b can be rewritten as bn3 for some
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n3 ∈ N . Then we have
an1bn2 = abn3n2 ∈ abN

since n3n2 ∈ N , as desired.

Remark 1.86. It’s important that N is normal here — as a counterexample when N is not normal,
take the group S3, and the subgroup H = {e, y}. Then we have xH = {x, xy}, so

xH · xH = {x2, x2y, xyx, xyxy} = {x2, x2y, y, e}.

This is not a coset of H since it has four elements, not two.

So we can take the product of two cosets, which lets us put a group structure on the set of cosets!

Definition 1.87. Given a normal subgroup N E G, define the quotient group G/N as the set of cosets
of N , with the group operation [C1] · [C2] = [C1 · C2].

Theorem 1.88
The quotient G/N is a group, and there exists a surjective homomorphism π:G → G/N sending x to
the coset containing x, whose kernel is exactly N .

Proof. The fact that G/N is a group is quite straightforward once we know that the operation makes sense.
The identity of G/N is [N ], since [aN ] · [eN ] = [aN ] for any coset [aN ]. The inverse of [aN ] is [a−1N ],
since we showed that [aN ] · [a−1N ] = [aa−1N ] = [N ]. (Note that in general the inverse of a left coset is
a right coset, but here the left and right cosets are the same.) Finally, associativity follows directly from
associativity of multiplication in G. So G/N really is a group.
Now π is the map x 7→ xN ; the fact that π is a group homomorphism follows directly from the fact that
[xN ] · [yN ] = [xyN ]. Meanwhile, its kernel is the subset of G which is mapped to [N ]; this is exactly N .

Remark 1.89. Note that most of this proof was nearly tautological — most of the work was showing
that our multiplication operation really makes sense.

So this answers our question — we’ve produced a group homomorphism with kernel N . This construction is
also useful because if we start with a group and a normal subgroup, we can use it to produce a new group:

Example 1.90
The group SL2(R) has the normal subgroup {±I}. We can then construct a new group by quotienting
out SL2(R) by {±I}; this new group is called PSL2(R). Note that PSL2(R) isn’t really a group of
matrices — it’s a group of matrices up to multiplying by ±1.

There’s another perspective on G/N — given a group G and a subgroup N , we can say that a ≡ b (mod N)
if a and b lie in the same coset of N . This is an equivalence relation, meaning that it satisfies certain axioms.
Then when we turn G/N into a group, we’re saying that the group operation behaves well under equivalence
— if a ≡ b and c ≡ d, then ac ≡ bd. This lets us put a group structure on the set of congruence classes. As
a familiar example, this is how modular arithmetic works, using the normal subgroup nZ ≤ Z.
We’ve now seen how to construct a homomorphism given a normal subgroup. But earlier, we also saw how
to construct a normal subgroup given a homomorphism — so now suppose we started with a surjective
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homomorphism f :G → G′, which produces the normal subgroup K = ker(f). Then we can try to feed K
into our new construction — we get another surjective homomorphism π : G→ G/K. But it turns out we
essentially haven’t done anything, and this new homomorphism is essentially the same as the one we started
with. More precisely:

Fact 1.91 (First Isomorphism Theorem) — We have G/ker(f) ∼= G′.

The isomorphism f̃ :G/ker(f)→ G′ is just given by f̃([xK]) = f(x), and in particular f = f̃ ◦ π. Although
this is called a theorem, we should think of it instead as a check that the quotient construction isn’t something
crazy — there’s a correspondence between elements of the image and cosets of the kernel, and that’s all that
this isomorphism is. The only part of the claim that has content is that this correspondence is compatible
with the group structure on both sides.
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§2 Linear Maps

We’ll now pivot to discussing linear algebra.

§2.1 Vector Spaces

Definition 2.1. A field is a set with two operations + and × which satisfy all the rules we’d expect
— the operations satisfy associativity and distributivity, all elements form an abelian group under
addition, and all nonzero elements form an abelian group under multiplication.

Example 2.2
C, R, and Q are all fields; Z is not a field, since we can’t generally divide by any nonzero integers — in
other words, most nonzero integers don’t have multiplicative inverses.

Example 2.3
Z/pZ is a field, denoted Fp.

Proof. It’s enough to show that every nonzero a has a multiplicative inverse mod p. But we know that
gcd(a, p) = 1, so by Bezout’s Theorem there exist integers r and s such that ar + ps = 1. Then ar ≡ 1
(mod p), so r is the inverse of a.

On the other hand, Z/nZ is not a field for composite n — numbers which aren’t relatively prime to n don’t
have inverses.

Definition 2.4. A vector space V over a field F is a set with two operations: addition, such that (V,+)
is an abelian group, and scaling: a map F ×V → V mapping (a, #»v ) 7→ a #»v , satisfying the usual axioms.

Example 2.5
Some examples of vector spaces:

(1) The space of column vectors (a1, . . . , an) with ai ∈ F for all i, denoted Fn, is a vector space.
(2) For any m× n matrix A with entries in F , the solutions to A #»v = #»0 form a vector space.
(3) Linear homogeneous ODEs (ordinary differential equations) form a vector space.

For most things we’ll do in linear algebra, it’s possible to work over any field, instead of just R — we just
need to be able to divide. So for example, we could work with GLn(Fp) instead of GLn(R) — this is now a
finite group.

§2.2 Linear Combinations

Definition 2.6. Given vectors #»v1, . . . , # »vn in V , a linear combination of these vectors is a vector of the
form

#»v = a1
#»v1 + · · ·+ an

# »vn

for some a1, . . . , an ∈ F .
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Definition 2.7. For a set S = { #»v1, . . . ,
# »vn}, the span of S, denoted Span(S), is the set of all vectors #»v

which are linear combinations of #»v1, . . . , # »vn.

Note that Span(S) is a vector subspace of V — it’s also a vector space.
We say that a set S = { #»v1, . . . ,

# »vn} spans V if Span(S) = V , or in other words, if every vector in V can be
written as a linear combination of the vectors #»vi.

Definition 2.8. A set of vectors #»v1, . . . , # »vn are linearly independent if the only (a1, . . . , an) for which

a1
#»v1 + · · ·+ an

# »vn = 0

is a1 = · · · = an = 0.

Equivalently, #»v1, . . . , # »vn are linearly independent if and only if there is only one way to write each #»v as a
linear combination — if there were two ways to write #»v , then we could subtract them to get a nontrivial
solution to a1

#»v1 + · · ·+ an
# »vn = 0.

Definition 2.9. If a set S of vectors both spans V and is linearly independent, then S is a basis of V .

If S is a basis of V , then every vector can be written uniquely as a linear combination of its elements —
there is a unique way to write

#»v = a1
#»v1 + · · ·+ an

# »vn

for any vector #»v . Then (a1, . . . , an) are called the coordinates of #»v in this basis.

Example 2.10
In the vector space R2, the set {(1, 1)ᵀ, (3, 2)ᵀ, (2, 1)ᵀ} spans R2, but is not linearly independent. But if
we remove the last vector, then the set {(1, 1)ᵀ, (3, 2)ᵀ} still spans R2 and is now linearly independent;
so it forms a basis of R2.

In linear algebra, a common theme is that a good choice of basis can make the problem easier.
We say V is finite-dimensional if there exists a finite list of vectors which spans V . For a finite-dimensional
vector space, we’d like to actually define its dimension — for example, R2 should have dimension 2. For
this, we need the following lemma:

Lemma 2.11
If we have a set S = { #»v1, . . . ,

#»vr} which spans V , and a set L = { # »w1, . . . ,
# »ws} which is linearly indepen-

dent, then:
(1) We can remove elements from S to produce a basis of V .
(2) We can add elements of S to L to produce a basis of V .
(3) We have |S| ≥ |L|, or in other words r ≥ s.

Corollary 2.12
If S and L are both bases of V , then they have the same number of vectors.

This lets us define the dimension:

Definition 2.13. The dimension of V is the number of vectors in a basis of V .
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Proof of Lemma 2.11. First we’ll prove (1). If S is linearly independent then we’re done; otherwise, we have

a1
#»v1 + · · ·+ ar

#»vr

for some scalars ai which are not all zero. Without loss of generality ar 6= 0; then we have
#»vr = −a−1

r (a1
#»v1 + · · ·+ ar−1

#      »vr−1).

This means #»vr is in the span of the remaining vectors #»v1, . . . , #      »vr−1; therefore we can remove it from S
without changing Span(S), since any occurrence of #»vr can be replaced with this expression.
So we’ve deleted one vector from S, without decreasing its span. We can keep doing this until the vectors
are all linearly independent; this must happen at some point, because we can’t delete all the vectors.
Now we’ll prove (2). First, if S is contained in Span(L), then since S spans V , so must L; then L is a basis
and we’re done. So now assume #»v1 is in S but not in Span(L). Then add #»v1 to L.
Then we claim L is still linearly independent — if we have

c #»v1 + a1
# »w1 + · · ·+ as

# »ws = 0,

then we must have c = 0 since otherwise #»v1 would have been in Span(L), and then we must have a1 = · · · =
as = 0 since the original set was linearly independent.
We can keep on adding vectors from S to L until we’re stuck and L spans V . This must happen at some
point — at the least, if we’ve added everything in S to L then L definitely spans V . Now since L spans V
and is still linearly independent, it is a basis for V .
Finally we’ll prove (3). Since S spans V , we can write each # »wj as a linear combination of the #»vi. Let

# »wj =
r∑
i=1

aij
#»vi

for each 1 ≤ j ≤ s. Let A be the r × s matrix consisting of the aij ; then in matrix notation, this system of
equations becomes [

# »w1 · · · # »ws
]

=
[

#»v1 · · · #»vr
]
A.

Now assume for contradiction that r < s. Then the linear system A #»x = 0 has more variables than equations,
so it must have a nontrivial solution for #»x (for example, this can be proven by putting A into row echelon
form). But then we have ∑

xi
# »wi =

[
# »w1 · · · # »ws

]
#»x =

[
#»v1 · · · #»vr

]
A #»x = 0.

This contradicts the fact that the # »wi are linearly independent; so we must have r ≥ s.

§2.3 Linear Transformations

Definition 2.14. Given vector spaces V and W , a linear transformation between them is a map
T :V → W which is compatible with the vector space operations: we have T ( #»v1 + #»v2) = T ( #»v1) + T ( #»v2)
for all vectors #»v1 and #»v2, and T (a #»v ) = aT ( #»v ) for all vectors #»v and scalars a.

Note that V and W must be vector spaces over the same field — when doing linear algebra, we generally
fix the field at the very beginning.

Definition 2.15. An isomorphism between vector spaces is a bijective linear transformation.

Similarly to the case of group isomorphisms, we can check that if T :V → W is a bijective linear transfor-
mation, then its inverse (which exists because it is a bijection) is also a linear transformation.

Page 24 of 121



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

Example 2.16
Given a set S = { #»v1, . . . ,

# »vn} of vectors in V , we can define the transformation TS :Fn → V asa1
...
an

 7→ n∑
i=1

ai
#»vi.

In fact, we can rewrite all the properties of a set of vectors described into the previous section as
properties of this map — S is linearly independent if and only if TS is injective, and S spans V if and
only if TS is surjective. In particular, S is a basis for V if and only if TS is an isomorphism.

In order to describe a linear transformation T , it’s enough to describe what T does to a basis of V — then
we can use the fact that T interacts well with linear combinations in order to calculate T ( #»v ) for any #»v .

§2.3.1 Coordinates and Change of Basis

Given a basis # »w1, . . . , #  »wn of V , we can define a linear transformation B:Fn → V sending #»ei 7→ # »wi for
each i. This is an isomorphism (as described in the example), so it has an inverse. In particular, if
B−1( #»w) = (a1, . . . , an)ᵀ, then we have #»w = a1

# »w1 + · · ·+ an
#  »wn, so B−1( #»w) gives the coordinates of #»w in the

basis consisting of # »w1, . . . , #  »wn.
Linear transformations and matrices are closely related, as mentioned much earlier. Given a m× n matrix
A, we can define a linear transformation T :Fn → Fm sending #»v 7→ A #»v . On the other hand, given the
transformation T we can uniquely recover the corresponding matrix A — the columns of A should be
T ( #»e1), . . . , T ( #»en). This means matrices and linear transformations are essentially the same thing — in fact,
matrices and linear transformations both form vector spaces, and this correspondence is an isomorphism of
vector spaces. Then a linear transformation T :Fn → Fm is an isomorphism if and only if the corresponding
matrix A is invertible, meaning that m = n and A ∈ GLn(F ).

Question 2.17. If V is finite-dimensional, how can we relate two bases of V ?

Suppose we have one basis { #»v1, . . . ,
# »vn}, which provides an isomorphism B:Fn → V , and another basis

{ # »w1, . . . ,
#  »wn}, which also provides an isomorphism B′:Fn → V . We can then set P = B−1 ◦B′, which is an

isomorphism from Fn → Fn such that B′ = B ◦ P .

Fn Fn

V

B B′

P

Since P is an isomorphism Fn → Fn, it corresponds to a n×n invertible matrix; we’d like to figure out the
contents of this matrix. In order to figure out the columns of P , we want to figure out what P does to the
standard basis vectors #»ei. We have

P ( #»ei) = B−1(B′( #»ei)) = B−1( # »wi),
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which is the coordinates of # »wi in the basis { #»v1, . . . ,
# »vn}. So the columns of P are exactly the coordinates of

the # »wi in terms of the #»vj . Similarly, the columns of P−1 are the coordinates of the #»vi in terms of the # »wj .
Now suppose we have any vector #»v ∈ V , and we write down its coordinates in both bases — let #»x ∈ Fn
be the coordinates of #»v in the basis B, and #»y ∈ Fn be the coordinates of #»v in the basis B′. Then we have
#»x = B−1( #»v ) and #»y = B′−1( #»v ), so since P = B−1 ◦B′, we have P ( #»y ) = #»x , and conversely P−1( #»x ) = #»y .
By choosing a basis, we can write down everything in terms of coordinates. Suppose we have a linear
transformation T :V →W . Then we can pick a basis B = { #»v1, . . . ,

# »vn} for V , and a basis C = { # »w1, . . . ,
#   »wm}

for W . This gives an isomorphism A = C−1 ◦ T ◦B from Fn → Fm, which corresponds to a m× n matrix.
So the things we study about matrices in Fn really allow us to study any linear transformation (assuming
that our vector spaces are finite-dimensional).

Example 2.18
Let V be the set of complex functions satisfying f ′′(t) = f(t), and W the set of complex functions
satisfying f ′′(t) = −f(t). Define the linear transformation T :V →W as f(t) 7→ f(it).
One basis for V is {et, e−t}, and one basis for W is {cos t, sin t}. Now to find the corresponding matrix
A, its columns are given by the coordinates of T ( #»vi) in the basis # »wj . We have et 7→ eit = cos t+ i sin t,
so the coordinates of its image are (1, i). Similarly, e−t 7→ e−it = cos t − i sin t, so its coordinates are
(1,−i). So we have

A =
[
1 1
i −i

]
.

We could have produced a different matrix by choosing a different basis — for example, the basis
{eit, e−it} for W would produce

A′ =
[
1 0
0 1

]
.

In the above example, we saw that by changing which basis we used, we could make A into the identity
matrix. So we can ask how “nice” we can make the matrix in general:

Question 2.19. Can we choose bases B and C so that the matrix A looks very nice?

We’ll come back to this later.

§2.3.2 The Dimension Formula

Definition 2.20. Given a linear transformation T :V → W , its kernel is the set of vectors #»v in V for
which T ( #»v ) = 0, and its image is the set of vectors #»w in W such that #»w = T ( #»v ) for some #»v .

The kernel and image are vector subspaces of V and W respectively, by the same reasoning as in the case
of groups. So it makes sense to define their dimensions:

Definition 2.21. The dimension of im(T ) is called the rank, and the dimension of ker(T ) is called the
nullity.

Equivalently, given a matrix A, its rank is the dimension of the span of its columns.

Theorem 2.22 (Dimension Formula)
We have dim ker(T ) + dim im(T ) = dimV .
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This is also known as the Rank-Nullity Theorem.

Remark 2.23. This is reminiscent of the formula |G| = |ker(f)| · |im(f)| from group homomorphisms.

Proof. Pick a basis #»v1, . . . , #»vk of ker(T ). Since this set of vectors is linearly independent, we can extend it
to a basis of V , by adding some vectors #      »vk+1, . . . , # »vn.
We know that T ( #»vi) = 0 for all 1 ≤ i ≤ k. Meanwhile, let T ( #»vi) = # »wi for each k + 1 ≤ i ≤ n; then the
vectors # »wi are all in im(T ).

Claim — The vectors #        »wk+1, . . . , #  »wn form a basis for im(T ).

Proof. First, to show they span im(T ), we have

im(T ) = Span(T ( #»v1), . . . , T ( # »vn))

by linearity. But T ( #»v1), . . . , T ( #»vk) are all 0, so we can remove them without affecting the span.
Now to show they’re linearly independent, suppose

ak+1
#        »wk+1 + · · ·+ an

#  »wn = 0.

Then using linearity, we can rewrite this as

T (ak+1
#      »vk+1 + · · ·+ an

# »vn) = 0.

But this means ak+1
#      »vk+1 + · · ·+ an

# »vn must be in ker(T ), and therefore we can write

ak+1
#      »vk+1 + · · ·+ an

# »vn = a1
#»v1 + · · ·+ ak

#»vk

for some a1, . . . , ak. But since #»v1, . . . , # »vn form a basis for V , they must be linearly independent, and
therefore all coefficients are 0.

Now we’re done, since dim ker(T ) = k and dim im(T ) = n− k, and these sum to dimV = n.

In fact, this proof shows something more. Take a basis #      »vk+1, . . . , # »vn, #»v1, . . . , #»vk of V as described. Then
take the basis #        »wk+1, . . . , #  »wn of im(T ) as described, and add vectors # »u1, . . . , # »uk to extend this to a basis of
W . In these bases, it’s easy to describe T — it sends #»vi 7→ # »wi for each k + 1 ≤ i ≤ n, and #»vi 7→ 0 for all
other i. So then in the matrix corresponding to T , the first n− k entries on the diagonal are all 1, and all
other entries are 0: so T looks like 

1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

0

0 0


.

This answers our question from earlier — for any linear transformation, we can choose bases to make the
transformation have this form, which is very nice. As a special case, suppose we started with a linear
transformation Fn → Fm, which already corresponds to a matrix M . Then we can choose new bases for Fn
and Fm in which M has this form; this corresponds to choosing invertible matrices P and Q, and writing
the new matrix A = Q−1MP .
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Corollary 2.24
Given any m × n matrix M , there exist P ∈ GLn(F ) and Q ∈ GLm(F ) such that Q−1MP has some
number of 1’s at the beginning of its diagonal, and 0’s everywhere else.

This comes back to a remark made earlier, that the choice of basis can often make your life a lot easier.

Remark 2.25. To explicitly tie this back to the Dimension Formula, columns with all zeros correspond
to the kernel, while the columns with a 1 correspond to the image.

Corollary 2.26
Given any m× n matrix M , the rank of M is the same as the rank of its transpose Mᵀ.

In other words, the column rank (the dimension of the span of its columns) is the same as the row rank (the
dimension of the span of its rows).

Proof. Write A = Q−1MP in the form described. Then this is clearly true for A — the rank of A is just the
number of 1’s on the diagonal, and its transpose has the same number of 1’s. But A and M are isomorphic
(since we obtained A from M by multiplying by invertible matrices, or equivalently by changing basis), and
Aᵀ and Mᵀ are isomorphic. So the rank of A is the same as the rank of M , and the rank of A is the same
as the rank of Mᵀ; therefore M and Mᵀ have the same rank as well.

§2.4 Linear Operators

So far, we’ve looked at linear maps between different spaces. But we can also look at linear maps on a fixed
space:

Definition 2.27. A linear operator is a linear transformation T :V → V .

Example 2.28
Some examples of linear operators:

(1) In the vector space R2, rotation by θ counterclockwise is a linear operator (for any angle θ).
(2) In the vector space of polynomials of degree at most 2, the derivative is a linear operator.

In order to understand a linear operator T , we can still choose a basis for V and write down the matrix
corresponding to T . The only difference between this case and that of general linear maps is that now
since we have V on both sides, we only need one basis instead of two. Then if we have a basis giving an
isomorphism B:Fn → V , this turns T into a n× n square matrix A, whose columns are the images of each
basis vector under T .
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Example 2.29
In our two above examples:

(1) If we take the standard basis for R2, the corresponding matrix is

A =
[
cos θ − sin θ
sin θ cos θ

]
.

(2) If we take the basis {1, t, t2}, then the derivative maps 1 7→ 0, t 7→ 1, and t2 7→ 2t, giving the
matrix

A =

0 1 0
0 0 2
0 0 0

 .

Proposition 2.30
If V is finite-dimensional, then a linear operator T :V → V is injective if and only if it is surjective.

We’ll always assume vector spaces are finite-dimensional unless otherwise stated.

Proof. We can use the dimension formula — we know dim ker(T ) + dim im(T ) = dimV . So dim ker(T ) = 0
if and only if dim im(T ) = dimV , which occurs if and only if im(T ) = V .

So to check that a linear operator is an isomorphism, it’s enough to check only one of injectivity and
surjectivity. In this sense, finite-dimensional vector spaces behave a lot like finite sets.

§2.4.1 Change of Basis

Suppose we have a linear operator T :V → V , and a basis B:Fn → V in which T becomes the matrix A.
Now suppose we want to write T in a different basis — take an invertible matrix P :Fn → Fn and use the
new basis B′ = BP , and let A′ be the matrix of T in this basis.

Fn Fn
A

V V
T

B B

Fn Fn
A′

B′ B′

P P

To follow the arrow corresponding to A′, we’d first go up using P , then right using A, then down using P−1.
So we have A′ = P−1AP , and therefore changing basis conjugates the matrix.

Definition 2.31. Two matrices A and A′ are similar if there exists an invertible matrix P such that
A′ = P−1AP .
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So two matrices are similar if they correspond to the same linear operator written in different bases.
Note that this means, for example, that we can define the determinant of a linear operator, rather than just
a matrix — given a linear operator T :V → V , we can pick a basis of V to produce a square matrix A, and
define the determinant of T as the determinant of A. This is well-defined because if we chose a different
basis, then we’d get a matrix A′ = P−1AP for some invertible P , and then

det(A′) = det(P−1) det(A) det(P ) = det(P−1P ) det(A) = det(A).

So even though the matrix depends on the choice of basis, its determinant doesn’t.

Remark 2.32. This suggests that the determinant is intrinsic to T , in some sense. In fact, over R, the
determinant has a meaning related to volume. Something similar is true even over other fields (where
volume may not make sense).

§2.5 Diagonalization

Question 2.33. How nice can we make the matrix of a linear operator by changing the basis?

Equivalently, given a matrix A, we’d like to find a matrix similar to A which is nice. In the case of linear
transformations, we could make the matrix really nice by changing the basis on both sides. However, here
we have less flexibility, since we only get to choose one basis.

Example 2.34
Take the matrix

A =
[
2 3
3 2

]
,

which is a linear operator on R2. By changing the basis for R2, how nice can we make the new matrix?

Solution. Note that
A

[
1
1

]
=
[
5
5

]
= 5

[
1
1

]
,

and similarly we have

A

[
−1
1

]
=
[

1
−1

]
= −

[
−1
1

]
.

So the linear operator does something really nice to (1, 1)ᵀ and (−1, 1)ᵀ — it just stretches (or flips) them.
Then if we take (1, 1)ᵀ and (−1, 1)ᵀ as our basis — meaning we take the change of basis matrix

P =
[
1 −1
1 1

]
,

then we get the new matrix

A′ = P−1AP =
[
5 0
0 −1

]
.

So we’ve produced a diagonal matrix!
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§2.5.1 Eigenvectors

Definition 2.35. A nonzero vector #»v is an eigenvector for a linear operator T if T #»v = λ #»v for some
scalar λ, which we call the eigenvalue of #»v .

So the linear operator T doesn’t change the direction of #»v — it just scales #»v . So in some sense, eigenvectors
are the directions in which T behaves nicely.
The reason we could make A a diagonal matrix in the above example is that we had enough eigenvectors to
form a basis.

Definition 2.36. A basis #»v1, . . . , # »vn such that each #»vi is an eigenvector of T is called a eigenbasis for T .

If we have an eigenbasis where T #»vi = λi
#»vi for each i, then in this basis T becomes the diagonal matrix

λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . 0
0 0 · · · λn

 .

Diagonal matrices are really nice — for example, it’s easy to take the nth power of a diagonal matrix.

Definition 2.37. We say T is diagonalizable if there exists a basis in which T is diagonal.

Note that a basis in which T is diagonal is exactly an eigenbasis. Of course, we can also discuss whether a
square matrix is diagonalizable, by the same definition — meaning that it’s similar to a diagonal matrix.

Question 2.38. How can we find eigenvectors, eigenvalues, and an eigenbasis?

We can start by trying to find the eigenvalues. A scalar λ is an eigenvalue if and only if there exists some
nonzero #»v for which A #»v = λ #»v , or equivalently

(A− λI) #»v = 0.

So λ is an eigenvalue if and only if ker(A−λI) is nonzero, meaning that A−λI is not invertible; this occurs
exactly when

det(λI −A) = 0.
But we can imagine expanding out the determinant; then this is a polynomial equation in λ!

Definition 2.39. The characteristic polynomial of A is the degree n polynomial pA(t) = det(tI −A).

Proposition 2.40
The characteristic polynomial of a linear operator does not depend on the choice of basis.

In other words, if A and A′ are similar, then pA′(t) = pA(t).

Proof. This follows directly from the fact that the characteristic polynomial is a determinant. More precisely,
if A′ = P−1AP , then (tI −A′) = P−1(tI −A)P as well, so their determinants are the same.

In fact, this observation has another useful corollary — we know that all terms of the characteristic poly-
nomial are independent of the choice of basis. But we can write out a few of the terms — if A consists of
entries aij , then

pA(t) = tn − (a11 + · · ·+ ann)tn−1 + · · ·+ (−1) detA.
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The quantity a11 + · · ·+ ann is called the trace of the matrix; this implies that the trace is independent of
the choice of basis, or equivalently, that tr(P−1AP ) = tr(A) for any matrix A and invertible matrix P .
Returning to the problem at hand, we know the eigenvalues are exactly the roots of the characteristic
polynomial. Unfortunately, it’s possible that there are no roots:

Example 2.41
Consider the linear operator on R2 given by rotation by θ. This has characteristic polynomial

pA(t) = det
[
t− cos θ sin θ
− sin θ t− cos θ

]
= t2 − 2 cos θ + 1,

which has no real roots unless θ is a multiple of π. So this operator has no eigenvalues or eigenvectors.
(This is unsurprising because when we rotate every vector, we don’t preserve any vector’s direction.)

This is a problem, but we can fix it by working over C instead of R. Then every polynomial factors as a
product of linear terms, so a polynomial of degree n has n roots (with multiplicity). For the rest of this
discussion, we’ll assume we’re working over the field C to take care of this first obstacle.

Question 2.42. Can we always find an eigenbasis?

Unfortunately, the answer is no — we may not be able to find enough linearly independent eigenvectors to
form a basis.

Example 2.43
Take the matrix

A =
[
0 1
0 0

]
.

Its characteristic polynomial is pA(t) = t2, so its only eigenvalue is 0 (with multiplicity 2). Then if A
were similar to a diagonal matrix, that diagonal matrix would have to be the zero matrix, making A
itself the zero matrix; this is a contradiction. So A cannot be diagonalizable.

In the above example, we only had one eigenvalue 0; but this eigenvalue corresponded to a 1-dimensional
kernel, not a 2-dimensional kernel. So we couldn’t find enough eigenvectors to form a basis.

Remark 2.44. We’ll see later that this is the most important counterexample, in some sense.

