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§1 February 3, 2025

§1.1 Syllabus

We’ll start by briefly covering the syllabus before we get into the material. What is this course about?
Probably we’re taking this course because maybe we’ve heard of the Ito integral and want to learn about
that. That’ll be the main point of this semester’s course; we’ll eventually get to stochastic integration
and Ito’s formula. Eventually we’ll get some sort of intuitive understanding of Ito’s formula and how you
manipulate stochastic integrals — at an intuitive level. But also, hopefully we get some rigorous foundations.
There’s severla choices you can make with a course like this — you can cover things in less generality but get
to the integral much quicker. Sky will take the approach of the textbook, which does things in quite great
generality. So it’ll take us a while to get to stochastic integration — maybe halfway through the semester.
The point is the best time to learn technical details is when you’re a student. So we’re going to do things
in kind of more generality than you might want. Sky thinks if we eventually have to use these things, it’s
easier to relearn things you’ve learned before; so it’s maybe advantageous to cover the stochastic integral in
the generality given by Le Gall. So that’s why it’ll take us a while to get to integration.

On the back of the syllabus is an outline of topics. It’s basically just the chapters of the textbook. We’ll
follow it closely. But some things Sky will skip because he thinks they’re not worth covering in a first course.

After we get to stochastic integration, we’ll see how much time is left in the course; the last couple of topics
(Markov processes, Brownian motion and PDEs), Sky hopes to cover at least somewhat, but he’s not sure
how much. But everything up to stochastic integration, we should have time for, so it’s a matter of how
much more time we have after that.

For prerequisites, we’re expected to know 18.675 material (measure-theoretic probability). He highly rec-
ommends we’ve mastered the material in that course before taking this one, since it’s foundational to this
course — he won’t stop us if we haven’t, but you’ll have to put in a lot of effort (as you wouldn’t start
learning how to drive in the streets of Manhattan). You also want some knowledge of analysis (Lp spaces,
Hilbert spaces, and that type of thing), but that can be filled in by going on Wikipedia (to get certain basic
facts).

For logistics, Sky is still deciding on his office hours. The TA and grader, he assumes he’ll have at least
one of those, but they’re assigned in the first or second week of class, so we’ll see who it is. There’s just
homeworks and a final exam, 50% each. The final is usually announced by the third week of class, so we
don’t know yet when and where; but we should make sure we can make it. For homeworks, we’ll have
Gradescope. We should already be added on it, though he’ll sync the Canvas roster with Gradescope. All
homework submissions are on there. Ideally you LaTeX your solutions; if you handwrite, you should make
sure it’s very neat (ideally on an iPad).

So that’s a brief runthrough of the syllabus.

For the first part of the course (which will take 3–4 lectures), we’ll talk about Brownian motion. This is one
topic that’s worth reviewing — the actual construction — because it’s the most fundamental example of a
continuous-time martingale, and the most basic example with which we’ll define stochastic integrals.

So that’s what the first couple of lectures will be about.

Sky has posted notes on Canvas, and will be following them. In general he’ll try to post handwritten notes
for each lecture or module. So we don’t have to take our own notes if we don’t want to. There’s also the
textbook, which he’s following quite closely; it’s also good to read that.

So let’s get started.

§1.2 White noise and Brownian motion

The way the textbook constructs Brownian motion is maybe not as standard as other probability textbooks
(like Durett). The way Le Gall does it is via this thing called white noise. Sky thinks that’s quite interesting,
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and maybe later on we’ll see other uses for white noise; so he thought it’d be nice to see this alternative
construction.

Before we define white noise, let’s let H be a real separable Hilbert space. Basically, at least for the purposes
of Brownian motion, you can think of H as L2(R+, dx) (where R+ is the set of nonnegative real numbers,
and dx is the Lebesgue measure) — the space of L2 functions on nonnegative reals is a Hilbert space, where
the inner product is ⟨f, g⟩ =

∫
fg. So you can think of this as your example of H, though the construction

works more generally.

Definition 1.1. A white noise (WN) is a linear isometry W :H → L2(Ω,F ,P) (i.e., a function from H
to some fixed probability space) such that for each h ∈ H, we have W (h) ∼ N (0, ⟨h, h⟩).

So we have some fixed probability space (Ω,F ,P), and for each h, W (h) is some random variable in that
space. And it’s supposed to be a Gaussian whose variance is the square-norm of h.

Why do we call this white noise? As nonrigorous heuristic discussion, in our example of H, you can think
of it as giving you an independent Gaussian for each point in your interval — formally, W = (Wx)x∈[0,∞) is
a collection of IID normals N (0, 1). And here, you formally think of W (h) as this integral

∫
dxh(x)W (x).

This is not rigorous because for this integral to be well-defined, W has to be a measurable function. But
there’s no way W can be measurable — the values at neighboring points in space are completely unrelated
to each other. Measurable functions have to be somewhat nice, but this is completely not nice at all. So
it’s not measurable. But you should really think of white noise as this. Why? It’s a linear combination of
i.i.d. Gaussians (it’s an integral). And a linear combination of i.i.d. centered Gaussians is also a centered
Gaussian. So formally, this integral is a centered Gaussian whose variance is the second moment of this
thing, i.e., E[(

∫
dxh(x)W (x))2]. And how do you compute second moments like this? As a heuristic, you

can use bilinearity to say this is ∫
dx dy h(x)h(y)E[WxWy]

(we kind of write the square of an integral as two integrals over dx and dy, and use linearity of expectation).
The fact that these are IID enforces that x = y, at least at a formal level. And then this becomes

∫
dxh(x)2.

And in the case where our Hilbert space is this thing, this is precisely ⟨h, h⟩.

So all this is some heuristic discussion for why to think of this as a white noise — heuristically you think of
it as coming from this collection of IID standard Gaussians. The way you actually make rigorous sense of
this is e.g. by this Hilbert space isometry.

One comment on what the isometry means: In particular, one basic fact we have is that

E[W (h)W (g)] = ⟨h, g⟩

for all h, g ∈ H. This for instance you could say is the definition of what an isometry means (between two
Hilbert spaces). Another way to derive this is to compute something like E[W (h+g)2]. On one hand, this is
⟨h+g, h+g⟩ by assumption. On the other hand, you can use linearity — we have W (h+g) = W (h)+W (g)
— and then expand out to get

E[(W (h) +W (g))2] = ⟨h, h⟩+ 2E[W (h)W (g)] + ⟨g, g⟩

(we expand out and compute each term — for the two terms which are not cross-terms, we use the given
definition). But we could also have expanded out

⟨h+ g, h+ g⟩ = ⟨h, h⟩+ 2⟨h, g⟩+ ⟨g, g⟩.

Then we get this identity. The point is that the two definitions of an isometry (general h and g, or just the
case h = g) are the same.
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§1.3 Construction of white noise

The first thing we need to show about white noise is that it actually exists — we made this definition, but
how do you construct a white noise?

Claim 1.2 — White noise exists.

Proof. First, you want to take a basis of your Hilbert space — because H is real and separable, it has a
countable orthonormal basis (en). What does that mean? It means you can write any element h ∈ H as a
linear combination

h =
∑
n

⟨h, en⟩en

(the terms in this sum are projections of h onto each dimension). Then we’re going to take an IID sequence
(Zn)n of standard normal Gaussians N (0, 1), indexed by the same thing as our basis, on some probability
space (Ω,F ,P). (There exists some probability space where we have a sequence of IID standard Gaussians,
e.g. using Kolgomorov extension.)

Then what we do is we define
W (h) =

∑
n

Zn⟨h, en⟩

as the same linear combination of our standard Gaussians.

This is in principle an infinite series, so why does it converge? We want this to be a random variable in
L2(Ω,F ,P), so we want to talk about convergence.

One sledgehammer is that by L2 martingale theory, the right-hand side converges in L2(Ω,F ,P). What
does that mean? We can define the sequence of partial sums

SN =

N∑
n=1

Zn⟨h, en⟩.

For each N , this is a finite sum — it’s an explicit linear combination of standard Gaussians — and you
can verify that SN is a martingale bounded in L2. And in 18.675 we saw the L2 martingale convergence
theorem, that a martingale bounded in L2 converges in L2 and almost surely. (You prove this using a
maximal inequality for L2 martingales, or something.)

So this infinite series is defined as the L2 limit of those finite sums — that’s what we mean when we say
W (h) =

∑
n Zn⟨h, en⟩.

There’s another, more elementary, way to see this converges: You can observe that (SN ) is just Cauchy.
Why? We can actually explicitly compute the second moments E[(SN − SM )2] — suppose that N ≥ M .
Then

SN − SM =

N∑
n=M+1

Zn⟨h, en⟩

is a linear combination of standard IID Gaussians. And a second moment of a sum is a sum of second
moments, so this is

N∑
n=M+1

⟨h, en⟩2.

And the point is that this goes to 0 — more specifically,

lim
k→∞

sup
N,M≥k

N∑
n=M+1

⟨h, en⟩2 = 0,
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just because h was in your Hilbert space to begin with. (One fact is that when you have an orthonormal
basis, this type of sum has to be a Cauchy sequence — that’s exactly what it means that

∑
n⟨h, en⟩en

converges, that it converges in your Hilbert space; and the reason it converges is that you can verify the
partial sums give you an infinite series in your Hilbert space). So all this is to say that instead of using
martingale theory, you can directly verify this sequence is Cauchy in L2(Ω,F ,P); and then by completeness,
you just get that it converges.

So that’s what this means.

So that’s our candidate for white noise; now we have to check its properties. So we need to say why it’s
linear, and why it satisfies our distributional assumption.

Linearity is just because the coefficients ⟨h, en⟩ are linear in h; so we won’t check that.

Now we’ll check the distributional assumption. This is because for all N , we have SN ∼ N (0,
∑N

n=1⟨h, en⟩2)
(since it’s a sum of Gaussians). And these variances converge to ⟨h, h⟩, so SN → N (0,

∑
n⟨h, en⟩2) (in

distribution). (For a sequence of centered Gaussians, convergence in distribution is equivalent to convergence
of the variance; you can see this by characteristic functions.) And this variance is precisely ⟨h, h⟩.

So SN converges in distribution to ⟨h, h⟩. It also converges in L2 to W (h), by definition. And then using
the fact that the limits have to be the same, this means W (h) ∼ N (0, ⟨h, h⟩) (you can only converge in dis-
tribution to one thing, and convergence in L2 implies convergence in probability and therefore distribution).
So W (h) has the distribution we want, which completes the proof.

§1.4 Brownian motion

Now that we know white noise exists, we can get onto constructing Brownian motion.

Let’s make some definitions first.

Definition 1.3 (Stochastic process). Fix a measurable space (E, E), and let T be some index set. A
stochastic process (indexed by T , and with values in E) is a collection of random variables (Xt)t∈T (all
on the same probability space) with values in E.

By default, usually we take (E, E) to be (R,B(R)) (where B(R) is the Borel σ-algebra); so if we say ‘stochastic
process’ without specifying E, it’s just a real-valued process.

So a stochastic process is just a collection of random variables.

Definition 1.4 (Gaussian process). A stochastic process (Xt)t∈T is a centered Gaussian process if any
finite linear combination of the Xt’s is a centered Gaussian.

As a check of understanding, if T is finite, then this precisely says the law of your process is a centered
multivariate Gaussian. Here we’re letting T be arbitrary (it could be uncountable). But this still says that
any finite collection (Xt1 , . . . , Xtn) is a centered multivariate Gaussian.

(Some of this is from Chapter 1 of Le Gall.)

§1.4.1 Pre-Brownian motion

Now with all these definitions, we can construct a Gaussian process which basically should be Brownian
motion, except that we have a problem of continuity.
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Definition 1.5. Let W :L2(R+, dx)→ L2(Ω,F ,P) be a white noise. Then the process

Bt = W (1[0,t])

is called a pre-Brownian motion.

So we’re taking a white noise on our example Hilbert space from earlier; and applying it to a particular
function.

Remark 1.6. More generally, we’ll say any process with the same finite-dimensional distributions as
this is called a pre-Brownian motion. Le Gall actually shows that for any such thing, you can construct
a white noise on some space such that your white noise arises in this way (every pre-Brownian motion
comes from some white noise), but Sky doesn’t think we ever need that — it’s the law of pre-Brownian
motion that’s relevant for us, not necessarily how it arises.

Now let’s talk about some properties of pre-Brownian motion. First, why the name? As Le Gall emphasizes,
this is not very standard terminology; but the reason Le Gall uses this name is it doesn’t have continuous
sample paths yet, so we’re going to have to do something. (The actual construction of Brownian motion is
probably the first major result in this course. But before we get to this, let’s talk about some properties.)

Proposition 1.7

Pre-Brownian motion is a Gaussian process with covariances E[BtBs] = t ∧ s.

(The notation t ∧ s means min{t, s}.)

Proof. The fact that it’s a Gaussian process follows because W is linear and a white noise — if we take any
finite linear combination of pre-Brownian motion, we can write it as W (h) for some Hilbert space element
h, and by definition this is Gaussian.

(Even if the pre-Brownian motion doesn’t arise from a white noise, it’s always equal in distribution to
something arising from white noise; so to prove a statement about the law, we can always assume this is
true, i.e., that our pre-BM arises from a WN in this way. Then for any finite linear combination, you can
write it as W (h) for some Hilbert space element h.)

To finish, we just need to compute the covariance. Going back to the definition of white noise, we have

E[BtBs] = E[W (1[0,t])W (1[0,s])].

And recall we saw that E[W (h)W (g)] = ⟨h, g⟩. In this case, the L2 inner product is
∫
fg, so that means

this is ∫ ∞

0
dx1[0,t](x)1[0,s](x).

But this is just integrating 1 from 0 to t ∧ s; so this is just t ∧ s.

Now let’s cover another proposition about pre-BM — the fact that it has independent increments.

Proposition 1.8

If (Bt) is a pre-Brownian motion, then B0 = 0 (almost surely); Bt −Bs ∼ N (0, t− s) for all s ≤ t; and
for any finite sequence 0 = t0 < t1 < · · · < tn, the collection

Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1

are mutually independent. Moreover, this characterizes the law of pre-Brownian motion.
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Naturally when your index set is the real line (or a subset), we think of t as time. (So sometimes we’ll refer
to these as times.)

Proof. First, for the characterization part, this basically follows from combining these three things — then
any finite-dimensional distribution (Bt0 , Bt1 , . . . , Btn) is determined; and then there’s some abstract measure
theory results that the finite-dimensional distributions characterize the full law (even if your index set is
uncountable). So that’s a couple of sentences on why the last thing is true; let’s just focus on the first three.

For the first part, by assumption B0 ∼ N (0, 0).

For the second, regarding Bt−Bs, there’s a couple of things you can do. One thing is we can again assume
B comes from some white noise, so then Bt −Bs = W (1(s,t]) (using the linearity of W and the fact that Bt

and Bs are both W ’s of some indicator functions). And by definition, this is precisely N (0, t− s) (because
the norm-squared of 1(s,t] is t− s).

Finally for independence, one fact about Gaussian processes is that 0 covariance implies independence.
(This isn’t true for general random variables, but for Gaussian processes it is.) So we just need to check
that any two different terms of our collection have zero covariance. This basically reduces to a fact about
orthogonality in your Hilbert space — that

⟨1(ti−1,ti],1(tj−1,tj ]⟩ = 0.

(That’s because these are disjoint intervals, and the inner product in L2(R+) corresponds to integrating
over the intersection of the intervals.)

And that means any of these two increments has covariance 0 with each other; and that implies independence
for multivariate Gaussians.

Now let’s see some more properties, regarding symmetries of pre-BM.

Proposition 1.9 (Symmetries of pre-BM)

Let B be a pre-Brownian motion.

(i) −B is a pre-Brownian motion.

(ii) (Scaling symmetry of time and space) For all λ > 0, we have that λ−1Bλ2t is also a pre-Brownian
motion.

(iii) (Markov property) For all s ≥ 0, the ‘restarted process’ B
(s)
t = Bt+s −Bs is also a pre-Brownian

motion. Moreover, it is independent of σ(Br | r ≤ s) (i.e., it’s independent of everything that
happened before).

These will also be properties of Brownian motion, once we construct it.

As a couple of words, to verify you’re a pre-BM, you just have to verify you have the same law; and the law is
completely characterized by the previous three properties. So you just have to check those three properties
are satisfied. The −B symmetry is most easily seen because N (0, 1) is symmetric; so that’s why (i) is true.

For (ii), you check each of these properties. The main one is why you have the right variance — i.e.,
Bt − Bs ∼ N (0, t − s). This scaling symmetry is quite important, and we’ll see an application later on.
Intuitively, what it’s saying is, let’s take λ to be very tiny, and suppose you want to compute some probabiltiy
of Brownian motion on the unit timescale [0, 1]. So you’re observing Brownian motion; how large does it get
on a unit timescale? You can kind of relate this probability to the probability it goes above a much smaller
number λ on a much smaller timescale. So instead of a unit timescale, you have λ2 times a unit timescale;
and instead of seeing if it goes above 1, you see whether it goes above λ. So you can relate properties of
Brownian motion on different spatial and time-scales. We’ll see multiple examples. For instance, suppose
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you ask whether Brownian motion goes above 1, ever — what’s the probability your Brownian motion gets
larger than 1 at any point in time? Using this scaling symmetry, that’s the same as asking whether it gets
above any small number λ on your infinite timescale. (You want to know whether λ−1Bλ2t goes above 1.
And if your timescale is infinite, λ2 times your infinite timescale is still infinite.) And from that, you’ll see
that with probability 1, it gets above 1. (We’ll cover this after we’ve actually constructed Brownian motion.)

Finally for the Markov property, the fact that Bt+s−Bs is pre-Brownian motion is an explicit computation.
The fact that it’s independent of everything before time s basically reduces to the third fact, about the
independence of increments — to be independent of σ(Br | r ≤ s) it suffices to be independent of any finite
collection of the Br’s, and for a finite collection you’re basically saying exactly this type of thing.

§1.5 Some foreshadowing

Now let’s do some more foreshadowing. Heuristically, if you have a white noise W on L2(R+), you can write

W (f) =

∫ ∞

0
ftdBt

(that’s how we’re eventually going to think of this thing). This is just some notation. But formally, why
would you expect this to be true? It’s basically inspired by the fact that if f = 1(s,t], then as we saw, we
have W (f) = Bt − Bs. And that’s in line with your intuition of how integrals are supposed to behave —
that this should be

∫∞
0 1(s,t](u) dBu (because at least on indicator functions of intervals, you should get

the difference of endpoints — that’s a property that your integrals should satisfy). The whole problem is
actually constructing an integral with respect to dB; that’s what stochastic integration is about.

Why can’t you just do this directly? Eventually for us B is going to be Brownian motion. But the problem
is that B is not differentiable anywhere. In fact, it’s quite far from differentiable — it’s only (1/2)-Hölder,
in that if you take a small increment, the typical size of Bt−Bs is something like (t− s)1/2. This is because
Bt−Bs ∼ N (0, t− s), which means its standard deviation is

√
t− s, and the standard deviation is typically

how large you are. But if you’re differentiable, this had better be (t− s)1. So the fact we have 1/2 instead
of 1 means this can be quite wild.

So you can’t just use standard calculus to define this integral. Ultimately, the reason why you can is that
Brownian motion has nice independence. And you end up defining it by some abstract Hilbert space isometry
arguments, in the spirit of white noise. In fact, we’ll define it with more general integrands than 1(s,t]; but
when you take integrands like this, we will recover the above identity.

So we’ll eventually be able to make sense of integrals of the form
∫
ft dBt; and if you take f of this form,

you’ll get this thing.

That’s what we’re working towards in the first six weeks. But before we get to that, we’ll need some
foundational material.

§1.6 Continuity of sample paths

We’ll now take a stochastic process taking values in a metric space (rather than just a general measurable
space), since to talk about continuity, we need some topology.

§1.6.1 Definitions

First, what is a sample path?
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Definition 1.10. Let (E, d) be a metric space, and let (Xt)t∈T be an E-valued stochastic process. The
sample paths of X are the mappings T → E defined by t 7→ Xt(ω) (for each fixed ω ∈ Ω).

Here ω is lying in your abstract probability space Ω; so for each element of your probability space, we get
some function.

Remark 1.11. When we have a metric or topological space, the σ-algebra we put on it is always the
Borel one (the smallest σ-algebra making all your open balls measurable).

Next we’ll define what it means to be a modification.

Definition 1.12. Let X and X̃ be E-valued stochastic processes on the same probability space. We say
that X̃ is a modification of X if

P[Xt = X̃t] = 1 for all t ∈ T .

So basically, to be a modification, for any fixed t, you’re almost surely equal.

Definition 1.13. We say X̃ is indistinguishable from X if there exists a negligible set N ⊆ Ω (meaning
that there exists F ∈ F such that N ⊆ F and P[F ] = 0), and for all ω ̸∈ N , we have Xt(ω) = X̃t(ω)
for all t.

Indistinguishability is a stronger condition than just being a modification.

What is a negligible set? It’s not necessarily measurable — we have a probability space (Ω,F ,P), and we
don’t necessarily have N ∈ F . But it shoudl be contained in some event of probability 0.

And you’re indistinguishable if you’re the same outside of this negligible set.

Student Question. Why define negligible sets instead of using F?

Answer. You probably don’t need it; you should be able to just use F .

First, why is this stronger? Well, if for a fixed t you have Xt ̸= X̃t, then that ω is contained in your
negligible set N . The point is to go from ‘modification’ to ‘indistinguishable,’ you sort of have to take an
intersection over all events corresponding to T . If T is countable, that’s fine, and being a modification is
equivalent to being indistinguishable. The problem arises if T is uncountable (σ-algebras are defined by
countable operations, so uncountable intersections aren’t necessarily in your σ-algebra).

Remark 1.14. For our practical purposes, they’ll be basically the same; but in principle, the implication
does not go downwards, so you always have to be careful. But for us, e.g. if you additionally assume
that your sample paths are continuous or right-continuous, then being a modification actually implies
you’re indistinguishable. So we’re going to use that; but otherwise there are counterexamples in full
generality.

Student Question. Can we not just define indistinguishability by taking the definition of a modification
and putting ‘for all t’ inside the bracket?

Answer. Kind of, but not exactly — heuristically, you think of this definition as

P[Xt = X̃t for all t ∈ T ] = 1.

But the problem is that when you take probabilities, you assume your event is measurable. And if T is
uncountable, then this event {Xt = X̃t for all t} is not necessarily in F . (But there are some conditions
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— e.g., having continuous sample paths — under which it is.)

Remark 1.15. If your σ-algebra is complete, then a subset of a measure-0 set is also measurable (with
measure 0). This is not true in general (e.g., for B(R)); but for this reason, we’re usually going to work
with complete σ-algebras.

(You can in general complete a σ-algebra by taking σ(F ,N ) where N is the set of negligible sets. And
one can check that this is actually complete. So eventually we’ll be using these completed σ-algebras,
and then these problems will go away.)

§1.6.2 Overview of Kolgomorov’s continuity criterion

Finally, we’ll say a bit about the next result, Kolgomorov’s continuity criterion, and probably get to it next
time. It was covered in 18.675, but it’s a foundational result, and the proof technique is good to understand
and remember; it’s quite important, and shows up in other contexts as well when dealing with stochastic
processes. This is going to allow us to construct a continuous modification of a pre-BM.

The Kolgomorov’s continuity theorem — we’re going to use it to construct continuous modifications, in
particular of pre-BM. That’ll allow us to construct Brownian motion as a stochastic process with continuous
sample paths. Then after that, we’ll talk about some sample path properties of Brownian motion.

Brownian motion is continuous, but has some quite pathological properties. At one point people thought
every continuous function has to be (piecewise) differentiable; but that’s not true, and Brownian motion is
a counterexample. Also, BM starts at 0, but we’ll see that on any tiny interval, it goes above and below
0 infinitely many times. So it’s a very wild continuous function. This kind of relates to the fact that it’s
‘randomly chosen’ — you typically expect ‘random continuous functions’ to not have the greatest regularity
properties.

The first homework will be due next Thursday so it’ll be posted soon, based on today’s and Wednesday’s
material (and maybe some foundational 18.675 material as review).
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§2 February 5, 2025

§2.1 Kolgomorov’s continuity criterion

Last time, the main point was to construct pre-Brownian motion, a stochastic process with the right finite-
dimensional distributions. Now we want to construct Brownian motion. We’ll do this by proving this
continuity theorem, which says that under certain conditions you can get a continuous modification.

Theorem 2.1 (Kolgomorov continuity theorem)

Let (Xt)t∈I be a stochastic process indexed by a bounded interval of R, taking values in a complete
metric space (E, d). Assume there exist q, ε, C > 0 such that for all s, t ∈ I, we have

E[d(Xs, Xt)
q] ≤ C |t− s|1+ε .

Then there exists a modification X̃ of X which is α-Hölder for all α ∈ (0, ε/q), i.e.,

sup
s,t∈I

d(Xs, Xt)

|s− t|α
<∞.

What does this theorem say? You assume you have a stochastic process indexed by some interval, taking
values in some complete metric space (for pre-Brownian motion it’s just R). The assumption is that in
expectation, your stochastic process doesn’t vary too much — more precisely, you have some parameters
such that the qth moment of d(Xs, Xt) is bounded by some power of |t− s|; it turns out that the precise
power should be 1 + ε. (The fact that you need a power greater than 1 is special to the fact that you’re
assuming your index set I is a subset of R, which is 1-dimensional. If you wanted to do something for
higher-dimensional index sets, you’d probably need d instead of 1.) But intuitively, you’re just saying in
expectation your process shouldn’t vary too much. We really care about what happens when s and t are
very close (since we want a continuous modification).

And under this assumption you get something more than just continuous — you get an α-Hölder modifica-
tion, which is stronger. (You have some quantitative estimate on d(Xs, Xt).)

So that’s the statement of this theorem. It’s quite an important theorem, so it’s good to remember at
least generally how this proof goes. You may not remember every single detail, but the technique is quite
important. Basically any time you want to bound the supremum of a stochastic process, you do something
similar to this.

The technique when you bound suprema is you want to do this kind of dyadic decomposition, or multiscale
analysis. For simplicitly, let’s assume I = [0, 1]. (It’s not going to change the proof much, except for
introducing extra notation, so we’ll just assume this.)

What’s multiscale analysis? For each n ≥ 1, let Dn be the set of dyadic numbers given by 2−n, i.e.,

Dn = {j2−n | 0 ≤ j ≤ 2n}.

Basically we’re taking a sequence of finer and finer meshes; multiscale refers to the fact that as n increases,
you’re going down to finer and finer scales, where each time you increase n, you go down to a smaller scale
by a constant factor.

So that’s Dn. And for notation for later, let D =
⋃

nDn. Also, fix 0 < α < ε/q. First we’re going to prove
there exists an α-Hölder modification for this fixed α; then we’ll show later there exists one for all α.

What does our assumption give us? Let’s just start small; then the assumption gives us that for s, t ∈ Dn

which are one dyadic unit apart, meaning that |s− t| = 2−n, you’re going to basically have control on how
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much Xs and Xt vary, or how far they are from each other. This moment assumption basically tells you,
just by Markov’s inequality, that

P[d(Xs, Xt) > λ] ≤ λ−q · 2−n(1+ε).

Here 2−n is |t− s| by assumption, and all we did was take both sides to the qth power and apply Markov.

So that’s the basic estimate that the assumption gives us. Now we’ll do something you might think is quite
crude, which is just to union-bound — this implies

P[ max
|s−t|=2−n

s,t∈Dn

d(Xs, Xt) > λ] ≤ λ−q2−nε

(there’s basically just 2n such s and t). You can see here that the reason we needed a power greater than 1
in the estimate |t− s|1+ε was that we were using this union bound, and we just want to have some leftover
decay.

So we have this estimate. And it’s true for any general λ > 0. Now what we’re going to do is, this implies
that for any sequence (λn) (which we’re going to pick soon), we have∑

n≥1

P
[

max
|s−t|=2−n,s,t∈Dn

d(Xs, Xt) > λn

]
≤
∑
n

λq
n2

−nε.

Basically for each fixed n, I apply the above estimate with my choice of λn (which we haven’t chosen yet).
The point of all this is we’re going to see where the choice of λn comes from. We basically want this to be
summable, so we need to choose λn so that this is summable; and your choice of λn is basically going to
inform why we restrict α ∈ (0, ε/q).

We want the right-hand side to be finite. And the reason we have our restriction on α is that if we take

λn = (2−n)α,

then this is actually summable — we get
∑

n 2
n(qα−ε), and by assumption this power of 2 is negative, so

this is less than ∞.

What have we just done? Well, we showed that the sum of all these probabilities is finite. So by Borel–
Cantelli I, this tells you that these events almost surely don’t happen infinitely often — i.e., almost surely,
for all n large, you’re going to have that

max
|s−t|=2−n,s,t∈Dn

d(Xs, Xt) ≤ λn = 2−nα.

So we see this assumption on the moments gives us this control on the small-scale behavior of the process,
at least on these dyadic points, just by Borel–Cantelli.

Now we’re almost there. At least for points which satisfy the condition |s− t| = 2−n and s, t ∈ Dn, you have
the Hölder estimate. Now we want to go from this to saying you have some Hölder modification. That’s
going to mostly be an analytic lemma. Basically, what this lemma says is that if you have a function defined
on D =

⋃
nDn such that you have the above estimate, then f is actually α-Hölder on D.

Lemma 2.2 (Analytic lemma)

Let f :D → (E, d) be such that for all large n, we have

max
|s−t|=2−n

s,t∈Dn

d(f(s), f(t)) ≤ 2−nα.

Then f is α-Hölder on D.
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This doesn’t involve probability — it’s just a fact about functions that if you satisfy this condition, then
you’re actually α-Hölder on all of D. Here s and t don’t necessarily satisfy this condition — they’re just
general dyadic numbers — and you want to use this condition to still get good control.

We’ll prove this at the end, but we’ll just apply it for now. By the analytic lemma, you get that X is
α-Hölder on D. And then, basically the rest is analytic facts (i.e., real analysis). Since D is dense in
[0, 1] (recall that we fixed I = [0, 1] for simplicity) and (E, d) is complete, you get that X has a unique
α-Hölder extension to the entire interval [0, 1]. (It’s kind of natural how you would extend X — for a given
general value of t, you’d take a sequence in your dense subset D converging to t, and you just need to show
the corresponding X-values converge; that’s guaranteed because X is α-Hölder. And then you verify the
extension itself is α-Hölder, but that’s just some density argument.)

So we’ll call this extension X̃. This is our candidate modification of X. It’s α-Hölder, because we just said
it is. So what we need to show, by the definition of a modification, is that

P[Xt = X̃t] = 1 for al t.

First, by construction it’s true for all t ∈ D, because when you restrict X̃ to D, it’s X itself (that’s implicit
in the word ‘extension’). And then the moment assumption in the statement of the theorem implies that

in fact, Xtn
p−→ Xt (denoting convergence in probability) for any sequence tn → t — this is because you get

that the qth moment of distances converges to 0, and that’s enough to imply convergence in probability.

Then you’re basically done — X̃ is α-Hölder and therefore continuous, so

X̃t = lim
n→∞

X̃tn .

And if you took tn ∈ D (which you can always do, because D is dense), then by construction this is equal
to limnXtn = Xt. (The first is an almost sure limit, and the last is a limit in probability.) And almost sure
convergence implies convergence in probability, and limits for convergence in probability are unique; so you
get X̃t = Xt almost surely (for any fixed t).

So we’ve verified that X̃ is an α-Hölder modification of X.

Student Question. How does the moment assumption imply convergence in probability?

Answer. The assumption says E[d(Xtn , Xt)
q]→ 0. And then you can finish by Markov — you have

P[d(Xtn , Xt) > λ] ≤ λ−qE[d(Xtn , Xt)
q]→ 0.

(Here you only need q to be any positive power, and you’re fine.)

We’re almost done proving the theorem (assuming the analytic lemma). But now we just need to comment
on why we can find a modification that works for all α simultaneously. This is just a stitching-together
argument — take some αn ↗ ε/q (i.e., an increasing sequence always strictly less than ε/q, but converging
to ε/q). Then for each αn, we have an αn-Hölder modification of X, which we’ll denote by X̃n.

Claim 2.3 — We have P[X̃n
t = X̃m

t for all t] = 1 for all n and m.

In other words, we’re saying that these processes are all indistinguishable. Note that this event is actually
measurable — the X̃’s are continuous, so this equality can be written on a countable dense subset of t’s,
and then it’s a countable intersection.

Proof. We can write the left-hand side as

P[X̃n
t = X̃m

t for all t ∈ D]

(because X̃n and X̃m are continuous). But now you can use countable additivity to say this is 1 (the
countable intersection of probability-1 events is probability-1).
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So now we can just define our modification X̃ as

X̃ = X̃11E ,

where E is the event
E = {X̃n = X̃m for all t and n,m}.

This event E is probability-1 — before we fixed some m and n, but you can take a countable intersection
and get a probability-1 intersection even if you quantify over all. And if X̃1 is a modification of X, then
this thing is also a modification of X (since we just modified X̃1 up to indistinguishability).

And why is this α-Hölder? Because on this event, X̃ = X̃n for any n, which is αn-Hölder; and if I take n
large enough then αn gets arbitrarily close to ε/q.

Student Question. How do you get uniqueness of the extension (in the unique α-Hölder extension)?

Answer. Any continuous extension is going to have to be unique — if you’re equal on a dense subspace,
then it has to be equal everywhere.

To recap, the main thing was kind of the beginning, where we use the moment assumption to conclude that if
you choose the λn in the right way, you can apply Borel–Cantelli to get the statement about max d(Xs, Xt) ≤
2−nα. The rest is just some real analysis and stitching things together; it’s maybe necessary but not the
main point. The main point is how you use the moment assumption, and that’s by going down to these
dyadic scales.

§2.1.1 Proof of the analytic lemma

Now let’s go to the analytic lemma. You have to be slightly careful when doing this. First, one preliminary
reduction is that the assumption implies there’s some C such that for all n, you have

max
|s−t|=2−n,s,t∈Dn

d(f(s), f(t)) ≤ C2−nα

(because it’s true for all large n, and then you can make C large enough to handle the finitely many small
remaining values of n). That will be somewhat convenient — that this thing holds for all n in the argument.

Now let’s fix some s < t, with s, t ∈ D. Our goal is to show that basically

d(f(s), f(t)) ≲ |s− t|α

(where ≲ means ‘up to constants,’ where the constant doesn’t depend on s and t). This is basically just
restating the Hölder condition. (We don’t care about the constant.)

We’ll make a drawing.

We have our points s and t. The first thing you want to do is go on the dyadic scale on par with the distance
between s and t — in other words, we let p be the smallest integer such that 2−p ≤ t − s. So we go down
to this dyadic scale.

Once we’ve gone down to this dyadic scale, let’s let k be the smallest integer such that k2−p ≥ s.

So what have we just done? We take the spacing of our mesh fine enough that it separates s and t, and
then we find the first point in this mesh which is in our interval.

s k2−p t
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First we can make one observation. We drew this point to be between s and t; it turns out this has to be
the case, i.e., that k2−p ≤ t. Why? By the assumption that k is the first such integer, we have

(k − 1)2−p < s,

which implies k < s + 2−p (just moving 2−p onto the right-hand side). And we assumed that 2−p ≤ t − s,
so this is less than t. So we can draw the above picture.

Now we’ve gone down to this scale that separates the point. And what you want to do is write s and t as a
combination of dyadic points, starting from k · 2−p (where our points get exponentially closer to s or to t).

In other words, we can write
s = k2−p − a12

−p−1 − · · · − an2
−p−n

and similarly
t = k2−p + b12

−p−1 + · · ·+ bm2−p−m,

where ai, bi ∈ {0, 1}. Why do we start at −p − 1? Well, I can’t start at 2−p, because if I subtracted one
whole power then I’d go strictly less than s. So these points I drew which are getting increasingly closer to
t and s are the partial sums of these expressions.

Let’s make some notation for these partial sums — we’ll let sr be the first r + 1 terms of this sum, so

sr = k2−p − a12
−p−1 − · · · − ar2

−p−r.

Similarly, let’s let
tℓ = k2−p + b12

−p−1 + · · ·+ bℓ2
−p−ℓ.

What’s the point of all this? Here’s where we’re going to use our assumption in the analytic lemma. We
eventually want to cmpare the values of f at s and t. So you find this common point k2−p, and compare
the values of f between every two consecutive points. You have to be kind of clever in choosing this, but
this argument turns out to work.

Also, to initialize, we have s0 = t0 = k2−p.

Now let’s estimate d(f(s), f(t)). We have s = sn and t = tm, so we can write this as

d(f(s), f(t)) = d(f(sn), f(tm)) ≤
n∑

i=1

d(f(si), f(si−1)) +

m∑
j=1

d(f(bj), f(bj−1))

(where the first sum compares the distances between successive sr-values, and the second does likewise for
tℓ’s). The fact that s0 = t0 means that you don’t need an extra d(f(s0), f(t0)) term here — this common
point is just equal, so this distance is just 0, and we don’t need to write it.

Now that we’ve written it in this form, there’s nothing left to do besides to apply our assumption, so let’s do
that. By the assumption, we can bound our distance by the sum of two series. The distance scale between
successive points is |si − si−1| = 2−p−i (or maybe we’re off by a factor of 2, but it doesn’t matter). And so
by using the assumption, we get that this whole first sum is estimated by

∞∑
i=1

C · 2−(p+i)α

(here n in our given condition is actually p+ i, from the way we set things up; there might be some constant
here with ±1 in the exponent, but that doesn’t matter for this part). Similarly, the second sum we can
estimate by basically the same thing,

∞∑
j=1

C2−(p+j)α.
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(The sums are finite, but we might as well make them infinite.)

And this is the whole point of going to dyadic scales — you get these geometric series, which are going to
be dominated by their first terms. And the first terms are basically 2−pα (it might be +1, but we don’t care
about factors of 2). So we get something like

2pα · 1

1− 2−α
≲ 2−pα.

(The extra thing is a constant we don’t care about.)

And the way we set things up, we went down to the distance scale of t − s (i.e., 2−p ≤ t − s), so this is
bounded by |t− s|α. And that’s precisely what we wanted to show. So that concludes the proof.

So this is an analytic lemma, which we include for completeness; but you do have to be slightly clever when
doing this.

§2.2 Brownian motion

Now we’ll use this to modify pre-Brownian motion. We’ll first restrict to just [0, 1], because Kolgomorov’s
continuity theorem requires a bounded interval.

Corollary 2.4

Let B be a pre-Brownian motion on [0, 1]. Then B has a modification which is α-Hölder for all α < 1/2.

So it’s just barely below 1/2 in terms of Hölder regularity.

Why should you expect 1/2 to be the limit? It probably can’t be any larger because you recall that
E[|Bt −Bs|2] = t − s (it’s a normal with variance t − s). And we kind of mentioned last time that this
means |Bt −Bs| is sort of of order (t−s)1/2. So even in expectation you can’t hope for anything with higher
regularity than 1/2 (higher regularity is stronger, because you think of t− s as small). So 1/2 is the natural
limit, and you can go just below it. (The fact that you can’t get something exactly equal to 1/2 is because
if you want to take a sup over all s and t, you’ll have to pay a tiny factor in regularity.)

Proof. We kind of almost said this, but the idea is you want to take higher moments. We know that

Bt −Bs = (t− s)1/2N (0, 1)

in distribution, which means that for any 2pth moment, we have

E[|Bt −Bs|2p] = (t− s)pE[Z2p]

(we’re trying to verify the assumtpion in the statement of Kolgomorov), where Z ∼ N (0, 1). We don’t really
care what E[Z2p] is; it’s just some finite constant. So we get

E[|Bt −Bs|2p] ≤ Cp(t− s)p.

Written a bit more evocatively, we can say p = 1 + (p − 1). Now applying Kolgomorov with q = 2p and
ε = p− 1, you obtain a modification which is α-Hölder for all α < (p− 1)/2p = 1/2− 1/2p. And then you
send p→∞. Again, you maybe want to do this stitching argument to say why you can get a modification
that works for all α simultaneously, but it’s basically the same argument from earlier.
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So that’s Brownian motion on [0, 1]. For Brownian motion on [0,∞), you could apply the corollary on each
bounded interval [n, n+ 1]; then for each interval like this, you get a modification of pre-Brownian motion
which is continuous and α-Hölder for all α < 1/2. And then you can kind of ‘stitch’ the modifications
together again to obtain a continuous modification of pre-Brownian motion on this infinite interval [0,∞)
which is locally α-Hölder for all α < 1/2. What ‘locally’ means is that if you take I to be any bounded
subinterval of [0,∞), then you get

sup
s,t∈I

d(Xs, Xt)

|s− t|α
<∞.

Student Question. How do you stitch together the modifications?

Answer. Let’s say I have a pre-Brownian motion B, and B̃1 is a modification on [0, 1], B̃2 is a modifi-
cation on [1, 2], and so on (I can get these by applying the corollary). And now I want to define

B̃12 = B̃11[0,1] + B̃21[1,2].

Why do I get a continuous function (almost surely)? For that, I have B̃1(1) = B(1) = B̃2(1) almost
surely, because both of these are modifications of our pre-Brownian motion B. So to be precise, we
should really define B̃12 as in the above formula on the event B̃1(1) = B̃2(1); and off this event, we just
set it to 0 (we don’t really care about a probability-0 event).

So I can stitch together a Brownian motion on [0, 1] and [1, 2]. And I can iterate this. You’re only
doing a countable number of things, so this will result with a continuous modification of pre-Brownian
motion. (There’s no issues with uncountable intersections because you just do this a countable number
of times.)

That leads to defining Brownian motion.

Definition 2.5. A process (Bt) is a Brownian motion if:

• B is a pre-Brownian motion (i.e., it has the right finite-dimensional distributions).

• B has continuous sample paths.

We showed above that Brownian motion is guaranteed to exist (at least on some probability space).

§2.3 Brownian motion as a function-valued random variable

Now that we know Brownian motion exists, we’ll talk about some general considerations relating to Brownian
motion.

Notation 2.6. Let C(R+,R) be the space of continuous functions R+ → R (where R+ = [0,∞)).

We kind of want to describe the law of Brownian motion as a random variable taking values in this space
(it does that because by definition it has continuous sample paths). So you can think of Brownian motion
not just as a stochastic process, but as a random variable taking values in this space.

But we want to endow this space with a measurable structure, i.e., a σ-algebra. So what should that
σ-algebra be?