Since repeated roots can potentially cause problems, let’s first work with eigenvectors of different eigenvalues.

Proposition 2.45
Suppose a n× n matrix has k eigenvectors #»v1, . . . , #»vk with corresponding eigenvalues λ1, . . . , λk which
are all distinct. Then #»v1, . . . , #»vk are linearly independent.

Proof. We’ll use induction on k. The base case k = 1 is clearly true, since the only way for a set of one
vector to not be linearly independent is if it is the zero vector, and eigenvectors are nonzero by definition.
Now assume it’s true for k− 1 eigenvectors, and we’ll show it’s true for k. Suppose we have a linear relation

a1
#»v1 + · · ·+ ak

#»vk = 0.
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Now apply A to both sides. Since multiplication by A is linear, we get

a1 ·A #»v1 + · · ·+ ak ·A #»vk = 0,

and since each #»vi is an eigenvector, this means

a1λ1
#»v1 + · · ·+ akλk

#»vk = 0.

So we started off with one linear combination that resulted in 0, and now we’ve produced another one! We
can now scale the original linear combination by λk and subtract to get

a1(λ1 − λk) #»v1 + · · ·+ ak−1(λk−1 − λk) #      »vk−1 = 0.

But this is a linear relation between #»v1, . . . , #      »vk−1, so by the inductive hypothesis, all the coefficients must
be 0. But we can’t have λi−λk = 0 for any k, so this means a1, . . . , ak−1 are all 0. But then ak #»vk = 0, and
since #»vk is nonzero, this means ak is 0 as well.

Corollary 2.46
If the characteristic polynomial of A factors as

pA(t) = (t− λ1) · · · (t− λn)

where all the λi are distinct (in other words, it has no repeated roots), then A has an eigenbasis and is
diagonalizable.

Proof. Let #»v1, . . . , # »vn be eigenvectors corresponding to λ1, . . . , λn. Then by the above proposition, #»v1, . . . ,
# »vn must be linearly independent; then their span has dimension n, so they must form a basis.

This means if the characteristic polynomial has no repeated roots, then we immediately know the matrix is
diagonalizable, without even having to compute the eigenvectors. This is quite strong — most of the time,
the characteristic polynomial will not have repeated roots (more precisely, the set of matrices for which
there are repeated roots has measuzre 0).
In general, suppose the characteristic polynomial factors as

pA(t) = (t− λ1)e1 · · · (t− λk)ek ,

where the λi are all distinct. Then we can find the vector spaces Vλi
= ker(λiI − A). Each of these spaces

has dimension at least 1 (every eigenvalue has at least one eigenvector), so we can produce a basis for each
one. (This is computationally easy — given an explicit matrix, we can find a basis for its kernel by using
row operations.)
Then using Proposition 2.45, our set of all these basis vectors is linearly independent as well. So if we can
find n basis vectors in total, then they form an eigenbasis and A is diagonalizable; but if we can’t, then A
is not diagonalizable. We’ll see later that dimVλi

≤ ei for each i, so diagonalization fails if one of these
bounds is strict.

§2.5.2 Jordan Normal Form

We’ve seen that almost all matrices are diagonalizable, but we’d still like to figure out the nicest form we
can put a matrix into even if it’s not diagonalizable.
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Definition 2.47. Given a positive integer a and a scalar λ, the Jordan block Ja(λ) is the a× a matrix
with λ’s on the diagonal, 1’s directly above the diagonal, and 0’s everywhere else: so we have

Ja(λ) =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


.

This matrix is not diagonalizable — its characteristic polynomial is (t−λ)a, so λ is its only eigenvalue, and
#»e1 is the only λ-eigenvector. So if a > 1, then Ja(λ) doesn’t have an eigenbasis.
So the matrices Ja(λ) can’t be diagonalized, but in some sense they capture everything that can go wrong
when attempting to diagonalize (assuming we’re working over the field C):

Theorem 2.48
Given a linear operator T :V → V with dimV = n, there exists a basis for V and some (a1, λ1), . . . ,
(ar, λr) such that the matrix corresponding to T is the block-diagonal matrix formed by concatenating
Ja1(λ1), . . . , Jar (λr) along the diagonal.

So this answers our question about how nice we can make a linear operator — we can find a basis in
which it looks like a bunch of Jordan blocks glued together. In fact, these Jordan blocks are unique up to
rearrangement, and this decomposition is called the Jordan decomposition of T .

Example 2.49
What are the possible Jordan decompositions when n = 4?

Solution. We must have a1 + · · · + ar = 4. The ways to have positive integers summing to 4 are 4, 3 + 1,
2 + 2, 2 + 1 + 1, and 1 + 1 + 1.
If a1 = 4, then the Jordan form of our matrix is

λ1 1 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ

 .
If (a1, a2) = (3, 1), then the Jordan form is 

λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

 .
If (a1, a2) = (2, 2), then the Jordan form is 

λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

 .
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If (a1, a2, a3) = (2, 1, 1), then the Jordan form is
λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 .
Finally, if (a1, a2, a3, a4) = (1, 1, 1, 1), then the Jordan form is the diagonal matrix

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 .
In particular, a matrix A is diagonalizable if and only if all the Jordan blocks have size 1.
Note that the characteristic polynomial of a matrix in Jordan normal form is

pA(t) = (t− λ1)a1 · · · (t− λr)ar .

This is closely related to the factorization (t−λ1)e1 · · · (t−λk)ek we defined earlier, but it’s not the same —
there may be multiple Jordan blocks corresponding to the same eigenvalue. So it’s not generally possible to
figure out the Jordan decomposition just from the characteristic polynomial. But we do get some information
— for each eigenvalue λ, the sizes of the Jordan blocks corresponding to λ sum to the exponent of t− λ in
the characteristic polynomial.
Every matrix has a Jordan form, but almost every matrix is diagonalizable — if we take any matrix and
perturb its entries a bit, it will be diagonalizable. So Jordan form is necessary 0 percent of the time; but
it’s useful to have a result that works for all matrices.
To set up the proof of Jordan normal form, let’s think about what the Jordan blocks really represent.

Example 2.50
As an operator, the matrix J4(0) affects the basis vectors by sending

#»e4 7→ #»e3 7→ #»e2 7→ #»e1 7→ 0.

In particular, if we denote this linear operator by T , then T 4 #»ei = 0 for all basis vectors #»ei, which means
T 4 #»x = 0 for all vectors #»x .

In general, if T has a Jordan block with eigenvalue 0, then there is some n such that Tn #»x = 0 for all #»x in
the corresponding subspace. Similarly, if T has a Jordan block with eigenvalue λ, then there is some n such
that (T − λI)n #»x = 0 for all #»x in the corresponding subspace.
In the above example, we had a chain of vectors which eventually reached 0. If for example we had two
copies of J2(0) instead, then we’d have two chains — #»e2 7→ #»e1 7→ 0 and #»e4 7→ #»e3 7→ 0.

Definition 2.51. A vector #»x is called a generalized eigenvector of T if (T − λI)n #»x = 0 for some n.

So Jordan normal form corresponds to chains of generalized eigenvectors, in some sense. In order to prove
Jordan normal form, there’s a few more concepts we’ll make use of:

Definition 2.52. Given a linear operator T :V → V and a subspace W ⊂ V , we say that W is
T -invariant if for each #»w ∈W , we also have T ( #»w) ∈W .

In other words, W is T -invariant if T (W ) ⊂W .
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Definition 2.53. Given a vector space V and two subspaces W and W ′, we say that V is the direct
sum of W and W ′ if every vector in V can be written uniquely as the sum of an element of W and one
of W ′.

In other words, for V to be a direct sum of W and W ′, we should be able to take a basis of W and one of
W ′, and string them together to get a basis of V . Writing V as a direct sum of W and W ′ is sometimes
also called a splitting of V .

Fact 2.54 — If dimW + dimW ′ = dimV and the only vector W and W ′ have in common is 0, then
V is the direct sum of W and W ′.

Proof. The elements of the bases of W and W ′ must be linearly independent (or else we’d have some nonzero
vector in both of them), so they must form a basis for V (since there’s the right number of vectors).

Definition 2.55. A splitting V = W ⊕W ′ is called T -invariant if both W and W ′ are T -invariant.

The point of these definitions is that this is essentially what it means for a matrix to be block-diagonal — if
a matrix is block-diagonal, then the vector space corresponding to each block is invariant under the matrix,
and the direct sum of these vector spaces is V .
Finally, we’ll use one more definition:

Definition 2.56. An operator T is nilpotent if Tm = 0 for some positive integer m.

Note that Jordan blocks Ja(0) are nilpotent (and no other Jordan blocks are).
Now we are ready to prove the existence of a Jordan decomposition.

Proof of Theorem 2.48. We’ll induct on dimV . The main idea is to split the vector space into two T -
invariant pieces and find a Jordan decomposition for each.
First, we may assume that 0 is an eigenvalue of T — otherwise let λ be some eigenvalue (which must exist),
and replace T with T − λI. (Then if we get a Jordan decomposition for the new operator T − λI, we can
get a decomposition for T by simply adding λI.)

Claim — There exists a T -invariant splitting V = W ⊕U such that the operator T |W is nilpotent, and
the operator T |U is invertible.

The notation T |W means T restricted to W — so we view T as a linear operator W → W (which makes
sense since W is T -invariant).

Proof. Consider the chain
V ⊃ TV ⊃ T 2V ⊃ T 3V ⊃ · · · .

This gives a nesting family of subspaces. But the dimensions of these spaces form a nondecreasing sequence of
nonnegative integers, so they must eventually stabilize; that means eventually the subspaces stop shrinking,
and we have

TmV = Tm+1V = Tm+2V = · · · .

Now define U = im(Tm) (or in other words, U = TmV ) and W = ker(Tm). We claim that this provides a
T -invariant splitting with the claimed properties.
First we’ll check that both spaces are invariant. It’s clear that U is T -invariant, since TU = U ; meanwhile
W is T -invariant as well since if #»w is in ker(Tm), then Tm+1 #»w is zero as well, so T #»w is also in ker(Tm).
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Now T |W is nilpotent because (T |W )m = 0 by definition (we defined W = ker(Tm), so applying T to W for
m times will send every vector in W to 0). Meanwhile, T |U is invertible because im(T |U ) = U , and therefore
T |U must be a bijection.
Finally, it remains to show that W ⊕ U = V . For this, we’ll use Fact 2.54: first, Tm is invertible on U , so
no nonzero vector in U can be in W = ker(Tm). Meanwhile we have

dimW + dimU = dim ker(Tm) + dim im(Tm) = dimV

by the Dimension Formula. So by Fact 2.54, we have W ⊕ U = V . �

Now we’ve split V into a nilpotent part and an invertible part. Note that dimU < dimV , since we assumed
that 0 was an eigenvalue of T . So by the inductive hypothesis we can find a Jordan decomposition for T |U ,
and it’s now enough to find one for T |W . So we’ve reduced the problem to one about nilpotent operators.

Claim — If T :V → V is a nilpotent operator, then there is a basis of V in which T acts by chains —
meaning that T sends #»ek 7→ #      »ek−1 7→ · · · 7→ #»e1 7→ 0. (There may be several chains.)

Proof. We again use induction on dimV . Set W = im(T ); then W has strictly lower dimension than V
(since if W = V , then T would be invertible). Then by the inductive hypothesis, we can find a basis for W
in which T acts by a bunch of chains:

0

#»e1

#»e2

#»e3

0

#»e4

#»e5

0

#»e6

Now for each chain, insert the pre-image of the top vector at the beginning of the chain — if there are
multiple pre-images of one vector, then choose arbitrarily. Call these vectors #»v1, #»v2, . . . , #»vk — so in this
situation we’d have #»v1 7→ #»e3, #»v2 7→ #»e5, and #»v3 7→ #»e6. Additionally, extend the bottom vectors to form a basis
of ker(T ), by adding vectors # »u1, # »u2, . . . , #»u` which all map to 0.

0

#»e1

#»e2

#»e3

0

#»e4

#»e5

0

#»e6

#»v1

#»v2

#»v3

0 0

# »u1
# »u2

We claim that our basis vectors for W , together with these new vectors, form a basis for V . First, there’s the
right number of them — we started out with dimW = dim im(T ) vectors and added in dim ker(T ) vectors
(since the vectors at the bottom of each chain in the new picture form a basis for ker(T ), and we’ve added
one vector in each chain), and we have dimV = dim im(T ) + dim ker(T ) by the Dimension Formula. So it’s
enough to show that they’re linearly independent.
Suppose we have some linear combination of these vectors which equals 0.

Page 37 of 121



18.701 — Algebra 1 Class by Davesh Maulik (Fall 2021)

0

#»e1

#»e2

#»e3

0

#»e4

#»e5

0

#»e6

#»v1

#»v2

#»v3

0 0

# »u1
# »u2

Now apply T to this linear combination. This pushes all our vectors down one step in the chain.

0

#»e1

#»e2

#»e3

0

#»e4

#»e5

0

#»e6

#»v1

#»v2

#»v3

0 0

# »u1
# »u2

Then the terms a #»x for #»x not in ker(T ) are all pushed down one step, meaning that #»x is replaced with a
basis vector of W ; meanwhile the terms where #»x is in ker(T ) all become 0. Then since the basis vectors
for W are all linearly independent, the coefficients of all #»x in the first case must be 0. But then our linear
combination of the vectors in the second case also equals zero, and these vectors are linearly independent
as well (since they form a basis for the kernel), which means their coefficients are also all zero. �

Now returning to our original linear operator, we can find a basis of W in which T |W acts by chains; then
each chain #»ek 7→ #      »ek−1 7→ · · · 7→ #»e1 7→ 0 corresponds to a Jordan block Jk(0). Meanwhile, we can find a basis
of U in which T |U consists of Jordan blocks by the inductive hypothesis; concatenating these gives a Jordan
decomposition of T .

Page 38 of 121



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

§3 Symmetry

§3.1 Orthogonal Matrices

We’ll work over the field R.

Definition 3.1. The dot product of two vectors #»x , #»y ∈ Rn is the real number

#»x · #»y = #»x ᵀ #»y =
n∑
i=1

xiyi.

Fact 3.2 — We have #»x · #»y = | #»x | | #»y | cos θ, where θ is the angle between #»x and #»y . In particular,
#»x · #»y = 0 if and only if #»x and #»y are perpendicular.

Definition 3.3. A basis #»v1, . . . , # »vn is orthonormal if #»vi · #»vj is 1 whenever i = j, and 0 whenever i 6= j.

In other words, | #»vi| = 1 for all i, and #»vi · #»vj = 0 for all i 6= j.

Definition 3.4. A matrix A ∈ GLn(R) is orthogonal if A #»v ·A #»w = #»v · #»w for all #»v and #»w.

In other words, orthogonal matrices are matrices which preserve the dot product.
There are a few equivalent ways to describe orthogonality:

Theorem 3.5
Given A ∈ GLn(R), the following conditions are all equivalent:

(1) A #»v ·A #»w for all #»v and #»w.
(2) |A #»v | = | #»v | for all #»v .
(3) AᵀA = I.
(4) The columns of A are an orthonormal basis of Rn.

Note that if A is orthogonal, by (3) its transpose is orthogonal as well; so the rows of A are also an
orthonormal basis.

Proof. First, (1) implies (2) by taking #»v = #»w. On the other hand, we can write

#»v · #»w = 1
2
(
| #»v + #»w|2 − | #»v |2 − | #»w|2

)
,

so (2) implies (1) as well — the right-hand side is preserved when we apply A, so #»v · #»w must be preserved
by A as well.
To prove (1) and (3) are equivalent, we can write A #»v ·A #»w = #»v ᵀAᵀA #»w, so then (1) is equivalent to

#»v ᵀAᵀA #»w

for all #»v and #»w. We claim that this is true if and only if AᵀA = I. It’s clear that this is true if AᵀA = I.
On the other hand, if we take #»v = #»ei and #»w = #»ej , then #»eiM

#»ej = mij for any matrix M = (mij), which
means all entries of AᵀA and I must be the same.
Finally, we’ll show that (3) and (4) are equivalent. The condition AᵀA = I means that the dot product of
the ith row of Aᵀ and the jth row of A is 0 when i 6= j and 1 when i = j. But the ith row of Aᵀ is exactly
the ith column of A, so this is equivalent to stating that the columns of A form an orthonormal basis.
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Orthogonal matrices can be interpreted geometrically using conditions (1) and (2) — they preserve length,
and they preserve angles up to sign (since they must preserve | #»v | | #»w| cos θ, where θ is the angle between any
two vectors, and since they preserve length they must then preserve cos θ as well).

Notation 3.6. The set of orthogonal matrices is denoted On.

Note that On is actually a subgroup of GLn(R) — the conditions of a subgroup can be checked directly using
(3). This group is called the orthogonal group.
Given a matrix A ∈ On, we can consider its determinant: we have

1 = det(AᵀA) = det(Aᵀ) det(A) = det(A2),

so we must have det(A) = ±1. So det gives a homomorphism On → {±1}. This homomorphism is surjective
— for example, we have 

1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 7→ 1 and


−1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 7→ −1.

(In the second matrix, only the first 1 is replaced with −1.)

Definition 3.7. The special orthogonal group, denoted SOn, is the kernel of the map det: On → {±1}.

Note that the index of SOn in On is 2 — the subgroup SOn has two cosets in On.

§3.1.1 Orthogonal Matrices in Two Dimensions

Question 3.8. What are the matrices in O2?

To write down an orthogonal matrix, we can write down two vectors which form an orthonormal basis (and
take these two vectors as our columns). We can write #»v1 = (cos θ, sin θ)ᵀ for some angle θ, since #»v1 must
have length 1. Then #»v2 must be perpendicular to #»v1 (and must also have length 1), so it must be either
(− sin θ, cos θ) or (sin θ,− cos θ). In the first case, we get the matrix[

cos θ − sin θ
sin θ cos θ

]
,

which has determinant 1; this corresponds to rotation by θ around the origin, which clearly preserves
distances. In the second case, meanwhile, we get the matrix[

cos θ sin θ
sin θ − cos θ

]
.

Call this matrix A.

Proposition 3.9
The matrix A corresponds to reflection over a line through the origin.

Proof. First, its characteristic polynomial is

pA(t) = det
[
t− cos θ − sin θ
− sin θ t+ cos θ

]
= t2 − 1 = (t− 1)(t+ 1).
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This means we can find an eigenbasis consisting of a vector # »v+ with eigenvalue +1, and a vector # »v− with
eigevalue −1. Then we want to show that A is a reflection over Span( # »v+) (since all vectors on this line are
fixed). Note that since A preserves the dot product, we have

A # »v+ ·A # »v− = # »v+ · # »v−.

But we also have A # »v+ = # »v+ and A # »v− = − # »v−, so then

A # »v+ ·A # »v− = − # »v+ · # »v−.

This means we must have # »v+ · # »v− = 0, and therefore # »v+ and # »v− are perpendicular.
So then we have a line Span( # »v+) which is fixed, and a perpendicular vector # »v− which is reflected across this
line. So if we write any vector as a linear combination of # »v+ and # »v−, it is sent exactly to its reflection over
the line.

In fact, we can compute where the line is (by finding # »v+ and # »v− explicitly) — it’s the line at an angle of θ
2 .

Remark 3.10. Note that two reflections across different lines through the origin form a rotation about
the origin. We can think of this algebraically (the determinants multiply, and (−1)(−1) = 1) or
geometrically.

§3.1.2 Orthogonal Matrices in Three Dimensions

So far, we’ve found a full description for On. The situation in three dimensions is a bit more complicated,
but it’s still possible to describe all of O3 explicitly. We’ll start by answering a slightly simpler question:

Question 3.11. What are the matrices in SO3?

The answer will still turn out to be rotation matrices. To describe a rotation in three dimensions, we can
fix a unit vector #»u ∈ R3 and an angle θ, and let ρ( #»u , θ) be the 3× 3 matrix which rotates around the axis
#»u by an angle θ. More precisely, ρ( #»u ) = #»u , and ρ( #»u , θ) restricted to #»u⊥ (the set of vectors perpendicular
to #»u ) is the matrix corresponding to rotation by θ counterclockwise (where when we say counterclockwise,
we’re looking in the direction that #»u is sticking out of). This uniquely determines the linear transformation,
since every vector can be written as a linear combination of #»u and an element of #»u⊥.

Theorem 3.12
The group SO3 consists of exactly the matrices ρ( #»u , θ).

Proof. First we’ll show that all matrices ρ( #»u , θ) are in SO3. This is unsurprising if we think geometrically,
since rotations preserve distance.
Choose vectors #»v and #»w which form an orthonormal basis for the plane #»u⊥, so then #»u , #»v , and #»w form an
orthonormal basis for R3. We can then create the change of basis matrix

P =

 #»u #»v #»w

 ∈ O3.

Now the transformation written in the basis #»u , #»v , #»w is P−1ρ( #»u , θ)P . But this transformation is easy to
describe — it fixes #»u , and in the plane #»u⊥ it is just a rotation. So we have

P−1ρ( #»u , θ)P =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
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It’s clear that the matrix on the right is in SO3; then P−1ρ( #»u , θ)P must be in O3 (by closure, since P is in
O3) and therefore in SO3 as well (since the determinants of P and P−1 cancel out, so the determinant of
ρ( #»u , θ) is the same as the determinant of the right-hand side matrix).
Now we’ll show that every matrix in SO3 must be a rotation matrix ρ( #»u , θ) for some #»u and θ. The first
step is to find the axis:

Claim — There is a unit vector #»u with eigenvalue 1.

Proof. It’s enough to show that 1 is an eigenvalue of A, or equivalently that det(A− I) = 0. But we have

det(A− I) = det(Aᵀ) det(A− I) = det(AᵀA−Aᵀ) = det(I −Aᵀ) = det(I −A),

using the fact that AᵀA = I and the determinant of a matrix’s transpose is the same as the determinant
of the original matrix. But we have det(I − A) = (−1)3 det(A − I), so then we must have det(A − I) = 0
(since it is equal to its negative).
This means 1 is a root of the characteristic polynomial pA(t), so it must be an eigenvalue, and it therefore
has an eigenvector #»u ; by scaling, we may assume #»u is a unit vector. �

Now we’re mostly done. We can extend #»u to an orthonormal basis of R3 by taking an orthonormal basis
{ #»v , #»w} of #»u⊥. This again gives us an orthogonal change of basis matrix

P =

 #»u #»v #»w

 ∈ O3.

We’d like to rewrite the transformation in this basis again, meaning we want to describe the matrix P−1AP .
This matrix is again in SO3, since A ∈ SO3 and P ∈ O3. We know that A sends #»u to itself, so the
first column of this matrix must be (1, 0, 0)ᵀ; then since (1, 0, 0)ᵀ must be orthogonal to both of the other
columns, their first entries must be 0. So then our matrix is of the form

P−1AP =

1 0 0
0 ∗ ∗
0 ∗ ∗

 .
But then the remaining 2×2 matrix must also be orthogonal and have determinant 1, meaning that it must
be in SO2. Using our description of SO2 from earlier, this means we have

P−1AP =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


for some θ. So this means we have A = ρ( #»u , θ) for these values of #»u and θ.

We’ve now described all of SO3. To describe all of O3, note that SO3 has index 2 in O3, so it’s enough to
find its other coset. To do so, we can take the reflection matrix−1 0 0

0 1 0
0 0 1

 ,
which has determinant 1; then the rest of O3 is the right coset of SO3 corresponding to this matrix.
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§3.2 Isometries

Definition 3.13. A function f :Rn → Rn is an isometry if |f( #»u )− f( #»v )| = | #»u − #»v | for all #»u , #»v ∈ Rn.

In other words, an isometry is a function which preserves distance. Note that an isometry does not have to
be a linear transformation, so these are more general than orthogonal matrices.
There’s a few obvious examples of isometries — the maps corresponding to orthogonal matrices, meaning
#»x 7→ A #»x for some A ∈ On, are all isometries. All translations #»x 7→ #»x + #»

b for some fixed #»

b are also
isometries; note that translations are not linear transformations, since they don’t fix the origin.

Notation 3.14. We use t #»
b to denote the translation #»x 7→ #»x + #»

b .

Amazingly, it turns out that these are essentially the only ones! Even though an isometry is defined in a
much looser way than orthogonal matrices — the function isn’t required to be linear — there aren’t many
new possibilities we get.

Theorem 3.15
All isometries f are a composition t #»

b ◦A for some A ∈ On and #»

b ∈ Rn.

So in other words, every isometry can be written as f( #»x ) = A #»x + #»

b , where A is orthogonal.
To prove this, we’ll first consider isometries which fix the origin.

Lemma 3.16
If f is an isometry which fixes the origin, then f must be a linear operator.

Then any isometry which fixes the origin must come from an orthogonal matrix — by taking #»v = 0 in the
definition, we get that |f( #»u )| = | #»u | for all #»u , and the linear operators which preserve lengths are exactly
the orthogonal matrices.

Proof. First we’ll show that f behaves well with respect to the dot product. We can write the dot product
in terms of distances between two vectors and 0, as

2 #»u · #»v = | #»u − 0|2 + | #»v − 0|2 − | #»u − #»v |2 .

(This can be shown by expanding the right-hand side using | #»x |2 = #»x · #»x .) But since f preserves distances
and f(0) = 0, if we replace #»u and #»w with f( #»u ) and f( #»w), then the right-hand side is preserved, and we get

f( #»u ) · f( #»v ) = #»u · #»v .

Now to show linearity, we can express addition using the dot product: we have #»z = #»x + #»y if and only if

( #»z − #»x − #»y ) · ( #»z − #»x − #»y ) = 0,

which we can expand out to
#»z · #»z + #»x · #»x + #»y · #»y − 2 #»x · #»z − 2 #»y · #»z + 2 #»x · #»y = 0.

But since f preserves dot products, this condition is satisfied for #»x , #»y , and #»z if and only if it’s satisfied for
f( #»x ), f( #»y ), and f( #»z ); so we have #»z = #»x + #»y if and only if f( #»z ) = f( #»x ) + f( #»y ). So then

f( #»x + #»y ) = f( #»x ) + f( #»y ).
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We can perform the same argument to show that f works well with scalar multiplication — we have #»y = c #»x
if and only if ( #»y − c #»x ) · ( #»y − c #»x ) = 0, and we can expand this out in the same way as before to get that
#»y = c #»x if and only if f( #»y ) = cf( #»x ), and therefore f(c #»x ) = cf( #»x ).
So then f must be a linear operator.

Now the general case is straightforward:

Proof of Theorem 3.15. Given an isometry f , let #»

b = f(0), and consider t− #»
b ◦ f . This is also an isometry,

and it fixes the origin. So by the above lemma we must have t #»
b ◦ f = A for some A ∈ On, which means

f = t #»
b ◦A for some such A.

So now we have a classification of all isometries. Note that the isometries form a group — every isometry
has an inverse, which is also an isometry (since translations and orthogonal matrices are both invertible).

Notation 3.17. We use Mn to denote the group of isometries of Rn.

We can think of Mn as a subgroup of the group of all permutations of Rn (bijections from Rn to itself).
Then the translations form a subgroup of Mn. We can think of this subgroup as just Rn under addition,
since t #»

b ◦ t #»

b′
= t #»

b+
#»

b′
. Meanwhile, the orthogonal matrices also form a subgroup On ≤ Mn. Theorem 3.15

then says that Mn is generated by these two subgroups.
The theorem writes isometries in the form t #»

b ◦ A. It’ll often be useful to convert isometries written in the
opposite order to this form. In order to simplify A ◦ t #»

b , note that for any #»x ,

A ◦ t #»
b ( #»x ) = A( #»x + #»

b ) = A #»x +A
#»

b ,

which means that

A ◦ t #»
b = tA #»

b ◦A. (1)

It’ll sometimes be useful to just focus on the orthogonal matrix part of an isometry, and ignore the translation
(the constant term):

Notation 3.18. We use π to denote the homomorphism Mn → On sending t #»
b ◦A 7→ A.