Notation 2.7. We let C be the smallest σ-algebra such that all the coordinate functions w 7→ w(t) (for
any fixed t, this defines a function C(R+,R) → R, by taking the value of our function at time t) are
measurable.
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This is some σ-algebra. It’s an exercise on the first homework that you can alternatively describe this as a
Borel σ-algebra, with respect to the natural metric on this space (the one giving uniform convergence on
compact sets). We’ll maybe never use this equivalence in the course — the fact that this σ-algebra is equal
to the Borel one — but if you want to learn more about Brownian motion, it’s quite important. As an
side, one fact about Brownian motion is that if you take rescaled random walks — you take discrete-time
random walks at time 0 through n, but you rescale them to be a continuous function on [0, 1], doing linear
interpolation — these rescaled random walks can also be thought of as random variables in our space (of
continuous functions on [0, 1]), which we’ll call (Sn

t )t∈[0,1].

And one fact, called Donsker’s invariance principle, is that in a sense Sn d−→ B. What does this mean?
Last semester we covered convergence in distribution for real -valued random variables. Here these random
variables are not real-valued but function-valued; but it turns out you can make the theory of convergence
in distribution work verbatim. The key property is that C(R+,R) is a complete separable metric space (this
is what you need for the theorems about convergence in distribution for R-valued randomv ariables to carry
over).

Generally for such things, you want to take the Borel σ-algebra; that’s the natural one to put. So that’s
why you might care about the Borel σ-algebra.

But in this class we’re not spending as much time on Brownian motion as other classes might, so this
probably won’t come up too much.

Claim 2.8 — Given a Brownian motion B, the mapping (Ω,F)→ (C(R+,R), C) given by ω 7→ (Bt(ω))t
is measurable.

When we constructed Brownian motion, we thought of it as a stochastic process. But now we’re saying you
can also think about it as a measurable map between these spaces.

Why is it measurable? It’s basically because ω 7→ Bt(ω) is measurable for all t, as a map (Ω,F)→ (R,B).
So we have that ω 7→ (Bt(ω))t is measurable. This is because to check this map is measurable, by the
definition of the σ-algebra, we just need to check each coordinate function is a random variable. And that’s
true by the definition of a stochastic process — every random variable in our stochastic process is a random
variable.

So C is the natural σ-algebra to place on our space such that you get a measurable map.

Now we can define the law of Brownian motion.

Definition 2.9. The Wiener measure, denoted by W , is the law of Brownian motion B as a random
variable taking values in (C(R+,R), C).

(Le Gall uses the letter W ; this unfortunately clashes with Sky’s notation for white noise.)

In other words, for every A ∈ C, we ddefine

W (A) = P[B ∈ A].

(That’s usually what the law of a random variable means.) You could also say it’s the pushforward of P
under B.

§2.3.1 The canonical construction

One foundational observation is that W does not depend on the Brownian motion you chose to define W
— it doesn’t depend on the underlying probability space (Ω,F ,P). Why not? Well, you can consider a
collection of sets which generate C; the most natural collection are the cylindrical sets

A = {w ∈ C(R+,R) | (w(t1), . . . , w(tn)) ∈ A1 × · · · ×An}
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(where Ai’s are some fixed Borel subsets of R, and the ti’s are fixed times). It’s a general measure theory fact
that cylindrical sets of this form generate C; this basically follows from the definition of C itself. Definitely
if one of these coordinate functions w(t) is measurable, then any event A when n = 1 must be measurable
(by assumption), and then you can take a finite intersection of such events to get events of this form. So
the σ-algebra generated by collections of events of this form is exactly C itself.

And if we evaluate W on such a cylindrical event, by definition this just depends on the finite-dimensional
distributions of your Brownian motion — i.e.,

W (A) = P[Bt1 ∈ A1, . . . , Btn ∈ An].

And by definition, the finite-dimensional distributions of Brownian motion don’t depend on your underlying
probability space; they’re just some explicit multivariate Gaussian. So that’s why this is true — why this
measure W doesn’t depend on the underlying probability space.

That leads to something called the canonical construction of Brownian motion, which we may use later on
(but for now it’s just an isolated definition).

Definition 2.10. The canonical construction of Brownian motion is given by choosing (Ω,F ,P) =
(C(R+,R), C,W ), and

Bt(ω) = ω(t)

(this is a Brownian motion).

So I could choose my probability space to be precisely this (the continuous functions equipped with measure
W ).

This is always kind of confusing. But ω is an element of Ω, which we are choosing to be the space of
continuous functions; and we’re trying to define a random variable on this space. We define this random
variable to just be the coordinate function itself, which is measurable by the definition of C. So you can
certainly define a collection of random variables in this way. And the claim is that this collection of random
variables is precisely a Brownian motion. Why is that true? Brownian motion is supposed to have two
properties — be a pre-BM and have continuous sample paths. The second is true by construction —
the sample paths are these functions ω(t), which are continuous (because ω takes values in the space of
continuous functions). And it’s pre-BM because you can unwind the cylindrical sets thing to get that the
finite-dimensional distributions are correct.

We’ll probably see this later on; sometimes it’s nice to assume your Brownian motion is constructed in this
way. But we probably won’t see that until we get to stochastic integration.

§2.4 Sample path properties

In the remaining six minutes, we’ll talk about some sample path properties of Brownian motion. To set this
up, we’ll fix some Brownian motion and consider the associated continuous-time filtration Ft = σ(Bs | s ≤ t).
(We will talk about continuous-time filtrations and martingales later.)

We’ll define F0+ =
⋂

t>0Ft.

Intuitively, how do you think about these? Intuitively Ft is all the information you’ve seen up to time t in
your Brownian motion; and F0+ is all the information you see infinitesimally after time 0.

Theorem 2.11 (Blumenthal’s 0–1 law)

The σ-algebra F0+ is trivial, i.e., P[A] ∈ {0, 1} for all A ∈ F0+.
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Proof. If you recall the proof of Kolmogorov’s 0–1 law for the tail σ-algebra for a sequence of IID random
variables, all you want to show is that F0+ is independent of itself — because once you have this, you get
that for any event A ∈ F0+, we have

P[A] = P[A ∩A] = P[A]2,

which means P[A] ∈ {0, 1}.
How do we show it’s independent of itself? Let’s fix A ∈ F0+, and fix some sequence of points 0 < t1 <
· · · < tn and a bounded measurable function g:Rn → R. Then we can compute

E[1Ag(Bt1 , . . . , Btn)].

To show independence, we eventually want to show that this is the product of expectations; and this is kind
of what we’re leading towards.

First, what you can do is by continuity of sample paths, you can write this as

lim
ε→0

E[1Ag(Bt1 −Bε, . . . , Btn −Bε)]

(here we’re just using the fact that Bε → 0 as ε→ 0, and the fact that g is bounded and measurable so you
can use bounded convergence to swap the limits). But htis itself is going to be equal to

lim
ε→0

P[A]E[g(Bt1 −Bε, . . . , Btn −Bε)].

Why? We have A ∈ Fε (because A ∈ F0+, which is contained in Fε); and by the Markov property, we know
that (Bt−Bε)t≥ε is independent of Fε (we saw a Markov property of pre-BM, so it’s also true for Brownian
motions). And then you can back out the limit and get that this is equal to

P[A]E[g(Bt1 , . . . , Btn)].

After you get this, it’s not so hard to show independence, but maybe we’ll see that next time.

§3 February 10, 2025

Today we’ll prove some sample path properties of Brownian motion. And time permitting, we’ll talk about
the strong Markov property.

§3.1 Sample path properties

Here the theme is that despite being continuous, Brownian motion can be quite wild. We’ll prove some
properties that are kind of hard to exhibit if you were to try to directly construct a function — we’re
challenged to try constructing a function by hand that has the properties we’ll see. This is in a sense
reminiscent of the probabilistic method, where you want to show the existence of a combinatorial object
with some properties; and you do so by picking a random object and showing that with positive probability, it
has those properties. This is somewhat reminiscent — if you tried constructing directly a function satisfying
these properties, it might be hard. But instead you can just kind of pick a random function. And it’s not
even just with positive probability, but almost sure, that Brownian motion will have these properties.

The first thing which is not a sample path property, but will be useful when proving them:

Definition 3.1. Let Ft = σ(Bs | s ≤ t), and F0+ =
⋂

t>0Ft.

Intuitively, F0+ consists of all the information you see infinitesimally after time 0.
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Theorem 3.2 (Blumenthal’s 0–1 law)

The σ-algebra F0+ is trivial (i.e., every event has probability 0 or 1).

Proof. The proof technique (as with every 0–1 law) is to show that F0+ is independent of itself. Fix A ∈ F0+

and times 0 < t1 < · · · < tn, and some bounded continuous function g : Rn → R.

Then we can consider E[1Ag(Bt1 , . . . , Btn)]. Why are we looking at something like this? We want to show
this is the product of expectations. Once we show this, we’re done — functions of all finite collections
(Bt1 , . . . , Btn) are going to generate σ(Bt | t > 0), which is equal to σ(Bt | t ≥ 0). (This is true because by
definition, your Brownian motion is 0 at t = 0, so B0 is just a constant — there’s no information you gain
or lose by adding B0.) So if we can show this factors as the product, then we’ll get that this σ-algebra is
independent of F0+, which is something even stronger than what we needed.

This is a kind of perturbation trick which we’ll see quite often — what you want to do is kind of apply the
Markov property of Brownian motion, because that’s the one independence property we know of so far. To
do so, wee can write this as

lim
ε→0

E[1Ag(Bt1 −Bε, . . . , Btn −Bε)]

(because Brownian motion is continuous and B0 = 0, so the pointwise limit holds, and you can pull the limit
out using bounded convergence). And then we can use the fact that A ∈ F0+ ⊆ Fε (F0+ stores information
infinitesimally after 0, and you know that information if you know the process up to time ε). And we also
know this restarted process (Bt+ε−Bε)t≥0 is independent of Fε (we stated this for pre-BM, but it also holds
for BM). So we can write this as

lim
ε→0

P[A]E[g(Bt1 −Bε, . . . , Btn −Bε)].

And now we can back out the limit and get that this is equal to P[A]E[g(Bt1 , . . . , Btn)], which is what we
wanted.

And now we can finish as indicated before — this means F0+ is independent of σ(Bt | t > 0) = σ(Bt | t ≥ 0).
And F0+ ⊆ σ(Bt | t ≥ 0), so we’re done.

Student Question. What do we mean when we say these expectations generate the σ-algebra?

Answer. To check two σ-algebras are independent, it suffices to check independence on a generating
collection. For instance, vectors of the form (Bt1 , . . . , Btn) for fixed t1 < · · · < tn generate σ(Bt | t > 0).
And then you use the approximation fact: in principle, to say two σ-algebras G and F are independent,
I have to say P[A ∩ B] = P[A]P[B] for all A ∈ G and B ∈ F . But rather than checking this for every
event, it actually suffices to check that E[XY ] = E[X]E[Y ] for all bounded random variables which are
G-measurable and F -measurable (respectively). And you don’t actually have to consider every bounded
measurable function; it’s enough to consider functions of finitely many of the Bt’s. (This is some sort
of monotone class argument — often when checking independence, you want to check on the most
convenient collection you can, and continuous is perfectly fine for that.)

Now let’s look at some consequences.
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Proposition 3.3

(i) We have that almost surely, for all ε > 0,

sup
0≤s≤ε

Bs > 0 and inf
0≤s≤ε

Bs < 0.

(ii) For any a ∈ R, let Ta = inf{t ≥ 0 | Bt = a}. Then almost surely, Ta <∞ for all a ∈ R.

In other words, for (i), Brownian motion goes above and below 0 on any ε-interval.

First, note that we stated this for all ε, so you might think this is an uncountable intersection; but it suffices
to just consider a sequence εn ↙ 0, so there’s no issues with uncountability.

Again (ii) looks like an uncountable intersection, but because BM has continuous sample paths, if you go
above a then you must have also gone above ⌊a⌋; so we could’ve just stated this for all integers instead. So
it’s again a countable intersection.

Note that (ii) has the consequence
lim sup
t→∞

Bt =∞,

and similarly lim inft→∞Bt = −∞ (this isn’t about probability; it’s just that if you have a continuous
function with the property (ii), then you have to oscillate infinitely often between +∞ and −∞).

It’s maybe not hard to construct a function satisfying (ii), but it’s quite hard to construct a function
satisfying (i) — on any interval, you go above and below 0 infinitely many times. So there’s never a first
time you go above or below 0; this is quite hard to construct.

Proof of (i). Consider some sequence εn ↘ 0, and consider the event

A =
⋂
n≥1

{
sup

0≤s≤εn

Bs > 0

}
=
⋂
n≥1

En

(this is a countable intersection, where the nth event En is the event that your Brownian motion goes above
0 on [0, εn]). First, we can see that En ⊇ En+1 — we took εn to be decreasing, so in En+1 we’re taking a
sup over a smaller interval, which means

sup
0≤s≤εn+1

Bs ≤ sup
0≤s≤εn

Bs.

First, note that A ∈ F0+. Intuitively, this is because it only depends on your BM infinitesimally after 0. To
make this precise, these events are increasing, so instead of starting this intersection at 1, you could have
started at any N . And by considering that, you get that A ∈ FεN for all N , and by definigion of F0+, this
means it has to be in F0+.

And because we’ve got a decreasing intersection, by continuity of probability you have P[A] = limn P[En].

What are we doing? We want to show P[A] = 1. And you want to apply Blumenthal’s 0–1 law, so we just
need to show the right-hand side is greater than 0. What’s one soft way of showing it’s greater than 0? You
can just lower-bound it by

lim
n

P[En] ≥ lim sup
n

P[Bεn > 0]

(we’ve got a sup, so if Bεn > 0, then the sup over the interval is also greater than 0). But Bεn is a normal
distribution centered at 0, so you can explicitly compute this, and it’s actually just 1

2 . So Blumenthal implies
P[A] = 1.

And then to get the statement about inf, you can just replace B with −B (this is the reflection symmetry
of Brownian motion — you could have applied this result to −B, and if you unpack what that says, you get
the inf part of the claim).
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Student Question. Why is A ∈ F0+?

Answer. Because the events En are decreasing, you have
⋂

n≥1En =
⋂

n≥N En for all N . And this is in
FεN , since you’re only looking at your BM on the time interval [0, εN ]. So this implies Ain

⋂
N≥1FεN =

F0+.

Student Question. Why is limn P[En] ≥ lim supn P[Bεn > 0]?

Answer. We have P[En] ≥ P[Bεn > 0]. The left-hand side has a limit; the right-hand side may or
may not, but that’s not an issue. Then this is just a fact about real numbers, that if xn ≥ yn and
limxn exists, then limxn ≥ lim sup yn. (Here in fact the limit does exist — it’s just 1

2 — but you don’t
actually need that.)

Proof of (ii). Let’s first be a bit less ambitious and just try to show that BM goes above 1 almost surely —
i.e., that

P
[
sup
s≥0

Bs > 1

]
= 1.

There’s a scaling argument that will show Bs goes above any finite number almost surely, but let’s first try
to show this.

To show this, we again use scaling symmetry. Fix λ > 0. Then we have this space-time scaling — we can
define a new Brownian motion Bλ

t = λ−1Bλ2t. (The way you remember this scaling is that at a fixed time
t, I should be N (0, t).) There’s the scaling symmetry that (Bλ

t ) is also a Brownian motion. And what’s
the consequence of that? Again, intuitively you’re just saying that if you’re asking about a property of BM
on some time interval (e.g., whether it goes above a threshold), that’s the same as asking if it goes above
a smaller threhsold on a smaller time-interval (think of λ as small). If the original BM goes above 1, then
this rescaled BM goes over λ.

But now we’re just asking that BM goes above 1 on the infinite time interval, so rescaling the time interval
does nothing. So the question of whether BM goes above 1 is the same as whether it goes above λ — in
other words, our original probability is

P
[
sup
s≥0

Bλ
s > 1

]
= P

[
sup
s≥0

Bλ2s > λ

]
= P

[
sup
s≥0

Bs > λ

]
(we’re on an infinite time interval, so we don’t care about the λ2). So we get that

P
[
sup
s≥0

Bs > 1

]
= P

[
sup
s≥0

Bs > 0

]
(here we’re taking a sequence λn → 0 and taking a limit of the above argument). But the right-hand side
is 1 by (i) (in fact, we know on every tiny interval it goes above 0 infinitely often).

So we get the statement for 1. And the proof immediately suggests how you upgrade this to any positive
number — again by scaling, we have

P[sup
s≥0

Bs > 1] = P[sup
s≥0

Bs > n]

for all n (you can just take λ to be n in this scaling symmetry).

(Technically, the statement is about the times Ta; but the event that Ta is finite is exactly the same as the
event sups≥0Bs ≥ a, probably using the fact that your Brownian motion is continuous and starts at 0.)

So we’ve showed that BM goes above every level almost surely. That works for positive a’s; for negative a’s
you use reflection symmetry (replacing B by −B).
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Student Question. Could you also use some chaining argument with Bayes’s rule, e.g. showing that

P[supBs ≥ 2 | supBs ≥ 1]?

Answer. Maybe, but this isn’t a priori clear. You want to follow your BM until it hits 1, and then
restart at this random time when it hits 1, and ask whether this restarted BM goes above 1. But this is
kind of using the strong Markov property that we’ll get to later. This is a random time, so you’re asking,
if we restart BM at a random time, is it still a BM? And this is true, but we haven’t proved it yet.
(Specifically,we’d want to define B1

t = BT1+t−BT1 ; then {supBs ≥ 2} = {supBs ≥ 1}∩{supB1
s ≥ 1}.)

So we don’t have the tools for this yet, but it’s a natural strategy that you could also use once you have
the strong Markov property.

Student Question. What does a σ-algebra being trivial mean?

Answer. The probability of every event is either 0 or 1. (This is more general than every event being
∅ or Ω — you could have other sets of probability 0.)

Remark 3.4. Some comments about scaling symmetry: The scaling λ−1Bλ2t is quite special. If you’ve
taken PDE, this is parabolic scaling; so you might think Brownian motion is to the heat equation
(which has the same parabolic scaling symmetry). And in fact, this is true. Solutions to the heat
equation model how heat spreads. If you think about it at the particle level, the heat equation is about
the distribution of particles, but if you look at individual particles they’re supposed to be following
Brownian motion.

As a corollary of (i) of Proposition 3.3:

Corollary 3.5

Almost surely, the sample path t 7→ Bt is not monotone on any nonempty interval.

In other words, if you draw the graph of your BM, there’s no interval where it’s monotone. Again, it’s not
so easy to try to construct a function with this property.

Proof. The proof is kind of immediate from (i) and the Markov property — by the Markov property and
(i), we obtain that almost surely, for all q ∈ Q with q > 0 (i.e., rational times) and all ε > 0, we have

sup
q≤s≤q+ε

Bs > Bq and inf
q≤s≤q+ε

Bs < Bq.

(Explicitly, you bring Bq to the other side, so the first statement essentially says that supq≤s≤q+ε(Bs−Bq) >
0, and you can write this as a statement about restarted Brownian motion at time q.) And we took a
countable collection of times, so we’re just taking a countable intersection of almost sure events, which is
still almost sure. And this implies the statement we want, by an analysis fact.

The next property is less about sample paths, but we’ll use it to prove something about sample paths.

Proposition 3.6

Fix t > 0, and let 0 = tn0 < tn1 < · · · < tnpn = t be a sequence of subdivisions of [0, t] with mesh size
tending to 0 (as n→∞). Then we have

pn∑
i=1

(Btni
−Btni−1

)2
L2

−→ t.
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So we’re fixing t and taking a sequence of subdivisions of the interval [0, t]. The way you visualize it is you
take [0, t] and put down a bunch of points, where the first point is 0 and the last is t; and in the middle you
have a bunch of points. The mesh size is the maximum distance between any two consecutive points; so the
subdivision gets increasingly finer.

Why would you expect this? If you took the expectation of the left-hand side, the expectation of the
increment squared is precisely tni − tni−1. And then you can telescope; you’re summing the lengths of all
intervals, so you get t. So the expectation of the left-hand side is t; and L2 convergence basically says that
the variance of the left-hand side converges to 0.

Proof. The first thing you’d try is to literally write out what this means — you basically write out

E

( pn∑
i=1

(Btni
−Btni−1

)2 − t

)2


(this is the variance, and we want to show this goes to 0). And the point is this is just a sum of squares of
normal random variables, so you can just compute. First, we can write this as

E

( pn∑
i=1

(Btni
−Btni−1

)2

)2
− t2

(using the fact that Var[X] = E[X2]−E[X]2, and here we just computed that the first moment is t). When
you expand this out, first you get a fourth power from when there’s no cross-terms — i.e., something of the
form (Btni

−Btni−1
)4. And then you also get cross-terms. So you end up with

pn∑
i=1

(Btni
−Btni−1

)4 +
∑

1≤i̸=j≤pn

E[(Btni
−Btni−1

)(Btnj
−Btnj−1

)2]− t2.

And you shouldn’t be afraid of any of these things, because they’re just normals, which means we have exact
formulas for these things. If we call the first sum I1, then we have

I1 ≲
n∑

i=1

(tni − tni−1)
2

(we’re basically taking the fourth moment of a Gaussian whose variance is tni − tni−1 — if Z is a standard

normal, then σ1/2Z is a normal with variance σ, and E[(σ1/2Z)4] = E[Z4]σ2 = 3σ2; so the actual constant
above is 3, but that’s not relevant). Now we want to bound this, so we can use the fact that our mesh size
is tending to 0; so we can bound this by

max
i
|tni − tni−1|

pn∑
i=1

(tni − tni−1)

(basically, L∞ and L1 controls L2). But then the sum is precisely t by telescoping, and the max tends to 0.
So that handles I1, and so I1 is fine.

Now let’s consider I2 (the sum over i ̸= j, together with the −t2). For this, you first use the fact that
because these are all disjoint time intervals, we have independence of increments; so we can actually write
this expectation of products as a product of expectations. And then we’re taking the product of variances
of normals. So

I2 =
∑

1≤i̸=j≤pn

(tni − tni−1)(t
n
j − tnj−1)− t2.
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And we want to show this goes to 0 (so we need a way to cancel out this t2).

But the first sum is all cross-terms, so we could have written it as(
pn∑
i=1

(tni − tni−1)

)2

−
pn∑
i=1

(tni − tni−1)
2 − t2

(you can imagine expanding the first thing out, and then the second thing subtracts out the non-cross
terms).

But the first sum telescopes, so it gives t2, which cancels out the −t2. And we just bounded
∑pn

i=1(t
n
i −tni−1)

2

(we showed it goes to 0). So I2 → 0, as desired.

Student Question. Does this also work for pre-BM?

Answer. Yes, since it only looks at finite-dimensional distributions.

The summary is that whenever you have Gaussian random variables, you can kind of just do the first thing
you’d think to do — to compute everything — and you can do that.

Student Question. Why is there not a 2 in front of the sum for I2?

Answer. We’re not assuming i and j are ordered in the sum.

Now we can use this to prove the following property of Brownian motion. First, we need to define a concept.

Definition 3.7. We say a function f : [a, b]→ R has infinite variation if the sup of the quantiites

p∑
i=1

|f(ti)− f(ti−1)|

over all subdivisions of [a, b] is infinite.

This is kind of some discrete approximation of the variation of your function; the fact that this is infinite is
the source of the name ‘infinite variation.’

Remark 3.8. What are functions where the sup is finite? Well, continuously differentiable functions
— if f ′ were continuous, then you could bound this by ∥f ′∥L∞

∑p
i=1 |ti − ti−1| = (b − a)∥f ′∥L∞ . So

continuously differentiable functions don’t have infinite variation.

Proposition 3.9

Almost surely, Brownian motion has infinite variation on any nonempty interval.

In particular, Brownian motion cannot be continuously differentiable on any nonempty interval. Again,
it’s hard to construct a function like this (which is continuous, but not continuously differentiable on any
nonempty interval).

Proof. It suffices to prove this on some interval [0, t] — by the Markov property, you can then extend this
to any interval (not necessarily starting at 0) — this only looks at the increments, so you can look at the
restarted Brownian motion. And the reason you can fix an interval is because we can take a countable
intersection of intervals with rational endpoints; any interval has a smaller interval with rational endpoints
contained in it, and if you have infinite variation on a smaller interval, you also have infinite variation on
the larger one. So you can just reduce to this case.
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And the fact that the quadratic variation (which we computed earlier) is positive is basically incompatible
with having finite variation — if you had finite variation, then this thing would have to be 0. That’s basically
the same as our earlier argument, more or less — if you have finite variation, then on any interval, your
variation is basically the length of that interval. Then when you square, you’re getting the square of the
length of that interval; and we just showed that goes to 0.

So that’s some heuristic reason for why if the function has finite variation, then our quadratic sum from
earlier has to be 0. But now we have to actually prove the contrapositive of that. So how do we do that?

On the left-hand side, let’s look at our quadratic variation

p∑
i=1

(Bti −Bti−1)
2.

First, we can upper-bound this by

sup
i
|Bti −Bti−1 | ·

p∑
i=1

|Bti −Bti−1 |.

(We have two factors on the left; we bound one of them by the sup, and then we sum over the rest.)

Now by the L2 convergence that we showed, we already showed that the left-hand side converges in L2 to
t > 0. That implies it also converges in probability to t. And if you have a sequence converging in probability,
you can find a subsequence converging almost surely (by some Borel–Cantelli trick from 18.675).

So you can obtain a sequence of subdivisions (tni ) such that

pn∑
i=1

(Btni
−Btni−1

)2 → t.

(We started with any sequence with mesh size going to 0, got convergence in probability, and then used
Borel–Cantelli to get an almost surely converging subsequence.)

And now you’re basically done — first, we have

sup
i
|Btni

−Btni−1
| → 0

surely (in fact, not just almost surely), because we’re taking our subdivisions to have mesh size going to
0, and BM is uniformly continuous on any compact interval. (A continuous function on [0, t] is uniformly
continuous, and the mesh size is going to 0, so this thing must go to 0.)

And that has to imply
pn∑
i=1

|Btni
−Btni−1

| → ∞

(because the left-hand side goes to something strictly positive, and the first term goes to 0; so the last term
has to go to ∞).

Student Question. How did we get the existence of a subsequence which converges almost surely?

Answer. What you kind of want to say is — if we have a sequence Xn
p−→ X, by definition you’re saying

P[|Xn −X| ≥ ε] → 0 for all ε > 0. And the thing to remember is that we can obtain a subsequence
(Xnk

) such that
P[|Xnk

−X| ≥ 2−k] ≤ 2−k

(so we’re first picking ε = 2−k, and because the probability goes to 0, we can find some n large enough
that it’s less than 2−k). And we set this up so that this sequence of probabilities is summable, so
Borel–Cantelli I tells us that almost surely |Xnk

−X| ≤ 2−k for sufficiently large k; and that gives that
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our sequence converges.

Remark 3.10. This trick is good to remember — we also used something like this in the proof of
Kolgomorov’s continuity criterion (the fact that you can upgrade convergence in probability to almost
sure, using some exponential decay trick).

Student Question. Is this theorem still true if we have the additional condition that the mesh size
goes to 0, instead of taking a sup over all subdivisions? In other words, is it true that for any sequence
of subdivisions with mesh size going to 0, the corresponding variation should be infinite?

Answer. Here we’re starting with some sequence with mesh size going to 0; we can find some subsequence
which converges almost surely, and along that subsequence we get infinite variation. However, that
doesn’t imply it for the original sequence. Still, Sky thinks the answer should be yes.

§3.2 The strong Markov property of Brownian motion

Now we can discuss elements of the strong Markov property, so let’s move on to that.

What does this basically say? First, the Markov property says that if we fix a (deterministic) time t and
start observing your Brownian motion from this deterministic time (so you kind of restart it), that’s still a
Brownian motion.

In the strong Markov property, now you restart at a random time T ; and still, the restarted motion is
Brownian. That’s basically the statement of the SMP.

But of course, T can’t just be any arbitrary random time. It has to satisfy some conditions — in particular,
it has to be a stopping time.

§3.2.1 Stopping times

Definition 3.11. We write F∞ = σ(Bt | t ≥ 0).

(This is all the information in your BM at all times.)

Recall that we also write Ft = σ(Bs | s ≤ t).

Now we’ll define stopping times. We probably saw them defined in discrete time in 18.675, but here we’ll
define them for continuous time (here we’ll do it for this specific filtration; then we’ll move onto continuous-
time martingales later, where we’ll see the general definition — it’s just this, but for a general filtration).

Definition 3.12. A random variable T with values in [0,∞] is called a stopping time if for all t ≥ 0,

{T ≤ t} ∈ Ft.

(Note that T is allowed to be ∞.) The motivation for this is the same as in discrete-time — you think
of yourself as observing the stochastic process as you go, and at some point based on the values of your
process, you decide to stop. In particular, you have to decide to stop based on only what you’ve seen so far,
and not based on the stuff you haven’t seen. That’s basically what this says — whether you stop by time t
only depends on what has happened up to time t.

Note that if T is a stopping time, then for the event that you stop strictly before time t, we can write

{T < t} =
⋃

0≤q<t
q∈Q

{T ≤ q} ∈ Ft
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(since each of these events is in Fq ⊆ Ft).

Student Question. Earlier, we proved that BM hits each individual point almost surely. Is it actually
true that it hits all points almost surely — i.e., that it covers the number line?

Answer. Yes. For instance, you can take the integers 1, 2, 3, 4, 5, . . . ; we know BM hits each of these
integers at some point. And then you can take the countable intersection of these events. (In particular,
the fact that the lim sup is ∞ and the lim inf is −∞ implies that it hits any level.)

Student Question. Could you then make a modification of BM such that every hitting time would be
finite?

Answer. You probably could, but it’s less clear whether you’d ever need that in a proof. We will see
examples where you want to modify things so that something happens surely, but maybe for other
properties and not exactly this one.

Example 3.13

Any deterministic time T = t0 is a stopping time.

Intuitively, you don’t have to look at your process at all to determine whether to stop. To verify this from
the definition, we have

{T ≤ t} = {t0 ≤ t} =

{
∅ t < t0

Ω t ≥ t0

(both of which are in Ft).

Example 3.14

The time T = Ta = inf{t ≥ 0 | Bt = a} (as defined earlier) is a stopping time.

This again uses the characterization of {Ta ≤ t} in terms of the sup of your BM. Assume a > 0 (otherwise
you use the inf); then we have

{Ta ≤ t} =
{
sup
s≤t

Bs ≥ a

}
.

And sups≤tBs is Ft-measurable as a random variable (you can use continuity to replace this with a countable
sup — you can restrict to q ≤ t with q ∈ Q — and each Bq is Fq-measurable and therefore Ft-measurable,
and it’s a general fact that for any sequence of random variables Xn, supnXn is a random variable).

These are some first immediate examples of stopping times. Another, which we’ll use later on:

Example 3.15

If T is any stopping time and t0 a deterministic time, then T + t0 is also a stopping time — we have

{T + t0 ≤ t} = {T ≤ t− t0} ∈ F(t−t0)∨0 ⊆ Ft.

More generally, the sum of two stopping times is also a stopping time (though this requires slightly
more argument).

Definition 3.16. Let T be a stopping time. The stopped σ-algebra FT is defined as

FT = {A ∈ F∞ | A ∩ {T ≤ t} ∈ Ft for all t}.
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Intuitively, you think of this as all the information you’ve seen up to your random time T — this is just
saying that on the event that you’ve stopped by time t, you can determine A by just the information up to
time t (in other words, you get all the information you’ve seen up to the random stopping time).

Exercise 3.17. This set FT is a σ-algebra, and T is FT -measurable.

We’ve just defined FT as a collection of sets, so this needs to be verified. The second statement intuitively
makes sense — FT encodes all the information we’ve seen up to a random time, and if we know all the
information up to that time, we should know that time. But you have to check this.

There’s a bunch of preliminaries we need to set up to talk about the strong Markov property rigorously;
this is part of the setup, and next class we’ll do the rest and state the strong Markov property.

§4 February 12, 2025

Today we’ll state and prove the strong Markov property of Brownian motion and see an application to the
reflection principle.

§4.1 Strong Markov property

We’ve constructed Brownian motion, and defined a filtration and stopping times with respect to it; recall
that given a stopping time T , we can define the stopped σ-algebra

FT = {A ∈ F∞ | A ∩ {T ≤ t} ∈ Ft for all t ≥ 0},

which is heuristically all the information you’ve seen up to your stopping time.

Now we want to consider the value of our Brownian motion at our random stopping time — so we let

1T<∞BT =

{
BT (ω)(ω) | T <∞
0 T =∞

(this is a function on Ω).

Claim 4.1 — 1T<∞BT is FT -measurable.

So it’s not just a random variable, but even measurable with respect to your information up to time t.

This is not obvious — by construction Bt is measurable for any fixed t, but now you’re taking your Brownian
motion at a random time. We’ll use this type of proof again and again. To show something’s measurable, you
typically want to show it’s the limit of more simple indicator functions or linear combinations of indicators;
those should be more easily verified to be measurable, and the limit of measurable functions is measurable.
So you basically want a discrete approximation.

Proof. Fix n ≥ 1; then we can approximate BT by the function

Xn =
∞∑
j=1

1

[
j − 1

n
≤ T <

j

n

]
B(j−1)/n.

So we’re basically approximating based on the values of our stopping time — if T is finite, then it has to lie
in one of these intervals of length 1/n, and you take B at the left endpoint. We have to show this itself is a
random variable.
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The idea is that we have to say the Xn’s are FT -measurable. For that, it’s very important we’re taking the
left endpoint. If T is greater than the left endpoint, then I ‘know’ the value of B(j−1)/n, because this time
comes before my stopping time, rather than after.

First, Xn → 1T<∞BT as n → ∞ pointwise (for all ω ∈ Ω). So it suffices to show that Xn ∈ FT (i.e., that
Xn is FT -measurable) for all n (then we can use the fact that a pointwise limit of measurable functions is
measurable). And because Xn is a linear combination of functions, it suffices to show that each of those
individual functions is measurable (technically it’s an infinite sum, but we can again use the pointwise limit
fact).

To see this, fix 0 ≤ s ≤ t. Let’s consider the function

1(s ≤ T < t)Bs

(here we’re just replacing (j − 1)/n and j/n with general s and t). We want to say this is FT -measurable;
how do we do this?

Let’s take some Borel set A ∈ B (we write B for B(R)); we want to show that {1(s ≤ T < t)Bs ∈ A} is in
FT .

What does it mean for this event to be in the stopped σ-algebra FT ? I hav to verify that if I intersect this
with the event {T ≤ u}, I have to show that this is in Fu — so I have to show that for all u ≥ 0,

E = {1(s ≤ T < t)Bs ∈ A} ∩ {T ≤ u} ∈ Fu.

(This is what it means to be FT -measurable; here we’re just unpacking the definition.)

Let’s assume 0 ̸∈ A; this will be slightly more convenient. Under this condition, we can write E on a
case-by-case basis. If u < s, then this event is just E = ∅, because we have a condition T ≤ u and T ≥ s.
And ∅ is certainly in Fu.

Now, if u ≤ s < t, this becomes {Bs ∈ A} ∩ {s ≤ T ≤ u}. And {Bs ∈ A} is in Fs (because Bs is Fs-
measurable by definition), and Fs ⊆ Fu. What about the second part? Here we have to use the fact that T
is a stopping time, combined with the fact that we can write this as {T ≤ u} \ {T < s}. And last time we
briefly remarked that by defiition {T ≤ u} ∈ Fu, and you can still show that {T < s} ∈ Fs ⊆ Fu (by taking
an increasing union).

(Where do we use the fact 0 ̸∈ A? This was in saying E = ∅ when u < s; otherwise we might get Ω instead
of ∅.)

Finally, when u > t, we can write this as {Bs ∈ A} ∩ {s ≤ T < t}. By similar considerations as before, this
is Ft-measurable, and therefore Fu-measurable.

We’ve only considered the case where 0 ̸∈ A; but the case where 0 ∈ A follows by taking complements.
Specifically, you can write

{1(s ≤ T < t)Bs ∈ A} = Ω \ {1(s ≤ T < t) ∈ Ac}.

And Ac doesn’t contain 0, so we know this thing is in FT , and when you take the complement it’s still in
FT .

Maybe if this weren’t a math course you might not care so much about showing measurability — you might
just believe it’s true — but for a foundational course it’s good to cover the details, in case we come across it
again. In practice you maybe don’t worry too much about these details when doing research, but it’s good
to see it at least once.

So now we’ve defined Brownian motion at your stopping time and shown it’s a random variable, and actually
FT -measurable.
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Theorem 4.2 (Strong Markov property)

Let T be a stopping time, and assume P[T <∞] > 0. For t ≥ 0, define

B
(T )
t = 1(T <∞)(BT+t −BT ).

Then under the probability measure P[• | T <∞], (B
(T )
t ) is a Brownian motion independent of FT .

The idea is that we define a restarted process based on your random stopping time — I start observing my
Brownian increments after my random stopping time T . If T were deterministic this is the usual thing you
do when looking at the Markov property; the reason for ‘strong’ is that we’re looking at random times.

Note that we know B
(T )
t is a random variable — BT ∈ FT , and for BT+t, a stopping time plus a deterministic

time is still a stopping time. So this actually is a random variable.

We’re looking at the conditional probability measure P[• | T <∞], which is defined as

P[A ∩ {T <∞}]
P[T <∞]

.

So this is an extension of the Markov property to these random stopping times.

Proof. For simplicity, let’s first assume that T < ∞ almost surely, meaning that P[T < ∞] = 1 (so that
this conditioned measure is your original measure). In the course of the proof, we’ll see that the proof also
carries over to the more general case.

The kind of technique is that you want to perform a discrete approximation on your stopping time T , very
similar to what we did before, and apply the usual Markov property. So we’ll see how we do that.

First, as some setup, let’s fix an event A ∈ FT ; and let’s also fix times 0 ≤ t1 < · · · < tp. We’re going to
write out what it means to be independent — fix F :Rp → R which is a bounded continuous function on
t real variables. Then the statement of independence just reduces to showing (similarly to what we did in
Blumenthal’s 0–1 law) that

E[1AF (B
(T )
t1

, . . . , B
(T )
tp )] = P[A]E[F (B

(T )
t1

, . . . , B
(T )
tp )].

This would imply precisely the independence statement we want. And actually if you remove the T ’s,
showing that

E[1AF (B
(T )
t1

, . . . , B
(T )
tp )] = P[A]E[F (Bt1 , . . . , Btp)],

that would imply that this restarted process precisely is a Brownian motion — because then you could take
A = Ω, and you’d be saying we have the right finite-dimensional distributions.

So how do we show this? This is where the discrete approximation comes in (plus the usual Markov
property). Let’s now define the process Xn

t , which you should think of as an approximation to the restarted
process BT

t . Again we’re going to take indicators based on which interval my stopping time T lies in. But
now I’m going to kind of do things based on the right endpoint — so I let

Xn
t =

∞∑
i=1

1

[
i = 1

n
≤ T <

i

n

]
·
(
Bi/n+t −Bi/n

)
(before we needed to use the left endpoint, but here we’ll actually need the right endpoint to apply the
Markov property).

The first thing is we have X→
t B

(T )
t as n → ∞ (for all t and ω); that’s the whole reason why we took this

approximation. Then since F is bounded and continuous, you get that

LHS = lim
n→∞

E[1AF (Xn
t1 , . . . , X

n
tp)]
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(where LHS refers to the quantity on the left-hand side of what we want to show, and we’re just replacing
B with X).

Now we can use the fact that

F (Xn
t1 , . . . , X

n
tp) =

n∑
i=1

1

[
i− 1

n
≤ T <

i

n

]
F (B

i/n
t1

, . . . , B
i/n
tp )

(where thee notation Bi/n refers to what happens when you restart your motion at i/n, i.e., Bi/n+t−Bi/n).

And now you can input this formula into our limit; and you want to swap the infinite summation and
expectation. You can justify this by some sort of dominated convergence — F is bounded, and the sum of
indicators is at most 1, because T can only be in one of these intervals. So there’s some sort of bounded
convergence justification. And then you get that in the end, this is equal to

lim
n→∞

∞∑
i=1

E
[
1A1

[
i− 1

n
≤ T <

i

n

]
F (B

i/n
t1

, . . . , B
i/n
tp )

]
.

And here’s where we’re going to apply the usual Markov property — by teh usual Markov property, this
restarted process Bi/n is independent of all of your information up to time i/n, i.e., of Fi/n. And to get this
independence, we just want to show that

1A1

[
i− 1

n
≤ T <

i

n

]
∈ Fi/n.

Why is this true? First, we can write this as the indicator of an intersection, namely

A ∩
{
i− 1

n
≤ T <

i

n

}
= A ∩

{
T <

i

n

}
\
{
T <

i− 1

n

}
.

And the second term is in F(i−1)/n ⊆ Fi/n (essentially by definition — technically we have a < but not ≤,
but we can again take an increasing union, so that’s fine). And the first term is also in Fi/n — again you can
use the definition of FT and take your endpoint to be a sequence of rationals going up to i/n (essentially, we
deal with the < in the same way as for the second term). (We could probably avoid this issue by swapping
which endpoint of the discrete approximation interval is strict.)

So this is Fi/n-measurable and the remainder is independent of that, so now we can split the expectation of
the product; so this becomes

lim
n→∞

∞∑
i=1

P
[
A ∩

{
i− 1

n
≤ T <

i

n

}]
E[F (Bt1 , . . . , Btn)]

(where we dropped the i/n superscripts because by the usual Markov property, Bi/n is distributed like a usual
Brownian motion). And for the first piece, when we sum over i, what we get is really just P[A∩ {T <∞}];
so this becomes

lim
n→∞

P[A ∩ {T <∞}]E[F (Bt1 , . . . , Btp)]

(since our indicators form a partition of [0,∞)). But now this is actually independent of n, so we can remove
this limit.

And so then we’re basically done, at least in the case T <∞ almost surely — this is just equal to P[A].

More generally, we didn’t really use the assumption T <∞ anywhere except on this last step. So we obtain
more generally that

LHS = P[A ∩ {T <∞}]E[F (Bt1 , . . . , Btp)].
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And this should suffice. Because under the conditioned measure, the expectation has to be divided by
P[T <∞]; so we’d have to divide both sides by that probability. And then

LHS

P[T <∞]
=

P[A ∩ {T <∞}]
P[T <∞]

E[F (Bt1 , . . .)] = P[A | T <∞]E[· · ·],

and if you unwrap what the statement is saying, it’s basically just this identity.

Student Question. Is the event {T <∞} FT -measurable?

Answer. Yes. Intuitively it has to be because you should know, up to your random time, whether it’s
finite or not. By definition you have to check {T < ∞} ∩ {T ≤ t} ∈ FT for all t; but this is just the
event {T ≤ t}, and that’s the definition of a stopping time.

More generally, we stated last time that T itself is FT -measurable, so any event like this is also FT -
measurable. And in the proof of this, you should be able to do something similar.

§4.2 The reflection principle

Now let’s discuss one application of the strong Markov property, the reflection principle.