To see that this is a group homomorphism, note that

(t #»
b ◦A) ◦ (t #»

b′
◦A′) = t #»

b ◦ (t
A

#»

b′
◦A) ◦A′ = t #»

b+A
#»

b′
◦AA′

by applying (1). So if π maps two isometries to A and A′, then it maps their product to AA′, and therefore
π is a homomorphism.
Note that π is surjective, since it maps each orthogonal matrix to itself. Meanwhile, ker(π) is the set of
translations. In particular, this means the translations form a normal subgroup of Mn. (It’s also possible to
see this by using (1), which implies that for any translation t, its conjugate A ◦ t ◦A−1 is also a translation).

§3.2.1 Isometries in Two Dimensions

Question 3.19. What do the isometries of R2 look like?
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Definition 3.20. An isometry t #»
b ◦A is orientation-preserving if det(A) = 1, and orientation-reversing

if det(A) = −1.

So in two dimensions, an isometry is orientation-preserving ifA is a rotation matrix, and orientation-reversing
if A is a reflection matrix.
Similarly to our description of orthogonal matrices in two dimensions, it’s possible to describe all isometries
in two dimensions as well.

Theorem 3.21
Every isometry of R2 is of one of the following forms:

(1) A translation;
(2) A rotation about any point #»p ;
(3) A reflection across a line ` (which does not necessarily pass through the origin);
(4) A glide reflection, where we reflect across a line ` and then translate by a vector #»v parallel to `.

Note that (1) and (2) are orientation-preserving, and (3) and (4) are orientation-reversing.

Proof. The main idea is that given an isometry f , we can shift the origin — the isometry t #»p ◦ f ◦ t− #»p is the
same isometry, but with the origin shifted to #»p (for instance, if f fixed the origin, then this new isometry
would fix #»p ). So we’d like to choose some #»p for which our isometry becomes nicer.
Let f be the isometry f( #»x ) = A #»x + #»

b . We can then use our classification of O2 from earlier:
Case 1 (A = I). Then f is just a translation by #»

b , corresponding to (1).
Case 2 (A is a non-identity rotation matrix). Then we’d like to find a point #»p fixed by the isometry. First,
we know that 1 is not an eigenvalue of A (since rotation matrices don’t fix any vectors), so the kernel of
A− I is trivial. But then this measn A− I is invertible, and therefore there is a unique solution for #»p to

(A− I) #»p = − #»

b ,

which rearranges to f( #»p ) = #»p . Then we can shift #»p to the origin — we can write f = t #»p ◦ g ◦ t− #»p for an
isometry g fixing the origin. Then g must be a rotation about the origin; so f is a rotation about #»p .
Case 3 (A is a reflection matrix). We can again use a similar idea of shifting the origin — first write
f = t #»

b ◦A, where A corresponds to reflection across some line ` through the origin. Now we shift the origin
by 1

2
#»

b — consider the isometry

g = t− #»
b /2 ◦ f ◦ t #»

b /2 = t #»
b /2 ◦A ◦ t #»

b /2 = t #»
b /2 ◦ tA #»

b /2 ◦A = t #»m ◦A,

where #»m = 1
2( #»

b + A
#»

b ). Note that #»m is the average of #»

b and its reflection over `, so #»m is necessarily
parallel to `. If #»m = 0 then g is a reflection about `, while otherwise g is a glide reflection about `. Then
f = t #»

b /2 ◦g ◦ t #»
b /2 is the same isometry with the origin shifted to 1

2
#»

b — a reflection or glide reflection about
` shifted by 1

2
#»

b .

§3.3 What Is Symmetry?

Question 3.22. What isometries of R2 fix some pattern in R2?

Definition 3.23. Given a figure P , the symmetries of P are the isometries that fix P .
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Example 3.24
What are the symmetries of a regular pentagon? What about a circle?

Solution. For the pentagon, we can rotate by 2πk/5 for any integer k, or reflect across any line through one
vertex and the center:

Meanwhile, for the circle, all rotations and reflections work.

Note that the symmetries of a pentagon are discrete, and the symmetries of a circle are not. (We will make
this notion more precise later.)
We can also consider the symmetries of an infinite figure. For example, an equilateral triangular lattice
has symmetries of each kind — translations, reflections, rotations, and glide reflections. Meanwhile the
symmetries of the following shape are translations and glide reflections:

· · ·· · ·

In both cases, the set of symmetries is infinite, but still discrete.

Question 3.25. What kinds of subgroups of M2 can we get in this way?

To make this question more precise, we’ll try to describe all discrete subgroups of M2.

§3.4 Discrete Subgroups of O2

First we’ll first look at discrete subgroups of O2. To begin with, we’ll define discrete subgroups in a simpler
setting, the real numbers.

Definition 3.26. A subgroup G ≤ (R,+) is discrete if there exists ε > 0 such that for all nonzero g ∈ G,
we have |g| > ε.

This is equivalent to requiring that no two points in G can be too close together — for any two elements a
and b with a 6= b, we must have |a− b| > ε (since a− b is in G).

Theorem 3.27
If G ≤ (R,+) is discrete, then either G = {0} or G = Zα for some α > 0.
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Proof. Assume G is not zero. Then we claim it has a smallest positive element α — take any positive
element g > 0 in G. Then since every two elements are a distance at least ε apart, there are finitely many
elements in [0, g), and therefore one of them is the smallest nonzero element.
Then since G is a group, it contains nα for every integer α. We claim that there are no other elements —
assume there is some x with nα < x < (n+ 1)α. Then we have 0 < x− nα < α. But x− nα must be in G,
contradicting the choice of α as the smallest element.

Remark 3.28. This is very similar to our proof that the only subgroups of Z are {0} and nZ for positive
integers n — the only difference here is that here we used discreteness in order to prove that there exists
a smallest element.

We’ll start with a slightly simpler questoin:

Question 3.29. What are the finite subgroups of O2?

There’s a few obvious examples. If x is a rotation by 2π/n, then the cyclic group Cn = 〈x〉 = {1, x, . . . , xn−1}
is a finite subgroup of O2; in fact, it’s a finite subgroup of SO2 as well.
We can also let y be the reflection across some line ` through the origin, and consider the group 〈x, y〉. We
have the relations yx = x−1y and xn = y2 = e, so

Dn = 〈x, y〉 = {e, x, x2, . . . , xn−1, xy, x2y, . . . , xn−1y}

is also a finite subgroup of O2 (but not SO2).

Definition 3.30. The group Dn (generated by a rotation by 2π/n and a reflection) is called the dihedral
group.

For example, we have D1 ∼= C2, D2 ∼= C2×C2, and D3 ∼= S3. For n ≥ 3, the dihedral group Dn is the group
of symmetries of a regular n-gon. Note that Cn is always a subgroup of Dn with index 2.
So we’ve seen a few finite subgroups of O2. It turns out these are the only ones!

Theorem 3.31
Every finite subgroup of O2 is isomorphic to Cn or Dn for some n.

To prove this, we’ll first prove a more specific case.

Lemma 3.32
Every finite subgroup of SO2 is isomorphic to Cn for some n.

Proof. We know that SO2 consists exactly of the rotation matrices

ρθ =
[
cos θ − sin θ
sin θ cos θ

]
.

Let our subgroup be H, and let S = {θ ∈ R | ρθ ∈ H} be the set of angles which appear in H. Then since
H is a group, S must be a subgroup of R; and since H is finite, S must be discrete. So by Theorem 3.27,
S must be of the form Zα for some α > 0. But we also know 2π ∈ S, since rotation by 2π is the identity;
therefore we must have 2π = nα for some positive integer n, and therefore H is generated by a rotation by
2π/n.
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Now using this, we can prove the theorem for all subgroups G ≤ O2.

Proof of Theorem 3.31. First, if G ≤ SO2, then the above lemma implies that G ∼= Cn for some n. So now
assume G is not contained in SO2, so G has a reflection, or equivalently an element of determinant −1.
Now consider the determinant, which gives a homomorphism det:G→ {±1}. Then since G has elements of
determinant −1, this homomorphism must be surjective. So its kernel H is a normal subgroup of G with
index 2, and its two cosets are H itself and Hr for some reflection r.
But sinceH is a finite subgroup of SO2, we must then haveH ∼= Cn for some n. Then we haveG = 〈rρ2π/n, r〉,
which means G ∼= Dn.

So we’ve classified all finite subgroups of O2. We really wanted to classify all discrete subgroups. First we
need a more precise definition of a discrete subgroup of O2:

Definition 3.33. A subgroup G ≤ O2 is discrete if there exists some ε > 0 such that all rotations ρθ in
G have |θ| > ε.

Now with this definition, the same argument as the one we used in the finite case works; in particular, the
conclusion is the same.

§3.5 Discrete Subgroups of Isometries

Now that we’ve understood the discrete subgroups of O2, we can try to understand the discrete subgroups
of M2 (the group of isometries).

Definition 3.34. A subgroup G ≤M2 is discrete if there exists ε > 0 such that all translations t #»
b in G

have | #»b | > ε, and all rotations ρθ in G have |θ| > ε.

Intuitively, this means the angles of rotation and the translations must both be discrete. So we’re avoiding
groups like the symmetries of a circle (where we had all rotations, for example), but the symmetries of most
“reasonable” shapes (such as a triangular lattice) are discrete.
As we’ll see later, this ends up being quite a strong constraint.

§3.5.1 Finite Subgroups of Isometries

As with the case of O2, we’ll start by asking a simpler question:

Question 3.35. What are the finite subgroups of M2?

Of course, all the finite subgroups of O2 are still finite subgroups of M2. It turns out that these are still the
only ones.

Theorem 3.36
Every finite subgroup of M2 is isomorphic to Cn or Dn for some n.

Proof. Let the group be G ≤M2. The main idea is to find a point fixed by all isometries in G; then we can
shift coordinates so that this fixed point is the origin, which reduces the question to finite subgroups of O2.
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Claim — Any finite group of isometries has a fixed point.

Proof. First we’ll find a finite set S which is preserved by G, meaning that g(S) = S. Fix any point p ∈ R2,
and take the set

S = {g(p) | g ∈ G}.

As we’ll see later, this set is called the orbit of p. Then S is finite since G is finite. But if we take a point
s = h(p) ∈ S and apply g to s, then we get

g(s) = g(h(p)) = (gh)(p) ∈ S

as well, since G is closed. (Technically we’ve only shown that g is a map from S to itself; but this map must
actually be a bijection, since g has an inverse, so g(S) is genuinely equal to S.)
Now we’ve found a finite set fixed by G, and we want to find a single point fixed by G. To do so, we can
simply take the average of all points in S — take

s0 = 1
n

(s1 + · · ·+ sn).

Isometries play well with averages — if f = t #»
b ◦A is some isometry, then we have

f(s0) = #»

b + 1
n

(As1 + · · ·+Asn) = 1
n

n∑
i=1

( #»

b +Asi) = 1
n

(f(s1) + · · ·+ f(sn)).

So for each g ∈ G, we have that g(s0) is the average of all points in g(S). But since g(S) = S, this means
g(s0) is also the average of all points in S, which is just s0. So s0 is a fixed point of all g ∈ G. �

Now we can shift our coordinate system so that the fixed point s0 is the origin. Then all our isometries
correspond to orthogonal matrices, which means G ≤ O2, and therefore G must be Cn or Dn for some n by
Theorem 3.31.

Remark 3.37. The reason finiteness was needed here is so that we could take the average.

Unlike the case of O2, though, it turns out that the discrete subgroups of M2 are more complicated.

§3.5.2 Discrete Subgroups of R2

We’ve already looked at the discrete subgroups of O2. Another fairly simple subgroup sitting inside M2 is
the group of translations, which we can think of as R2. So we can try to analyze the discrete subgroups of
these translations first.

Question 3.38. What are the discrete subgroups of R2?

We’ve already answered this question for R — all discrete subgroups of R are either {0} or Zα for some
α > 0. The answer for R2 turns out to be fairly similar.

Theorem 3.39
If G is a discrete subgroup of R2, then G is either {0}, the group Zα for some vector α, or the group
Zα+ Zβ for some linearly independent vectors α and β.

In the third case, G is called a lattice; it looks like a parallelogram grid.
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Proof. The proof is very similar to the one-dimensional case. Assume G is not 0, and pick some nonzero
element α̃ in G. First we consider G ∩ Rα̃, the elements of G which lie on the line spanned by α̃. This is a
discrete subgroup of Rα̃, so by the one-dimensional case (in Theorem 3.27), it must be of the form Zα for
some α.
Now if there are no other vectors in G, we’re done. So assume that G does contain other vectors.

Claim — There exists a vector β 6∈ Rα with minimal distance to the line Rα.

Proof. First, in any bounded region, there can only be finitely many elements of G (since all elements of G
are at distance greater than ε from each other, so we can tile any bounded region with finitely many balls
which can each contain at most one point).
Now take any β̃ not on the line Rα. Then it suffices to consider points inside the parallelograms with sides
α and β̃ and with sides α and −β̃ — any point can be brought inside each parallelogram by subtracting
multiples of α and β̃, and one of these new points is at least as close to Rα as the original point.

But since these parallelograms are bounded, there are finitely many points inside them, so we can pick some
β which is closest to the line. �

Now let β be such a point; then we claim G = Zα + Zβ. Assume not, so G contains some point not in
Zα + Zβ. Then we can shift by α and β to bring this point inside the parallelogram with sides α and β.
Either this point is on Rα — contradicting the choice of α as the element of the line with smallest magnitude
— or it’s strictly closer to Rα than β is, contradiction.

§3.5.3 The Point Group

Now we’ve studied discrete subgroups of both O2 and R2, and we can return to our general question:

Question 3.40. How do we study the discrete subgroups of M2?

Recall that in some sense, all elements of M2 can be built from O2 and R2. More precisely, as mentioned
earlier, we have a surjective homomorphism π:M2 → O2 which ignores translations and just keeps track
of the linear term (so if f( #»x ) = A #»x + #»

b , then π sends f 7→ A), and ker(π) is precisely the subgroup of
translations.
Since G ≤M2, we can restrict π to G. Then the image of π is a subgroup of O2 consisting of the linear parts
of elements in G, called the point group of G — so the point group keeps track of the angle of rotation or
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the slope of the line used for reflection, but it doesn’t keep track of any gliding, or the location of the point
or line. Meanwhile, the kernel of π consists of exactly the translations inside G.

Notation 3.41. We use G̃ to denote the point group of G (or equivalently, the image of π restricted to
G), and L to denote the kernel of π restricted to G.

Then since G is a discrete subgroup of M2, the point group G̃ must be a discrete subgroup of O2, and we’ve
already solved what these are! Meanwhile L must also be a discrete subgroup of R2, and we’ve solved what
these are as well. So there’s two possibilities for G̃ — it can be Cn or Dn for any n — and three for L — it
can be {0}, Zα, or Zα+ Zβ for some vectors α and β.

Example 3.42
Find L and G̃ for the following (infinite) picture:

∫
∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫

Solution. First, L is a lattice — we can translate both horizontally and vertically.

∫
∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫
∫

∫

Now we’ll find G̃. First, G contains rotation by 180◦ about the center of any of the integrals, so G̃ contains
a rotation by 180◦ (since G̃ doesn’t keep track of the point we’re rotating about).
Meanwhile, G also contains a glide reflection — we can reflect about a line between two columns, and then
glide vertically to align the reflected picture with the initial one.
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∫ ∫
∫ ∫
∫ ∫

∫∫
∫∫

∫∫
∫ ∫

∫ ∫
∫ ∫

∫∫
∫∫

∫∫
∫ ∫

∫ ∫
∫ ∫

∫∫
∫∫

∫∫

So then G̃ contains a reflection (the point group doesn’t keep track of any gliding).
This means G̃ contains a rotation by 180◦ and a reflection, so G̃ = D2.

Example 3.43
Find L and G̃ for the following picture:

Solution. First, no nontrivial translations preserve the shape, so L = {0}. Meanwhile we can rotate by 120◦,
but we can’t reflect (since reflections change the orientation of the semicircles), so G̃ = C3.

Example 3.44
Find L and G̃ for the following (infinite) picture:

Solution. First, we can translate horizontally, so L = Zα where α is the vector between two arcs on the
same side of the line:

This figure doesn’t have any rotational symmetries. It doesn’t have any reflections either, but it does have
a glide reflection:
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Example 3.45
Find L and G̃ for an (infinite) equilateral triangular grid:

Solution. First, the translations form a lattice:

Meanwhile, we can rotate by 60◦ about one of the points in the lattice. We can also reflect:

So then we have G̃ = D6.

§3.5.4 Crystallographic Restriction

So far, we’ve described the possibilities for G̃ and L separately. But it turns out that we can get a lot more
information by looking at how they interact with each other.

Theorem 3.46
The point group G̃ must map L to itself.

In other words, if A ∈ G̃ and #»

b ∈ L, then we must have A #»

b ∈ L as well.
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Proof. Since A is in G̃, there is some vector #»c for which t #»c ◦A is in G. Meanwhile since #»

b is in L, it must
also be in G.
But L is the kernel of the homomorphism π:G→ G̃, so L is a normal subgroup of G. Then L is preserved
under conjugation by any element of G, so in particular we have

(t #»c ◦A) ◦ t #»
b ◦ (t #»c ◦A)−1 ∈ L.

But we can now expand this out as

t #»c ◦A ◦ t #»
b ◦A

−1 ◦ t−1
#»c = t #»c ◦ tA #»

b ◦AA
−1 ◦ t− #»c = t #»c ◦ tA #»

b ◦ t− #»c = tA #»
b .

So we must have A #»

b ∈ L, as claimed.

This is a very strong constraint! Given a group G̃, most possible lattices won’t be preserved by it — knowing
that a lattice is preserved tells us something special about its angles.

Theorem 3.47 (Crystallographic Restriction)
If L is nonzero, then G̃ must be Cn or Dn for some n ∈ {1, 2, 3, 4, 6}.

Proof. Let α be a nonzero vector in L of minimal length (which exists because L is discrete), and suppose
we have a rotation ρθ ∈ G̃. Then since the rotation must preserve L, then we must have ρθα ∈ L as well.
But since L is a lattice, their difference ρθα − α must be in L as well. But if θ < π/3, then this vector is
strictly shorter than α, contradiction.

θ

α

ρθα ρθα− α

So G̃ cannot contain any rotations by θ < π/3. Since we know G̃ must be Cn or Dn for some n, this means
we must have n ≤ 6.
It now remains to eliminate the case of n = 5. Let ρ be the rotation by 4π/5, and consider α+ ρα. By the
same reasoning as before, this vector is again shorter than α.

4π/5

α

ρα

−α

α + ρα

So then we must have n ∈ {1, 2, 3, 4, 6}.

All such G̃ are possible — for example, the equilateral triangular lattice in Example 3.45 has point group
D6, and a square lattice has point group D4.
In fact, given which group G̃ is, we can constrain L further, and use this to constrain G as well. It turns
out that when L is a lattice (meaning G contains two independent translation vectors), there are only 17
possible groups G! (On the other hand, when L is {0}, there are infinitely many — G can be Cn or Dn for
any n.)
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Example 3.48
If G̃ = C4, what can we say about G?

Solution. First, we have a surjective homomorphism π:G→ C4 with kernel L, so [G : L] = 4.
Now let p̃ ∈ G̃ be the rotation by 90◦. Then if α is the shortest vector in L, we must also have ρα ∈ L, and
we can show that these two vectors generate L, so L = Zα+ Z(ρα).
Then we can take ρ ∈ G such that π(ρ) = ρ̃. By our classification of isometries in Theorem 3.15, we know ρ
is a rotation by 90◦ about some point; we can choose our coordinate system so that this point is the origin.
Now we can use the fact that the square lattice L has index 4 — its four cosets are given by multiplication
by ρi for 0 ≤ i ≤ 3, so then

G = {t #»v ◦ ρi | #»v ∈ L and 0 ≤ i ≤ 3}.

We also know how to multiply elements of G — we can repeatedly use the fact that

ρ ◦ t #»v = tρ #»v ◦ ρ.

So then G (up to isomorphism) is completely determined from the fact that G̃ is C4 (and L is nonzero)!

In this case, we could completely determine G. The case where G̃ is D4 instead of C4 is more subtle — if π(ρ)
is a rotation then ρ must also be a rotation, but if π(ρ) is a reflection then ρ may be a glide reflection instead.
In fact, G may not even contain any reflections, as in Example 3.42 (which only has a glide reflection).
But it’s still possible to perform a similar analysis. If we take a reflection r̃ ∈ G̃ and take some r with
π(r) = r̃, then we can write r = t #»

b ◦ r` where r` is a reflection across the line `, and #»

b is parallel to ` (and
may or may not be zero).
We can get additional constraints on #»

b — if we compose a glide reflection with itself, then we get

t #»
b ◦ r` ◦ t #»

b ◦ r` = t2 #»
b ,

using the fact that #»

b is parallel to `. So then 2 #»

b must be in the square lattice we obtained for L, and
therefore #»

b is either in the lattice, or halfway between two of its points.

Remark 3.49. We’ve essentially seen how to classify all discrete subgroups of isometries in R2. It’s
possible to perform a similar analysis for discrete isometries of R3, but there are a lot more possibilities.
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§4 Group Actions

§4.1 Definitions

We’ve seen many situations where elements of a group are acting on some other objects.

Example 4.1
Given a matrix g ∈ GLn(R) and a column vector #»v ∈ Rn, we can produce a new vector g #»v ∈ Rn. So
we can think of matrix multiplication as a map GLn(R)× Rn → Rn sending (g, #»v ) 7→ g #»v .

Example 4.2
The elements of Sn are permutations of {1, 2, . . . , n}. So each σ ∈ Sn defines a function on {1, 2, . . . , n},
and we can think of this as a map Sn × {1, 2, . . . , n} → {1, 2, . . . , n} given by (σ, i) 7→ σ(i).

Example 4.3
Isometries are functions on R2, so we can define a map M2 × R2 → R2 as (f, #»x ) 7→ f( #»x ).

This leads to the concept of a group action:

Definition 4.4. Given a group G and a set S, an action of G on S is a map G × S → S, denoted by
(g, s) 7→ gs, which satisfies the following axioms:

(1) es = s for all s ∈ S.
(2) g(hs) = (gh)(s) for all g, h ∈ G and s ∈ S.

Many of the groups we’ve seen so far already come with an action on some set. But we can take the same
group and have it act on many different sets at the same time, and we can use this to study the group.

Example 4.5
The group S4 acts on the set S = {1, 2, 3, 4} in the obvious way. But it also acts on the set

T = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}},

where σ({i, j}) = {σ(i), σ(j)}.

Example 4.6
The group D2 acts on the following set S of nine points (by rotating and reflecting the figure):
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Example 4.7
Every group G acts on itself, with the action (g, g′) 7→ g · g′. (This is an action G×G→ G, where we
think of the second copy of G as a set.)

Example 4.8
Given a vector space V over a field F , the group F× (the nonzero elements of F under multiplication)
acts on V by sending (a, #»v ) 7→ a #»v . (The conditions for this to be a group action are a subset of the
conditions for V to be a vector space.)

For each g ∈ G, the group action defines a map τg:S → S given by s 7→ g(s) — so τg keeps track of what a
fixed element g does to S.

Proposition 4.9
The map τg is a bijection.

Proof. The map τg has an inverse τg−1 , since for any s we have

g(g−1s) = (gg−1)(s) = e(s) = s,

and similarly g−1(g(s)) = s.

So then τg ∈ Perm(S) for all g, which means we can define a map τ :G → Perm(S) sending g 7→ τg. The
axioms then imply that τ is a group homomorphism — so another way we can think of a group action is as
a homomorphism from G to Perm(S). Note that τ doesn’t have to be injective though — it’s possible that
some g ∈ G other than the identity fix all elements of S.

§4.2 Orbits and Stabilizers

Question 4.10. Given a group action of G on S, what kind of structure do we get?

Definition 4.11. Given an element s ∈ S, the orbit of s, denoted Os or Gs, is the set {gs | g ∈ G}.

So for each s ∈ S, the orbit of s is a subset of S. Note that s is in its own orbit, since es = s.

Example 4.12
Consider the action of D2 on the set S of nine points in Example 4.6, where D2 consists of rotation by
180◦, reflection across the x-axis and y-axis, and the identity. What are the orbits of this action?
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Solution. First, the origin is fixed by all elements of D2, so it is in its own orbit.
For each of the points on the diamond, the rotation and one of the reflections both send it to the opposite
point; meanwhile the other reflection fixes it. So its orbit consists of itself and the point opposite it.

Meanwhile, the square forms an orbit — for any point of the square, the two reflections send it to adjacent
points on the square, and the rotation by 180◦ sends it to the opposite point.

So then we have four orbits — one orbit of size 1, containing the origin; two orbits of size 2, containing pairs
of opposite vertices of the diamond; and one orbit consisting of the entire square.

Note that the orbits don’t necessarily have the same size.

Definition 4.13. If there is some s ∈ S with Os = S, then we say G acts transitively on S.

It’s possible to check from the axioms that if the orbit of some s ∈ S is the entire set S, then the orbit of
every s is also S.

Example 4.14
The action of Sn on {1, 2, . . . , n} is transitive, since the orbit of 1 consists of all elements 1, . . . , n (for
each k, there is some permutation sending 1 7→ k).

There’s also another piece of information we can look at from a group action:

Definition 4.15. Given an element s ∈ S, the stabilizer of S, denoted Stab(S) or Gs, is the set
{g | g(s) = s}.

In other words, the stabilizer of s consists of the elements g ∈ G which fix s. Note that the stabilizer of any
s is a subgroup of G (this is straightforward to check from the axioms).
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Example 4.16
In the group action of D2 in Example 4.6, the stabilizers are the following:

• The stabilizer of the origin is all of D2.
• For each point on the diamond, its stabilizer consists of the identity and one reflection.
• The stabilizer of each point on the square is trivial.

Proposition 4.17
The orbits of G form a partition of S.

Proof. First, the orbits cover all elements of S, since each element s ∈ S is in its own orbit Os.
Now it remains to show that the orbits are disjoint — meaning that if two orbits have some element in
common, they must be the same orbit. Suppose the orbits Os and Os′ both have an element t, so we have
t = gs = g′s′ for some g and g′ in G. Then

s = g−1(t) = g−1(g′(s′)) = (g−1g′)(s′),

so s is in Os′ . But then Os ⊂ Os′ as well, since for any hs ∈ Os we have

hs = h(g−1g(s′)) = (hg−1g)s′ ∈ Os.

The same reasoning also shows that Os′ ⊂ Os, so they must be the same set.

For example, the action of D2 split the set S of nine points into four orbits, as described in Example 4.12.

Corollary 4.18
If S is finite, then its size is the sum of the sizes of the distinct orbits.

For example, in the action of D2 we had 9 = 1 + 2 + 2 + 4.

Question 4.19. What does each orbit Os look like?

To answer this, we’ll look at the stabilizers.

Proposition 4.20
Fix some element s ∈ S, and let H = Stab(s). Then there is a bijection ε from the left cosets of H to
Os, sending gH 7→ gs.

This has an important corollary:

Corollary 4.21
For each s ∈ S, we have |Os| = [G : Stab(s)]. In particular, if G is finite then

|G| = |Stab(s)| · |Os| ,

and therefore all orbits have size dividing |G|.
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Proof of Proposition 4.20. First we’ll figure out when two elements of G send s to the same element of its
orbit. Given two elements g and γ of G, we have gs = γs if and only if s = g−1γs. This occurs exactly
when g−1γ ∈ H, or equivalently when γ ∈ gH.
So then g and γ send s to the same element if and only if they’re in the same coset of H. This means ε is
well-defined and injective.
Meanwhile, ε is surjective as well, since every s′ ∈ Os is of the form gs for some g ∈ G. So ε is a bijection.

This corollary is quite useful — as we’ll see in the following example, it can let us deduce information about
a group by looking at its actions.