Theorem 4.3 (Reflection principle)

Let St = sup0≤s≤tBs. Then for a ≥ 0 and b ≤ a, we have

P[St ≥ a, Bt ≤ b] = P[Bt ≥ 2a− b].

Corollary 4.4

The distribution of St is the same as that of |Bt|.

(It’s not obvious how this follows from the previous statement, but we’ll show it.)

The picture is you start looking at your Brownian motion, and you draw a line at level a. If your Brownian
motion ever gets to level a, and it ends at some level b (which could be positive or negative, as long as it’s
at most a), what you want to do is reflect everything past the first time you hit a. If you have any path
starting from a that gets you down to b, then when you reflect it, you’ll end up at a+ (a− b) = 2a− b. So
that’s the source of this identity.

You also see why b has to be at most a here — you have to have St ≥ Bt, so if b > a, then you wouldn’t
have to consider that.

Remark 4.5. That’s why this is called the reflection principle — you’re reflecting your path at a time.
Something like this is also true of discrete random walks — you can come up with some bijection. And
there’s also a general result that random walks converge to Brownian motion, so this is the continuum
version of the discrete reflection principle. But of course you can’t really prove a bijection for continuous
walks; that’s not the way to prove this.

Now let’s actually prove this.

Proof. Let Ta be the first time the Brownian motion gets to a, i.e., Ta = inf{t | Bt = a}. Note that
{St ≥ a} = {Ta ≤ t} (these are two ways of saying you’ve reached level a by time t).
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Now we can write
P[St ≥ a,Bt ≤ b] = P[Ta ≤ t, B

(Ta)
t−Ta

≤ b− a]

(note that Ta is a stopping time). Why? The proof for why the second two are the same is because

B
(Ta)
t−Ta

= Bt −BTa = Bt − a

by definition. And now you add a to both sides and get back what you want. (But really you should think
of it in terms of the picture.)

And now you use the strong Markov property. Now we want to condition on the stopped σ-algebra FTa ;
and we can say this is

E[1(Ta ≤ t)P[B(Ta)
t−Ta

≤ b− a | FTa ]]

(we can pull the indicator out because it is FTa-measurable). And now we use the reflection symmetry of

Brownian motion and the strong Markov property — because B
(Ta)
t−Ta

is a Brownian motion, this is equal to

E[1(Ta ≤ t)P[−B(Ta)
t−Ta

≤ b− a | FTa ]].

And now we just want to back out of the conditioning. So now this is further equal to

P[Ta ≤ t, B
(Ta)
t−Ta

≥ a− b]

(moving the negative to the other side). But now if you kind of again rewrite what this stopped Brownian
motion is (that it’s Bt −BTa = Bt − a), this becomes

P[Ta ≤ t, Bt ≥ 2a− b].

But then if Bt ≥ 2a − b, well, 2a − b ≥ a by assumption, so this extra event Ta ≤ t is unnecessary
(you know you already hit a higher level than a, so you definitely hit level a); this means this is equal to
P[Bt ≥ 2a− b].

The key step is the reflection step, where we replace B
(Ta)
t−Ta

with its negative. (Le Gall says this slightly
differently; when you condition on Ta you can sort of treat Ta as a ‘constant,’ since Ta is already known.)

Proof of Corollary. Now, why is the second property true? Let’s look at the event St ≥ a. We can split

P[St ≥ a] = P[St ≥ a, Bt ≤ a] + P[St ≥ a, Bt > a].

The second term is just P[Bt > a], since if you go above a then certainly St ≥ a. For the first, we can apply
the reflection principle. So we get that this is

P[Bt ≥ a] + P[Bt > a]

(since 2a − a = a). But we can change > to ≥ because Bt has a continuous distribution; so in summary,
you get

P[St ≥ a] = 2P[Bt ≥ a] = P[|Bt| ≥ a]

(by the symmetry of normal distributions). And then you’re done.
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§4.3 Generalizations of Brownian motion

That almost concludes the beginning module on Brownian motion. We’ll just make two brief definitions,
which we’ll use later.

Definition 4.6. If Z is a (real-valued) random variable, we say (Xt) is a Brownian motion started from
Z if Xt = Z +Bt where B is a Brownian motion which is independent of Z.

So by default, whenever we say ‘Brownian motion’ we assume it starts at 0. But you can also start it at
more general points. You can of course start it as constants; but you can also make the starting point a
random variable, as long as it’s independent of the ensuing increments.

We can also define higher-dimensional BMs.

Definition 4.7. A Rd-valued stochastic process Bt = (B1
t , . . . , B

d
t ) is a d-dimensional Brownian motion

if its components are IID Brownian motions.

Many of the same properties we showed for Brownian motion also hold here — for example, Blumenthal’s
0–1 law, the Markov property, the strong Markov property. If you want, you can go back into the proofs
and redo them for this higher-dimensional case; but it’s all going to work.

§4.4 Overview — continuous-time stochastic processes

With that, we’ll move to more general continuous-time stochastic processes.

The first part of this module is again stuff related to measurability; it’s maybe not the most interesting thing
in the world, and on a day-to-day basis if you use these things you don’t really care about measurability
and assume it’ll work out. But on a foundational level, it’s good to know these concepts. At the end of the
module, we’ll get on to actual martingale stuff — for instance, the optional stopping theorems, which you
can use to prove things about BM. For instance, you can get the distributions of these stopping times Ta

using the optional stopping theorem; we’ll see that at the end of the module.

§4.5 Filtrations

First, let’s set up a basic framework to discuss continuous-time stochastic processes.

Throughout, we fix a probability space (Ω,F ,P).

Definition 4.8 (Filtration). A filtration on (Ω,F ,P) is a collection (Fs)0≤s≤∞ of sub-σ-algebras of F ,
meaning that

Fs ⊆ Ft for all 0 ≤ s ≤ t ≤ ∞.

This kind of generalizes what we saw for Brownian motion and discrete-time stochastic processes. It’s
basically an increasing collection of sub-σ-algebras of F . Usually you might assume F∞ is the generated
σ-algebra from all the finite Ft’s, but in this definition you don’t necessarily need to assume that.

Example 4.9

The canonical filtration of Brownian motion is Ft = σ(Bs | s ≤ t) and F∞ = σ(Bs | s ≥ 0). More
generally, you can replace B by any stochastic process indexed on [0,∞), and you get a filtration.
(That’s usually how we get our filtrations.)

Next, we’ll introduce a kind of alternative filtration.
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Definition 4.10. Given a filtration (Ft), we define Ft+ =
⋂

s>tFs. (We also define F∞+ = F∞.)

Intuitively, this is all the information known in your process infinitesimally after time t. (We already saw
F0+ in the statement of Blumenthal’s 0–1 law.)

This is also a filtration; you have Ft ⊆ Ft+ for any fixed t (because Ft ⊆ Fs for any s > t).

Definition 4.11. We say that a filtration (Ft) is right-continuous if Ft = Ft+ for all t.

So this is some sort of regularity property for your filtration, which is sometimes convenient to have.

Student Question. When would this not be true?

Answer. In the canonical filtration for Brownian motion — F0 is the trivial σ-algebra (because B0 is
a constant). But F0+ for instance contains the event

{ sup
0≤s≤ε

Bs > 0 for all ε > 0}.

This is in F0+ but not F0.

But we did show that F0+ is trivial, so it’s not too far off.

Also, by construction Ft+ itself is right-continuous — you can write⋂
s>t

Fs+ =
⋂
s>t

⋂
r>s

Fr =
⋂
r>t

Fr = Ft+.

§4.6 Completions

Now let (Ft) be a filtration. Let N be the collection of (F∞,P)-null sets, i.e.,

N = {E ⊆ Ω | exists F ∈ F∞ with P[F ] = 0 and E ⊆ F}.

So basically this means you’re contained in an almost not sure event. (We also call these negligible sets.)

Definition 4.12. A filtration (Ft) is complete if N ⊆ F0.

This notion of completeness is convenient to have in some settings that we’ll see, probably later on. Because
it’s convenient, you can always guarantee yourself that you’re working with a complete filtration: If (Ft) is
not complete, then we can take the completed filtration

F ′
t = σ(Ft,N ).

This itself will again be a filtration. And we implicitly also extend P to (Ω,F ′
∞,P′). This is what Problem

6 on the homework is about — you can extend your probability measure onto a completed one, and on
this completed probability space you can consider this completed filtration. Le Gall maybe doesn’t make
this super explicit, that you have to replace your original probability measure by the completed one; this is
maybe not a big deal, but it is something you should do.

As a comment, if you do this for Brownian motion, you can check that the strong Markov property still
holds with respect to the completed filtration — the restarted process (Bt

s) will be independent of (FB
t )′.

(The usual Markov property is when we don’t take the ‘prime’ indicating completion. You actually have to
prove something because in principle this is a bigger filtration — you added these null sets. But the point
is you only basically added probability 0 or 1 sets. And independence is a statement about ‘the expectation
of a product is the product of expectations’; that isn’t affected by introducing probability 0 or 1 sets.)
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And we have to check this, but this should also imply the completed filtration will contain FB
t+. So you

should have this stronger statement of the Markov property — that (Bt
s)s≥0 is actually independent of

(FB
t+), everything you know infinitesimally after time t.

(Sky thinks the completion of Ft should be the completion of Ft+, but this would have to be proven.)

§4.7 Stochastic processes at random times

What we’re going to work towards next is that we want to consider stochastic processes ata random time T
— so we want to look at XT (T will always be a stopping time; otherwise the theory doesn’t work). This is
something you do all the time in discrete-time martingale theory — if you want to talk about the optional
stopping theorem, you have to talk about your process at a random time.

In discrete time it’s trivial that this is measurable — you could write XT =
∑

nXn1[T = n], and each
individual thing is a random variable, so this whole thing is too (and you can also show it’s in FT by the
same proof).

But continuous time is different; you can’t do exactly this thing. But as we saw with Brownian motion, you
basically can by discrete approximation.

So the approach to talking about measurability of XT is morally reducing to discrete-time statements by
discrete approximation; but you always have to do something extra in continuous time.

So we want to build up some results saying why XT would first be measurable at all, and then why it’s
FT -measurable.

§4.8 Measurable, adapted, and progressive stochastic processes

Definition 4.13. A stochastic process (Xt) taking values in a measurable space (E, E) is measurable if
the mapping (Ω× R+,F ⊗ B(R+))→ (E, E) given by (ω, t) 7→ Xt(ω) is measurable.

(You can take (E, E) to be R and its Borel sets, but we can say something quite general.)

By definition, a stochastic process is a collection of random variables. But we’re now imposing a more
stringent condition that if you put this collection together into a map from our product space Ω×R+ to our
measurable space, this map should be measurable (with respect to the product σ-algebra on the left and E
on the right).

In this definition, we kind of assumed X itself is a stochastic process, so each Xt is measurable. But this
condition is stronger than that. In particular, if you satisfy this condition, you’re a stochastic process. Why?
We can fix some t0; and we want to say that the map ω 7→ Xt0(ω) is measurable (as a map (Ω,F)→ (E, E))
— that’s the definition of being a random variable. But you can exhibit this as a composition of two
measurable maps

(Ω,F)→ (Ω× R+,F ⊗ B(R+))→ (E, E),

given by ω 7→ (ω, t0) and (ω, t) 7→ Xt(ω). If you compose these two maps, you get precisely the one we want.
We’re assuming the second is measurable. And the first is also measurable — by definition of the product
σ-algebra, it suffices to just verify measurability on product sets {(ω, t0) ∈ F ×B} (where B is a Borel set).
But if you unwind the definition, this is either F if t0 ∈ B, or ∅ if t0 ̸∈ B; and each of these is in F .

So all that is to say that being measurable is stronger than being a stochastic process, and that’s how you
verify this statement.

Now in the remaining discussion, implicitly we’re always fixing a filtration (Ft); all the ensuing definitions
are with respect to this filtration that we’ve fixed.
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Definition 4.14. A stochastic process (Xt) taking values in (E, E) is called adapted if for all t, Xt ∈ Ft

(i.e., Xt is Ft-measurable).

For instance, Brownian motion was adapted to its canonical filtration.

Definition 4.15. A stochastic process (Xt) is called progressive if for all t, the map

(Ω× [0, t],Ft ⊗ B([0, t]))→ (E, E)

given by (ω, t) 7→ Xt(ω) is measurable.

The only difference from before (with the definition of measurability) is that instead of F , you took Ft; so
this is a more stringent condition.

Le Gall doesn’t make it clear when he introduces this, but this is precisely the concept you need to eventually
verify the measurability of XT . We’ll see later that if you assume T is a stopping time and X is progressive,
then XT is going to be a random variable measurable with respect to FT . So this is precisely the concept
you need; and the proof of measurability is basically composing two maps together. So that’s why we have
this definition — because we’re working towards talking about XT as a random variable.

(But we’ll get to this later, following the order in Le Gall.)

Remark 4.16. A progressive process is both adapted and measurable. It’s definitely measurable,
because Ft is a smaller σ-algebra than F ; so if it’s measurable with respect to this smaller σ-algebra,
then it’s also measurable with respect to the original one.

For why it’s adapted, you use the same argument as above, but now replacing F with Ft. We want to
say that ω 7→ Xt0(ω) is Ft0-measurable. And this is the composition of the two maps (ω, t) 7→ Xt(ω)
and ω 7→ (ω, t0). The first is measurable because of progressiveness. And the second is basically the
same proof — if we consider {(ω, t0) ∈ F ×B}, we either get F or ∅.

Often we start with an adapted process. And we said the concept of progressiveness is important. So how
do we verify that an adapted process is progressive? That’s the purpose of the next proposition. This
essentially says that ‘adapted’ plus ‘right-continuous’ implies ‘progressive.’

Proposition 4.17

Let (Xt) be a stochastic process valued in a metric space (E, d) (with the Borel σ-algebra). Suppose
that X is adapted and has right-continuous sample paths. Then X is progressive.

You probably need a metric space here because we’re talking about continuity.

Remark 4.18. You could also assume X has left-continuous sample paths; either would work.

Most of our processes in this course are actually going to be continuous; we’re just making the slightly
more general statement because the same proof works. But when we talk about local martingales, we’re
generally going to assume continuity, because that already suffices to discuss a lot of examples.

So that’s the statement, and it’s going to allow us to verify progressivity. The proof at a very high level is
that you want to use dicrete approximation again; that’s what you do over and over in this chapter.

Page 43 of 267



18.676 — Stochastic Calculus Class by Sky Cao (Spring 2025)

§5 February 18, 2025

§5.1 Progressivity

Student Question. What does it intuitively mean for a process to be progressive?

Answer. Sky doesn’t know if there’s an intuitive notion; but it’s the exact notion you need to verify
measurability of these stochastic processes at random times. So that’s what the main motivation for
this definition should be.

At the end of last class and today, we’ll be developing some basic language for continuous-time stochastic
processes. Last time we defined the notion of a progressive process:

Definition 5.1. A stochastic process (Xt) valued in (E, E) is progressive if for all t, the map

(Ω× [0, t],Ft × B([0, t]))→ (E, E)

defined by (ω, t) 7→ Xt(ω) is measurable.

Last time we commented that any progressive process is adapted. The proof is kind of similar to (as we’ll
see) why when you have a progressive process and evaluate it at a stopping time, that thing is a random
variable.

But first, one fundamental proposition is that it’s not too hard to verify a process is progressive — it’s
not too restrictive an assumption. As long as your process is right-continuous and adapted, it’s going to
be progressive. (Left-continuity would also suffice. All the processes in this course are probably going to
be even continuous; but maybe if you’ll have to work with continuous-time Poisson processes, which are
right-continuous but not continuous, you might want this.)

Proposition 5.2

Let (Xt) be a stochastic process valued in a metric space (E < d). If X is adapted and has right-
continuous sample paths, then X is progressive.

Proof. The general approach is to do a discrete approximation — for the discrete approximation it should
be relatively easy to verify this property of progressiveness.

So let’s fix a time t0; we’re going to verify this property (in the definition of progressiveness) for t0. We’ll
define our discrete approximation Xn, which will be a process on [0, t0], as

Xn
t =

n∑
i=1

1

[
i− 1

n
t0 ≤ t ≤ i

n
t0

]
Xit0/n + 1[t = t0]Xt0 .

We’re basically splitting based on which bucket our time t is in; and then we take the right endpoint of that
bucket. Why we choose the right endpoint instead of the left endpoint is informed by our assumption of
right-continuity — by right-continuity, for all t ∈ [0, t0] and all ω, we have Xn

t (ω) → Xt(ω). This is really
because we’re taking the right endpoint — so you have a sequence of times converging to t from the right.

Then because the limit of measurable functions is measurable, it suffices to show that each of these discrete
approximations is measurable, in the sense that when we think of it as a function (ω, t) 7→ Xn

t (ω), this is
measurable with respect to Ft × B([0, t]).

What does it mean to be measurable? If we fix A ∈ B(E) (we only needed E to be a metric space to
talk about continuity; for the rest of this E could have been a general measurable space) and then look at
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{(ω, t) | Xn
t (ω) ∈ A}, we can basically write this as a union of product sets, directly from the definition of

our discrete approximation — it’s

n⋃
i=1

{
Xit0/n ∈ A

}
×
[
i− 1

n
t0,

i

n
t0

)⋃
{Xt0 ∈ A} × {t0}

(we’re just splitting based on which bucket your time t lies in). So you can just explicitly write out what this
event is. But then you’re done — because by assumption {Xit0/n ∈ A} ∈ Ft0 and {Xt0 ∈ A} ∈ Ft0 (that’s
where we use the assumption that X is adapted). And these intervals are definitely measurable subsets of
[0, t0]. So our σ-algebra Ft × B([0, t0]) includes all these sets, and we’re done.

Here’s a definition, though this doesn’t really get used until later on.

Definition 5.3 (Progressive σ-algebra). Let P be the collection of sets A ∈ F ⊗ B(R+) such that the
process Xt(ω) = 1[(ω, t) ∈ A] is a progressive process. We call P the progressive σ-algebra.

So we’re looking at all sets A such that you get a progressive process when you get an indicator. Here are
some facts about P (which we may use later).

Exercise 5.4. This collection P is a σ-algebra.

(This is either on the current homework or will be on the next one.)

Exercise 5.5. A set A ⊆ Ω× R+ is in P if and only if for all t ≥ 0, we have

A ∩ (Ω× [0, t]) ∈ Ft ⊗ B([0, t]).

This is very similar to the definition of progressive processes; maybe that similarity is why you might think
to check this condition.

Exercise 5.6. A process X is progressive if and only if the map (Ω × R+,P) → (E, E) defined by
(ω, t) 7→ Xt(ω) is measurable.

This is basically saying that the progressive σ-algebra is the smallest σ-algebra for which all progressive
processes are measurable; that’s one way to think about it.

§5.2 Stopping times

Now let’s define stopping times in slightly more generality than for Brownian motion (it’s basically the same,
you just have a general filtration).

Definition 5.7 (Stopping times). A random variable T : Ω → [0,∞] is a stopping time with respect to
(Ft) if {T ≤ t} ∈ Ft for all t ≥ 0.

Definition 5.8. We define the stopped σ-algebra

FT = {A ∈ F∞ | A ∩ {T ≤ t} ∈ Ft for all t ≥ 0}.

Note that T is allowed to be infinite. (This is the exact same definition as in Brownian motion.)

Exercise 5.9. The collection FT is indeed a σ-algebra.
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(This is on the homework.)

Some fundamental facts:

Fact 5.10 — If T is a stopping time, then {T < t} is also Ft-measurable.

Proof. We can write {T < t} =
⋃

q∈Q,q<t{T ≤ q} ∈ Ft.

Fact 5.11 — The event {T =∞} is F∞-measurable.

Proof. We can write {T =∞} = (
⋃

n∈N{T ≤ n})c.

Since Ft ⊆ Ft+ (recall that this is all your information infinitesimally after time t), a stopping time with
respect to Ft is also one with respect to Ft+.

The next proposition characterizes when you’re a stopping time with respect to this larger filtration (Ft+).
(It’s easier to be a stopping time with respect to this filtration, because it’s larger.)

Proposition 5.12

Let Gt = Ft+.

(i) A random variable T is a stopping time with respect to (Gt) if and only if {T < t} ∈ Ft for all
t > 0. This is equivalent to the statement that T ∧ t ∈ Ft for all t > 0.

(ii) Let T be a stopping time with respect to (Gt). Then the stopped σ-algebra GT can be written as

GT = {A ∈ F∞ | A ∩ {T < t} ∈ Ft for all t > 0}.

(Here GT is defined in the same way as FT from before, with G in place of F . It’s natural based on (i) that
this stopped σ-algebra based on G should have this alternative interpretation.)

Notation 5.13. We write FT+ = GT .

(This is just notation — a priori FT+ doesn’t have meaning — but it’s natural based on these results.)

Proof of (i). Let’s first assume T is a stopping time with respect to G; and we want to show the event
{T < t} is Ft-measurable. This is kind of the same trick as what we did before — we can write

{T < t} =
⋃
q∈Q
q<t

{T ≤ q}.

And for each q, by definition {T ≤ q} ∈ Gq ⊆ Ft (since q < t, so all your information infinitesimally after
time q is contained in all your information up to time t). So this whole thing is in Ft, which proves one
direction.

Conversely, suppose we have this property that {T < t} ∈ Ft for all t, and we want to verify that T is a
stopping time with respect to (Gt). Then we have to consider {T ≤ t}; and we can write this as

{T ≤ t} =
⋂
n

{
T < t+

1

n

}
.
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We want to say the right-hand side is in Gt. But because this is a decreasing intersection, you can start the
intersection at any finite positive integer n0 (insteaad of at 1); so this is going to be in Ft+1/n0

for all n0.
So that means it’s also in

⋂
n0
Ft+1/n0

. And by definition that’s Ft+ = Gt.

(Intuitively you’re just saying you have an intersection of decreasing events, so you don’t have to look at
the first finitely many.)

That proves the first part of (i); now we want to say this is all equivalent to saying that T ∧t is Ft-measurable
as a random variable.

First, if T ∧ t ∈ Ft, then by definition, for all s we have

{T ∧ t ≤ s} ∈ Ft

(that’s a consequence of measurability). Now if we take s < t, then

{T ≤ s} = {T ∧ t ≤ s}

(because there’s no way t ≤ s). So taking a sequence sn ↗ t, we get that

{T < t} =
⋃
n

{T ≤ sn} ∈ Ft.

(It’s all similar ideas to what we’ve seen before; here you’re taking an increasing union.)

Conversely, now suppose that T is a stopping time with respect to (Gt); and we want to verify T ∧ t is
Ft-measurable. So we want to take events of the form {T ∧ t ≤ s} and show that they belong to Ft (if we
can verify this for all s, then that shows T ∧ t is Ft-measurable).

First, if s < t, then this is just {T ≤ s}, which we saw is in Ft (we assumed T is a stopping time with
respect to (Gt), so {T ≤ s} ∈ Gs ⊆ Ft); and if s ≥ t then it’s just Ω (since we’re taking a min), which is
definitely in Ft.

Student Question. What’s the intuition behind this proposition?

Answer. What it means to be a stopping time means you can decide when to stop based on the
information you’ve seen. Now if T is a stopping time with respect to G, that sort of means you can
decide whether to stop using the information infinitesimally afterwards. This is a bit weaker because
you have extra information, but only infinitesimally after t.

For these precise statements, Sky isn’t sure if there’s intuition; it’s kind of just playing with set theory.
These are all facts that we may need later on, so it’s good to at least have seen it once before.

That proves (i); we’re going to skip the proof of (ii), because it’s basically doing something like

{T < t} =
⋃
q∈Q
q<t

{T ≤ q}

again (you just have extra intersections with A everywhere).

Now we’ll present a long proposition with some more foundational properties of stopping times. It has parts
(a) through (j); we are only going to prove (j), and parts (a)–(i) are on the homework. This is proven in
the book, so you can look at the book if you want, but if you actually want to understand things or check
you understand things, it’s good to try to prove them on your own first — it’s a good exercise to know that
you can manipulate all these definitions.
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Proposition 5.14

(a) For a stopping time T , FT ⊆ FT+. Furthermore, if (Ft) is right-continuous (i.e., Ft = Gt for all
t), then FT = FT+.

(b) If T = t, then FT = Ft and FT+ = Ft+.

(c) T is FT -measurable.

(d) Let A ∈ F∞, and set

TA(ω) =

{
T (ω) ω ∈ A

∞ ω ̸∈ A.

Then A ∈ FT if and only if TA is a stopping time.

(e) Let S and T be stopping times with S ≤ T . Then FS ⊆ FT and FS+ ⊆ FT+.

(f) S ∨ T and S ∧ T are also stopping times. Furthermore,

FS∧T = FS ∩ FT .

Furthermore, {S ≤ T} ∈ FS∧T and {S = T} ∈ FS∧T .

(g) If (Sn) is a monotone increasing sequence of stopping times (written Sn ↑), then limn Sn is also a
stopping time.

(h) If (Sn) is a monotone decreasing sequence of stopping times (written Sn ↓), then limn Sn is a
stopping time with respect to (Ft+). If we call limn Sn = S, we also have

FS+ =
⋂
n

FSn+.

(i) If Sn ↓ and Sn is eventually constant (i.e., for all ω, the sequence Sn(ω) eventually stays at some
fixed value), then S = limn Sn is a stopping time (with respect to the original filtration), and
FS =

⋂
nFSn .

(j) Let T be a stopping time. A function ω 7→ Y (ω) defined on {T < ∞} taking values in (E, E) is
FT -measurable if and only if for all t ≥ 0, the restriction of ω 7→ Y (ω) to {T ≤ t} is Ft-measurable.

For (a), intuitively FT is all the information up to your random time, and FT+ is all the information up
to and infinitesimally after your random time; so it makes sense FT ⊆ FT+. To prove it you have to play
with set theory. The second part is also intuitive — right continuity means this is true for any deterministic
time, and this says it’s also true for your random time.

For (b), this is also natural if you think of FT as all the information up to your random time (which is no
longer random).

For (d), we’re assuming T is a stopping time, and we modify the stopping time by setting it to T on A and
∞ off.

For (e), this is again quite natural — all the information up to your first random time has to be contained
in all the information up to your second, larger, random time.

For (f), FS∧T is all the information up to the first (smaller) one of your random times. Why should {S ≤ T}
be contained in this? Imagine you’re observing your process and deciding when to stop. If I see that I’ve
stopped S and I haven’t stopped T , that should be known based on all the information up to time S, which
in this case is S ∧ T (since I’m assuming S stopped before T ); so if you think about something like that,
you kind of guess that these should be true.

For (h) vs. (i), (i) says that if you have the additional property of being eventually constant, then you don’t
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have to look infinitesimally ahead to know when to stop. This is intuitive because if you know eventually
Sn = S, then all the information up to time Sn should be all the information up to time S (at least, when
you take this intersection).

Property (j) is the one thing we’ll actually prove in class, because we’ll eventually come back to why when
you have a progressive process and take a random time, that gives you a random variable; and to prove
that, we need property (j).

For (j), what we really mean is that Y is a function on {T < ∞} ⊆ Ω. We’re saying that to verify Y is
measurable with respect to FT , you can kind of reduce to verifying measurability for fixed times. To be
precise, when we say the restriction of a map is itself measurable, what you’re saying is that we have a map
Y defined on the set {T <∞} with the σ-algebra {A∩{T <∞} | A ∈ FT }; and we’re saying that this map
to (E, E) is measurable. Then the restriction of Y to {T ≤ t} is a map

Yt : ({T ≤ t}, {A ∩ {T ≤ t} | A ∈ Ft})→ (E, E)

(basically we just replaced {T < ∞} with the smaller event {T ≤ t}). And we’re saying the first thing is
measurable if and only if the second is measurable for all t.

Proof. First let’s suppose Y is FT -measurable. Now we want to verify that Yt is measurable for any t. So
let’s take B ∈ E ; we want to look at an event of the form {Yt ∈ B}, and we want to show this is contained
in the relevant σ-algebra.

But what is this event? We can think of it as {Y ∈ B} ∩ {T ≤ t} (because all we did was restrict to a
smaller space, and we can write this in terms of the original map and then add in the restriction). And
we’re assuming Y is measurable, so we can write {Y ∈ B} = A ∩ {T <∞} for some A ∈ FT . And because
{T ≤ t} ⊆ {T < ∞}, this is just A ∩ {T ≤ t}. And if A ∈ FT , then by definition this is in Ft; so that
verifies what we wanted (e.g., we can write it as (A ∩ {T ≤ t}) ∩ {T ≤ t}; the first event A′ is in Ft by the
fact that A ∈ FT ).

That proves one direction. Conversely, now we’re going to assume Yt is Ft-measurable for all t; and we want
to show that {Y ∈ B} is in the relevant σ-algebra {A ∩ {T <∞} | A ∈ FT }. By the definition of what FT

is, we need to intersect this with {T ≤ t} and show that this is in Ft. But this is just

{Y ∈ B} ∩ {T ≤ t} = {Yt ∈ B} ∈ Ft.

So this implies that {Y ∈ B} ∈ FT . And {Y ∈ B} = {Y ∈ B}∩{T <∞}, because Y itself is just a function
on {T <∞}.

Remark 5.15. There’s probably some redundancy in how we defined things — we shouldn’t have to
add in these intersections that are basically the whole space — but it doesn’t really matter. The reason
we had them is that we have functions that are defined on just a subset of Ω rather than all of Ω, so
you have to talk about a σ-algebra on this subset; and the natural one is just that you take any subset
in the original σ-algebra and intersect it with this subset.

The abstract thing is that if we have measurable spaces (E1, E1)→ (E2, E2) and a measurable function
f , now if I take some F1 ∈ E1, I want to define a new function f |F1 on F1; and if I want to talk about
its measurability properties, I have to define a new σ-algebra; and the natural one is {F1 ∩F | F ∈ E1}.
(Here F1 was the event {T ≤ t}.)

But what happens is that if I take an event A∩{T <∞} and then I’m intersecting it with F1 = {T ≤ t},
then {T <∞} is redundant and I can write this as A ∩ {T ≤ t} ∈ Ft. So maybe that’s why this extra
thing was redundant.
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§5.3 Progressive processes at stopping times

Now let’s get back to what we said at the beginning about progressive processes — (j) is kind of exactly the
thing you need, and we’ll see why.

Theorem 5.16

Let (Xt) be a progressive process valued in some measurable space (E, E). Let T be a stopping time.
Then the map ω 7→ XT (ω)(ω) is FT -measurable on the event {T <∞}.

(We fix a filtration beforehand, which gives a notion of progressive processes and stopping times.)

In hindsight, the reason we did all this effort in (j) to talk about measurability on {T <∞} is that certainly
stopping times can be ∞, but for a general stochastic process there’s no notion of X∞ (for example, B∞
is undefined, because you’ll oscillate infinitely often). So in general you can only talk about XT when T
is finite. (We’ll see that with martingales satisfying certain properties you do have an almost sure limit as
T →∞, and in that case you can define this even without restricting to the case where T is finite.)

Proof. We’ll just apply (j); by (j), it suffices to verify that for all t ≥ 0, the map ω 7→ XT (ω)(ω) is Ft-
measurable on the event {T ≤ t} (that’s what (j) is telling us — that we can just reduce to looking at these
deterministic times).

One reduction is that on the event {T ≤ t}, we can write

XT (ω)(ω) = XT (ω)∧t(ω).

This means it suffices to show that XT (ω)∧t(ω) is Ft-measurable on {T ≤ t}.
And basically, the reason this is measurable is that we’re composing two maps: the first is the map

({T ≤ t},Ft)→ (Ω× [0, t],Ft × B([0, t]))

defined by ω 7→ (ω, T (ω)∧ t). And the second is just the thing where you evaluate your process on this pair
— it’s the map

(Ω× [0, t],Ft × B([0, t]))→ (E, E)
defined by (ω, s) 7→ Xs(ω).

One checks that our map is a composition of these two. And by assumption the second one is measurable,
because the process is progressive (and this is precisely the definition of a progressive process). So now it
suffices to check that just the first one is measurable (then the composition of measurable maps is measurable,
so this would allow us to conclude what we want).

To check this, we take a generating event in the σ-algebra Ft × B([0, t]) — so we can take a product event
A×B where A ∈ Ft and B ∈ B([0, t]). And now we want to look at

{ω | (ω, T (ω) ∧ t) ∈ A×B} ∩ {T ≤ t}.

(This is the pre-image of A×B under our map, and we want to verify this is in Ft.) Certainly {T ≤ t} ∈ Ft,
so that’s fine. Meanwhile, for the first term, we can write this as

(A ∩ {T ∧ t ∈ B}) ∩ {T ≤ t}.

And A ∈ Ft and {T ≤ t} ∈ Ft. Meanwhile, for the second term, there’s several things you could do; for
example, the random variable T ∧ t is Ft-measurable (T is a stopping time with respect to the filtration, so
it’s a stopping time with respect to (Gt); and we had a proposition saying that being a stopping time with
respect to this larger filtration is equivalent to saying T ∧ t is Ft-measurable). So all these sets are in Ft

and we’re done.

(We could also use (f) — t itself is a stopping time, so T ∧ t ∈ FT∧t ⊆ Ft.)
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§5.4 Some preliminaries

Now we know what progressive processes are, and we can talk rigorously about this random time — this is
what you really want to do in martingale theory (talk about your stopped processes), and now we have the
foundations to do that (we know these stopped processes define random variables).

Before we get to martingale theory, there are one or two preliminary processes that will be helpful.

Proposition 5.17

Let T be a stopping time, and let S : Ω→ [0,∞] be FT -measurable such that S ≥ T . Then S is also a
stopping time.

In particular, the reason this is useful is that if T is a stopping time, then we can define a sequence of
discrete approximations

Tn =

∞∑
k=1

1[(k − 1)2−n < T ≤ k2−n]k2−n +∞1[T =∞].

Then this means Tn is a stopping time and Tn ↘ T . (By definition Tn ≥ T because we took the right
endpoint of each interval. And to check Tn is FT -measurable, you just need to check each of these events in
the indicator functions is FT -measurable, which you can do just by going back to the definitions.)

Proof. We want to show S is a stopping time, so we need to show {S ≤ t} ∈ Ft. First, we know {S ≤ t} ∈ FT

because S is FT -measurable. And we can write

{S ≤ t} = {S ≤ t} ∩ {T ≤ t}

(because S ≥ T , so the intersection doesn’t do anything). And the reason you introduce this is because by
definition of what it means to be in FT , this is in Ft. So S is a stopping time.

There’s just one final proposition before we get into martingale theory. It basically gives you examples of
stopping times; and it’s the most frequent examples we’ll use.

Proposition 5.18

Let (Xt) be a progressive process valued in a metric space (E, d).

(i) If X has right-continuous sample paths and O is an open set of (E, d), then

TO = inf{t | Xt ∈ O}

is a stopping time with respect to (Ft+).

(ii) If X has continuous sample paths and F ⊆ E is closed, then

TF = inf{t | Xt ∈ F}

is a stopping time (with respect to (Ft)).

For (i), we’re looking at the first time your process enters this open set O; and this isn’t necessarily a
stopping time with respect to the original filtration, but it is with respect to the enlarged one. And the
second part says that if you have continuous sample paths and you look at a closed set, then the first time
you enter is a stopping time with respect to the original filtration.

We’ll prove (i), and leave (ii) for next time.
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Proof of (i). In order to be a stopping time with respect to Ft+, we can just look at events of the form
{T0 < t} and show it’s in Ft. By right-continuity, we can write

{T0 < t} =
⋃
s∈D
{Xs ∈ O}

where D ⊆ [0, t] is a countable dense subset of [0, t]. (This is using right continuity and the fact that O is
open — so if there’s some time when your process is in O, then going slightly beyond that time it must still
stay in O.) And each of these things is Fs-measurable because X is progressive (so in particular adapted),
so you get this result; that verifies TO is a stopping time with respect to this enlarged filtration.

Next time we’ll get into continuous-time martingales. It might be good to review the discrete-time theory,
because we’ll use lots of that as input and not reprove them (e.g., convergence theorems for martingales).

§6 February 19, 2025

Yesterday we finished off stating this proposition:

Proposition 6.1

(ii) Let X be progressive, valued in a metric space (E, d), and continuous. If F ⊆ E is closed, then

TF = inf{t ≥ 0 | Xt ∈ F}

is a stopping time with respect to (Ft).

(We didn’t rewrite (i), which we proved yesterday; we’ll prove (ii) today.) This is probably going to be the
most relevant case for us — if you think about the first time Brownian motion hits a point, for example,
that’s an example of this stopping time. But the statement is that if you have a progressive proccess taking
values in some metric space with continuous sample paths, then the first time you hit a closed set is a
stopping time (with respect to your original filtration).

Proof. First, note that the function on your metric space E defined by

x 7→ d(F, x) = inf
y∈F

d(y, x)

(basically, the distance from your point to your closed set) is continuous. We’ll prove this later, but first
let’s assume this is true.

Then th process given by (d(F,Xt))t (taking the distance from your process X to your closed set F ) has
continuous sample paths; and it’s also adapted (just because, well, you’re taking this continuous function
and applying it to Xt; Xt is adapted because you had a progressive process). And you can express the event
{TF ≤ t} as

{TF ≤ t} =
{
inf
s∈D

d(F,Xs) = 0

}
where D is some countable dense subset of [0, t]. Here we’re using continuity of the distance process to
replace the inf over all times with just a countable set; and we want a countable set so that we can say this
event is a countable intersection, so it’s going to be measurable. And so this is in Ft — any individual one
of these events is Fs-measurable because the process is adapted, and s ≤ t, so this whole thing is in Ft.

So that verifies you have a stopping time, assuming this distance function is continuous; now let’s show
that. It’s actually going to be Lipschitz continuous. Basically the picture is that you have some closed set
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F and points x and z; and somehow if we look at the individual distances between x and F and z and F ,
the difference between them can’t be greater than the distance between x and z, basically by the triangle
inequality.

So let x, z ∈ E, and let y0 ∈ F be such that d(F, z) = d(y0, z). Here’s where we use the fact that F is closed;
that means this infimum is actually attained by some point y0. Then we have

d(F, x)− d(F, z) ≤ d(y0, x)− d(y0, z)

(because d(F, z) = d(y0, z) by assumption, and d(F, z) is an infimum, so we can bound it by the distance to
some point). And by the triangle inequality, this is at most d(x, z). (It’s more clear if you move the minus
to the other side.)

And this is symmetric in x and z, so if we swap their roles we get that

|d(F, x)− d(F, z)| ≤ d(x, z).

So it’s actually Lipschitz continuous, not just continuous. And that shows this proposition.

Student Question. Where did we use that X was progressive?

Answer. It seems nowhere. Maybe the fact you’re assuming X is continuous means that if you just
assume adaptedness, then it’s automatically progressive. And we have to assume continuity; so we
could have just said it’s continuous and adapted; but that automatically means it’s progressive.

That concludes some of this foundational material about stopping times and σ-algebras. Now we can move
on to continuous-time martingales.

§6.1 Continuous-time martingales

Let’s start by defining a martingale. First, in the background we’re always fixing some filtration (as usual);
all definitions are with respect to that filtration.

Definition 6.2. An adapted R-valued process (Xt) such that Xt ∈ L1 for all t ≥ 0 is called:

• A martingale if for all 0 ≤ s < t, we have E[Xt | Fs] = Xs.

• A supermartingale if for all 0 ≤ s < t, we have E[Xt | Fs] ≤ Xs.

• A submartingale if for all 0 ≤ s < t, we have E[Xt | Fs] ≥ Xs.

This is all exactly the same as in discrete time, except that now your times are allowed to be continuous.
Martingales model a process that tends not to increase or decrease, at least in expectation.

One thing to note is that if you have a supermartingale, then by negating it you get a submartingale. So
it’s often the case that if you prove something for supermartingales, it also extends to submartingales (as
long as you keep track of the −).

§6.2 Examples of martingales

Often, the main thing you want to do is find martingales, because they satisfy very nice properties and also
let you do explicit computations. Somehow the fact that it’s a process that doesn’t have a trend of increase
or decrease kind of tells you something is ‘conserved,’ and this leads to exact computations of things, as it
turns out.

But anyways, let’s get into some examples. How do you spot martingales, basically? Here’s a very general
setup that allows you to find martingales.
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Example 6.3

Let Z be adapted and with independent increments, i.e., Zt−Zs is independent of Fs for all 0 ≤ s < t.
Then:

(i) If we additionally have Zt ∈ L1 for all t, then Z̃t = Zt − E[Zt] is a martingale.

(ii) If Zt ∈ L2 for all t, then Yt = Z̃2
t − E[Z̃2

t ] is a martingale.

(iii) If for some θ ∈ R, for all 0 ≤ s < t you have E[exp(θZt)],E[exp(θ(Zt − Zs))] <∞, then

Xt =
exp(θZt)

E[exp(θZt)]

is a martingale.

So for (i), if your Zt’s are integrable, then we just need to subtract out the mean to get a martingale. For (ii),
if the Zt’s are actually in L2, then we get a ‘quadratic’ martingale — where you subtract out the mean and
also the variance. And as you can see, there’s a more general martingale that gives these examples — you
can imagine taking cubes and fourth powers and so on, and in principle if you assume enough integrability,
you can get corresponding martingales, though the things you subtract become more and more complicated.
But it turns out you can encode them all in some ‘exponential’ martingale, as in (iii). Here you have to
divide by the mean, instead of subtracting.

Why are (i) and (ii) encoded in (iii)? Basically if (iii) is true for θ in some interval around 0, you basically
want to differentiate Xt in θ. If you differentiate once and set θ = 0, the martingale you get should be the
one in (i); and if you differentiate more and more times, you should get higher-order martingales. (But we
won’t go into this.)

Proof. For (i), let’s just try to compute the conditional expectation E[Zt | Fs] (the thing we want to look
at). First we can write

E[Zt | Fs] = E[Zt − Zs | Fs] + Zs

(by assumption Zs is Fs-measurable, so you don’t need a conditional expectation on it). And now using the
independent increments property, we have E[Zt − Zs | Fs] = E[Zt − Zs]. And now we can rearrange things
to write

E[Zt | Fs] = E[Zt − Zs] + Zs = Z̃s + E[Zt].

And if you move E[Zt] to the other side, you get Z̃t; that verifies the martingale property for this linear
martingale.

That’s what you do in general — if you have to guess what you need to subtract from Z̃t to get a martingale,
you kind of do this computation and see how to group things in an appropriate way. We’ll also see this for
the quadratic martingale.

For the quadratic martingale (ii), let’s try to compute

E[Z̃2
t | Fs] = E[(Z̃t − Z̃s)

2 | Fs] + 2E[Z̃s(Z̃t − Z̃s) | Fs] + Z̃2
s

(again we write Z̃t = (Z̃t − Z̃s) + Z̃s; then we have a square, so we get three terms; and we don’t need to
take a conditional expectation on the last term because Z̃s is adapted).