Example 4.22
Let G ≤ SO3 be the group of rotational symmetries of a cube. Find |G|.

Solution. We can consider the action of G on the faces of the cube; let the set of faces be S. Given any two
faces, there exists a rotation sending one to the other, so this action is transitive. Since |S| = 6, this means
there is one orbit of size 6.
Meanwhile, we can also calculate the size of the stabilizers. Consider some face s. For a rotation to fix s,
its axis must be perpendicular to s, and its angle must be a multiple of 90◦. So Stab(s) is the cyclic group
of order 4.
So then using Corollary 4.21, we have |G| = 4 · 6 = 24 .
We could have performed this argument using vertices or edges instead. For example, let T be the set
of vertices, and consider the action of G on T . This action is still transitive, and we now have |T | = 8.
Meanwhile, for a rotation to preserve a vertex v, its axis must be the long diagonal through v, and there are
three possible rotations (since the rotation must preserve the three edges from v). So Stab(v) = C3, and we
get |G| = 3 · 8 = 24.

It’s possible to perform similar arguments to find the number of rotational symmetries of other shapes as
well, such as a regular tetrahedron or icosahedron.
There’s another interesting question to analyze about the structure of orbits and stabilizers:

Question 4.23. How does the stabilizer change across different elements of the same orbit?

Take some element s′ ∈ Os, and suppose s′ = as for some a ∈ G. Then for any g ∈ Stab(s), we have gs = s,
which means

aga−1(s′) = aga−1(as) = ag(s) = as = s′.

So if g ∈ Stab(s), then aga−1 ∈ Stab(s′), and the converse can be shown similarly. So then the stabilizers
of s and s′ are conjugate — we have

Stab(as) = aStab(s)a−1.

Note that if Stab(s) is normal, then s and s′ have the same stabilizer; but Stab(s) generally does not have
to be normal.

§4.3 Finite Subgroups of SO3

Recall that SO3 consists of exactly the rotation matrices — every matrix in SO3 is a rotation around an
axis #»u by an angle θ, and this matrix is denoted ρ( #»u , θ).
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Question 4.24. What are the finite subgroups of SO3?

We’ve previously answered this question for SO2. The case of SO3 is more difficult, but it turns out that
with the tool of group actions, we can now answer it here as well.

Theorem 4.25
Every finite subgroup of SO3 is of one of the following forms:

• The cyclic group Cn, obtained by 〈ρ( #»u , 2π/n)〉 for some #»u ;
• The dihedral group Dn, obtained by 〈ρ( #»u , 2π/n), ρ( #»v , π)〉 for some #»v ⊥ #»u ;
• The rotational symmetries of a regular polyhedron — a tetrahedron, cube, octahedron, dodeca-

hedron, or icosahedron.

Note that reflection across some axis in two dimensions corresponds to a 180◦ rotation about that axis in
three dimensions — this is why 〈ρ( #»u , 2π/n), ρ( #»v , π)〉 is Dn.
In fact, the last case is somewhat redundant. The cube and octahedron are dual — if we start with a
cube and draw the midpoint of each face, this gives an octahedron, and doing the same to an octahedron
gives a cube. So any rotational symmetry of the cube gives a rotational symmetry of the octahedron, and
vice versa; so their groups of rotational symmetries are the same. Similarly, the rotational symmetries of a
dodecahedron and icosahedron are also the same. So there’s only three additional subgroups (other than Cn
and Dn), and it’s possible to analyze these subgroups the same way as we did for a cube in Example 4.22.
Let G be a finite subgroup of SO3. Then the main idea is to find an action of G, and study its orbits.

Definition 4.26. Given a non-identity element g ∈ SO3, its poles are the two unit vectors it fixes.

So the poles of a rotation ρ( #»u , θ) are ± #»u .
Now let P be the set of poles of all the non-identity elements of G.

Lemma 4.27
Our group G acts on P . In other words, for any p ∈ P and g ∈ G, we have gp ∈ P as well.

Proof. Suppose p is the pole of some h ∈ G, so then we have hp = p. Now let p′ = gp, so we want to show
that p′ is also a pole of some element of G. But we have

ghg−1(p′) = ghp = gp = p′.

(Note that this is the same reasoning we used to analyze the stabilizer of s′ = as.) We know ghg−1 ∈ G,
and ghg−1 cannot be the identity (since h is not the identity). So p′ = gp is also in P .

Example 4.28
When G is Cn, all rotations are about the same axis, so the only poles are p and −p for some point p.

Example 4.29
When G is the group of rotational symmetries of the octahedron (which is denoted O), we have one
pole corresponding to each face, vertex, and edge (since each gives a rotation axis).
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Now that we have an action, we can analyze its orbits and stabilizers. Let |G| = n, and suppose P
decomposes into orbits as

P = O1 ∩O2 ∩ · · · ∩Ok.

Let |Oi| = ni for each i, and let Oi be the orbit of the pole pi. Finally, let |Stab(pi)| = ri, so then we have
niri = n for each i.

Example 4.30
When G is Cn, there are two poles and both are fixed by all elements of G, so we have two one-element
orbits, and the stabilizer of each pole is all of G.

Example 4.31
When G is O, we can rotate any vertex to any other vertex, any face to any other face, and any edge to
any other edge. But we can’t rotate between objects of different types — for example, we can’t rotate
a face to a vertex. So the poles form three orbits, based on whether they correspond to a face, vertex,
or edge.

Now we can use this action to prove our classification.

Proof of Theorem 4.25. Consider the set S of pairs (g, p) such that g is not the identity, and p is a pole of
g. The main idea is to count |S| in two ways.
First, we’ll count |S| by looking at g. Every g other than the identity has exactly two poles, so we have

|S| =
∑
g 6=e

2 = 2(n− 1). (2)

On the other hand, we can also count by poles. For every p, the g for which p is a pole of g are exactly the
elements of Stab(p), other than the identity. So we have

|S| =
∑
p

(|Stab(p)| − 1)

as well. Now we can group this sum by orbit — all stabilizers of poles in the same orbit have the same size,
so for each orbit Oi there are ni poles p each with |Stab(p)| = ri, which means we can rewrite this as

|S| =
k∑
i=1

ni(ri − 1) =
k∑
i=1

n

ri
(ri − 1). (3)

Now setting our expressions for |S| in (2) and (3) equal to each other and dividing by n, we get

k∑
i=1

(
1− 1

ri

)
= 2− 2

n
.

Now note that each stabilizer has size at least 2 — if p is a pole of g, then both g and the identity are in
Stab(p). So then ri ≥ 2 for all i, which means 1− 1

ri
is always in [1

2 , 1). Meanwhile, 2− 2
n is always in [1, 2).

This immediately implies we must have exactly 2 or 3 orbits (meaning k is 2 or 3)! This is already quite a
strong constraint, and now we can split into cases.
Case 1 (k = 2). Then we have

1− 1
r1

+ 1− 1
r2

= 2− 2
n
,
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which means that
1
r1

+ 1
r2

= 2
n
.

But we must have r1, r2 ≤ n, since the size of any stabilizer is at most the size of the entire group. So the
only way for equality to hold here is if r1 = r2 = n. In that case, we have n1 = n2 = 1, so there’s exactly
two poles, and both are fixed by the entire group. This means all rotations are about the same axis. Then
G is actually a finite subgroup of SO2, which means it must be Cn.
Case 2 (k = 3). The equation we get is still quite constraining — we have

1
r1

+ 1
r2

+ 1
r3

= 1 + 2
n
.

Without loss of generality, we can assume r1 ≤ r2 ≤ r3. If r1 ≥ 3, then the left-hand side is at most 3 · 13 = 1,
so then we must have r1 = 2 (since it must be greater than 1).
Then if r2 ≥ 4, the left-hand side is again at most 1, so r2 must be 2 or 3.
If r2 = 2, then we get r2 = n

2 . Finally, if r2 = 3, then we cannot have r3 ≥ 6 (or else the left-hand side
would again be at most 1), so r3 must be 3, 4, or 5.
So this gives a full classification of all possible stabilizer sizes: (2, 2, r), (2, 3, 3), (2, 3, 4), and (2, 3, 5). These
correspond to n being 2r, 12, 24, and 60, respectively.
It’s possible to show that the first case implies the group is Dr, the second implies the group is T (the
rotational symmetries of a tetrahedron), the third implies the group is O (the rotational symmetries of an
octahedron), and the fourth implies the group is I (the rotational symmetries of an icosahedron). Intuitively,
it’s unsurprising that we have three orbits in each case — for the symmetries of a regular polyhedron, we
should have one orbit corresponding to the faces, one for the vertices, and one for the edges.
We won’t work out the details in each of the cases — there’s still some work to do, since it’s possible that
there could be different groups with the same orbit structure — but we’ll show how to prove this for the
case (2, 3, 4), and the other cases can be handled similarly.
Suppose we have three orbits, with stabilizer sizes (2, 3, 4). Then G has size 24, so we must have n3 = 6.
The six elements of this orbit are all unit vectors in three dimensions, so we can attempt to see what they
look like.
Let one element of the orbit be p. Then −p must be in the orbit as well — p and −p have the same
stabilizer, but here the stabilizers of elements in different orbits have different sizes. Then we must have
Stab(p) = Stab(−p) = C4, since the stabilizer has size 4 and consists of rotations about the axis through p.
Now let another element of the orbit be q. By the same reasoning, −q is also in this orbit. But since our
group contains C4 (consisting of rotations about the axis through p), the rotations of q by multiples of 90◦
about this axis must all be in the orbit as well, and the same is true for −q.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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Now if q were not perpendicular to p, this would give 10 distinct vectors in the orbit, but there can only be
6. So then q must be perpendicular to p (so that −q is one of the rotations of q), and this accounts for all
six vectors of the orbit.
But then G must fix this set of six vectors, so it must fix the octahedron whose vertices are the endpoints
of these vectors. So then G ≤ O; but both G and O have order 24, so we must have G = O.

Remark 4.32. The hardest part of this proof was finding the idea to consider an action on the set of
poles. Once we had the group action, we were then able to really strongly limit the possibilities for G
by counting |S| in two ways and messing around with the resulting equation.

§4.4 Conjugation

We’ll now look at an action of G on itself. Of course, there’s one obvious action — the ation G × G → G
sending (g, x) 7→ gx. This action is transitive, and the stabilizer of any x consists of exactly the identity. So
this is not very interesting.
But there’s another, more interesting, way that G can act on itself — by conjugation. Here the action
G×G→ G is defined by

(g, x) 7→ gxg−1.

It’s possible to check that this satisfies the axioms for a group action.

§4.4.1 The Class Equation

Definition 4.33. The orbit of x under conjugation is called the conjugacy class of x and is denoted
C(x).

In other words, C(x) is the set {gxg−1 | g ∈ G}.

Definition 4.34. The stabilizer of x under conjugation is called the centralizer of x and is denoted
Z(x).

In other words, Z(x) is the set of g ∈ G such that gxg−1 = x, or equivalently gx = xg — so the centralizer
of x consists of exactly the elements which commute with x.
All our theory about group actions still applies here — in particular, for all x we have

|G| = |C(x)| · |Z(x)| .

We also know that the orbits partition the set, which here is G. This gives the class equation:

Proposition 4.35 (Class Equation)
If the conjugacy classes of G are C1, . . . , Cn, then |G| = |C1|+ · · ·+ |Cn|, and each |Ci| divides |G|.

Note also that C(x) has size 1 (meaning it contains only x) if and only if Z(x) = G, meaning that x
commutes with every element of G. Such elements have a name:

Definition 4.36. The center of G, denoted by Z, is the set of elements which commute with everything
in G.
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Using this, we can get constraints on |C(x)| and |Z(x)|. For every x, both Z and 〈x〉 must be subgroups of
Z(x) (elements of Z commute with everything, and x commutes with itself). This can be quite powerful —
the second constraint implies that ord(x) | |Z(x)|, and therefore

|C(x)|
∣∣∣ |G|ord(x) .

Note also that any two elements in the same conjugacy class have the same order — since conjugation is an
automorphism, we have gxkg−1 = (gxg−1)k, which means xk = e if and only if (gxg−1)k = e.
We can often use these facts to constrain the class equation of a given group.

Example 4.37
What is the class equation of D5?

Solution. We can write D5 as {e, x, x2, x3, x4, y, xy, x2y, x3y, x4y}, where x is a rotation and y a reflection
— so we have the relations x5 = y2 = e and yxy−1 = x−1 = x4.
First, we have C(e) = {e}, since the identity commutes with everything.
Next we look at orders — all elements in one conjugacy class must have the same order. The reflections
(elements of the form xky) all have order 2, and the non-identity rotations (elements of the form xk) all
have order 5. So we cannot have a rotation and a reflection in the same conjugacy class.
First consider the reflection y. We have

〈y〉 ≤ Z(y) ≤ D5,

so then |Z(y)| must be a multiple of 2 and a divisor of 10. This means it must be either 2 or 10. But if
|Z(y)| were 10, then this would mean y commutes with the entire group, which is false. So then |Z(y)| = 2,
which means |C(y)| = 5. So all the reflections are conjugate to each other — we have

C(y) = {y, xy, x2y, x3y, x4y}.

Now we want to describe the conjugacy classes of the rotations — consider C(x). We know C(x) contains
x, and it also contains x4, since x4 = yxy−1. But |C(x)| must divide 10, and it can be at most 4 (since we
only have 4 elements left), so it can’t contain any other elements. So we have

C(x) = {x, x4} and C(x2) = {x2, x3}.

So the class equation is
10 = 1 + 5 + 2 + 2.

Remark 4.38. Note that the conjugacy classes of a group generally have different sizes — the behaviour
of the partition into conjugacy classes is quite different from the behaviour of the partition into cosets.

§4.4.2 p-groups

One example of how conjugation can be useful is in analyzing p-groups.

Definition 4.39. Given a prime p, a group G is a p-group if |G| = pe for some e ≥ 0.
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Example 4.40
Any cyclic group Cpk is a p-group, and so is any product of such cyclic groups.

Example 4.41
An example of a non-abelian p-group (with order p3) is

1 ∗ ∗
0 ∗ ∗
0 0 1


 ≤ GL3(Fp).

Theorem 4.42
Every p-group has nontrivial center.

In other words, this theorem states that |Z| > 1 — there is a non-identity element which commutes with
everything. From our class equation for D5 in Example 4.37, we can see that the center of D5 is trivial —
an element is in the center if and only if its conjugacy class has size 1, and the only conjugacy class of size 1
there is {e}. So the theorem states that this doesn’t happen for p-groups — for example, the class equation
of D4 (which is a 2-group) is 8 = 1 + 1 + 2 + 2 + 2, which means the center has size 2.

Proof. We use the class equation for G. We know that

pe = |C1|+ · · ·+ |Ck| ,

where each |Ci| divides pe, and is therefore a power of p. But now grouping the conjugacy classes by size,
we have

pe = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
|Z| times

+ (p+ · · ·+ p) + (p2 + · · ·+ p2) + · · · .

Now reducing mod p gives
0 ≡ |Z| (mod p).

But |Z| ≥ 1 (since Z necessarily contains e), so then |Z| ≥ p, and Z is nontrivial.

Example 4.43
The center of the p-group described in Example 4.41 consists exactly of matrices of the form1 0 ∗

0 1 0
0 0 1


(this can be checked by explicit computation), which has order p.

Corollary 4.44
If |G| = p2, then G is abelian.
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Proof. Since Z is a subgroup of G, its order must be p or p2 (it must divie |G|, and it can’t be 1 by the
above theorem). If |Z| = p2, then Z = G, and therefore G is abelian.
Now assume for contradiction that |Z| = p. then pick an element x ∈ G which is not in Z, and look at the
centralizer of x.
On one hand, Z(x) must contain Z. But we can’t have Z(x) = Z, since Z(x) must also contain x (which is
not in Z).
But Z(x) is a subgroup of G, and |Z(x)| > |Z| = p, so then we must have |Z(x)| = p2. This means x
commutes with all elements of G, and therefore x must be in the center of G; this is a contradiction.

The main point here is that p2 is not very big, so there’s not much room for things to happen. Note that
Example 4.41 is a group of order p3 which isn’t abelian, so 2 is the largest exponent for which this statement
holds.
In fact, it’s possible to push this a bit further.

Proposition 4.45
If |G| = p2, then G is isomorphic to either Cp2 or Cp × Cp.

Recall that Cp × Cp consists of pairs of elements in Cp, with the operation performed componentwise.

Proof. We can consider the orders of elements in G, which must all divide p2. First, if there exists some
element a of order p2, then G must be the cyclic group 〈a〉 (since 〈a〉 must be a subgroup of G, but they
have the same size).
Otherwise, every element a 6= e has order exactly p. We can now use the following general claim:

Claim — If G is an abelian group such that every non-identity element has order exactly p, then we
can think of G as a vector space over Fp.

Proof. To turn G into a vector space, we can define addition using the addition operation in G (since we
know that it’s commutative). Meanwhile, we can define scalar multiplication by an element n ∈ Fp by

n · g = g + g + · · ·+ g︸ ︷︷ ︸
n times

.

This is well-defined because g has order p, so two elements n and n + p (which produce the same residue
n ∈ Fp) also produce the same element ng. With these two operations, G becomes a vector space. �

Now in our situation, the dimension of the vector space must be 2 (since it must have exactly p2 elements),
so then the vector space is F2

p and G = Cp × Cp.

§4.4.3 The Icosahedral Group

Another example of how we can use the class equation is in analyzing the icosahedral group I, the group of
rotational symmetries of an icosahedron.
Earlier we mentioned that |I| = 60. To prove this, recall that all elements of I are rotations {ρ( #»u , θ)},
where the poles #»u correspond to the faces, edges, and vertices. Note that there is some redundancy —
rotating by θ around #»u is the same as rotating by −θ around − #»u . This pairs up the face rotations, edge
rotations, and vertex rotations (note that this is different from the case of a tetrahedron, where if we have
a pole corresponding to a vertex, its negative actually corresponds to a face).
We can now list all elements of I based on their axis of rotation. We then get the following rotations:
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• The identity is in I.
• For each of the 20 faces, we can rotate by 2π/3 or 4π/3 about the corresponding axis, giving 2 nontrivial

rotations.
• For each of the 30 edges, we can rotate by π around the axis to the center of the edge, giving 1

nontrivial rotation.
• For each of the 12 vertices, we can rotate around the axis to that vertex by a multiple of 2π/5, giving

4 nontrivial rotations.
This overcounts every nontrivial rotation twice, so in total, |I| = 1 + 20 + 15 + 24 = 60.

Question 4.46. What is the class equation for I?

We’ll start by figuring out what conjugation does to I. Take some g and some ρ( #»u , θ), and let

ρ = gρ( #»u , θ)g−1.

This must be a rotation by the same angle, around a different axis — we first rotate the icosahedron, then
perform our original rotation, and then reverse the first rotation, which in total is the same angle of rotation
(we can also see this by the fact that the angle of rotation is determined by the trace, which is preserved
by conjugation). We can also describe what the new axis is — if the original rotation ρ( #»u , θ) fixes p, then
ρ fixes g(p).
This implies that all face rotations by 2π/3 are conjugate to each other. But rotation by 4π/3 about an
axis #»u is the same as rotation by 2π/3 about the axis − #»u . So then all 20 face rotations form one conjugacy
class.
Similarly, there exist elements g mapping any edge to any other edge, so then the edge rotations are all
conjugate to each other. So the 15 edge rotations make up another conjugacy class.
Finally, we consider the vertex rotations. We can again rotate any vertex to any other vertex. The rotations
by 2π/5 and 8π/5 correspond to the same rotation angle, so these 12 vertex rotations are conjugate; similarly
the rotations by 4π/5 and 6π/5 are also conjugate. So the class equation is

60 = 1 + 20 + 15 + 12 + 12.

So I has 5 conjugacy classes, and its center has size 1 (since every element of the center corresponds to a
conjugacy class of size 1 in the class equation).
We can now use this class equation to analyze the normal subgroups of I.

Definition 4.47. A group G is simple if the only normal subgroups of G are {e} and G itself.

Equivalently, G being simple means that any surjective homomorphism from G to another group is either
an isomorphism or trivial (since the kernel of a homomorphism is always a normal subgroup).
Simple groups are important because in some sense, they’re building blocks for all finite groups. If we have
a group G that isn’t simple, then we can write down a surjection G 7→ G′, and analyze G in terms of the
kernel and image of this surjection. We can analyze those by splitting them up again in this way, and so
on — we keep decomposing the groups until they become simple (at which point we stop because we can’t
split them in a useful way).

Example 4.48
The cyclic group Cn is simple if and only if n is prime.
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Theorem 4.49
The icosahedral group I is simple.

So I has a lot of subgroups, but it turns out that it doesn’t have any interesting normal subgroups!

Proof. Suppose that N is a normal subgroup of I. Then gNg−1 = N for all g ∈ I. So if an element x is in
N , then its entire conjugacy class C(x) is also in N ; this means N is a union of conjugacy classes.
But we also know |N | divides 60. Now consider the class equation

60 = 1 + 20 + 15 + 12 + 12.

Then to build N , we must take 1 (since N must contain the identity) and some subset of the remaining
terms. But we can check that the only ways to do so and end up with a factor of 60 are to take none or all
of the remaining conjugacy classes, so we must have |N | be 1 or 60.

Remark 4.50. This proof is quite soft, in some sense. We don’t have to grapple with the structure of
N that much — we just look at its size in terms of the sizes of conjugacy classes.

Even when a group is not simple, it is sometimes possible to understand how to build normal subgroups by
looking at the class equation. For example, we could use this to find the normal subgroups of D5 (which is
not simple, but doesn’t have many normal subgroups).
The analysis of I has another interesting use.

Theorem 4.51
The icosahedral group I is isomorhpic to the alternating group A5.

Recall that A5 is the subgroup of S5 consisting of permutations with sign 1. Since S5 has size 5! = 120 and
A5 has index 2, then A5 has size 60. So I and A5 have the same size; but it turns out that they’re actually
the same group.

Proof. We want to describe I as a set of permutations of five objects, so we first want to find a group action
of I on a set of size 5 — this will define a group homomorphism I → S5.
We can describe this action geometrically. Think of I as the group of rotational symmetries of a dodecahedron
instead. Then inside this dodecahedron, we can produce five cubes, where the vertices of the cube are also
vertices of the dodecahedron, and the edges of the cube are diagonals of the faces (which are all pentagons).
There are five cubes because given any face, we have 5 choices for which diagonal of the face is used, and
each uniquely determines the rest of the cube.
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Let S be the set of these five cubes. Then rotating the dodecahedron must send one cube to another, so it
gives a group homomorphism

f : I → Perm(S) = S5.

This homomorphism is nontrivial — rotating around a face changes the diagonal we use from that face,
which changes the corresponding cube. So its kernel cannot be I, which means its kernel is {e}, and therefore
the homomorphism f is injective.
Now we want to show that the image of f is A5. Consider the homomorphism ϕ = sgn ◦f , which maps
I → S5 → {±1}. Then ker(ϕ) must again be {e} or I. But if ker(ϕ) were trivial, then ϕ would be injective
— this is impossible because we can’t have an injection from a set of size 60 to a set of size 2. So then
ker(ϕ) = I, which means that all elements of I are mapped to permutations with sign 1, and therefore

f(I) ⊂ ker(sgn) = A5.

So then we can think of f as a homomorphism I → A5. But this homomorphism is injective, and I and A5
have the same size, so it must be surjective as well. So f is an isomorphism between I and A5.

Corollary 4.52
The alternating group A5 is simple.

In fact, An is simple for all integers n ≥ 5. But the proof we saw here only works for n = 5; for larger n we
really do need to get our hands dirty working with permutations and conjugacy classes.

§4.4.4 Conjugacy Classes of Permutations

We’ll now consider the conjugacy classes in Sn and An. It’ll often be useful to use cycle notation, where
we write permutations as a product of disjoint cycles. For example, (123)(45) corresponds to the following
permutation:

1

2 3
4 5
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Elements which aren’t mentioned in the cycle notation of a permutation are mapped to themselves — for
example, if we considered (123)(45) ∈ S6, then 6 would be mapped to itself.

Fact 4.53 — The sign of a permutation σ is (−1)k, where k is the number of even-length cycles in σ.

Proof. By definition, if we can write σ as a product of n transpositions, then sgn(σ) = (−1)n. But we can
write a m-cycle as

(123 · · ·m) = (1m) · · · (14)(13)(12),

so the sign of a m-cycle is (−1)m−1. This means each even-length cycle in σ multiplies its sign by −1, and
each odd-length cycle doesn’t affect its sign.

Equivalently, if σ has cycle lengths k1, . . . , kn, then

sgn(σ) =
n∏
i=1

(−1)ki−1.

Question 4.54. What are the conjugacy classes in Sn?

It turns out that cycle notation is really good at describing conjugacy classes.

Example 4.55
Let σ = (123), and take a permutation p ∈ Sn. What is the cycle notation of τ = pσp−1?

Solution. Let p(1) = i, p(2) = j, and p(3) = k. Then we have

τ(i) = pσp−1(p(1)) = pσ(1) = p(2) = j.

Similarly we have τ(j) = k and τ(k) = i. We can use the same reasoning to check that τ fixes all other
elements. So we have τ = (ijk) — the conjugate of our 3-cycle is another 3-cycle, with different elements.

If we started off with a more complicated permutation for σ, the same thing would happen — for example,
if σ = (123)(47) · · ·, then we would have

pσp−1 = (p(1)p(2)p(3))(p(4)p(7)) · · · .

So the cycles in any conjugate of σ are the same as the cycles in σ, except with different numbers. To keep
track of this more precisely, we can use the concept of cycle type — the cycle type of a permutation keeps
track of the number of cycles of each length.

Proposition 4.56
Two permutations σ and τ are conjugate if and only if they have the same cycle type.

Proof. We’ve already seen one direction — if τ = pσp−1, then the cycle notation of τ is obtained by writing
down the cycle notation of σ and replacing each i with p(i).
For the other direction, we can just match up corresponding cycles. For example, if σ = (145)(23) and
τ = (234)(15), then we can define p to be the permutation sending 1 7→ 2, 4 7→ 3, and so on.
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Example 4.57
In S4, the conjugacy class of (1234) consists exactly of 4-cycles. To write down a 4-cycle, we can first
write down some ordering of 1234 (in 24 ways); then this counts every cycle 4 times. So the conjugacy
class has 6 elements.

There’s another way to find the size of a conjugacy class — we can use the fact that |C(x)| · |Z(x)| = |G|.

Example 4.58
To find the size of the conjugacy class of x = (1234) in S4, we can first find Z(x). A permutation p is
in Z(x) if and only if pxp−1 = x, meaning that relabelling the cycle notation of x by replacing i 7→ p(i)
doesn’t change the permutation. We can relabel (1234) to any of (2341), (3412), and (4123). So then
|Z(x)| = 4, and |C(x)| = 24/4 = 6.

Example 4.59
In S13, what is the size of the conjugacy class of

x = (123)(456)(789 10)(11)(12)(13)?

Solution. We’ll start by finding |Z(x)|. We again want to find the number of ways to relabel the elements in
this cycle notation which produce the same permutation. First, there’s only one 4-cycle, so the relabelling
of (789 10) must be the same cycle — then there’s 4 ways to relabel it (since we have 4 choices of which
element to write first).
For (11), (12), and (13), any reordering of these three elements will give the same permutation — for example,
we could replace 11, 12, and 13 with 12, 11, and 13, and this would still correspond to the permutation
fixing all of them. So this gives 3! = 6 ways to relabel.
Finally, with the two 3-cycles (123) and (456), both of the above situations happen — for each cycle there’s
3 different starting points, and we can also swap the two cycles in our relabelling .This gives 3 · 3 · 2! = 18
ways.
So then we have |Z(x)| = 4 · 6 · 18 = 432, and therefore |C(x)| = 13! /432.

We now know how to compute the sizes of conjugacy classes, which we can use to compute the class equation.