The first thing to note is that the cross-term E[Z̃s(Z̃t − Z̃s) | Fs] is just 0 — you can pull out Z̃s because
it’s adapted, and then use the martingale property to say that the expected increment is 0.

And for the last term, you can remove the conditioning by independence, so we get

E[(Z̃t − Z̃s)
2] + Z̃2

s .
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Now the first thing you can try with this is to expand out the square again, giving

E[Z̃2
t ]− 2E[Z̃tZ̃s] + E[Z̃2

s ] + Z̃2
s .

Again we get this cross-term. But the thing to realize — which is always good to know — is that you can
always kind of look at the increments. What this means is that we can write this as

E[E[Z̃sZ̃t | Fs]] = E[Z̃sE[Z̃t | Fs]].

And now using the martingale property, this is just E[Z̃2
s ].

And now we can group these two; so in the end this whole thing is

E[Z̃2
t ]− E[Z̃2

s ] + Z̃2
s .

And now it’s in the right form — if you move E[Z̃2
t ] to the left-hand side you verify the martingale property

for Yt. This type of thing where you realize you can do this conditional expectation thing — we’re going to
be using it over and over again.

For this exponential martingale (iii), let’s again look at E[exp(θZt) | Fs]. Again you want to use the
independent increment property, so you can write this as

exp(θZs)E[exp(θ(Zt − Zs)) | Fs].

And again by the independent increment property, we can remove the conditional expectation, so this is

exp(θZs)E[exp(θ(Zt − Zs))].

Now what do we want to say? It’s kind of a trick — what you want to do is separate this and write it as a
product of expectations, or at least this was Sky’s first instinct. But that’s not possible because Zt and Zs

aren’t independent. But what you do know is that if we take the expectation of both sides, we get

E[exp(θZt)] = E[exp(θZs)]E[exp(θ(Zt − Zs))].

That should give us an identity for E[exp(θ(Zt−Zs))]; we can now replace it with this ratio and move it to
the left-hand side. And that concludes — now we get

E[exp(θZt) | Fs] = exp(θZs) ·
E[exp(θZt)]

E[exp(θZs)]
.

And we can move E[exp(θZt)] to the left-hand side, and that verifies the thing we claimed was a martingale
is indeed a martingale.

Remark 6.4. One thing we didn’t explicitly check was that these things are all integrable; but that
just follows from the assumptions. In (i), if Z is integrable so is Z̃. In (ii), if Z ∈ L2 then Z̃2 is
integrable. And in (iii), you’re basically just assuming that everything up here is integrable. In Le Gall,
he may have stated it without the second assumption that the exponential moments of the increments
are all finite. Sky isn’t sure whether it’s true without that — because in this proof you need to assume
E[exp(θ(Zt − Zs))] is integrable. But there may be an argument showing that if all E[exp(θZt)]’s are
finite then these are finite as well.
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§6.2.1 Martingales from Brownian motion

What process Z are we going to use the most often? Well, it’s Brownian motion. So if we look at what we
get when Z is Brownian motion, we get a bunch of martingales associated with Brownian motion; so let’s
see that.

But before we do that, we need to slightly expand our definition of Brownian motion. When you talk about
martingales, you’re always fixing a filtration beforehand. So we want to talk about Brownian motion with
respect to that filtration.

Definition 6.5. We say a process (Bt) is a (Ft)-Brownian motion if B is a Brownian motion, it is
adapted, and it has independent increments with respect to (Ft).

Recall being a Brownian motion means you have continuous sample paths and the right finite-dimensional
distributions (you’re a Gaussian process with the right covariance function).

Naturally you’d want it to be adapted with respect to your filtration. Of course, if you just take your filtration
to be the filtration generated by the Brownian motion, all this is true. But the point is sometimes you can’t
— sometimes you’re given a filtration and can’t choose it. And you might still want this independent
increment property with respect to that larger filtration.

You can also define the same thing for Rd-valued Brownian motion.

Then applying the earlier example to Brownian motion:

Example 6.6

If (Bt) is a (Ft)-Brownian motion, then the following are all martingales: Bt itself, B
2
t −t, and exp(θBt−

θ2t/2) (for any θ).

Here we’re using the fact that Bt has mean 0 and variance t. And for the third, we’re using the fact that
the normal distribution has good tails, so you always have exponential integrability (no matter what θ is).
You can get the extra correction −θ2t/2 because this thing had better have mean 1 — it’s a martingale, so
it has to have the same mean as at time 0, where it’s just 1. So whatever you subtract here has to make it
so that the whole thing has mean 1. And exp(θBt) is the moment generating function of Brownian motion;
so you just have to remember that that’s exp(θ2t/2), and you just have to cancel that to get something with
mean 1.

For what we were saying about differentiating in θ, if we differentiate this exponential in θ and set θ = 0,
this should just be Bt — when the derivative hits the θBt term you get Bt, and for the second term you
still have a θ, so setting θ = 0 makes that term go away.

And if you differentiate twice in θ and set θ = 0, now you’re going to get B2
t − t.

So this is what we mean when we say if you differentiate in θ, you generate all these martingales with higher
and higher degree polynomials. These polynomials are quite special and are called Hermite polynomials;
but we probably won’t get into that.

Student Question. Can you give some intuition to why all the derivatives are martingales?

Answer. The point is that you should think of this as a family of martingales indexed by θ now — very
abstractly, if you have

E[Mt(θ) | Fs] = Ms(θ)

for all θ (so you get a martingale for each θ), then you can differentiate both sides by θ (as many times
as you want) and get

∂k
θE[Mt(θ) | Fs] = ∂k

θMs(θ).
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And if you formally believe you can take the θ inside the expectation, you get

E[∂k
θMt(θ) | Fs] = ∂k

θMs(θ),

which says this kth derivative is also a martingale. You can often formally justify taking the derivative
inside; but anyways once you have a guess for what the martingale should be, you can try to verify
directly that the polynomial you get is a martingale. But that’s the intuition — you just differentiate
both sides with respect to your parameter.

So these are the basic examples of martingales. There’s another example in the notes, which Le Gall talks
about, using white noise; but we’ll probably just skip it.

§6.3 General facts about martingales

Now let’s discuss some general facts about martingales. They’re all extensions of discrete time theorems or
propositions about martingales; so let’s see these.

§6.3.1 Submartingales

Proposition 6.7

Let (Xt) be an adapted process, and let f : R → R+ be a convex function such that E[f(Xt)] is finite
for all t.

(i) If (Xt) is a martingale, then (f(Xt)) is a submartingale.

(ii) if (Xt) is a submartingale and f is nondecreasing, then (f(Xt)) is a submartingale.

So we have a positive convex function such that f(Xt) is integrable for all t.

Proof. For both cases, you have to know about conditional Jensen’s inequality, or the fact that Jensen’s
inequality still holds for conditional expectations; so you get that

E[f(Xt) | Fs] ≥ f(E[Xt | Fs])

(if you have an expectation of a convex function, you can take it outside). And now we want to conclude
that this is at least f(Xs).

In the martingale case, it’s actualaly exactly equal, since E[Xt | Fs] = Xs. In the second case, if you have
a submartingale, then E[Xt | Fs] ≥ Xs, and you have to use the fact that f is nondecreasing. But in either
case you get this inequality

E[f(Xt) | Fs] ≥ f(E[Xt | Fs]) ≥ f(Xs).

(So the main thing is conditional Jensen’s; but that requires some trick to prove, which we won’t go over.)

Some useful things to know as a consequence of this proposition:

Example 6.8

If you have a martingale (Xt), then if you take pth powers, |Xt|p is a submartingale for all p ≥ 1
(assuming that |Xt|p is integrable).

(This is because the function x 7→ |x|p is convex; this is why we needed p ≥ 1.)

As another consequence:
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Notation 6.9. For any random variable X, we define its positive part as X+ = max{X, 0}.

The function x 7→ x+ is a convex function, and it’s nondecreasing. So we get the following:

Example 6.10

If (Xt) is a submartingale, then (X+
t ) is also a submartingale.

Here you don’t have to assume additional integrability — you’re already assuming E[|Xt|] is finite (that’s
what it means for Xt to be integrable); but this is E[X+

t +X−
t ], where X− = max{−X, 0}. (This is still a

convex function, though it’s actually decreasing.) So if you assume this is finite, then E[X+
t ] is also finite.

Now let’s get to another fact about submartingales. The point of all these facts is basically that martingales
or submartingales are very special processes. Here’s one way they’re special.

Proposition 6.11

Let (Xt) be a submartingale. Then for all t ≥ 0, we have

sup
0≤s≤t

E[|Xs|] <∞.

In other words, your submartingale is L1-bounded on any finite interval. This is one consequence of the
submartingale property — it’s maybe the first example of why submartingales are special, that you’re
actually L1-bounded on any finite interval.

Proof. First of all, since we know (X+
t ) is a submartingale by what we just said, if you use the submartingale

property you obtain that
E[X+

s ] ≤ E[X+
t ] for all 0 ≤ s ≤ t.

And so at least if you replaced the absolute value with just the positive part, then you’d be done (this thing
is just bounded by the endpoint E[X+

t ]). But of course you also have to deal with the negative part (because
|Xs| = X+

s +X−
s ); how do we do that?

For that, we basically want to say the expectations cannot get too negative. First, we have

E[X+
s −X−

s ] = E[Xs] ≥ E[X0]

(using the submartingale property) — so we basically said the expectation (not the L1-norm) cannot get
too negative. But now you can turn this into an estimate on the negative part by moving it over — we get

E[X−
s ] ≤ E[X+

s ]− E[X0].

And we already had a bound for E[X+
s ]. So we get that

sup
0≤s≤t

E[|Xs|] ≤ 2E[X+
t ]− E[X0].

And that finishes.

§6.3.2 Uncorrelated increments

Now let’s talk about L2 martingales briefly, and the fact that they have nice ‘uncorrelated increments.’
(When we say (Mt) is a L2 martingale we mean Mt ∈ L2 for every fixed t; this doesn’t necessarily mean
that (Mt) is bounded in L2.)
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Proposition 6.12

Let (Mt) be an L2 martingale. Let 0 ≤ s < t, and let s = t0 < t1 < · · · < tp = t be a subdivision of
[s, t]. Then we have

E

[
p∑

i=1

(Mti −Mti−1)
2 | Fs

]
= E[M2

t −M2
s | Fs] = E[(Mt −Ms)

2 | Fs].

What is this saying? Well, the first and third things being equal basically mean that even conditionally, the
increments of any L2 martingale are uncorrelated — you can write Mt −Ms as the sum of hte increments
Mti −Mti−1 . And now we’re saying when you look at the second moment, you just need to look at the
diagonal terms. Usually when you take the second moment of a sum, you get diagonal terms and cross-terms;
and this basically says the cross-terms disappear because you’re uncorrelated.

This is quite a special property and somehow encodes a bunch of cancellation. For example, typically if you
want to bound the square of a sum, you’re not worried about the diagonal terms — if your sum has n terms,
you’ll only have n diagonal terms in the square, but O(n2) cross-terms. So if you want to bound the square
of a sum, you usually worry about the cross-terms, because they’re larger in number. But here you’re saying
all the cross-terms are 0, which encodes the cancellations. On some level, this is why stochastic integration
works — because you have this kind of cancellation or uncorrelated increments — as we’ll see later.

Proof. Let’s compute one of the squared increments

E[(Mti −Mti−1)
2 | Fs].

The first thing you want to do is use the tower property — we want to condition on the left endpoint, so
we write this as

E[E[(Mti −Mti−1)
2 | Fti−1 ] | Fs]

(we can do this because s ≤ ti−1 by definition). Now there’s nothing to do but to expand this square, and
we get

E[E[M2
ti | Fti−1 ]− 2E[MtiMti−1 | Fti−1 ] +M2

ti−1
| Fs].

And this type of calculation is very similar to what we just did with finding this L2 martingale — you
conditioned in Fti−1 , so you can pull out Mti−1 from the cross-term, and then use the martingale property
on Mti . And then this middle term just becomes M2

ti−1
, and you can group it with the last term; so this

becomes
E[E[M2

ti | Fti−1 ]−M2
ti−1
| Fs].

And now basically you just use tower again and remove the interior conditioning, so in the end you get

E[M2
ti −M2

ti−1
| Fs].

Again, the key point was that
E[MtiMti−1 | Fti−1 ] = M2

ti−1
,

and so we have a coefficient of −2 + 1 = −1.

And now when we sum over i, we get something telescoping, and everything cancels except the endpoints;
that gives you the first identity.

And going from here to the second expression is the exact same computation — we expand out the square,
and group the cross-term with the left endpoint. That proves this.

This type of thing is going to be used all the time soon — even starting from the next chapter on semi-
martingales, but definitely when we talk about stochastic integration.
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§6.3.3 Maximal inequalities

Another thing to recall from discrete-time martingale theory that we’re going to use:

Proposition 6.13 (Doob’s maximal inequality)

If (Xn) is a supermartingale, then for all λ > 0 and times k ≥ 0, we have

λP

[
sup

0≤n≤k
|Xn| > λ

]
≤ E[|X0|] + 2E[|Xk|].

(In this proposition we’re in discrete time, which is why we index by n instead of t.)

This says you can bound the tail probability of your maximum by the expectations of the endpoints. To
compare this with what you’d get from Markov’s inequality, if you applied Markov’s inequality at just the
endpoint, what you’d get is

λP[|Xk| > λ] ≤ E[|Xk|].

If you tried to do something similar here, you’d have to bound the expectation of the sup. But you can’t
generally control that; what you do have control on is the sup of expectations.

So somehow this is something very special about supermartingales — the fact that you have this Markov-like
inequality for the sup of your process is quite strong.

Proposition 6.14 (Lp maximal inequality)

If (Xn) is a martingale, then for all k ≥ 0 and p > 1, we have

E

[
sup

0≤n≤k
|Xn|p

]
≤
(

p

p− 1

)p

E[|Xk|p].

Again this is quite a strong inequality — if your martingale was in Lp for some p ≥ 1, then this lets you
actually control the expectation of the sup, based on just the expectation of the endpoint. So if your
martingale is in Lp, then you can always control the left-hand side. Often if you’re stuck on some estimates,
the missing thing is remembering this.

These are the discrete-time versions. We’re taking them as givens, so we assume these are true; and we’re
going to use them to prove the corresponding statements in continuous time.

The standard approach to all these things is you just want to reduce the continuous-time result to the
discrete-time one; so you’re going to take an increasing mesh of times and reduce to this discrete-time
result. But to be able to do that, you need to assume some sort of continuity.
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Proposition 6.15

Let (Xt) be right-continuous.

(i) If (Xt) is a supermartingale, then

λP
[
sup
0≤s≤t

|Xs| > λ

]
≤ E[|X0|] + 2E[|Xt|].

(ii) If (Xt) is a martingale, then

E
[
sup
0≤s≤t

|Xs|p
]
≤
(

p

p− 1

)p

E[|Xt|p].

(Right-continuous means that it has right-continuous sample paths. Left-continuous probably also works.)

We’ll again call these Doob’s maximal inequality and the Lp maximal inequality; they’re the same as the
discrete-time ones, except we take a sup over continuous time.

Proof. For (i), let’s take a sequence Dm of increasing finite subsets of [0, t] such that
⋃

mDm is dense in
[0, t], and such that your two endpoints 0 and t are contained in all the Dm’s. (You can always ensure this;
for example, you can take Dm = {it/m | 0 ≤ i ≤ m}.)
Then for each m, you can apply the discrete-time version. In discrete-time you usually index your property
by n. Here our times are some arbitrary points, but that’s fine — it’s more just a notational difference. But
if you do apply that proposition for discrete time, you get

λP
[
sup
s∈Dm

|Xs| > λ

]
≤ E[|X0|] + 2E[|Xt|].

And then you can take m→∞. And you note that

sup
s∈Dm

|Xs| → sup
s∈[0,t]

|Xs| ,

because you took the union of these Dm’s to be dense. (Here we’re also using the fact that X is right-
continuous to get this convergence. The precise convergence result you might apply is e.g. Fatou’s lemma;
that would show the result.)

And that means as you take m→∞, this probability on the left converges to P[sups∈[0,t] |Xs| > λ].

The proof of (ii) is basically the same — you take the same sequence, use the discrete-time result, and then
take the limit, which you can justify by Fatou’s lemma or monotone convergence or something like that.

§6.4 Martingale convergence theorem

The first main theorem in dicrete-time martingale theory is the martingale convergence theorem — if your
martingale is bounded in L1, it converges almost surely. We basically want to prove the same result in
continuous time, but before we do that, we need some setup.

We’re going to first prove this convergence theorem for L1-bounded martingales. Eventually we want to
prove optional stopping theorems — they’re one thing that makes martingales super powerful, because you
usually use those to get explicit calculations. For that, you need the martingale convergence theorem and
to talk about uniform integrability; so that’s what we’re working towards. And after we cover OST, we can
discuss some applications to Brownian motion.

To prove the martingale convergence theorem in discrete time, you had to look at up-crossing numbers; so
let’s define what those are.
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Definition 6.16. Let f : I → R+ for some I ⊆ R. For fixed a < b, we define the up-crossing number
Mf

ab(I) as the maximum integer k such that there exists a sequence s1 < t1 < · · · < sk < tk of elements
of I such that f(si) ≤ a for all i, and f(ti) ≥ b for all i.

(Despite the notation, I doesn’t have to be an interval; it’s just some arbitrary subset.)

Intuitively, this is the maximum number of up-crossings your function does on I — from below a to above
b. So the picture to have in mind is that you’re graphing your function f , and maybe it takes values at a
discrete set of points, or maybe it’s continuous in some parts (I could be arbitrary). And then you set two
levels a and b (as horizontal lines). And you’re basically asking for the number of times your function starts
below a and goes above b.

So that’s the picture; and this is how we formalize it.

Remark 6.17. As special cases, if no such choice of si’s and ti’s exist, you set the up-crossing number
to 0; if for all k such a choice exists, you set it to ∞ (i.e., you have an infinite number of up-crossings).

The key to the proof of the martingale convergence theorem in discrete time was Doob’s up-crossing in-
equality, which we’ll now state.

Proposition 6.18 (Doob’s upcrossing inequality)

If (Xn) is a (discrete-time) supermartingale, then for all n ≥ 0 and all a < b, we have

E[MX
ab({0, . . . , n})] ≤

1

b− a
E[(Xn − a)−].

So this says that for all n, the expected number of up-crossings of your process on some [a, b] is bounded by
something involving the endpoint of your process. (Here we think of X as the function.)

We’re not going to prove this. The proof is something about defining the right martingale or submartingale
that basically counts up-crossings, and then applying one of these submartingale expectation inequalities
(maybe the maximal inequality), and that eventually leads you to this bound on the number of upcrossings.
But we’re just going to use this as input.

Theorem 6.19 (Supermartingale convergence)

Let (Xt) be a right-continuous supermartingale. If (Xt) is L1-bounded (i.e., supt E[|Xt|] < ∞), then
there exists a random variable X∞ ∈ L1 such that Xt → X∞ almost surely (as t→∞).

So that’s the supermartingale convergence theorem.

Proof. Again, you just kind of want to discretize. So let D be a countable dense subset of R+, and let’s fix
some time T > 0 (this is a fixed time, not a stopping time). Let (Dm) be a sequence of finite subsets of D
such that Dm ↗ D and T ∈ Dm for all m. (To make this super precise, what you probably want to do is
first fix T and then let D be your countable dense subset — otherwise there’s no way D can be countable
and contain every possible time. So probably you first fix T , and then your countable dense subset D.)

By Doob’s upcrossing inequality, for all a < b and all m, we have

E[MX
ab(Dm ∩ [0, T ])] ≤ 1

b− a
E[(XT − a)−]

(this is just the up-crossing inequality applied to this specific set of finite times). Taking m→∞, we note
that because Dm is increasing, this upcrossing number is monotone increasing (if you make your set of
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possible times bigger, you can only have more upcrossings). So using monotone convergence, you get that

E[MX
ab(D ∩ [0, T ])] ≤ 1

b− a
E[(XT − a)−].

(Basically the claim is that this thing with Dm converges upwards to the thing with D.)

Now what you do is send T →∞, and use the fact that X is L1-bounded on the right. (The remark about
swapping the orders doesn’t really matter — you can actually send T → ∞ through the integers. So then
you can find some countable dense D which works for all integers T .)

Then we get that
E[MX

ab(D)] <∞

(the right-hand side is uniformly bounded in T because X is L1-bouned, and the left-hand side converges
upwards to this).

And once you get here, the rest is just basically various analysis facts; we’re out of time, so we’ll end here
and finish the proof next time.

§7 February 24, 2025

§7.1 Supermartingale convergence theorem

Today we’ll start by finishing the proof of the supermartingale convergence theorem.

Theorem 7.1 (Supermartingale convergence)

Let (Xt) be a right-continuous supermartingale. If (Xt) is L1-bounded, then there is X∞ ∈ L1 such
that

lim
t→∞

Xt = X∞ almost surely.

So L1 boundedness implies almost sure convergence. This is one of the special things about the theory of
martingales (or supermartingales).

Proof. Last time, we got up to the following statement: that

E[MX
ab(D)] <∞,

where we fixed a < b and a countable dense subset D ⊆ R+, and MX
ab(D) is the number of times you go

from below a to above b when you restrict your times to D (the upcrossing number). This was basically
reducing to the discrete-time Doob’s upcrossing inequality; always with arguments of this flavor, you take
some discrete subdivision and take something to ∞, and we got this.