Example 4.60
To find the class equation of S4, we can list all possible cycle types, calculate |Z(x)| in the same way
as above, and calculate |C(x)| using the fact that |C(x)| · |Z(x)| = 24:

Cycle Type |Z(x)| |C(x)|
4 4 6

3 + 1 3 8
2 + 1 + 1 2 · 2! = 4 6

2 + 2 2! ·2 · 2 = 8 3
1 + 1 + 1 + 1 24 1

So S4 has class equation
24 = 1 + 3 + 6 + 8 + 6.
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We can also analyze the conjugacy classes of An. Since An = ker(sgn) is a normal subgroup of Sn, it must
be a union of conjugacy classes of Sn.
In the case of A4, using Fact 4.53, the cycle types corresponding to even permutations are exactly 3 + 1,
2 + 2, and 1 + 1 + 1 + 1, so the conjugacy classes of Sn which make up An give

|A4| = 12 = 8 + 3 + 1.

However, note that this is not the class equation of A4 — 8 doesn’t divide 12, so we can’t have a conjugacy
class of size 8.
What went wrong is that two permutations σ and τ can be conjugate in Sn without being conjugate in An
— if they’re conjugate in Sn, then we know τ = pσp−1 for some p ∈ Sn, but for them to be conjugate in
An, we need τ = qσq−1 for some q ∈ An. So if the only relabelling permutations p are odd, then τ and σ
may no longer be conjugate in An.
However, the conjugacy classes in Sn and An are still closely related. Consider some x ∈ An. Then its
conjugacy class in An must be a subset of its conjugacy class in Sn — we have

CA(x) = {y ∈ A | y = pxp−1 for some p ∈ An} ⊂ CS(x) = {y ∈ An | y = pxp−1 for some p ∈ Sn}.

Similarly, we can look at the stabilizers as well; then ZA(x) ≤ ZS(x), since any element of An which
commutes with x is also an element of Sn which commutes with x.
But we also have

|CA(x)| · |ZA(x)| = |An| =
1
2 |Sn| =

1
2 |CS(x)| · |ZS(x)| .

Then since ZA(x) must divide ZS(x), we must either have |CA(x)| = |CS(x)| and |ZA(x)| = 1
2 |ZS(x)|, or

|CA(x)| = 1
2 |CS(x)| and |ZA(x)| = |ZS(x)|. So each conjugacy class in Sn either remains the same or splits

into two in An, and we just need to figure out which conjugacy classes split.

Example 4.61
In the case of A4, we had 12 = 8 + 3 + 1. The conjugacy class of size 8 must split because 8 - 12, while
the conjugacy classes of sizes 3 and 1 cannot split (since their sizes are odd). So the class equation is

12 = 4 + 4 + 3 + 1.

Note that the second case |ZA(x)| = |ZS(x)| occurs if and only if every permutation which commutes with
x is even. Equivalently, the first case |CA(x)| = |CS(x)| occurs if and only if there is an odd permutation
commuting with x (since if the conjugay class doesn’t split, then the stabilizer must shrink).
For example, in our conjugacy class of size 8 — which consists of 3-cycles — the conjugacy class does split,
so all permutations commuting with (123) must be even. We could have checked this directly — the only
permutations which commute with (123) are 〈(123)〉 = {e, (123), (132)}, which are all even.
It’s possible to perform a similar analysis for S5 as well:
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Example 4.62
In S5 there are 7 conjugacy classes, giving the class equation

120 = 1 + 10 + 15 + 20 + 20 + 30 + 24.

The conjugacy classes corresponding to even permutations are 1, 15, 20, and 24, giving

60 = 1 + 15 + 20 + 24.

We know that 24 must split (since it doesn’t divide 60), and 1 and 15 can’t split. We can check that
20 doesn’t split either, so the class equation of A5 is

60 = 1 + 15 + 20 + 12 + 12.

§4.5 The Sylow Theorems

Recall that if G is a finite group, and H is a subgroup of G, then |H| divides |G|. In general, the converse
is false — we can’t necessarily find a subgroup of size d for every d | |G|. For example, A4 has size 12, but
it does not have a subgroup of order 6 (this can be checked using the class equation, as any such subgroup
would have to be normal).
But surprisingly, this is true in general for certain values of d.

Theorem 4.63 (Sylow I)
Let G be a finite group with |G| = n = pem, where p - m. Then there exists a subgroup H ≤ G such
that |H| = pe, called a Sylow p-subgroup of G.

Example 4.64
The group S4 has order 24 = 8 · 3, so the first Sylow theorem implies there is a subgroup of order 8.
One such subgroup is the subgroup 〈(12), (34), (13), (24)〉.

Example 4.65
The group D5 has order 10 = 5 ·2, so the first Sylow theorem implies there is a subgroup of order 5 and
a subgroup of order 2. One subgroup of order 5 is the subgroup C5 generated by a rotation by 2π/5,
and one subgroup of order 2 is the subgroup D1 generated by a reflection.

The power of this theorem is how general it is — amazingly, we can start off not knowing anything about
the group, and even without knowing anything specific about the structure, we can know that a bunch of
subgroups exist.

Corollary 4.66
For any prime p dividing |G|, there must exist an element of G with order p.

So for example, if we have a group of order 1, we must have an element of order 7 — we can’t just have the
identity and 13 elements of order 2.

Proof. From the first Sylow theorem, we know there exists a subgroup H ≤ G with |H| = pe for some e.

Page 74 of 121



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

Then pick some y in H, so ord(y) = pf for some f . Now x = yp
f−1 must have order p.

Theorem 4.67 (Sylow II)
Any two Sylow p-subgroups are conjugate. More generally, for any Sylow p-subgroup H ≤ G and any
p-group K ≤ G, there exists g ∈ G such that gKg−1 ≤ H.

Example 4.68
In D5, every reflection generates a Sylow 2-subgroup, and the second Sylow theorem points out that
these subgroups are all conjugate to each other.

Note that the second statement implies the first (by taking K to be another Sylow p-subgroup).

Theorem 4.69 (Sylow III)
The number of Sylow p-subgroups of G divides m and is 1 mod p.

Example 4.70
In D5, if we take p = 2, we have five Sylow 2-subgroups (one generated by each reflection); and 5 divides
5 and is 1 mod 2. Meanwhile, if we take p = 5, there’s only one Sylow 5-subgroup, and 1 divides 2 and
is 1 mod 5.

Before we prove these theorems, we’ll see a few examples of how useful they are.

§4.5.1 Classifying Groups of Small Order

Since the Sylow theorems give us information about a group given only its size, we can use them to analyze
what all groups of a given size can look like.

Example 4.71
There is only one group of size 15, up to isomorphism.

Proof. By the first Sylow theorem, we know G has a Sylow subgroup of order 5, and one of order 3.
First we can look at the subgroups of order 5. By the third Sylow theorem, the number of such subgroups
must divide 3 and be 1 mod 5, which means it must equal 1. But if H is a subgroup of order 5, then all of
its conjugates gHg−1 are also subgroups of order 5; so then these all must give the same subgroup, and H
must be normal.
Similarly, we can look at the subgroups of order 3. The number of such subgroups must divide 5 and be 1
mod 3, so again there is exactly one subgroup K of order 3, which must be normal.
Note also that H and K cannot share any non-identity element, since the non-identity elements of H have
order 5 and the non-identity elements of K have order 3.

Claim — The groups H and K commute — for any h ∈ H and k ∈ K, we have hk = kh.
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Proof. Since K is normal, we must have hkh−1 ∈ K, and therefore hkh−1k−1 ∈ K as well. Similarly since
H is normal, kh−1k−1 must be in H, and therefore hkh−1k−1 must be in H as well. But then hkh−1k−1

must be in both K and H, so it must be the identity. �

Claim — There is an isomorphism H ×K → G.

Recall that H ×K is the product group H ×K = {(h, k) | h ∈ H, k ∈ K}.

Proof. Consider the map f :H ×K → G sending (h, k) 7→ hk. First we’ll check that f is a homomorphism:
for any (h, k) and (h′, k′) we have

f((h, k) · (h′, k′)) = hk · h′k′ = hh′ · kk′ = f(h, k)f(h′, k′),

since H and K commute.
Now to show f is an isomorphism, note that ker(f) consists of elements (h, k) with hk = 1, which implies
that k = h−1 must be in H. But since K and H don’t intersect except at 1, this requires that h = k = 1.
So ker(f) is trivial, and therefore f is injective.
Finally, H ×K and G both have order 15, so since f is injective, it must be a bijection. �

So then any group of order 15 is isomorphic to C5 × C3.

Example 4.72
What are the possible groups of order 10 (up to isomorphism)?

Solution. We have 10 = 5 · 2. The number of Sylow 5-groups divides 2 and is 1 mod 5, so there must be
exactly one Sylow 5-group K, and it must again be normal. Meanwhile, we know there exists some Sylow
2-group H, which may or may not be normal.
Both K and H must be cyclic, so we can write K = 〈x〉 where ord(x) = 5, and H = 〈y〉 where ord(y) = 2.
Then we again have K ∩H = {1}, and since K is normal, we have yxy−1 = xr for some r.
Now we can try to write down elements of our group using x and y — our group must contain the elements

{xiyj | 0 ≤ i ≤ 4, 0 ≤ j ≤ 1}.

But this gives 10 distinct elements, so then G must consist of exactly these elements. So then we have

G = 〈x, y | x5 = y2 = e, yx = xry〉.

This completely determines the group, so it remains to figure out what values of r are possible. Every r
gives at most one group, but some r may not work — for example, if r = 2 then we have

x = y2x = yyx = yx2y = x4y2 = x4,

so x has order dividing 3, contradiction. We can make the same argument in general: we have

x = y2x = yxry = xr
2
y2 = xr

2

by repeatedly applying yx = xry to move the y’s to the right, so then xr2−1 = 1 and we must have 5 | r2−1,
and therefore r must be 1 or 4.
So there’s at most two possible groups. Both work — when r = 1 we get xy = yx, so K and H again
commute and we get C5×C2 = C10. Meanwhile, the case r = 4 gives the group D5. So the only two groups
of order 10 are C10 and D5.
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Note that the situation for 10 was somewhat more subtle than for 15 because the Sylow theorems only
guaranteed that one of the subgroups was normal.
In general, we can use the same argument to analyze groups with order pq for distinct primes p < q. If q 6≡ 1
(mod p), then similarly to Example 4.71 (where we had order 3 ·5 = 15) the only group up to isomorphism is
Cp×Cq = Cpq. Meanwhile, if q ≡ 1 (mod p), then similarly to Example 4.72 (where we had order 2 ·5 = 10)
there will be two possible groups — Cpq and some non-abelian group. The proof is the exact same — we
look at the Sylow p-groups and q-groups.

§4.5.2 Classifying Abelian Groups

Question 4.73. What can we say about finite abelian groups?

It turns out that we can perform an analysis very similar to the one we did in Example 4.71 for general
groups of order 15.
Suppose G is a finite abelian group with order pe1

1 · · · per
r . Then for each prime, we can take a Sylow subgroup

Hi with order pei
i . The choice of each Hi must be unique — any two Sylow pi-subgroups must be conjugate,

but conjugation doesn’t have any effect since the group is abelian.
Now we can consider the product group H1 × · · · × Hr, which is again an abelian group. Define the map
f :H1 × · · · ×Hr → G by (x1, . . . , xr) 7→ x1 + · · · + xr. (Here we use addition instead of multiplication to
denote the group operation because the group is abelian.)

Claim — f is an isomorphism.

Proof. First, f is a homomorphism because G is abelian, so all elements commute. But now note that
Hi ≤ im(f) ≤ G for all i, which means pei

i must divide |im(f)| for all i. But then their product ∏ pei
i = |G|

must divide |im(f)| as well, which means im(f) = G and f is surjective.
On the other hand, H1 × · · · ×Hr and G have the same size. So since f is surjective, it must be injective
as well, and therefore f is an isomorphism.

This gives the following result:

Proposition 4.74
Any finite abelian group is isomorphic to a product of abelian groups with prime power order.

So then in order to understand finite abelian groups, it’s enough to understand finite abelian groups of order
pk for primes p. In fact, this is fully understood, and we’ll see a full classification in 18.702.

§4.5.3 Proofs of Sylow Theorems

Now we’ll prove the Sylow theorems. The main idea in all of the proofs will be to find a useful action of
G on some set, and exploit this action to get information about G. We’ve been doing this for the past few
weeks, but the main difference is that here we don’t know anything about the group to start with.
We’ll start with the first Sylow theorem.

Proof of Theorem 4.63. First, we need a set S that G acts on — take S to be the set of subsets of G with
size pe, so |S| =

( n
pe

)
. Then G acts on S by left translation — an element g maps a subset U to the subset

gU = {gu | u ∈ U}.
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Our goal is to find a subgroup of a certain size. We can obtain subgroups from a group action by looking
at stabilizers, and we can analyze the sizes of stabilizers by analyzing the sizes of the corresponding orbits.

Fact —
( n
pe

)
is not a multiple of p.

This is possible to prove just by writing out the explicit formula and counting the powers of p in the
numerator and denominator. In fact, a stronger statement is true — we always have

( n
pe

)
≡ m (mod p) —

but we won’t need this here.

Lemma 4.75
If U is a subset of G and H ≤ G stabilizes U , then |H| divides |U |.

Proof. Since H stabilizes U , then by definition, for every h ∈ H and u ∈ U we must have hu ∈ U as well.
But this means for each u ∈ U , the coset Hu is contained in U , so then we can partition U into right cosets
of H. Each coset has size |H|, so then |H| must divide |U |. (The reason it’s important here that H stabilizes
U is because otherwise, the cosets of H may not be contained in U .) �

Now we’ll find a Sylow p-subgroup by looking at stabilizers. Consider the partition of S into orbits, with

|S| = |O1|+ · · ·+ |Or| .

Then since |S| is not divisible by p, some orbit must also have size not divisible by p. Let this orbit be O,
and let U be some element of the orbit; then we have

|G| = pem = |O| · |Stab(U)| .

But p doesn’t divide |O|, so then pe must divide |Stab(U)|. On the other hand, by the above lemma,
|Stab(U)| must divide |U | = pe. So then we must have |Stab(U)| = pe, which means |Stab(U)| is a Sylow
p-subgroup.

Remark 4.76. This is a very clever proof. The most important leap is the first one — picking the set
S on which the group acts. As we’ve seen many times so far, group actions can be really useful, and
finding a good set for a group action can take some amount of trial and error.

Now we’ll prove the second Sylow theorem — more precisely, we’ll show that given any Sylow p-subgroup
H, any p-group K ≤ G must be conjugate to a subgroup of H.

Proof of Theorem 4.67. Fix the Sylow p-subgroup H and the p-group K ≤ G, and let |K| = pf .
Let X be the set of left cosets of H in G, so |X| = m. Now consider the action of K on X given by left
translation — an element k maps aH 7→ kaH. We again have a set and a group acting on it, so we can
decompose the set into orbits, giving

m = |X| = |O1|+ · · ·+ |Or| .

Then each |Oi| must divide |K| = pf , but p doesn’t divide m, so some orbit O must have size 1. This means
some coset aH ∈ X is fixed by all elements of K.
But then kaH = aH for all k ∈ K. This means a−1kaH = H for each k, and therefore a−1ka ∈ H for all
k ∈ K. So then a−1Ka is a subgroup of H, as desired.
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Remark 4.77. Again, we see the common theme that when we have a group action, it’s really useful
to look at the orbit decomposition.

Finally, we’ll prove the third Sylow theorem — this is the sneakiest proof.

Proof of Theorem 4.69. We again consider a group acting on a set. This time, our set Y will be the set of
Sylow p-subgroups of G (so we’re interested in |Y |).
To prove the first part of the theorem, consider the action of G on Y by conjugation — an element g maps
H 7→ gHg−1 (which is another Sylow p-subgroup). Then by the second Sylow theorem, this action only has
one orbit. So for any Sylow p-subgroup H, we have

|G| = |O(H)| · |Stab(H)| = |Y | · |Stab(H)| .

This immediately tells us that |Y |must divide n, and we can gain more information from analyzing |Stab(H)|.
By definition, Stab(H) is the set of g for which gHg−1 = H. But it’s clear that H ≤ Stab(H), since for any
h ∈ H we have hHh−1 = H. So then |Stab(H)| is divisible by |H| = pe. Then

pem = |Y | · pe`

for some `, which means |Y | must divide m. This proves the first part of the theorem.
Now for the second part, we take the same set Y , but instead of considering the action of G, we instead
consider the action of H, where H is any Sylow p-subgroup. (The action is still given by conjugation.)

Lemma 4.78
A Sylow p-subgroup H ′ ∈ Y is fixed under conjugation by H if and only if H = H ′.

In other words, we have hH ′h−1 = H ′ for all h ∈ H if and only if H ′ = H.

Proof. It’s clear that H is fixed under conjugation by any of its elements, so it suffices to show the other
direction — that if H ′ is fixed by conjugation by all elements of H, then we must have H ′ = H.
Consider the group action of G on Y again, and consider the set StabG(H ′), which consists of g ∈ G for
which gH ′g−1 = H ′. This is also denoted N(H ′) and called the normalizer of H ′.
Then we must have H ′ ≤ N(H ′). Meanwhile since H ′ is fixed by H, we must have H ≤ N(H ′) as well.
Then since N(H ′) is a subgroup of G, its order must be a multiple of |H| = pe and must divide |G| = pem,
so the power of p dividing N(H ′) is exactly pe. But this means H and H ′ are both Sylow p-subgroups of
N(H ′) as well! Then we can use the second Sylow theorem — there must exist some element n ∈ N(H ′)
such that nH ′n−1 = H. But by the definition of N(H ′), we must have nH ′n−1 = H ′ for any n ∈ N(H ′), so
then we must have H = H ′. �

So then our group action by H on Y has exactly one fixed point, which is H. We can again consider the
decomposition into orbits, which gives

|Y | = |O1|+ · · ·+ |Or| .

Each orbit has size dividing |H| = pe, and exactly one has size 1, so all the other orbits have size divisible
by p, and therefore |Y | ≡ 1 (mod p).

Remark 4.79. This proof was quite sneaky because we used the previously shown Sylow theorems on
a different group in order to prove the third Sylow theorem on G.
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§5 Bilinear and Hermitian Forms

§5.1 Bilinear Forms

Let V be a vector space over R.

Definition 5.1. A bilinear form is a function V × V → R, denoted by (v, w) 7→ 〈v, w〉, such that:
(1) 〈v, cw〉 = c〈v, w〉 for all scalars c,
(2) 〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉,
(3) 〈cv, w〉 = c〈v, w〉 for all scalars c,
(4) 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉.

The properties (1) and (2) mean the form is linear in the second variable, and the properties (3) and (4)
mean it’s linear in the first variable — this is why the form is called bilinear.

Example 5.2
The function R3 × R3 → R defined as

〈(x1, x2, x3)ᵀ, (y1, y2, y3)ᵀ〉 = x1y1 + 2x1y2 + 3x2y1 + 4x2y3 + 5x3y1

is a bilinear form.

Intuitively, all bilinear forms should look something like this example — all terms should be of the form
cxiyj , and we shouldn’t have any constant terms or higher order terms.

Definition 5.3. A bilinear form is symmetric if 〈v, w〉 = 〈w, v〉 for all vectors v and w.

Example 5.4
The form given in Example 5.2 is not symmetric, while the form

〈(x1, x2, x3)ᵀ, (y1, y2, y3)ᵀ〉 = x1y1 + 2x2y1 + 2x1y2 + 3x2y2

is symmetric.

Example 5.5
The dot product is a symmetric bilinear form.

§5.1.1 Bilinear Forms in Matrices

Similarly to in the case of linear transformations, we can explicitly describe bilinear forms using matrices.
Suppose our vector space is Rn. Then the dot product is a symmetric bilinear form. More generally, given
any n× n matrix A, we can define a bilinear form

〈 #»x , #»y 〉 = #»x ᵀA #»y

(here #»x and #»y are column vectors, and the output is a real number). This satisfies the axioms for a bilinear
form because of properties of matrix multiplication.
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Definition 5.6. A n× n matrix is symmetric if it equals its transpose.

Given a general matrix A, for any #»x and #»y we have

〈 #»y , #»x 〉 = #»y ᵀA #»x = ( #»y ᵀA #»x )ᵀ = #»x ᵀAᵀ #»y .

So then if Aᵀ = A, we have 〈 #»y , #»x 〉 = 〈 #»x , #»y 〉, and the form is symmetric. Similarly to the case of linear
transformations, the converses of both statements are true:

Proposition 5.7
Every bilinear form on Rn corresponds to a matrix — given a form 〈−,−〉, there is a unique matrix A
such that 〈 #»x , #»y 〉 = #»x ᵀA #»y . Furthermore, 〈−,−〉 is symmetric if and only if A is.

Example 5.8
The dot product corresponds to the identity matrix.

Example 5.9
The bilinear form in Example 5.2 can be written as

〈 #»x , #»y 〉 = #»x ᵀ

1 2 0
3 0 4
5 0 0

 #»y ,

and the bilinear form in Example 5.4 can be written as

〈 #»x , #»y 〉 = #»x ᵀ

1 2 0
2 3 0
0 0 0

 #»y .

We can see that the entries of the matrix come from the coefficients of the form.

Proof of Proposition 5.7. Let #»e1, . . . , #»en be the standard basis of Rn (so #»ei has a 1 in its ith position and
0’s everywhere else). Then let aij = 〈 #»ei,

#»ej〉 and create a matrix A = (aij). Now for any #»x = ∑
xi

#»ei and
#»y = ∑

yi
#»ei, by using bilinearity we have

〈x, y〉 =
〈∑

i

xi
#»ei,
∑
j

yj
#»ej

〉
=
∑
i

∑
j

xi〈 #»ei,
#»ej〉yj =

∑
i

∑
j

xiaijyj .

But this is exactly #»x ᵀA #»y , so every bilinear form is of the form #»x ᵀA #»y .
Then 〈−,−〉 is symmetric if and only if 〈 #»ei,

#»ej〉 = 〈 #»ej ,
#»ei〉 for all i and j, or equivalently if aij = aji for all i

and j. This occurs exactly when A is symmetric.

§5.1.2 Choosing a Basis

We’ve now seen how to describe bilinear forms in Rn, and as usual we can use this to describe bilinear forms
in any vector space V by picking a basis {v1, . . . , vn} of V .
Once we fix a basis, Proposition 5.7 is true for a general vector space as well — every bilinear form corre-
sponds to a matrix, and the bilinear form is symmetric if and only if the matrix is. More explicitly, we take
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the matrix A = (aij) where aij = 〈vi, vj〉, and then for two vectors v and w with coordinates #»x and #»y in
our basis, we have 〈v, w〉 = #»x ᵀA #»y .
In some ways, this may remind us of the situation when we studied linear operators — we started with a
linear operator T :V → V , and by picking a basis for V , we turned the operator into a n× n matrix. Here
we start with a bilinear form, and by picking a basis we can also turn the form into a n × n matrix. But
these correspondences are quite different in some ways.

Question 5.10. What happens to the matrix if we change basis?

Suppose we have two bases B:Rn → V and B′:Rn → V , so that B′ = BP for an invertible matrix P .

Rn

P #»x

Rn
#»x

V

v

B B′

P

Then if a pair (v, w) corresponds to coordinates ( #»x , #»y ) in B′, it corresponds to (P #»x , P #»y ) in B. So if our
form corresponds to A′ in the basis B′ and A in the basis B, we have

#»x ᵀA′ #»y = (P #»x )ᵀA(P #»y ) = #»x ᵀP ᵀAP #»y .

So then when we change basis, the new matrix is A′ = P ᵀAP .

Remark 5.11. Note that this relation is different from the one we get for linear operators, where we
have A′ = P−1AP .

In particular, we can check explicitly that if A is symmetric, then so is A′. This is unsurprising, since
symmetry is a property of the bilinear form itself, and shouldn’t depend on which basis is used.
Now that we know how to change basis, we can ask a question similar to the one we asked for linear
operators:

Question 5.12. Given a vector space V with bilinear form 〈−,−〉, how nice can we make the corre-
sponding matrix A by choosing a basis?

We’ll return to this question later; it turns out that for symmetric bilinear forms, the answer is very nice.

§5.2 Hermitian Forms

So far, we’ve worked over the field R, but we can also work over the field C.
The definitions in the previous section still work over any field. But there’s a special property that they
have in R — the dot product has the property that #»x · #»x ≥ 0 for all vectors #»x .

Definition 5.13. A symmetric bilinear form 〈−,−〉 is positive definite if 〈v, v〉 > 0 for all nonzero vectors
v.

Page 82 of 121



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

The dot product in Rn lets us talk about the lengths of vectors, so we’d like some version of this property
in a form over the complex numbers as well. It turns out that if we’re willing to loosen the bilinearity
restriction a bit, then there’s a way of doing this.
First we can extend the dot product in a way that captures our notion of distance — for a single complex
number, we have |z|2 = z · z. So in general, we can use complex conjugation to define our form:

Definition 5.14. The standard Hermitian form on Cn is the map Cn × Cn → C given by

〈 #»x , #»y 〉 = x1 · y1 + x2 · y2 + · · ·+ xn · yn.

This is similar to the dot product, but we conjugate all entries of the first vector. The standard Hermitian
form for C has the same property as the dot product for R — when #»y = #»x , we get

〈 #»x , #»x 〉 = x1 · x1 + · · ·+ xn · xn = |x1|2 + · · ·+ |xn|2 ,

which is a positive real number whenever #»x is nonzero. So then we’ll use the standard Hermitian form as
our central example for a form on C-vector spaces, similarly to how the dot product was our central example
for a form on R-vector spaces.
To describe this construction a bit more efficiently, we’ll use the following definition:

Definition 5.15. For a matrix M over C, the adjoint of M , denoted M∗, is the matrix Mᵀ.

The adjoint has similar properties to the transpose — in particular, we have (AB)∗ = B∗A∗ for any matrices
A and B. Using this notation, the standard Hermitian form can be described as

〈 #»x , #»y 〉 = #»x ∗ #»y .

Notice that in the standard Hermitian form, we have

〈α #»x , #»y 〉 = α〈 #»x , #»y 〉,

instead of α〈 #»x , #»y 〉. So because of the complex conjugation, the standard Hermitian form isn’t exactly linear
in the first entry.
With this in mind, let’s now define a general form for a C-vector space.

Definition 5.16. For a vector space V over C, a Hermitian form is a function V × V → C denoted by
(v, w) 7→ 〈v, w〉, such that:

(1) 〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉,
(2) 〈v, αw〉 = α〈v, w〉 for all scalars α,
(3) 〈w, v〉 = 〈v, w〉.

So Hermitian forms over C are somewhat similar to symmetric bilinear forms over R, except that we have
complex conjugation thrown in.
Note that if 〈−,−〉 is any Hermitian form, then

〈αv,w〉 = 〈w,αv〉 = α〈w, v〉 = α〈v, w〉,

which is the same property we observed earlier for the standard Hermitian form. In particular, we have the
following important property:

Fact 5.17 — For any Hermitian form 〈−,−〉, we have 〈v, v〉 ∈ R for all vectors v.

Proof. We have 〈v, v〉 = 〈v, v〉, and a complex number is self-conjugate if and only if it is real.
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§5.2.1 Hermitian Matrices

Question 5.18. What does the matrix for a Hermitian form look like?

As in the case of bilinear forms, given a Hermitian form 〈−,−〉 on V , we can choose a basis {v1, . . . , vn}
of V and set A to be the matrix consisting of the entries aij = 〈vi, vj〉 for all i and j. Then for any
v = x1v1 + · · ·+ xnvn and w = y1v1 + · · ·+ ynvn, we must have

〈v, w〉 = #»x ∗A #»y .

So we can again describe the Hermitian form by a matrix (determined by the form’s behaviour on the basis
vectors), but here we use the adjoint rather than the transpose. We also have the condition that

aij = 〈vi, vj〉 = 〈vj , vi〉 = aji

for each i and j, which means A∗ = A.

Definition 5.19. A matrix A is called a Hermitian matrix if A∗ = A.

So then Hermitian forms on Cn are the same as Hermitian matrices.
When we looked at bilinear forms over R, we saw that changing our basis changes the corresponding matrix
from A to P ᵀAP for an invertible matrix P . Unsurprisingly, for Hermitian forms, changing basis changes
the matrix to P ∗AP .

Example 5.20
One example of a 2× 2 Hermitian matrix is

A =
[

5 2 + 2i
2− 2i 3

]
.

This corresponds to the Hermitian form

〈 #»x , #»y 〉 = #»x ∗A #»y = 5x1 · y1 + 3x2 · y2 + (2 + 2i)x1 · y2 + (2− 2i)x2 · y1.

Note that 〈 #»x , #»x 〉 is always real, as

〈 #»x , #»x 〉 = 5 |x1|2 + 5 |x2|2 + 2 Re((2 + 2i)x1 · y2).

Note that for any Hermitian matrix, the entries on the diagonal must all be real (as they must equal their
own conjugates).
It turns out that Hermitian matrices have nice properties. We’ll see more of these properties later, but
here’s one:

Proposition 5.21
If A is Hermitian, then all its eigenvalues are real.

Proof. Suppose λ ∈ C is an eigenvalue of A, so we have A #»v = λ #»v for some #»v ∈ Cn. Then we have
#»v ∗A #»v = #»v ∗λ #»v = λ

#»

v∗ #»v .

But #»v ∗A #»v is real since A is Hermitian, and #»v ∗ #»v is also real and nonzero. So λ must be real — in fact, it’s
the ratio between the pairing 〈 #»v , #»v 〉 given by A and the pairing given by the standard Hermitian form.
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Even if all entries of A are real, this is a nontrivial fact — in general, a matrix with real entries can still
have complex eigenvalues. But this guarantees that for symmetric real matrices, all their eigenvalues are
necessarily real!

§5.3 Orthogonality

We’ll now study symmetric bilinear forms in R and Hermitian forms in C in parallel, since the theory in the
two cases is quite similar.
Earlier, when working with the vector space Rn, we defined a matrix to be orthogonal if it preserves the
dot product — meaning that M #»x ·M #»y = #»x · #»y for all vectors #»x and #»y . We saw that this is equivalent
to MᵀM = I, or to the column vectors #»vi of M being orthonormal (meaning that #»vi · #»vj is 1 if i = j and 0
otherwise). We can define a similar notion in the case of Cn:

Definition 5.22. A matrix M with entries in C is unitary if for all vectors #»x , #»y ∈ Cn we have
〈M #»x ,M #»y 〉 = 〈 #»x , #»y 〉, where 〈−,−〉 denotes the standard Hermitian form on Cn.

Similarly to the case of orthogonal matrices, a matrix M is unitary if and only if M∗M = I, or equivalently
if its column vectors #»vi are orthonormal, again meaning that 〈 #»vi,

#»vj〉 is 1 if i = j and 0 otherwise.

§5.3.1 Orthogonal Complements

In Rn, the dot product gives us a way of describing when two vectors are perpendicular. In a general
vector space, if we have a pairing “similar to” the dot product — a symmetric bilinear form for R, or a
Hermitian form for C — then we can use that form to define perpendicularity in the same way. So we’ll
now assume that V is either a real vector space with a symmetric bilinear form, or a complex vector space
with a Hermitian form; we’ll denote this form by 〈−,−〉.

Definition 5.23. Two vectors v and w are orthogonal, denoted as v ⊥ w, if 〈v, w〉 = 0.

We can also describe when a vector is perpendicular to a subspace — given a subspace W ⊂ V , we say
v ⊥W if 〈v, w〉 = 0 for all w ∈W .
The dot product in Rn captures our geometric notion of perpendicularity. However, this won’t necessarily
be true in general. In particular, a vector may be perpendicular to itself!

Example 5.24
Consider the bilinear form on R4 defined by

A =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
which comes up in special relativity. Then (1, 0, 0, 1)ᵀ is orthogonal to itself.

Definition 5.25. Given a subspace W ⊂ V , we define its orthogonal complement W⊥ as the subspace
{v ∈ V | v ⊥W}.

Question 5.26. When can we split V as a direct sum of W and W⊥?
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In R3, we always have R3 = W ⊕W⊥ — for instance, if W is a plane, then W⊥ is the line perpendicular
to all lines in the plane. We’d like to make a similar statement for a general vector space and symmetric
bilinear form. But this isn’t true — we may have a vector v which is orthogonal to all of V . So we’d like
to impose a condition on our form to avoid such behaviour, and for that we’ll use the following definition:

Definition 5.27. The null space of 〈−,−〉 is the space of vectors v for which v⊥ = V .

In other words, the null space is the subspace of V consisting of vectors orthogonal to all of V . We’ll denote
the null space by N .

Example 5.28
In the form given by A = I (the dot product or standard Hermitian form), we have N = {0}. Meanwhile
in the form given by A = 0, we have N = V .

Definition 5.29. If N = {0}, then we say that (V, 〈−,−〉) is nondegenerate.

So the form corresponding to I is nondegenerate, while the form corresponding to 0 is degenerate (as we
would expect). More generally, we can describe the null space explicitly using the matrix A — we have
v ∈ N if and only if w∗Av = 0 for all w ∈ V . This occurs if and only if Av = 0, meaning that v ∈ ker(A).
In particular, the pairing is nondegenerate if and only if A is invertible.
But V being nondegenerate doesn’t exactly guarantee that the pairing is “well-behaved” — the pairing in
Example 5.24 is nondegenerate, but it still has the weird behaviour that some vectors are perpendicular to
themselves. This is because even if 〈−,−〉 is nondegenerate on V , its restriction to a subspace W ⊂ V may
be degenerate.

Example 5.30
The pairing in Example 5.24 is nondegenerate as a pairing on R4. But it becomes degenerate if we
restrict it to Span((1, 0, 0, 1)ᵀ), since any two vectors in this span are orthogonal.

By definition, the restriction of 〈−,−〉 to W is nondegenerate if and only if for all w ∈ W , there exists
another vector w′ ∈W such that 〈w,w′〉 = 0. This is equivalent to stating that W ∩W⊥ = {0}— if we had
a vector w in both W and W⊥, then by the definition of W⊥, w would have to be orthogonal to all of W .
Now we’re ready to answer the question on when we can use 〈−,−〉 to split V as a direct sum:

Theorem 5.31
If the restriction of 〈−,−〉 to W is nondegenerate, then V = W ⊕W⊥.

Recall that the statement V = W ⊕ U means every v ∈ V can be written uniquely as a sum w + u where
w ∈W and u ∈ U .
It’s clear that the nondegeneracy condition is necessary — if 〈−,−〉 were degenerate, then we would have
W ∩W⊥ 6= {0}, and therefore we could not have V = W ⊕W⊥.

Proof. First, the condition that 〈−,−〉 restricted to W is nondegenerate means that W ∩W⊥ = {0}, so it
suffices to show that V = W + W⊥ — or equivalently, that every vector v ∈ V can be written as the sum
of a vector in W and one in W⊥.
We’ll work over C, but the same argument works over R as well.
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Pick a basis {w1, . . . , wk} for W , and define a map ϕ:V → Ck sending

v 7→ (〈w1, v〉, . . . , 〈wk, v〉).

Then φ is linear by the properties of Hermitian forms. Meanwhile, ker(ϕ) is the set of v ∈ V for which
〈wi, v〉 = 0 for all the basis vectors wi, but since the vectors wi span W , this is true if and only if 〈w, v〉 = 0
for all vectors w ∈W . So then ker(ϕ) = W⊥.
Now we can use the dimension formula — we have

dimV = dim ker(ϕ) + dim im(ϕ).

But we know ker(ϕ) = W⊥, and dim im(ϕ) ≤ dimW (since im(ϕ) is a subspace of Ck). So

dimV ≤ dimW + dimW⊥.

On the other hand, since W ∩W⊥ = {0}, then W ⊕W⊥ must be a subspace of V — more explicitly, we
have a map W ⊕W⊥ → V given by (w, u) 7→ w + u, and this map must have kernel {0} since W and U
only have 0 in common, so it must be injective and therefore it identifies W ⊕W⊥ with a subspace of V .
So then we must have dimV ≥ dimW + dimW⊥ as well. This implies equality holds in both statements,
and therefore W ⊕W⊥ = V .

Remark 5.32. We used nondegeneracy only in the beginning, to show W ∩W⊥ = {0}. In particular,
we don’t need the form to be nondegenerate on V for this argument to work.

§5.3.2 Orthogonal Bases

Theorem 5.31 is quite powerful; one implication it has is the following.

Theorem 5.33
Given any symmetric bilinear form (for R) or Hermitian form (for C) on V , we can find an orthogonal
basis for V — a basis {v1, . . . , vn} such that 〈vi, vj〉 = 0 for all i 6= j.

Concretely, an orthogonal basis is one where the matrix for 〈−,−〉 is diagonal (since all the entries not on
the diagonal must be 0).

Proof. We use induction on dimV = n.
To motivate the proof, we can use our geometric intuition — if our form makes sense geometrically, then
we can take any vector u and the space u⊥. Then by induction we can find an orthogonal basis for u⊥,
and combine this basis with u to get an orthogonal basis for V . This idea almost works in general, but
we have to be careful, since being able to split V into a line and its orthogonal complement depends on
nondegeneracy.
Case 1 (There exists some u ∈ V such that 〈u, u〉 6= 0). Then let W = Span(u), which is a one-dimensional
vector space. Since 〈u, 〉 6= 0, the restriction of 〈−,−〉 to W is nondegenerate (since its corresponding matrix
is the 1× 1 matrix consisting of 〈u, u〉). So then by Theorem 5.31, we can write

V = W ⊕W⊥,

where W is one-dimensional and W⊥ is (n − 1)-dimensional. By the inductive hypothesis W⊥ has an
orthogonal basis {v2, . . . , vn}, and adding in u gives an orthogonal basis for V .
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Case 2 (〈v, v〉 = 0 for all v ∈ V ). This is a very strong constraint, and we’ll show it implies 〈v, w〉 = 0 for
any two vectors v and w. Then we’re done, since any basis is an orthogonal basis.
Consider the equation

0 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉 = 〈v, w〉+ 〈w, v〉.

In the case of R, since 〈−,−〉 is symmetric, this immediately implies 〈v, w〉 = 0. Meanwhile in the case of
C, this implies 〈v, w〉 has a real part of 0, and we can perform the same argument with v + iw instead to
get that 〈v, w〉 has imaginary part 0 as well.

In fact, we can slightly strenghten this statement.

Corollary 5.34
We can find an orthogonal basis {v1, . . . , vn} for V such that 〈vi, vi〉 ∈ {1,−1, 0} for each i.

Proof. We can start with any orthogonal basis {x1, . . . , xn} and simply scale it — scaling any vector xi
preserves orthogonality. For each i, if 〈xi, xi〉 = 0 then we can take vi = xi. Otherwise we can take vi = cxi
for some real c which makes 〈vi, vi〉 = ±1 — more explicitly, we take

vi = 1√
|〈xi, xi〉|

xi.

This tells us that up to a choice of basis, there aren’t actually that many possibilities for a symmetric bilinear
or Hermitian form — we can always find a basis in which the form is a diagonal matrix with diagonal entries
all ±1 and 0. In particular, 〈−,−〉 is nondegenerate if and only if the diagonal only consists of ±1 — if we
had a 0 on the diagonal, then the matrix would not be invertible.
Using these matrices, we can also describe another useful property:

Definition 5.35. The form 〈−,−〉 is positive definite if 〈v, v〉 > 0 for all nonzero vectors v.

In the orthogonal basis as described in Corollary 5.34, we can see that 〈−,−〉 is positive definite if and only
if the diagonal only consists of +1 (since a −1 or 0 would correspond to a basis vector with 〈vi, vi〉 ≤ 0).
Conversely, if we have a basis for which the matrix only consists of +1’s, then in that basis the form is just
the dot product or standard Hermitian form, and is therefore positive definite.
There are many different orthogonal bases which we could use to write 〈−,−〉 as a matrix with the described
property. But interestingly, the way this matrix looks doesn’t depend on the choice of basis!

Fact 5.36 (Sylvester’s Law) — Given 〈−,−〉 on V , for any choice of orthogonal basis as described in
Corollary 5.34, the number of 1’s, −1’s, and 0’s on the diagonal are fixed.

These numbers are called the signature of 〈−,−〉. For example, the dot product written in any orthogonal
basis will consist of only +1’s on the diagonal, and the pairing in Example 5.24 will always consist of one
−1 and three +1’s.
Finally, we can also translate these results into ones about matrices, in the same way as we did for linear
maps and operators, by starting off with a matrix A representing a form on Rn and changing basis.

Theorem 5.37
If A is a symmetric n × n matrix over R, then there exists a matrix P ∈ GLn(R) such that P ᵀAP is
diagonal, and all its diagonal entries are 1, −1, or 0. Furthermore, A is positive definite if and only if
A = QᵀQ for an invertible matrix Q.
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The first statement follows directly from our observation earlier that changing the basis corresponds to
replacing A with P ᵀAP . To see the second, we’ve seen that the form corresponding to A is positive definite
if and only if the rewritten matrix P ᵀAP is actually I. We can let Q = P−1 and multiply by Qᵀ and Q on
the two sides, to get that this occurs if and only if A = QᵀQ.
An analogous statement is true for matrices over C instead (using Hermitian matrices and taking the adjoints
instead of transposes).

§5.3.3 Orthogonal Projection

Suppose we have a vector space V over R or C with a symmetric bilinear form or Hermitian form 〈−,−〉,
and a subspace W ⊂ V for which 〈−,−〉 restricted to W is nondegenerate. Then Theorem 5.31 tells us that
V = W ⊕W⊥, so every vector v ∈ V can be written uniquely as a sum w + u with w ∈W and u ∈W⊥.

Question 5.38. How can we compute w and u?

In a geometric setting, computing w and u corresponds to splitting v into a piece which lies in W , and
another piece perpendicular to W .

Definition 5.39. The orthogonal projection π:V →W is the linear map sending v 7→ w.

Note that by definition, v − π(v) ⊥W .
Orthogonal projection is really useful. In geometric situations, w is the vector in W closest to v. So
calculating w given v comes up a lot in data analysis, especially in using least squares approximation.
It turns out that there’s a nice way of finding the map π assuming that we have an orthogonal basis for
W . (If we don’t already have an orthogonal basis for W , then we’d start by finding one — next class we’ll
discuss how to do this in the special case where the form is positive definite.) Let this orthogonal basis be
{w1, . . . , wi}; then since the form is nondegenerate on W , we have 〈wi, wi〉 6= 0 for all i.
Now take our vector v ∈ V , so we want to find the coefficients ci for which

v = c1w1 + · · ·+ ckwk + u

with u ⊥ W . To find these coefficients, we can simply pair v with the basis vectors — if v is in this form,
then we have

〈w1, v〉 = c1〈w1, w1〉+ c2〈w1, w2〉+ · · · = c1〈w1, w1〉,
since w1 is orthogonal to all the other wi (since they form an orthogonal basis) and to u (since u ∈ W⊥).
The same occurs for all other indices, so we get

ci = 〈wi, v〉
〈wi, wi〉

for each i, and then π(v) = c1w1 + · · ·+ ckwk for these values of ci.

Example 5.40
Consider the vector space R3 with the dot product, and let W be the span of w1 = (1, 1, 1)ᵀ and
w2 = (1, 1,−2)ᵀ (which form an orthogonal basis of W ). Find the projection of v = (1, 2, 3)ᵀ onto W .

Solution. We can compute 〈w1, w1〉 = 3, 〈w1, w2〉 = 6, 〈w1, v〉 = 6, and 〈w2, v〉 = −3. So then we have

π(v) = 6
3

1
1
1

− 1
2

 1
1
−2

 =

3/2
3/2
3

 .
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One interesting application of this formula is that if we take W to be the entire vector space V , then this
tells us how to find the coordinates of any vector v with respect to a given orthonormal basis of V .

§5.4 Euclidean and Hermitian Spaces

Definition 5.41. A Euclidean space is a vector space over R equipped with a positive definite symmetric
bilinear form. Similarly, a Hermitian space is a vector space over C equipped with a positive definite
Hermitian form.

We’ve seen already (in Corollary 5.34) that if V is Euclidean or Hermitian, then it has an orthonormal basis:

Definition 5.42. An orthonormal basis is a basis {v1, . . . , vn} such that

〈vi, vj〉 =
{

0 if i 6= j

1 if i = j.

This is because Corollary 5.34 implies we can find an orthogonal basis in which each 〈vi, vi〉 is ±1 or 0, and
then positive definiteness guarantees that they are all 1.
Many of the results we proved earlier rely on nondegeneracy. It turns out that nondegeneracy always holds
in this situation:

Proposition 5.43
If V with 〈−,−〉 is Euclidean or Hermitian, then 〈−,−〉 restricted to any subspace W is nondegenerate.

Proof. Recall that by definition, 〈−,−〉 restricted to W is degenerate if and only if there are nonzero vectors
w ∈W which are orthogonal to all of W . But each vector w is not orthogonal to itself, since 〈w,w〉 > 0.

So then everything we’ve proved regarding splitting V = W ⊕W⊥ and calculating orthogonal projections
does hold in any Euclidean or Hermitian space.

§5.4.1 The Gram–Schmidt Algorithm

Question 5.44. Given a Euclidean or Hermitian space, how can we find an orthonormal basis?

Suppose we have a Euclidean or Hermitian space V , and we start off with some basis {v1, . . . , vn}. We’d
like to turn this basis into a basis {u1, . . . , un} which is orthonormal.
We’ll inductively build this basis, by going through our original basis and correcting it one vector at a time.
More precisely, let Vk = Span(v1, . . . , vk) for each k. Then we’ll construct u1, u2, . . . so that Span(u1, . . . , uk)
is also Vk for all k, and the ui form an orthonormal basis for Vk.
Step 0. First we’ll find u1. We can “fix” v1 by simply scaling it — we take

u1 = 1√
〈v1, v1〉

v1,

which produces an orthonormal basis for V1.
Step 1. We now want to find an orthonormal basis for V2, building off the one we have for V1. The problem
with our original basis is that v2 may not be orthogonal to v1. So we first set x2 = projV1 v2 (this denotes
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the projection of v2 onto V1), and y2 = v2 − x2. Then y2 is orthogonal to all of V1 (and therefore to u1),
and Span(u1, y2) = V2. So finally, we can scale y2 to get our basis vector

u2 = 1√
〈y2, y2〉

y2.

We can essentially perform the same construction for all the following steps:
Step k. Suppose we’ve constructed an orthonormal basis {u1, . . . , uk} for Vk, and we now want to find
uk+1. First set xk+1 = projVk

vk+1 and yk+1 = vk+1 − xk+1 — so yk+1 is essentially the part of vk+1 which
is orthogonal to Vk. Note that replacing vk+1 with yk+1 doesn’t change the span of our first k + 1 vectors,
since xk+1 is in Vk; also note that yk+1 is nonzero, since vk+1 cannot be in Vk. Then we can scale again and
take our new basis vector to be

uk+1 = 1√
〈yk+1, yk+1〉

yk+1.

Repeating this process eventually produces an orthonormal basis for the entire space V .
What’s nice about this algorithm is that when we’re attempting to project vk+1 onto Vk, we already have
an orthonormal basis for Vk, which means we know how to do the projection — we have

projVk
vk+1 =

∑ 〈ui, vk+1〉
〈ui, ui〉

ui =
∑
〈ui, vk+1〉ui.

So this algorithm is quite computationally feasible.
We can also rewrite the result of the Gram–Schmidt algorithm in terms of matrices. Suppose we start
off with a matrix M ∈ GLn(R), so we can think of the columns of M as a basis {v1, . . . , vn} for Rn.
The algorithm tells us that we can correct this basis to turn it into an orthonormal basis {u1, . . . , un}
with respect to the dot product. More specifically, it tells us that we can correct the basis in a way such
that Span(u1, . . . , uk) = Span(v1, . . . , vk) for all k — so then we have u1 = a11v1, u2 = a12v1 + a22v2,
u3 = a13v1 + a23v2 + a33v3, and so on, for some coefficients aij . We can rewrite this as

 · · ·
u1 u2 · · · uk

· · ·

 =


a11 0 · · · 0
a12 a22 · · · 0
...

... . . . ...
a1n a2n · · · ann

 ·
 · · ·
v1 v2 · · · vn

· · ·

 .

So this gives the following statement in terms of matrices:

Proposition 5.45
Given any M ∈ GLn(R), there exists a lower triangular matrix Q and an orthogonal matrix R such
that M = QR.

Here R is the matrix of the ui (corresponding to the new basis), and Q is the inverse of the matrix (aij).
This result can be computationally useful.

§5.5 The Spectral Theorem

We’ll now work specifically over C — let V be a Hermitian space with pairing 〈−,−〉.
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§5.5.1 Some Definitions

Definition 5.46. Given a linear operator T :V → V , its adjoint is the linear operator T ∗:V → V defined
as follows: Take an orthonormal basis {u1, . . . , un} of V . Then if the operator T corresponds to the
matrix M , its adjoint T ∗ is the linear operator corresponding to the matrix M∗.

So we’re essentially using our definition of the adjoint for matrices, working over Cn with the standard
Hermitian form, to define the adjoint for linear operators in abstract Hermitian spaces (since choosing an
orthonormal basis maps V → Cn and 〈−,−〉 to the standard Hermitian form).
This definition is quite weird, because it asks us to pick an orthonormal basis — if we picked a different
basis, would we still get the same operator T ∗? Fortunately, the answer is yes — it’s possible to describe
T ∗ without referencing a basis at all.

Proposition 5.47
The operator T ∗ has the property that 〈Tv,w〉 = 〈v, T ∗w〉 for all v and w.

Proof. We can translate this statement to one about Cn by picking an orthonormal basis {u1, . . . , un}.
Suppose that in this basis, v corresponds to a column vector #»x and w to #»y . Then Tv corresponds to M #»x ,
so using properties of the adjoint, we have

〈Tv,w〉 = (M #»x )∗ #»y = #»x ∗M∗ #»y = #»x ∗(M∗ #»y ) = 〈v, T ∗w〉,

since we defined T ∗ to correspond to M∗.

This uniquely determines the linear operator — if we take an orthonormal basis {u1, . . . , un} and set v = ui
and w = uj , then 〈ui, T ∗uj〉 gives the ith coordinate of T ∗uj , so over all i and j this determines the value
of T ∗ on each basis vector, and therefore on all of V . So this means the definition of T ∗ is independent of
the choice of basis.
Now that we have the concept of an adjoint in an abstract Hermitian space, we can take some of the
definitions we had in Cn that referenced adjoints, and move them to our Hermitian space as well.

Definition 5.48. A linear operator T :V → V is a Hermitian operator if T ∗ = T .

If we fix an orthonormal basis, then a Hermitian operator corresponds to a Hermitian matrix (one with the
property that A∗ = A). Note that this condition is equivalent to stating that for all v and w we have

〈Tv,w〉 = 〈v, Tw〉.

Definition 5.49. A linear operator T :V → V is a unitary operator if T ∗T is the identity operator.

Equivalently, if we fix an orthonormal basis, then a unitary operator corresponds to a unitary matrix (a
matrix such that U∗U = I). We’ve seen that unitary matrices are the matrices which preserve the standard
Hermitian product, and the same is true here — T is Hermitian if and only if for all v and w we have

〈Tv, Tw〉 = 〈v, w〉.

There is a more general property that encapsulates both of these:
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Definition 5.50. A linear operator T :V → V is normal if TT ∗ = T ∗T .

Hermitian operators are normal because T ∗ = T , and unitary matrices are normal because T ∗ = T−1 —
any matrix commutes with itself and with its inverse. But this property is more general than being either
Hermitian or unitary — there exist operators which are normal but neither Hermitian nor unitary.

Example 5.51
Consider the matrix

A =

1 1 0
0 1 1
1 0 1

 .
This is normal, but not Hermitian or unitary — A∗ isn’t A or A−1, but it does commute with A.

We can also rewrite this condition in terms of the pairing — if T is normal, then for all v and w we have

〈Tv, Tw〉 = 〈v, T ∗Tw〉 = 〈v, TT ∗w〉 = 〈T ∗v, T ∗w〉.

The converse is true as well (since if 〈v, T ∗Tw〉 = 〈v, TT ∗w〉 for all v and w, we must have T ∗T = TT ∗).

§5.5.2 The Spectral Theorem

Theorem 5.52 (Spectral Theorem)
Let V be a Hermitian space, and let T :V → V be a normal linear operator. Then V has an orthonormal
basis {u1, . . . , un} where each ui is an eigenvector of T .

We’ve previously discussed how to diagonalize a linear operator T , and how to find an orthonormal basis
for a Hermitian space V . But the Spectral Theorem tells us that we can do both at once — we can find a
basis that answers both questions simultaneously. In particular, it means a normal linear operator is always
diagonalizable — we don’t need to use the more complicated Jordan normal form.
We can rewrite the Spectral Theorem in terms of matrices as well — assume that V is Cn under the standard
Hermitian product. Then the theorem tells us that given a matrix M such that M∗M = MM∗, we can
find an orthonormal eigenbasis — this means we can find a unitary matrix P such that P−1MP is diagonal
(here the columns of P are the eigenbasis, and P is unitary since its columns are orthonormal). Note that
since P is unitary, we also have P−1MP = P ∗MP .
In this section we’ve been working over C because the theorem at this level of generality is false over R.
There is a version of the Spectral Theorem over R — given a Euclidean space V and a symmetric linear
operator T :V → V , we can find an orthonormal eigenbasis.
But this isn’t true in as much generality as it is for C (we can think of symmetric as the analog of Hermitian).
For example, we can’t even necessarily diagonalize an orthogonal matrix in the first place (we’ve seen that
rotations in R2 are orthogonal, and they have no eigenvectors).

Example 5.53
Consider the symmetric matrix

M =
[

3 −1
−1 3

]
.

Then the vectors 1√
2(1, 1)ᵀ and 1√

2(1,−1)ᵀ form an orthonormal eigenbasis, with eigenvalues 2 and 4.
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Now we’ll prove the Spectral Theorem. First we’ll prove some useful properties of the adjoint.

Lemma 5.54
Let T :V → V be a linear operator, and let W be a subspace of V such that T preserves W . Then T ∗

preserves W⊥.

Recall that T preserving W means that T (W ) ⊂ W — or in other words, for all w ∈ W , we have Tw ∈ W
as well.

Proof. It suffices to show that for any u ∈ W⊥, we have T ∗u ∈ W⊥ as well, meaning that 〈w, T ∗u〉 = 0 for
all w ∈W . But by Proposition 5.47, we have

〈w, T ∗u〉 = 〈Tw, u〉.

Since T preserves W , we have Tw ∈W and u ∈W⊥, which means this pairing must be 0. So 〈w, T ∗u〉 = 0
for all w ∈W , and therefore T ∗u is in W⊥.

Lemma 5.55
Let T be a normal linear operator. If Tv = λv, then T ∗v = λv.

In other words, this states that T and T ∗ have the same set of eigenvectors, and their eigenvalues are complex
conjugates.

Proof. First we’ll solve the specific case where λ = 0. Then we know v is in ker(T ), and we want to show v
is in ker(T ∗) as well. Since Tv = 0 and T is normal, we have

〈T ∗v, T ∗v〉 = 〈Tv, Tv〉 = 0.

But since V is Hermitian, 〈−,−〉 is positive definite, so we must have T ∗v = 0.
Now for the general case, let S = T − λI. Then v is in ker(S), and meanwhile we have S∗ = T ∗ − λI. We
can check that S is still normal — S and S∗ commute because T and T ∗ do. So then by the special case
shown earlier, we have that v is in ker(S∗) as well, which means T ∗v = λv.

Remark 5.56. The main idea here, of studying a general eigenvector by shifting its eigenvalue to 0, is
one that came up quite frequently when we studied eigenvectors previously.

Now with this, we can prove the Spectral Theorem.

Proof of Theorem. We’ll use induction on the dimension of V — we’ll break V as a direct sum of two smaller
pieces, and inductively find an orthonormal eigenbasis of each piece.
Since we’re working over C, we know we can find at least one eigenvector w ∈ V and a corresponding
eigenvalue λ, so that Tw = λw. Since 〈w,w〉 > 0, we can scale w such that 〈w,w〉 = 1.
Now let W = Span(w), and split V = W ⊕W⊥ (we can do this by Theorem 5.31 since 〈−,−〉 is positive
definite and therefore nondegenerate). We know T preserves W (since T scales w), so in order to be able to
induct, we want to show that T preserves W⊥ as well.
We know that Tw = λw, so by Lemma 5.55 (since T is normal), w is an eigenvector for T ∗ as well. So then
T ∗ also preserves W , and by Lemma 5.54 this means (T ∗)∗ = T preserves W⊥.
So now we can split V = W ⊕W⊥. Since T preserves both W and W⊥, it acts separately on the two pieces.
So by the inductive hypothesis, we can find an orthonormal eigenbasis for T acting on W⊥; then adding w
to this list gives an orthonormal eigenbasis for V .
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In the case of Euclidean spaces over R, most of the argument still works as written. The one part which
doesn’t work is the beginning, where we find an eigenvector and an eigenvalue — the argument breaks if we
can’t find any real eigenvectors. This is why the Spectral Theorem does hold for symmetric matrices — we
showed in Proposition 5.21 that for any symmetric matrix (or more generally any Hermitian matrix), all its
eigenvalues are real. So we can always find one eigenvector w and eigenvalue λ to get started, and the rest
of the argument works in the exact same way.

Remark 5.57. In fact, in the case of symmetric matrices over R, there’s another proof of the Spectral
Theorem via Lagramge multipliers to find w and λ — the value of λ which comes from using Lagrange
multipliers is actually an eigenvalue.

§5.5.3 Application to Quadratic Forms

Suppose we have a quadratic form f(x, y) = ax2 + bxy + cy2 (a function in x and y which only contains
terms of degree 2). Then we can rewrite f in terms of a symmetric matrix — if we take

M =
[
a b/2
b/2 c

]
,

then we have
f(x, y) = (x, y)M(x, y)ᵀ.

Example 5.58
The quadratic form f(x, y) = 3x2 − 2xy + 3y2 corresponds to the matrix

M =
[

3 −1
−1 3

]
.

By the Spectral Theorem, there is an orthogonal change of coordinates — meaning we write (x, y)ᵀ =
P (x′, y′)ᵀ for an orthogonal matrix P — such that we have

P ᵀMP =
[
λ1 0
0 λ2

]
.

Then using this change of coordinates, we can rewrite
f(x, y) = λ1(x′)2 + λ2(y′)2,

which makes it much easier to understand what the original quadratic form does.

Example 5.59
For the form given in Example 5.58, we can set x = 1√

2(x′ + y′) and y = 1√
2(x′ − y′), and in the new

coordinates we have
f(x, y) = 2(x′)2 + 4(y′)2.

We can do this with more than two variables as well — if we have a quadratic form f(x1, . . . , xn) = a11x
2
11 +

· · ·+ annxnn + 2∑i<j aijxixj , then we can again choose an orthogonal matrix P such that (x1, . . . , xn)ᵀ =
P (x′1, . . . , x′n)ᵀ, and our original quadratic form becomes λ1(x′1)2 + · · ·+ λn(x′n)2 — so we can eliminate all
the cross-terms xixj . More explicitly, we can obtain P by taking the symmetric matrix M of the aij ’s and
using the Spectral Theorem to find a new coordinate system (which is still orthonormal, and in which M
becomes diagonal).
In two and three dimensions, this has a nice geometric interpretation as well:
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Question 5.60. Consider a curve ax2 + bxy + cy2 + dx+ ey + f = 0. What can this curve look like?

There’s a few familar possibilities:
• An ellipse, for example given by ax2 + by2 = 1;
• A hyperbola, for example given by ax2 − by2 = 1;
• A parabola, for example given by ax2 − y = 0;
• Two intersecting lines, given by (a1x+ b1y)(a2x+ b2y) = 0;
• Two parallel lines, for example given by x2 = a;
• A single line, for example given by x2 = 0;
• A single point, for example given by x2 + y2 = 0;
• The empty set, for example given by x2 + y2 = −1.

The first three cases — ellipses, hyperbolas, and parabolas — are called conics; the remaining cases are all
degenerate.

Theorem 5.61
After an isometry, all curves ax2 + bxy + cy2 + dx+ ey + f = 0 look like one of the curves on this list.

Proof. Let #»v = (x, y)ᵀ, so then we can rewrite the equation as

#»v ᵀA #»v +B #»v + f = 0

for matrices A and B. First we’ll deal with the quadratic part using the Spectral Theorem — we can find
an orthogonal change of basis in which A becomes diagonal, so then our equation becomes

λ1x
2 + λ2y

2 + b1x+ b2y + f = 0

(note that we’re now using x and y to refer to the new variables). First, if λ1 and λ2 are nonzero, then we
can complete the square to get rid of the linear terms — if we send x 7→ x+ b1/2λ1 and y 7→ y+ b2/λ2, then
we get an equation of the form

λ1x
2 + λ2y

2 = c.

If c is nonzero then we either get an ellipse, hyperbola, or the empty set; if c = 0 then we either get one
point or two intersecting lines (depending on whether λ1 and λ2 have the same or opposite sign).
We can perform a similar analysis when one of λ1 and λ2 is 0, and this will give the remaining cases — for
instance, if λ1 = 0 and λ2 6= 0, then we get a parabola.

The importance of the fact that our new basis is orthogonal is that the transformations we perform on x
and y are isometries — we’ve essentially just rotated (or reflected) the coordinate axes. So our original
curve has the same shape as the new one, and if we want to return to the original coordinate system, we
can simply rotate back.

Page 96 of 121



Class by Davesh Maulik (Fall 2021) 18.701 — Algebra 1

§6 Linear Groups

§6.1 Introduction

So far, we’ve been studying group theory and linear algebra. We’ll now study a topic related to both — we’ll
look at groups of matrices with certain properties. The group of all invertible matrices, GLn(R), has several
interesting subgroups: the special linear group SLn(R), the matrices with determinant 1; the orthogonal
group On, consisting of matrices such that Aᵀ = A−1; and the special orthogonal group SOn, which is their
intersection. All of these are groups of matrices which preserve some linear algebraic property — SLn(R)
preserves volume, and On preserves the dot product.
We can also work over C instead of R, and consider subgroups of GLn(C). One interesting subgroup is still
SLn(C). Another is the unitary group Un, consisting of matrices such that A∗ = A−1 — similarly to how On

preserves the dot product, Un preserves the standard Hermitian product. We also have their intersection,
the special unitary group SU2, which consists of matrices which both have determinant 1 and are unitary.
These are all examples we’ve seen before, but there are many others. We could also look at matrices
preserving other bilinear forms — for example, the form defined by

Ip,q =
[
Ip 0
0 −Iq

]
=



1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

0

0
−1 · · · 0
... . . . ...
0 · · · −1


.

These matrices would satisfy the equation AᵀIp,qA = Ip,q; they form another interesting subgroup of GLn(R).
What’s special about working with R or C (as opposed to a finite field) is that they have a notion of
distance. We can think of matrices in GLn(R) as a subset of Rn2 , so then we have a way of measuring the
distance between two matrices — this means subgroups G ≤ GLn(R) inherit a metric. The same is true for
G ≤ GLn(C), since we also have a definition of distance between complex numbers. This means that the
group structure and topology can interact.
In particular, note that in all these cases, the group operation of multiplication of matrix multiplication is
continuous, and so is its inverse. Previously when studying groups, we looked at homomorphisms between
them, which preserved the group structure. Now we have both a group structure and a topological structure,
so we’ll look at continuous homomorphisms.

Example 6.1
There is a continuous homomorphism (R,+) → SO2, given by sending θ 7→ ρθ. We can think of this
homomorphism geometrically — since SO2 consists exactly of rotation matrices, we can think of it as
R/2πZ, or as a circle. Then this homomorphism maps the line R to the circle by wrapping it around
the circle infinitely many times.

Example 6.2
We can think of O2 geometrically as two circles — one circle represents SO2, and the other represents
the set of reflections.

Both these examples are one-dimensional, but we’ll soon see an example of a group which geometrically is
a higher-dimensional figure, and where this geometric intuition is really useful in understanding the group.
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§6.2 The Geometry of SU2

Recall that SU2 is the set of 2 × 2 matrices over C which have determinant 1 and are unitary (meaning
A∗ = A−1). We’d like to figure out what SU2 “looks like.”

§6.2.1 An Explicit Description

To start with, we’d like to get a more explicit description for SU2. Suppose we have a matrix

A =
[
α β
γ δ

]
∈ SU2.

Then we can calculate
A−1 = 1

detA

[
δ −β
−γ α

]
=
[
δ −β
−γ α

]
(since A is supposed to have determinant 1), while

A∗ =
[
α γ
β δ

]
.

Setting these equal gives that we must have

A =
[
α β
−β α

]
,

and then the condition det(A) = 1 becomes |α|2 + |β|2 = 1.
We can now write α = x0 + ix1 and β = x2 + ix3, so then we have

A = x0

[
1 0
0 1

]
+ x1

[
i 0
0 −i

]
+ x2

[
0 1
−1 0

]
+ x3

[
0 i
i 0

]

with x2
0 + x2

1 + x2
2 + x2

3 = 1. The first matrix is I, and we can name the others i, j, and k. These satisfy the
properties that i2 = j2 = k2 = −I, ij = k and its cyclic variants, and ji = −k and its cyclic variants. This
actually gives rise to an interesting structure:

Definition 6.3. The quaternions, denoted by H, are the group of elements x0I + x1i + x2j + x3k for
x0, x1, x2, x3 ∈ R under multiplication.

Since we know how to multiply any two of these matrices, H is closed under multiplication, so it is a valid
group — we can think of it as a four-dimensional version of C, except that multiplication isn’t commutative.
But what’s important for our purposes is that H is a four-dimensional vector space over R, and SU2 is a
subset of this four-dimensional vector space. More specifically, it’s the subset satisfying the equation

x2
0 + x2

1 + x2
2 + x2

3 = 1,

which defines a three-dimensional sphere (in a four-dimensional space). So geometrically, SU2 is the 3-sphere.

§6.2.2 Geometry of a Sphere

The 3-sphere is hard to picture, so we’ll start by thinking about the 2-sphere S2 — the set of solutions in
R3 to x2

0 + x2
1 + x2

2 = 1. One natural way to think of points on S2 is in terms of latitude and longitude.
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Definition 6.4. The latitudes of a sphere are the sets of points on the sphere with fixed x0; we use Latc
to denote the set of points with x0 = c.

Geometrically, the latitudes of the 2-sphere come from taking horizontal slices of the sphere.

So the latitudes of the 2-sphere are all circles — if we start at the top of the sphere and move down, then
the latitudes start at a point, grow larger until the equator of the sphere, and then shrink back to a point.

Definition 6.5. The longitudes of a sphere are the circles of radius 1 which pass through the north and
south poles.

So longitudes correspond to slicing the sphere at different angles.
Now we can do the same for the 3-sphere. The latitudes are still defined as

Latc = {(x0, x1, x2, x3) | x0 = c} ∩ S3,

the set of points with fixed first coordinate. Note that now the latitudes are 2-spheres. The latitudes at
c = ±1 are single points, and the latitude at c = 0 is the largest sphere; this is called the equator, and
denoted E.
We can also consider the longitudes of the 3-sphere. We’ll define these more precisely later, but they will
still be circles of radius 1 passing through the north and south poles (±1, 0, 0, 0).
We can use latitudes and longitudes to describe our 3-sphere — every point lies on a unique latitude,
and every point except the north and south poles lies on a unique longitude. Meanwhile, each latitude
and longitude intersect at two points. We’ll now see how this description of S3 in terms of latitudes and
longitudes can be used to understand the group structure of SU2.
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§6.2.3 Latitudes of SU2

Theorem 6.6
The conjugacy classes of SU2 are precisely the latitudes.

This has a useful corollary — recall that an element is in the center of a group if and only if its conjugacy
class has size 1. But the only latitudes which consist of just one element are the latitudes at ±1, so this
implies that the center Z(SU2) is precisely ±I.

Proof. The key observation is that I has trace 2, while i, j, and k all have trace 1. So then if a matrix
A ∈ SU2 has coordinates (x0, x1, x2, x3) on the sphere, we have tr(A) = 2x0. So then latitudes correspond
exactly to slices of SU2 with fixed trace.
So it suffices to show that two matrices A and A′ in SU2 are conjugate if and only if they have the same
trace. One direction is clear — trace is preserved by conjugation, so if A and A′ are conjugate, then they
must have the same trace.
For the other direction, we want to show that if tr(A) = tr(A′), then A and A′ are conjugate to each other —
meaning that A′ = P−1AP for some P ∈ SU2. First note that A and A′ both have characteristic polynomial

t2 − t · tr(A) + 1,

since their traces are tr(A) and their determinants are 1. Let λ1 and λ2 be the roots of this polynomial.
Then by the Spectral Theorem, we can diagonalize A using an orthonormal basis, which means we can find
a unitary matrix Q such that

Q−1AQ =
[
λ1 0
0 λ2

]
.

But then we can do the same for A′. This immediately implies that A and A′ are conjugate to the same
matrix in U2, and therefore to each other.
But we actually need to show that they’re conjugate in SU2. It turns out this isn’t much harder — we can
scale the matrix Q described above to have determinant 1. More explicitly, suppose Q is a unitary matrix,
with detQ = δ. Then since Q is unitary, we have Q∗Q = I, so

1 = det(Q∗) det(Q) = δδ,

which means |δ| = 1. Now scale Q to the matrix Q̃ = γQ for one of the two complex numbers γ such that
γ2 = δ−1. Then Q̃ is still unitary, as Q̃∗Q̃ = γQ∗ · γQ = Q∗Q = I (since δ has magnitude 1, so γ must have
magnitude 1 as well). But now Q̃ also has determinant 1.
So then A and A′ are both conjugate to the described diagonal matrix in SU2 as well, and therefore they
are in the same conjugacy class.

Remark 6.7. When studying conjugacy classes of finite groups, we had the class equation

|G| =
∑
i

|Ci| ,

where the Ci denote the conjugacy classes of G. Here SU2 is infinite, so it doesn’t make sense to discuss
the size of sets. But it does make sense to discuss volume, so the analog of the class equation here is

Vol(SU2) =
∫ 1

−1
Vol(Conjc) dc.

This idea is quite useful when studying SU2 more deeply — if we want to integrate a geometric quantity
over the entire group, we can first integrate over each conjugacy class.
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§6.2.4 Longitudes of SU2

When discussing the geometry of the 2-sphere, we also discussed longitudes. We’ll now define the longitudes
of S3 more precisely:

Definition 6.8. Given a point x ∈ E, its corresponding longitude, denoted Longx, is the circle passing
through the north pole, the south pole, and x.

Alternatively, we have Longx = Span(I, x) ∩ S3 — here Span(I, x) is the plane passing through the north
and south pole and x, and intersecting it with the sphere gives the unit circle of this plane.

Theorem 6.9
For each x ∈ E, the longitude Longx is a subgroup of SU2.

Proof. We’ll first prove this for the specific case x = i. Suppose we have two points cI + si and c′I + s′i
in Longi. Then since i2 = −1, their product is still a linear combination of I and i, and is therefore in
Span(I, i) as well. But their product is also in SU2 since SU2 is a group, so it’s in Longi as well. This means
Longi is closed under multiplication, so it’s a group (the identity is I, and the inverse of c+ si is c− si).
But now if we take any point x ∈ E, we know x is conjugate to i (since the conjugacy classes are precisely
the latitudes). Then Longx is conjugate to Longi as well, so it’s also a subgroup.

This proof shows that not only are the longitudes all subgroups, but they’re also conjugate to each other.
In fact, we have an isomorphism from the circle group R/2πZ to Longx given by θ 7→ cos θ · I + sin θ ·x (this
can be shown in the same way — it’s true for x = i by straightforward computation, and we can extend the
result to all x ∈ E using the fact that E is a conjugacy class).
The longitudes have other applications as well:

Fact 6.10 — For any x ∈ E, the centralizer Z(x) is exactly Longx.

It’s clear that Longx must be contained in Z(x) — it’s a subgroup of SU2 containing x which is abelian
(since the circle group R/2πZ is abelian), so all its elements must commute with x. But it turns out that
equality holds.

§6.2.5 Connection to SO3

In Proposition 4.20, we saw that in any group action, given some s ∈ S there is a bijection between left
cosets of the stabilizer of s and elements of the orbit of s. In particular, taking the action to be conjugation,
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for each g ∈ G, there is a bijection between the left cosets of Z(g) and elements of C(g). Here, if we take g
to be i, then we get a bijection between its conjugacy class E and the cosets of Longi, which are all circles
(not necessarily through the north and south poles). We can actually take this further using group theoretic
terms.
We know SU2 acts on E by conjugation, since E is a conjugacy class. In fact, conjugation by each element
of SU2 defines a linear operator on the subspace of H with x0 = 0 (since conjugation preserves trace, and
therefore x0 — the linearity of this operator follows directly from the distributivity of matrix multiplication).
So this defines a group homomorphism ρ: SU2 → GL3(R), where for each g ∈ SU2, we define ρ(g) as the
linear operator on H given by v 7→ gvg−1.
But we know that this linear operator preserves E, which is the unit sphere inside H. So this means ρ(g)
preserves the length of unit vectors, and therefore the length of all vectors — so it’s actually an isometry,
and our homomorphism is actually a homomorphism ρ: SU2 → O3.
But we can actually say even more. We know all orthogonal matrices have determinant 1 or −1. But SU2
is connected (we can start at any point and reach any other point by taking a continuous path), and ρ
is continuous, so det(ρ(g)) cannot ever jump from 1 to −1. This means det(ρ(g)) is constant over all g;
and since the determinant of the identity is 1, this means det(ρ(g)) = 1 for all g. So then ρ is actually a
homomorphism SU2 → SO3.
In fact, it’s possible to show that as the homomorphism ρ: SU2 → SO3 is surjective, and its kernel is {±I}.
So this gives the following result:

Fact 6.11 — The quotient SU2/{±I} is isomorphic to SO3.

§6.3 One-Parameter Groups

Definition 6.12. A one-parameter group in GLn(R) or GLn(C) is a differentiable homomorphism
ϕ:R→ GLn(R) or ϕ:R→ GLn(C).

This means we have a function ϕ from R to GLn(R) or GLn(C) such that ϕ(s + t) = ϕ(s)ϕ(t) for all real
s and t, and if we consider our matrices as subsets of Rn2 or R2n2 (by taking the real and complex part of
each matrix entry), the function giving each component is differentiable.
To motivate this definition, when we studied groups, one important example of a subgroup was cyclic
subgroups, the subgroups generated by one element. We can think of cyclic subgroups as homomorphisms
Z→ G, where the homomorphism maps 1 to the generator of the subgroup. In some sense, this construction
makes sense because Z is the simplest (nontrivial) example of a group — it has one generator and no relations.
Here, the groups we’re studying also have some sort of topological structure. The simplest such group is R —
it’s “one-dimensional” and has no extra relations. So in this situation we can consider homomorphisms from
R — and we require these homomorphisms to be differentiable so that they play well with the topological
structures on both sides.

Example 6.13
When studying SU2, we saw that for any x ∈ E, the map θ 7→ cos θ · I + sin θ · x is a homomorphism
R→ SU2. Its kernel is 2πZ, and its image is Longx.

§6.3.1 Matrix Exponentials

First we’ll start by trying to find an example of a one-parameter group.
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Example 6.14
When n = 1, a one-parameter group is a differentiable homomorphism ϕ:R → C×. We can take
ϕ(t) = eαt for any α ∈ C — this is differentiable, and we have

ϕ(s+ t) = eα(s+t) = eαseαt = ϕ(s)ϕ(t).

Question 6.15. Is there a version of this construction that works for general n?

The answer is yes — we can define eA for a square matrix A as well. Of course the usual definition of ex
doesn’t make sense for matrices, but we also have the power series

ex = 1 + x+ x2

2 + x3

3! + · · · .

This is a very nice power series — it converges everywhere — so we could take it as the definition of ex.
And this definition does generalize well to matrices:

Definition 6.16. For a n× n matrix A, its exponential eA is defined as the n× n matrix

eA = I +A+ A2

2 + A3

3! + · · · .

Each entry Ak/k! is a n× n matrix, and it’s possible to show that for each of the n2 matrices, the sum we
get is convergent (this can be made more precise by placing a metric on the space of n×n matrices), so this
gives a well-defined n× n matrix.

Example 6.17
Find eA and eB for

A =
[
1 0
0 0

]
and B =

[
0 1
0 0

]
.

Solution. For the first matrix, we have An = A for all n ≥ 1, so we get

eA =
[
1 0
0 1

]
+
∑
n≥1

1
n!

[
1 0
0 1

]
=
[
e 0
0 1

]
.

For the second, we have B2 = 0, so then

eB =
[
1 0
0 1

]
+
[
0 1
0 0

]
=
[
1 1
0 1

]
.

This definition gives us a few useful properties of the matrix exponential:

Proposition 6.18
For any n× n matrix A and invertible matrix P , we have

P−1eAP = eP
−1AP .
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Proof. This essentially follows considering the power series term-by-term — we have

P−1AkP = (P−1AP )k

for each k. This means the power series of P−1eAP and eP−1AP are equal if we truncate both at the first k
terms, so they’re equal in the limit as well.

This is quite useful — it means it’s easy to calculate the exponential of any diagonalizable matrix.

Example 6.19
Find eA for

A =
[

0 2π
−2π 0

]
.

Solution. The eigenvalues of A are ±2πi, so we can find some P such that

B = PAP−1 =
[
2πi 0
0 −2πi

]
.

Then we have
PeAP−1 = eB =

[
1 0
0 1

]
.

So eA is conjugate to the identity, which means it must be the identity.

Here we didn’t have to calculate what P was, since eB turned out to be very nice — but in general, it’s
possible to recover eA from eB by calculating P (which is the matrix corresponding to the new eigenbasis).

Proposition 6.20
If v is an eigenvector of A with eigenvalue λ, then v is also an eigenvector of eA with eigenvalue eλ.

Proof. We can use a similar argument — we have

eAv = lim
k→∞

k∑
`=0

A`

`! v = lim
k→∞

k∑
`=0

λ`

`! v = eλv.

Finally, the following result will be useful in our analysis of one-parameter groups (since it lets us make use
of differentiability):

Proposition 6.21
We have d

dte
tA = AetA.

Proof. We can again calculate term-by-term using the series — we have

d

dt
etA = d

dt

(
I + tA+ t2

2 A
2 + · · ·

)
,

and because of uniform convergence, we can take the term-by-term derivative to get

d

dt
etA = 0 +A+ tA2 + t2

2 A
3 + · · · = AetA.
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§6.3.2 Characterization of One-Parameter Groups

Of course, the reason we started thinking about matrix exponentials is because we wanted to find a one-
parameter group of GLn(C), similarly to how x 7→ ex was a one-parameter group of GL1(C) = C×. The
property we need for this to work is the following:

Proposition 6.22
If A and B commute, then eA+B = eAeB. In particular, we have e(s+t)A = esAetA.

Proof. By definition, we have
eA+B =

∑
n≥0

(A+B)n
n! .

But now we can expand out (A + B)n by the Binomial Theorem — since A and B commute, in each
monomial we can move all the A’s to the left, so (A+B)n = An +

(n
1
)
An−1B + · · ·+Bn, and therefore

eA+B =
∑
n≥0

1
n!

n∑
k=0

(
n

k

)
AkBn−k =

∑
k≥0

∑
`≥0

1
k! ·

1
`! ·A

kB` =

∑
k≥0

Ak

k!

∑
`≥0

B`

`!

 = eAeB.

In particular, we have eA · e−A = e0 = I, so then eA ∈ GLn(C) for all matrices A ∈ Matn×n(C).
This proposition immediately implies that the homomorphism t 7→ etA is a one-parameter group. But we
can also ask if the converse is true:

Question 6.23. Is every one-parameter group of the form t 7→ etA for some A?

It turns out the answer is yes!

Proposition 6.24
Every one-parameter group in GLn(C) is of the form ϕ: t 7→ etA for a unique matrix A.

So the constraints in the definition of a one-parameter group are a lot stronger than they might seem. This
also means there’s a bijection between matrices A and one-parameter groups.

Proof. We’ve already seen that t 7→ etA is a one-parameter group — it’s differentiable, and it’s a homomor-
phism because e(s+t)A = esA · etA for all s and t. So it suffices to prove the other direction.
First we’ll prove the uniqueness of A. Suppose ϕ is the map t 7→ etA for some matrix A. Then we have
ϕ′(t) = AetA, so in particular ϕ′(0) = A. This means that it’s possible to recover A from ϕ — so given ϕ,
there’s at most one A for which ϕ is the map t 7→ etA. (Note that this result is not as obvious as it may
seem, since the map eA is not injective.)
Now we’ll prove the existence of A. Given a one-parameter group ϕ, set A = ϕ′(0); we’ll then show that we
must have ϕ(t) = etA for all t.
The main idea is to obtain a differential equation — we have ϕ(s+ t) = ϕ(s)ϕ(t) for all s and t, and taking
the derivative with respect to s (while holding t constant) gives

ϕ′(s+ t) = ϕ′(s)ϕ(t).

Now plugging in s = 0 gives
ϕ′(t) = ϕ′(0)ϕ(t) = Aϕ(t)
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for all t. So then we have an ordinary differential equation for ϕ(t), and since ϕ is a homomorphism, we
also have the initial condition ϕ(0) = I. But it’s a fact that the solution to a given first-order differential
equation is uniquely determined by one point, so there’s only one solution to ϕ′(t) = Aϕ(t) with ϕ(0) = I.
We already know that etA is a solution, so this means ϕ(t) = etA.

The same argument works for GLn(R) as well.

§6.4 Lie Algebras

§6.4.1 One-Parameter Subgroups

Given a group G which is a subgroup of GLn(R) or GLn(C), we can think about the one-parameter groups
in G — meaning one-parameter groups ϕ:R → GLn(C) or GLn(R) such that ϕ(t) ∈ G for all t. (This is
somewhat similar to the notion of a cyclic subgroup from earlier.)

Example 6.25
The longitudes of SU2 ≤ GLn(C) are one-parameter groups in SU2, with the homomorphism R→ Longx
given by θ 7→ cos θ · I + sin θ · x.

Question 6.26. Given a group G, how can we describe all one-parameter groups in G?

Since one-parameter groups are exactly homomorphisms t 7→ etA, this is equivalent to describing the matrices
A for which etA is in G for all A.
We’ll answer this question in a few examples.

Example 6.27
When G ≤ GLn(R) or GLn(C) is the group of diagonal matrices


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


∣∣∣ λi 6= 0

 ,

the one-parameter groups in G are precisely etA for diagonal matrices A.

Proof. First, any diagonal matrix A does define a one-parameter group in G — if A is diagonal then so is
tA for each t, and therefore so is etA.
On the other hand, suppose we have a one-parameter group ϕ(t), with diagonal entries λ1(t), . . . , λn(t).
Then by differentiating, we get that A = ϕ′(0) is also diagonal, with entries λ′1(0), . . . , λ′n(0). So A must
be diagonal.

Remark 6.28. Note that there exist many matrices A for which A is not diagonal but etA is. So it’s
important that we know etA is diagonal for all t, since this allows us to differentiate.
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Example 6.29
When G ≤ GLn(R) or GLn(C) is the group of upper triangular matrices


λ1 ∗ · · · ∗
0 λ2 · · · ∗
...

... . . . ...
0 0 · · · λn


∣∣∣ λi 6= 0

 ,

the one-parameter groups in G are precisely etA for upper triangular matrices A.

Proof. This is quite similar to the previous example. First, if A is upper triangular, then An is upper
triangular for all n, so etA is upper triangular as well (since it’s the sum of upper triangular matrices).
Meanwhile, if ϕ(t) is upper triangular for all t, then so is ϕ′(t), and therefore so is ϕ′(0) = A.

Example 6.30
When G ≤ GLn(R) or GLn(C) is the group of upper triangular matrices with diagonal consisting
entirely of 1’s, meaning 


1 ∗ · · · ∗
0 1 · · · ∗
...

... . . . ...
0 0 · · · 1


 ,

the one-parameter groups in G are precisely etA for upper triangular matrices A with diagonal consisting
entirely of 0’s.

Proof. First, to show that any A must be of this form,we can again differentiate at 0 (since the entries of 0
and 1 are all constants, they correspond to entries of 0 in ϕ′(0) = A). Meanwhile, if A is of this form, then
An is upper triangular for all n, and its diagonal entries are all 0’s for n ≥ 1, so then etA = I + (tA) + · · · is
of the described form.

Now we’ll look at a few harder examples.

Example 6.31
The one-parameter groups in Un are precisely etA where A is skew Hermitian, meaning that A∗ = −A.

Recall that Un ≤ GLn(C) is the group of unitary matrices M , matrices for which M∗ = M−1.

Proof. Exponentiation and taking adjoints behave well with each other — we have

(eA)∗ =
(
I +A+ A2

2 + · · ·
)∗

= I +A∗ + (A∗)2

2 + · · · = eA
∗
.

Now to show that all such A define a valid one-parameter subgroup, we have (etA)∗ = etA
∗ since t is real.

So if A∗ = −A, then etA
∗ = e−tA = (etA)−1, which means etA is unitary.

On the other hand, if we have (etA)∗ = (etA)−1 for all t, then we can rewrite this as etA∗ = e−tA for all t.
Then taking the derivative at 0 gives A∗ = −A.
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Example 6.32
The one-parameter groups in On are precisely etA where A is skew symmetric, meaning that Aᵀ = −A.

The argument here is identical to the previous example — in fact, we can prove this statement directly from
the previous example, using the fact that On = Un ∩GLn(R).

Example 6.33
What are the one-parameter subgroups of SLn(C)?

It turns out that there is a very clean — and surprising — answer!

Lemma 6.34
For any A ∈ Matn×n(C), we have det eA = etrA.

This statement may be unexpected, but it’s possible to guess by thinking about diagonal matrices. In fact,
that’s essentially how we’ll prove it as well — it would be hopeless to attempt to prove it directly from
definitions, since the determinant doesn’t behave well with sums. But we can take advantage of the fact
that all the operations involved here behave well with conjugation.

Proof. We know that if A and B are conjugate to each other, then trA = trB, and eA and eB are conjugate
to each other as well (by Proposition 6.18), so det eA = det eB as well. So if the statement is true for some
matrix A, then it’s also true for all matrices conjugate to A.
So then we can assume that A is in Jordan normal form, and is therefore upper triangular, so

λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0 λ3 · · · ∗
...

...
... . . . ...

0 0 0 · · · λn

 .

But then as we’ve seen earlier, eA is of the form
eλ1 ∗ ∗ · · · ∗
0 eλ2 ∗ · · · ∗
0 0 eλ3 · · · ∗
...

...
... . . . ...

0 0 0 · · · eλn

 .

So then we have
det eA = eλ1eλ2 · · · eλn = etrA.

Now with this, we can answer our question about SLn(C):

Solution to Example 6.33. The matrix A defines a one-parameter group in SLn(C) if and only if det etA = 1
for all t ∈ R, and by the above lemma this occurs exactly when etr tA = 1, or equivalently when tr tA ∈ 2πiZ.
But 2πiZ is a discrete group and t can be any real number, so this only happens when trA = 0.
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Example 6.35
What are the one-parameter subgroups of SU2?

Solution. Combining Examples 6.31 and 6.33, the one-parameter groups in SUn are exactly those defined
by matrices A such that A∗ = −A and trA = 0. In the case of SU2, this means A must be of the form

A =
[

ix1 x2 + ix3
−x2 + ix3 −ix1

]
= x1i + x2j + x3k.

So then A is a point in H which can be written as c #»v for some v in the equator of SU2. Now plugging into
the definition of the exponential, we get that

etA = I · cos tc+ v · sin tc.

So if c = 0 then this gives just the identity matrix, and otherwise it gives the longitude Longv.

Question 6.36. In general, what properties do the matrices A have?

In all these examples, we can see that the set of matrices A is actually a vector space! This is surprising, since
in general, exponentiation doesn’t behave well with addition (it only does when the matrices commute).

§6.4.2 Tangent Vectors

To build on this, given a group G ≤ GLn(R) (we can do the same for GLn(C) as well), we can consider
the set of vectors which are tangent to G at the identity matrix. There are a few different ways to define
tangent vectors at the identity:

(1) A tangent vector is a n× n matrix A such that etA ∈ G for all t ∈ R.
(2) Given any differentiable path f : (−ε, ε)→ GLn(R) such that f always lies inside G and f(0) = I, the

matrix A = f ′(0) is a tangent vector.
(3) If G is defined by a bunch of polynomial constraints on the entries of its matrices, then there’s a

more algebraic way of thinking about tangent vectors: work in R[ε], where ε2 = 0. Then we have
a more algebraic way of thinking about tangent vectors — if f is a polynomial, then f(x + ε) =
f(x) + f ′(x)ε. (The intuition here is that ε2 = 0 allows us to ignore all higher-degree terms in a power
series expansion.) So then we can consider the system of polynomial equations used to define G, and a
tangent vector is a n× n matrix A such that I + εA satisfies the same polynomial constraints in R[ε].

These definitions are all equivalent (we won’t prove this). They have different benefits — the first gives a
bijection between one-parameter groups and tangent vectors. The second definition has a lot of redundancy,
but it makes it easier to see why the set of tangent vectors is always a vector space. The third definition
is somewhat less general, but many of the groups we’ve seen so far are defined by polynomial constraints.
This definition is useful because it makes sense even if we’re not working over R or C — we can talk about
tangent vectors to subgroups of GLn(Fp), for instance.

Definition 6.37. The set of tangent vectors to G at the identity is denoted Lie(G).
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Example 6.38
We’ll look at the three definitions in the case of On ≤ GLn(R). We’ve already seen that using the first
definition, Lie(On) is the set of matrices A for which Aᵀ = −A.
Using the second definition, suppose we have a differentiable function f : (−ε, ε) → On with f(0) = I.
Then we have f(t)ᵀ · f(t) = I for all t. Taking the derivative gives

f ′(t)ᵀf(t) + f(t)ᵀf ′(t) = 0.

Setting t = 0 gives AᵀA+ IA = 0, so Aᵀ = −A.
Using the third definition, the constraint MᵀM = I can be described as a bunch of polynomial con-
straints on the entries of M . So then tangent vectors are precisely matrices A such that

(I + εA)ᵀ(I + εA) = I.

Expanding and using the fact that ε2 = 0 gives I + εAᵀ + εA+ 0 = I, which means Aᵀ = −A.

In this language, our observation that the sets of matrices A are always vector spaces translates to the
following statement:

Proposition 6.39
The set Lie(G) is a vector subspace of Matn×n(R).

§6.4.3 Manifolds

One useful geometric way to think about tangent vectors is in terms of manifolds.

Definition 6.40. Given M ⊂ Rn, we say M is a manifold of dimension d if for each point x ∈M , there
exists an open subset V ⊂ M containing x, an open ball U ⊂ Rd, and a bijection f :U → V which is
continuous and differentiable.

This definition essentially states that around each point of M , we can find an open subset of M which “looks
like” an open ball in Rd — so locally (but not globally), M looks like Rd.

Example 6.41
The circle S1 ⊂ R2 is a manifold — we can take any small arc and straighten it out into an interval.

Example 6.42
The union of the x-axis and y-axis is not a manifold, since any open subset around the origin looks like
+ instead of an interval.

In fact, all our examples of subgroups of GLn(R) are manifolds.
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Example 6.43
The group SU2 is a manifold — we’ve seen earlier that we can think of it as S3 ⊂ R4. For any point
in the upper hemisphere, we can take the open subset V = {x0 > 0} ∩ S3, and map the open ball
U = {x2

1 + x2
2 + x2

3 < 1} ⊂ R3 to it by sending

(x1, x2x3) 7→
(√

1− x2
1 − x2

2 − x2
3, x1, x2, x3

)
.

This makes the fact that the tangent vectors form a vector space a bit more intuitive, since we can “carry
over” the vector space of tangent vectors from an open ball U to a neighborhood of I.

§6.4.4 The Lie Bracket and Lie Algebras

As we’ve seen, Lie(G) is a vector space, which means we can add and scale its elements. But it consists of
matrices — it’s a subspace of Matn×n(R) — and we don’t just know how to add and scale matrices, we also
know how to multiply them. Unfortunately, matrix multiplication doesn’t work well here — it’s possible
that A and B are in Lie(G) and AB is not. But there is a related construction which does work well:

Definition 6.44. Given two matrices A and B, their Lie bracket, denoted [A,B], is the matrix AB−BA.

Of course, if G is abelian, then [A,B] is just 0 on Lie(G). So in some way, we can think of the Lie bracket
as measuring the failure of G to be abelian.

Theorem 6.45
If A and B are in Lie(G), then so is [A,B].

We’ll first look at a few examples:

Example 6.46
In the case of On, we have Lie(On) = {A | Aᵀ = −A}. Now if A and B are both in Lie(On), then

[A,B]ᵀ = BᵀAᵀ −AᵀBᵀ = BA−AB = −[A,B],

so [A,B] ∈ Lie(On) as well.

Example 6.47
In the case of SLn(R), we have Lie(SLn(R)) = {A | trA = 0}. But it’s true in general that trAB =
trBA, so then

tr [A,B] = trAB − trBA = 0,

and therefore tr [A,B] ∈ Lie(SLn(R)).

Sketch of Proof of Theorem 6.45. Suppose we have two matrices A,B ∈ Lie(G). Then etA and etB are in G
for all t ∈ R, so the matrix

etAesBe−tAe−sB

is also in G. Now we can expand this out using the series definition, to get(
I + tA+ t2A2

2 + · · ·
)(

I + sB + s2B2

2 + · · ·
)(

I − tA+ t2A2

2 − · · ·
)(

I − sB + s2B2

2 − · · ·
)
.

Page 111 of 121



18.701 — Algebra 1 Class by Davesh Maulik (Fall 2021)

All the linear terms cancel out, and most of the quadratic terms cancel out as well — we end up with
I + st[A,B] + · · · where the remaining terms have degree at least 3. So since this matrix is in G for all s
and t, we can deduce that [A,B] is also a tangent vector to G at I, and is therefore in Lie(G).

The Lie bracket satisfies a few important properties: we have [A,B] = −[B,A], and the Jacobi identity

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

(This can be proven by expanding out everything, but it also has meaning in terms of the group structure.)
So we can define a new algebraic object that comes up naturally from this setting:

Definition 6.48. A Lie algebra is a vector space V with a bilinear pairing [ · , · ]:V × V → V (called its
Lie bracket) which satisfies [A,B] = −[B,A] and the Jacobi identity.

So far, we’ve only focused on subgroups of GLn(R). But we could have performed the same construction
for any group which is also a manifold — such groups are called Lie groups.
It turns out that the Lie algebra of a group carries a lot of information:

Theorem 6.49
Given a finite-dimensional Lie algebra V over R¡ there exists a Lie group G for which Lie(G) = V .
Furthermore, if we require that G is simply connected, then there is a unique such group G.

Remark 6.50. The condition that G is simply connected is necessary for uniqueness — as shown in
the homework, SU2 and SO3 have the same Lie algebra. But they “differ by a finite amount” — we’ve
seen that SO3 is isomorphic to SU2/{±I} — and a similar statement is true in general.

This can be used to understand Lie groups by first understanding Lie algebras (which is often an easier
problem).

§6.5 Simple Linear Groups

Recall that a group is simple if its only normal subgroups are the trivial group and the entire group. Simple
groups are important because in some sense, they’re “building blocks” for more complicated groups — since
if we have a group which isn’t simple, we can analyze it by looking at a normal subgroup and its quotient
group.

Question 6.51. Are any of our examples of linear groups simple?

We’ll focus on two examples — SU2 and SL2(C).

§6.5.1 Normal Subgroups of SU2

Question 6.52. Is SU2 simple?

Of course, the answer is no — the center of SU2 is {±I}, and the center is always a normal subgroup. But
it turns out this is essentially the only thing that happens.

Theorem 6.53
If N is a normal subgroup of SU2, then N is either I, {±I}, or SU2.
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Corollary 6.54
The quotient SU2/{±I} ∼= SO3 is simple.

Proof. We can use the correspondence theorem — we have a surjective homomorphism ϕ: SU2 → SO3 (given
by mapping each element of SU2 to the linear operator defined by conjugation on the 3-dimensional space
with x0 = 0), whose kernel is {±I}. Then for any normal subgroup of SO3, its pre-image is a normal
subgroup of SU2 containing {±I}, and the only two such subgroups are {±I} and SU2. So then the only
normal subgroups of SO3 are their images {I} and SO3.

Proof of Theorem 6.53. We’ll use our geometric intuition of what SU2 looks like — it’s a 3-sphere, where
the latitudes are conjugacy classes and the longitudes are subgroups.
Let N be a normal subgroup of SU2, and suppose N contains a matrix Q not equal to ±I — our goal is to
show that then N = SU2. First, since N is normal, it must also contain all elements conjugate to Q, so it
contains the entire latitude Latc (where trQ = 2c).

Now we can translate this latitude to pass through the identity — consider Q−1 Latc, which is a (tilted)
2-sphere passing through the north pole. This 2-sphere must be contained in N as well.

Now we can take a nontrivial path f(t) starting at I and staying in Q−1 Latc. This path must be contained
in N , and it must contain some matrix of every trace in some interval (2− δ, 2], for some δ. But since N is
normal and the conjugacy classes are precisely the latitudes, then N must contain all such matrices!
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Now we’re almost done, and to finish, we can consider the longitudes.

For each v ∈ E, we can look at the longitude through v, which is a subgroup of SU2. Since every point in
SU2 is in some longitude, it suffices to show that Longv is contained in N . But Longv consists of elements
ρθ = cos θ · I + sin θ · #»v , and we know ρθ is in N for all θ in some nontrivial interval (−ε, ε). But then for
any angle ϕ, we can find some positive integer m such that |ϕ/m| < ε, and then since ρϕ/m is in N , so is
its mth power ρϕ.
So for all v ∈ E, the longitude Longv is contained in N ; since every point in SU2 is in some longitude, this
means N = SU2.

§6.5.2 Normal Subgroups of SL2

Question 6.55. Is SL2(C) simple?

Of course, the answer is again no — its center is {±I}, so the most we could ask for is that the quotient
SL2(C)/{±I} is simple. It turns out that this is true, and in fact, it’s true for almost any field, not just C!

Theorem 6.56
For any field F with |F | ≥ 4, the quotient group SL2(F )/{±I} is simple.

This quotient group has a name — it’s called PSL2(F ).
Since we’re no longer in a geometric setting — F can even be a finite field — the proof won’t be geometric
like in the case of SU2. Instead, we’ll look at conjugacy classes and attempt to use them to generate all of
the group.

Remark 6.57. The theorem is false for F2 and F3 — this is somewhat similar to how An is simple for
all n ≥ 5, but the smaller groups An aren’t simple.
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Proof. We’ll assume that |F | > 5 — there’s only two cases this doesn’t cover, and they can be checked by
hand. Similarly to the case of SU2, it suffices to prove that the only normal subgroups of SL2(F ) are {I},
{±I}, and SL2(F ) itself.

Claim — Given any a ∈ F , the equation x2 = a has at most two solutions.

Proof. If x2 = y2, then (x+ y)(x− y) = 0. But since F is a field, this implies x+ y or x− y must be 0. This
means if we have one solution to x2 = a, there’s at most one other solution (which is −x). �

Claim — If |F | > 5, then there exists some r ∈ F such that r2 6∈ {0,±1}.

Proof. There are one square root of 0, two square roots of 1, and at most two square roots of −1; since
|F | > 5, this means there must be an element r which is not a square root of any of these numbers. �

Now fix some r with r2 6∈ {0,±1}. Suppose we have a normal subgroup N which contains some element
other than ±I — so we want to show N is the entire group SL2(F ).

Claim — There exists some B ∈ N with distinct eigenvalues.

Proof. Take some A ∈ N with A 6= ±I. Then A cannot be a scalar matrix, so there is some vector v1 ∈ F 2

which is not an eigenvector of A. Let v2 = Av1, so then v1 and v2 form a basis for F 2 (since they’re not
linearly dependent).
Now define P ∈ GL2(F ) with the property that Pv1 = rv1 and Pv2 = r−1v2. Then the eigenvalues of P are
r and r−1, so detP = 1 and therefore P ∈ SL2(F ).
Now we can take B = APA−1P−1. This must be in N — since A is in N , so is A−1, and then since N is
normal, so is its conjugate PA−1P−1. But we have

Bv2 = APA−1P−1v2 = APA−1rv2 = APrv1 = Ar2v1 = r2v1,

so then r2 is an eigenvalue of B, and since detB = 1, its other eigenvalue must be r−2. Since r2 6= ±1, we
have r2 6= r−2, so the eigenvalues of B are indeed distinct. �

Now let s = r2, so B has eigenvalues s and s−1.

Claim — The matrices in SL2(F ) with eigenvalues s and s−1 form a conjugacy class.

Proof. Take any such Q. Then Q has distinct eigenvalues, so it is diagonalizable, which means we can find
L ∈ GL2(F ) for which

LQL−1 =
[
s 0
0 s−1

]
.

So these matrices are conjugate to each other in GL2(F ), but we can in fact show they’re conjugate in
SL2(F ) as well by choosing L to have determinant 1 — given any L with detL = δ, we can take

L̃ =
[
δ−1 0
0 1

]
L,

which is in SL2(F ) and has the same property. �
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So then since N contains one matrix B with eigenvalues s and s−1, it must contain all of them. Finally, we
can show that these matrices generate SL2(F ) — for example, it’s possible to write down explicit formulas
producing the elementary matrices [

1 x
0 1

]
and

[
1 0
x 1

]
for all x, and these matrices generate SL2(F ) (by using row reduction, for instance).

Although these two proofs had quite different settings, they had the same general idea — we find an element
in N , conjugate it to find a whole bunch of elements in N , and use these elements to generate the entire
group.

Remark 6.58. These examples of simple linear groups actually generalize to higher dimensions. In
fact, for linear groups defined by polynomial constraints (for example, the determinant is a polynomial
in the entries, but complex conjugation isn’t), there’s actually a full classification of which ones are
simple. For example, SOn and SLn mod their centers work. The proof involves Lie algebras — you first
understand what the Lie algebra of a simple group looks like, and use that to characterize the groups.
It’s also possible to use this classification to produce finite simple groups, by taking F to be a finite
field instead of R or C.
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§7 Hilbert’s Third Problem

§7.1 Polygons in the Plane

Definition 7.1. Two polygons P and Q are scissors-congruent if using finitely many cuts, we can divide
each of P and Q into the same collection of polygons R1, . . . , Rn.

In other words, we can cut P up into pieces and rearrange these pieces to form Q. If P and Q are scissors-
congruent, we denote this by P ∼ Q.

Question 7.2. Given two polygons P and Q, when are they scissors-congruent?

Of course, if P ∼ Q, then P and Q must have the same area. It turns out this is the only obstruction:

Theorem 7.3
If P and Q have the same area, then P ∼ Q.

Proof Sketch. We’ll show that if P has area a, then P is scissors-congruent to the rectangle of dimensions
1× a; then it follows that P and Q are scissors-congruent to the same shape, and therefore to each other.
First, we can cut P into triangles T1, . . . , Tn. Then each triangle is scissors-congruent to some rectangle:

Then it’s possible to show that any rectangle with area c is scissors-congruent to a rectangle with dimensions
1 × c (this part is finicky and involves a lot of cases, so we’ll skip it). Then we can concatenate all our
height-1 rectangles to get that P is scissors-congruent to a 1× a rectangle.

§7.2 Hilbert’s Third Problem

Question 7.4. What happens in three dimensions?

Now instead of polygons, we work with polytopes (or polyhedra) — which have finitely many vertices, edges,
and faces. The definition of scissors-congruence is the same — two polytopes P and Q are scissors-congruent
if we can use finitely many straight cuts to decompose P and Q into the same polytope pieces.
Of course, we have the same obvious constraint on scissors-congruence as in the two-dimensional case — if
P ∼ Q, then they must have the same volume. The question we’ll study today is the following:

Question 7.5 (Hilbert’s Third Problem). If two polytopes have the same volume, are they necessarily
scissors-congruent?
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As some historical background, in 1900 Hilbert made a list of around twenty problems, which he considered
the most important problems in modern mathematics. This was one of the problems on the list, and he
expected the answer was no. In fact, this was the first problem to be answered — in 1901, by his student
Max Dehn. More precisely, Dehn showed that a cube and a tetrahedron of the same volume are not
scissors-congruent.

§7.3 The Tensor Product

At the heart of this problem is a certain algebraic construction.

Definition 7.6. Given two abelian groups G and H, their tensor product is the abelian group G ⊗H
generated by elements denoted by g ⊗ h for g ∈ G and h ∈ H, which satisfy the relations

(g + g′)⊗ h = g ⊗ h+ g′ ⊗ h
g ⊗ (h+ h′) = g ⊗ h+ g ⊗ h′.

One way to think of the tensor product G⊗H is as⊕
g,h

Z(g ⊗ h)/S

where S is the subgroup generated by all the elements (g+g′)⊗h−g⊗h−g′⊗h and g⊗(h+h′)−g⊗h−g⊗h′
— we essentially take all formal linear combinations of elements g⊗h, and quotient out by all the relations.
Intuitively, the elements of G⊗H are all combinations of the terms g ⊗ h, which we know how to simplify.
Our definition has a few immediate consequences:

Proposition 7.7
The tensor product has the following properties:

• 0⊗ g = g ⊗ 0 = 0.
• For any integer a, we have (ag) ⊗ h = a(g ⊗ h) = g ⊗ (ah). (Here ag denotes g added to itself a

times.)
• If G is generated by g1, . . . , gr and H by h1, . . . , hs, then G⊗H is generated by gi ⊗ hj over all
i and j (since we can use the relations repeatedly to reduce any g ⊗ h to a sum of such terms).
This works even if the set of generators is not finite.

Example 7.8
For any group G, we have Z⊗G ∼= G, with the isomorphism a⊗ g 7→ ag.

Example 7.9
For any group G, we have Z2 ⊗G ∼= G×G, with the isomorphism (a, b)⊗ g 7→ (ag, bg).

Note that in these two examples, we could write all elements of G⊗H in the form g⊗ h, but this isn’t true
in general — we can have elements such as g1 ⊗ h1 + g2 ⊗ h2 which can’t be simplified any further.
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Example 7.10
We have C2 ⊗ C3 = 0 — to see this, take any x ⊗ y. Then we have 3x = x (since x ∈ C2) and 3y = 0
(since y ∈ C3), so

x⊗ y = 3x⊗ y = x⊗ 3y = x⊗ 0 = 0.

So it’s possible to tensor together two nontrivial groups and end up with a trivial one — so the tensor
product is somewhat subtle.

§7.4 The Dehn Invariant

To answer our question, we want another property of polytopes which is preserved under scissors congruence.
Given a polytope, each edge has a length ` ∈ R and a dihedral angle θ ∈ R/2πZ (the angle between the two
faces that meet at the edge — or more precisely, the angle between the perpendiculars to the edge on those
two faces).

Then `⊗ θ defines an element in R⊗ R/2πZ.

Definition 7.11. The Dehn invariant of a polytope P , denoted d(P ), is the sum of `i⊗ θi over all edges
i in P .

Theorem 7.12
The Dehn invariant is preserved by scissors congruence — if P ∼ Q then d(P ) = d(Q).

Proof Sketch. It suffices to show that cutting the polytope preserves scissors-congruence. When we cut,
there’s a few different things that can happen. We won’t carefully go through all the cases, but we’ll see a
few of them to see why this “should” be true.
Case 1 (We cut an edge into two pieces, keeping the dihedral angle on both sides the same).

Then we originally have one edge (`, θ), and we end up with two edges (`1, θ) and (`2, θ). But `1 + `2 = `, so

`1 ⊗ θ + `2 ⊗ θ = (`1 + `2)⊗ θ = `⊗ θ.

Case 2 (We cut along a plane containing the edge, preserving the length but splitting the dihedral angle).
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Then we start with (`, θ) and end up with (`, θ1) and (`, θ2), where θ1 + θ2 = θ, so

`⊗ θ1 + `⊗ θ2 = `⊗ (θ1 + θ2) = `⊗ θ.

Case 3 (We create an edge on the outside of the polytope, by cutting through a face).

Then we started with no edge, and we produced (`, θ1) and (`, θ2), where θ1 + θ2 = π. Here we have

`⊗ θ1 + `⊗ θ2 = `⊗ π = `

2 ⊗ 2π = 0.

It’s possible to cover the remaining cases similarly.

This now gives us a property other than volume which is invariant under scissors-congruence. But for this
to be useful, we need to check that it actually does differentiate between polytopes — it happens scarily
often that a complicated invariant turns out to just always be 0.

Theorem 7.13
Any cube and regular tetrahedron have different Dehn invariants.

Proof. Call the cube C and tetrahedron T . Then C has 12 edges, each with dihedral angle π/2. So then

d(C) = 12 · `⊗ π

2 = `⊗ 6π = 0.

So any cube has Dehn invariant 0.
On the other hand, T has 6 edges of some length ` (not necessarily the same as the edge lengths of the
cube) and the same dihedral angle α, so d(T ) = 6 · `⊗ α. To find α, we can drop a few perpendiculars:
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Then we can see that cosα = 1
3 (since all the triangles have the same height, and the center of a face occurs

2
3 of the way along its height).

Claim — α is not a rational multiple of π.

Proof. If α were a rational multiple of π, then we would have cosnα = 1 for some positive integer n. But
by trig identities, cosnα is a polynomial in cosα with leading coefficient 2n−1. So cosnα must have a power
of 3 in its denominator, contradiction. �

Claim — If α is not a rational multiple of π and ` is nonzero, then `⊗ α is nonzero.

Proof. We can think of R as a vector space over Q (with uncountable dimension). Then π and α are linearly
independent, so we can fill them out into a basis for R — we can write R = Qα + Qπ + W for a Q-vector
space W . Then we can define the linear map f :R→ Q (as a map between Q-vector spaces) sending α 7→ 1,
and every other basis element to 0.
This gives a group homomorphism R⊗ R/2πZ→ R defined by z ⊗ x 7→ zf(x̃), where x̃ is x mod 2π (note
that f(x̃) is well-defined because 2π is in the kernel of f). Then `⊗ α is mapped to `, which is nonzero; so
`⊗ α must be nonzero as well. �

This implies d(T ) is nonzero, and therefore d(C) 6= d(T ).

So a cube and tetrahedron cannot be scissors-congruent, even if they have the same volume.

Remark 7.14 (Historical Note). This result was proven in 1901 by Dehn. In 1968, Sydler showed the
converse — if two polytopes have the same volume and Dehn invariant, then they’re scissors-congruent.
The same result is true in four dimensions as well, but we don’t have a characterization in higher
dimensions of when two polytopes are scissors-congruent.
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