Starting from here, this implies MX
ab(D) is finite almost surely. Now we can take a countable collection of a

and b — we have that almost surely for all rationals a < b, the up-crossing number MX
ab(D) is finite.

And this is already enough to imply that Xt converges, at least within D — we get that almost surely,

X∞ = lim
t→∞
t∈D

Xt exists.

(A priori, though, this limit might be ±∞.)

Why? It’s easier to see the contrapositive. If the limit doesn’t exist, that means lim inftXt < lim suptXt —
that’s basically what it means for you not to have a limit. But then if this is true, you can find a rational
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a slightly larger than the lim inf and b slightly smaller than the lim sup (with a < b), and for these your
upcrossing number will be infinite (because you have to oscillate infinitely often between these two levels).
So if the limit does not exist, then your upcrossing number must be infinite (for some a and b); and the
contrapositive gives the above statement.

Even more, by Fatou’s lemma, we get that

E[|X∞|] ≤ lim inf
D∋t→∞

E[|Xt|].

And the right-hand side is finite by our L1 boundedness assumption. So we get that |X∞| < ∞ almost
surely and X∞ ∈ L1.

The last thing to say is that by right-continuity, we actually have limt→∞Xt = limD∋t→∞Xt (i.e., the limit
over all reals is the same as if you just restrict to your countable dense subset). And that basically finishes
the proof.

The point is that you just use the usual discrete-time ideas, but there’s always some density argument
behind it.

§7.2 Uniform integrability and closed martingales

So now we have this supermartingale convergence theorem. We’ll want to get to optional stopping theorems;
before that, we have to recall the definition of uniform integrability.

Definition 7.2. A martingale (Xt) is closed if there exists Z ∈ L1 such that Xt = E[Z | Ft] for all t.

By the tower property of conditional expectations, any process that satisfies this is a martingale; but this
(being closed) is a stronger assumption.

Definition 7.3. We say a collection of random variables (Xλ)λ∈Λ (where Λ is an arbitrary index set) is
uniformly integrable if:

(i) supλ∈Λ E[|Xλ|] <∞.

(ii) For all ε > 0, there exists δ > 0 such that for all A with P[A] ≤ δ, we have supλ∈Λ E[|Xλ|1A] ≤ ε.

Intuitively, the way to think about this is that it says the Xλ have ‘uniformly decaying tails.’

This was covered in 18.675, so we won’t go into the proofs of the basic properties; but we’ll use some of the
main theorems that were proved about them.

Exercise 7.4. A single L1 random variable is uniformly integrable; more generally, any finite collection
of L1 random variables is uniformly integrable.

This is a nice exercise ((i) is clear, but (ii) is a good exercise to check).

Theorem 7.5

Let (Xt) be a right-continuous martingale. Then the following are equivalent:

(i) X is closed.

(ii) X is uniformly integrable.

(iii) Xt converges almost surely and in L1.

Moreover, if any of these properties hold, then we have Xt = E[X∞ | Ft] for all t, where X∞ is the
almost sure limit of Xt.
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Saying X is closed just means there’s some Z with Xt = E[Z | Ft]; the point of the final statement is that
Z is just the most natural variable you’d think of.

Proof. (This proof is kind of cheating because we’ll just apply some results and not give the details, since
it was covered in 18.675.)

First, why does (i) imply (ii)? More generally, if you start with Z ∈ L1, then the collection (E[Z | G])G⊆F
(where G ranges over all sub-σ-algebras) is uniformly integrable. The fact that this is true definitely implies
the (i) → (ii) implication, since you can just take a subcollection of G’s (the ones corresponding to your
filtration). This result is again a good exercise if you haven’t seen it before (but before you prove this, Sky
recommends seeing why a single L1 random variable is uniformly integrable).

For (ii) → (iii), by the supermartingale convergence theorem we have that Xt → X∞ almost surely (for
some X∞), because one condition of uniform integrability is that you’re L1 bounded. And now uiform
integrability implies that Xt → X∞ in L1. (This is the whole point of introducing uniform integrability —
you want to say when almost sure convergence implies convergence in L1, and this is exactly the condition
you need. This result is sometimes called Vitali’s theorem; and that’s what we’re applying here.)

Finally, for (iii)→ (i), just by the martingale property we have

Xt = E[Xt0 | Ft] for all t0 ≥ t.

Now we want to take t0 →∞. Using the assumption that Xt0 → X∞ almost surely and in L1, we have that
E[Xt0 | Ft] → E[X∞ | Ft] in L1. And that’s basically enough — it implies that Xt = E[X∞ | Ft]. (If Xt

converges almost surely and in L1, then the almost sure limit — which is X∞ — also has to be in L1. And if
you have a sequence of random variables converging in L1, then it’s a fact that any conditional expectation
also converges in L1. And the sequence E[Xt0 | Ft] is actually constant — it’s actually equal to Xt.)

So that shows that X is closed, and it also shows the last statement (since we explicitly exhibited that X∞
is the random variable making this collection closed).

§7.3 Optional stopping theorems

Now that we have this concept of uniform integrability, we can finally get to optional stopping theorems.

Let (Xt) be a right-continuous martingale such that Xt → X∞ almost surely (right now, we’re not assuming
any integrability conditions).

Definition 7.6. Given a stopping time T , we define

XT = 1[T <∞]XT + 1[T =∞]X∞.

The point is that before, we only defined XT when T <∞; but now that we have a notion of X∞, we can
also define this when T =∞.

We can verify that XT ∈ F∞ (last time we saw that 1[T < ∞]XT is FT -measurable, and FT ⊆ F∞, and
you can explicitly check the second part is also F∞-measurable).

Theorem 7.7 (Optional stopping theorem)

Let (Xt) be a right-continuous uniformly integrable martingale, and let S and T be stopping times such
that S ≤ T (i.e., S(ω) ≤ T (ω) for all ω). Then XS , XT ∈ L1, and

XS = E[XT | FS ].

In particular, XS = E[X∞ | FS ], and E[XS ] = E[X∞] = E[X0].
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Note that we’re not assuming S and T are finite — we have a uniformly integrable martingale, so we converge
to some X∞ almost surely and in L1.

This essentially states that we still have the martingale property for these random times. The second
statement comes from taking T = ∞ (which is certainly a stopping time); the third comes from taking
expectations (we have E[X∞] = E[X0] because we know E[Xt] = E[X0] for all t, and we can take t → ∞
because we have L1 convergence).

So this second part follows as soon as we show the first part.

Proof. For this, it’s helpful to do a discrete approximation (as usual). The point is that you want to apply
the discrete-time optional stopping theorem, so that’s what we’re going to reduce to.

So for n ≥ 1, let

Tn =
∞∑
k=1

1[(k − 1)2−n ≤ T ≤ k2−n]k2−n + 1[T =∞]∞

(this is a discrete approximation of T , where you split time into a bunch of intervals of length 2−n, and take
the right endpoint of the interval T lies in). Define Sn similarly.

Last time we had a lemma showing that Sn and Tn are stopping times; Sn ↘ S and Tn ↘ T ; and Sn ≤ Tn.

Now we claim that for each fixed n, the times 2nSn and 2nTn (the multiplication by 2n is so that these are
integer-valued — we’re doing that just because discrete-time stopping theorems are for integer values) are

stopping times of the discrete-time filtration H(n)
k = Fk2−n (here we’ve fixed n, and the time index is k).

The point is that we’re changing time by units of 2−n — we went from units of 2−n to integer values, which
means you want to do that here too. (You can explicitly verify this; we’re not going to do so.)

So we have this discrete-time filtration. Now let’s define our discrete-time martingale

Y
(n)
k = Xk2−n

(again we’re fixing n, and k is our time parameter). Since our original process X was adapted to the
continuous-time filtration, this process is adapted to the discrete-time one. And it’s also a uniformly
untegrable martingale with respect to this discrete-time filtration.

So now we’ve reduced to this discrete-time scenario, and now we can apply the discrete-time optional
stopping theorem. So we get that

XSn = Y
(n)
2nSn

= E[Y (n)
2nTn

| H(n)
2nSn

]

(this is where we use the discrete-time optional stopping theorem). And now it’s kind of natural that given

the identity H(n)
k = Fk2−n , we should also get that this is equal to

E[Y (n)
2nTn

| FSn ].

Formally this is true because you can plug in Sn in place of k; but you actually have to verify something,
because Sn is a random time (so this is actually a stopped σ-algebra); so let’s verify why this identity is
true, i.e., that

H(n)
2nSn

= FSn .

To see this, we just have to write out definitions. Recall that

H(n)
2nSn

= {A ∈ H(n)
∞ | A ∩ {2nSn ≤ k} ∈ H(n)

k for all k}

(where k is an integer). By definition, H(n)
∞ = F∞, and H(n)

k = Fk2−n . Meanwhile, if we write out the
definition of the continuous-time stopped σ-algebra, it’s

FSn = {A ∈ F∞ | A ∩ {2nSn ≤ t} ∈ Ft for all t}.
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The second one comes with more conditions, so the second σ-algebra is contained in the first. To verify the
reverse (i.e., that it’s enough to have this discrete set of conditions), the point is that 2nSn only takes values
in these discrete values — we can write

{2nSn ≤ t} = {2nSn ≤ ⌊t⌋}.

The point is just that it’s enough to verify your condition at integers, because this thing 2nSn is just
integer-valued.

So we’ve now arrived at the identity

XSn = E[Y (n)
2nTn

| H(n)
2nSn

] = E[Y (n)
2nTn

| FSn ].

By definition, we have Y
(n)
2nTn

= XTn , so in summary, we get that

XSn = E[XTn | FSn ].

We’re trying to show that XS = E[XT | FS ]. So how do we conclude? You might try to take a limit as
n → ∞. But this is somewhat less clear because now the σ-algebra is also varying in n, which is kind of
problematic. (If we just had FS , it would probably be fine.)

So to get around that, we kind of go back to the definition of conditional expectation. We want to take
some A ∈ FS (note that S ≤ Sn, so this means FS ⊆ FSn , which means A is also in FSn). And we want to
show that

E[XS1A] = E[XT1A].

(Also, as a consequence of the discrete-time optional stopping theorem, we get that XSn , XTn ∈ L1. So we
can actually talk about conditional expectations.)

So we want to show this identity. And because we have FS ⊆ FSn , we have this identity for the discrete
approximations — that

E[XSn1A] = E[XTn1A].

Now we send n→∞. We have XSn → XS pointwise (surely, by construction). But to get the convergence
of expectations, we need additional integrability. So we use the fact that (XSn) is uniformly integrable —
this is again by the discrete-time optional stopping theorem (we have that E[X∞ | FSn ] = XSn , and we can
use the fact about conditional expectations being uniformyl integrable to conclude). So by combining the
sure convergence with uniform integrability, you get

E[XSn1A]→ E[XS1A].

And the same is true for Tn and T , so we get E[XS1A] = E[XT1A], and we’re done.

Now let’s look at some consequences of this result, and then we’ll apply some of this stuff to Brownian
motion.

Corollary 7.8

Let (Xt) be a right continuous martingale (not necessarily uniformly integrable), and let S ≤ T be
bounded stopping times. Then XS , XT ∈ L1 and XS = E[XT | FS ].

So we’re trading the uniform integrability assumption for this boundedness assumption. In other words, if
you have bounded stopping times, then you don’t need uniform integrability.
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Proof. Let a be such that S ≤ T ≤ a (by assumption, there’s some deterministic a which upper-bounds your
stopping times). Then we apply this theorem to the process (Xt∧a)t (it turns out this is also a martingale
— if you stop your martingale at any deterministic time a, it’s still a martingale).

We claim that this is actually uniformly integrable — in particular, it’s going to be closed by Xa, meaning
that

Xt∧a = E[Xa | Ft].

As soon as we show it’s closed, it’s a uniformly integrable martingale, so we can apply the previous theorem
to get that this is true (because for instance, XS∧a = XS , and similarly XT∧a = Xt; so the main statement
of that theorem just applies).

So the main thing to do is show why your stopped process is actually closed by the endpoint The natural
reason why this should be true is if you take t → ∞, Xt∧a → Xa; so if you believe your process should be
closed, then it should just be closed by Xa.

So let’s verify that.

Case 1 (t ≤ a). Then we have the martingale identity Xt = E[Xa | Ft]. But Xt = Xt∧a, and that’s exactly
what we wanted.

Case 2 (t > a). Then Xt∧a = Xa = E[Xa | Ft] (because X is adapted, so Xa will be Ft-measurable because
t > a so Ft contains Fa), so this is true.

Corollary 7.9

Let (Xt) be a right continuous martingale, and let T be a stopping time.

(i) The stopped process (Xt∧T )t is a martingale.

(ii) If (Xt) is uniformly integrable, then (Xt∧T ) is also uniformly integrable. Moreover, for all t, we
have

Xt∧T = E[XT | Ft].

Again, if (Xt∧T ) is uniformly integrable, then it has to be closed by XT — this is the almost sure limit, and
if we take t→∞ then it converges to XT . So this is the only possibility.

Basically this is saying that if you consider your stopped martingale at a stopping time, it’s still a martingale;
and it’s still UI if the original was.

Proof. We’ll first show (ii). First, note that T ∧ t is a stopping time (using the properties of stopping
times from last week). And we also have that Xt∧T , XT ∈ L1 (since we showed when you have a uniformly
integrable martingale and evaluate it at any stopping time, th eresult is also uniformly integrable). And
Xt∧T is Ft∧T -measurable (we proved this last week, at least on the event that t ∧ T is finite; and this is
definitely true, since it’s at most t). And Ft∧T ⊆ FT , because t ∧ T ≤ T .

So what’s the consequence of this? At least the fact that Xt∧T is FT -measurablee is consistent with the
claim Xt∧T = E[XT | Ft]. Then using the definition of conditional expectation, it remains to show that for
all A ∈ Ft, we have

E[Xt∧T1A] = E[XT1A]

(once we show this, we’re done).

And by the previous theorem, we have that

Xt∧T = E[XT | Ft∧T ]

(again, because we started with a uniformly integrable martingale X and we had the stopping times t∧T ≤ t,
and the previous theorem gave us the martingale property for these stopping times).
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Now to use this to verify what we want, we can write

E[Xt∧T1A] = E[Xt∧T1A∩{T>t}] + E[Xt∧T1A∩{T≤t}]

(all we’re doing is splitting based on whether T ≤ t).

Now, if T ≤ t, then we just get XT . To handlethe first term, we’re going to use the above identity of
conditional expectations — the point is that A ∩ {T > t} is Ft∧T -measurable. Given this claim, we can
basically replace XT∧t with XT by the definition of conditional expectations; so we get

E[XT1A∩{T>t}] + E[XT1A∩{T≤t}] = E[XT1A].

So it remains to show why A ∩ {T > t} ∈ Ft∧T . To do so, we have to show that

A ∩ {T > t} ∩ {t ∧ T ≤ s} ∈ Fs∧T .

We can write this event as
A ∩ {T > t} ∩ {t ≤ s}

(because if T ≥ t, then t ∧ T is just t itself). Now if s ≥ t, then this is just A ∩ {T > t}; and if s < t, then
this is just ∅. And ∅ is definitely in any σ-algebra you care about, so we just need to show that A∩{T > t}
is in Fs∧T .

And it’s definitely in Ft ⊆ Fs. So because Fs∧T = Fs ∩ FT , we just need to show that it’s also in
FT ; and this is because you can again intersect with an event like {T ≤ s}, so you want to show that
A ∩ {T > t} ∩ {T ≤ s} ∈ Fs, which we essentially just did.

So this finishes the proof of (ii) — if you have a uniformly integrable right-continuous martingale, then the
stopped process is also a uniformly integrable martingale. Now let’s use that to show (i).

For (i), we can appy (ii) with the process (Xt∧a)t. We saw that (Xt∧a) is always uniformly integrable,
because it’s closed by a. So we get that for all t,

Xt∧a∧T = E[Xa∧T | Ft∧a∧T ].

(Here we’re replacing t by t∧ a everywhere in (ii), and we get this identity.) In particular, for t ≤ a, we get

Xt∧T = E[Xa∧T | Ft∧T ].

But this is precisely the martingale identity; so this shows why the stopped process (Xt∧T )t is a martingale.

§7.4 Applications to Brownian motion

Now that we’re done with that, we can compute some properties of stopping times of Brownian motion.

Let (Bt) be a Brownian motion. It’s a martingale with respect to its canonical filtration (implicitly, that’s
the filtration we’ll be using throughout, at least in this part).

Recall that for any a ∈ R, we defined

Ta = inf{t ≥ 0 | Bt = a}

as the first hitting time to a. Now let’s take two levels a < 0 < b, and let’s consider T = Ta ∧ Tb.

First, why is Ta a stopping time? We already showed this (you can relate it to a property about the sup
or inf of B, which is measurable; or you can use the fact that {a} is closed, and the first hitting time of
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a continuous martingale for a closed set is a stopping time). And the min of two stopping times is also a
stopping time, so T is too.

Now if we consider the stopped process Bt∧T , this is a martingale by what we just proved. And it’s also
bounded — B starts at 0, so if you’re before the first time you hit a or b, then you have to be in [−a, b]. So
this thing is bounded, which in particular means it’s uniformly integrable.

So the stopped process (Bt∧T )t is a uniformly integrable martingale, and we thus obtain that

E[B∞|T ] = E[B0 | T ] = 0.

(This is one consequence of the optional stopping theorem.)

And T <∞ almost surely — we proved in class that lim supBt =∞ and lim inf Bt = −∞ almost surely, so
these times are both finite almost surely, and you took a min.

In particular, this means B∞∧T = BT ; and this is a if Ta < Tb, or b if Tb > Ta. so we get

E[a1[Ta < Tb] + b1[Tb > Ta]] = 0,

which we can rewrite as
aP[Ta < Tb] + b(1− P[Ta < Tb]) = 0.

(We’re taking expectations of an indicator, so we get probabilities; and either Ta < Tb or Tb < Ta — they’re
both finite almost surely, and they can’t be equal.)

But now you can just solve this equation, and you get that

P[Ta < Tb] =
b

b− a
.

(Note that a is negative.) This also implies

P[Tb < Ta] =
−a
b− a

.

So that’s the first application.

Next, for a > 0, let Ua = Ta ∧ T−a — this is the first time your absolute value reaches level a, i.e.,

Ua = inf{t | |Bt| = a}.

Now recall that we had the quadratic martingale (B2
t − t)t from last week. And now we can stop it at the

stopping time Ua; so we get the martingale

(B2
t∧Ua

− (t ∧ Ua))t.

Then just using the martingale property, at any fixed time t this thing has expectation 0. If you turn that
around, that tells you

E[B2
t∧Ua

] = E[t ∧ Ua] for all t.

And now we just want to send t → ∞; the right-hand side is monotone in t, so we can apply monotone
convergence to handle it. To handle the left-hand side, note that Bt∧Ua → ±a almost surely as t → ∞.
So naturally, you want to say the expectation converges to a2. You can’t verify that using the monotone
convergence theorem, because this thing is not monotone. But you can verify it using the dominated
convergence theorem — because |Bt∧Ua | ≤ a (before you hit absolute value a, you have to have absolute
value less than a). So we actually get that E[Ua] = a2.
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So far, we’ve used the linear martingale of Brownian motion (which is Brownian motion itself) and the
quadratic martingale; so now let’s use the exponential martingale. Let a > 0. For λ ∈ R, recall that we
defined the exponential martingale

Nλ
t = exp

(
λBt −

λ2t

2

)
(the way to remember what to subtract is that we want this thing to have mean-1 for all t, which means you
divide by the moment generating function of Bt). We’re going to take λ > 0 here. Now if we consider the
stopped process (Nλ

t∧Ta
), it’s a martingale. Moreover, it’s bounded — the second part λ2t/2 is fine (since

it’s positive), and for the first part we note that Bt∧Ta ≤ a, so λBt∧Ta ≤ λa, and therefore

Nλ
t∧Ta
≤ eλa.

So it’s bounded, which in particular means it’s uniformly integrable.

And now we can apply the optional stopping theorem. So we get that

E[Nλ
Ta
] = E[Nλ

0 ] = 1.

And now if we recall what the exponential martingale is, at time Ta we have Bt = a, so we get

eλaE[e−λ2Ta/2] = 1,

which implies that
E[e−λ2Ta/2] = e−λa.

And now for reparametrizing, if we replace λ 7→
√
2λ, we get

E[e−λTa ] = e−(
√
2λ)a.

So we’ve basically computed the Laplace transform of Ta as a random variable. And that uniquely charac-
terizes the law of Ta. So that’s one application — if you want to find the density of Ta, in principle there’s
some process to invert the Laplace transform to find the density.

But another way you could’ve found the distribution of Ta was the reflection principle, which was on the
homework — there you found the joint density of (St, Bt), and if you integrate out over Bt you get the
density of St. And we can write {Ta ≤ t} = {St ≥ a}; so that’s another way you could’ve found the
distribution of Ta.

One final application is that by reflection symmetry, we know

E[1[BUa = a]e−λUa ] = E[1[BUa = −a]e−λUa ]

(recall that Ua is the first time you get to ±a) — the point is that if you hit a first, then you can reflect the
picture so that you hit −a first.

Eventually, we want to compute the Laplace transform of Ua. If you try to do something similar, it’s not
exactly going to work, because you don’t exactly know what BUa is — it could be a or −a. But the point is
that the contribution is going to be equal. And that allows you to get that these are both equal to 1

2E[e
−λUa ]

(since if you added them together you’d get precisely E[e−λUa ]; and they’re equal, so you get the 1
2).

And now we’re still going to use the argument with Nλ
t — we get

E[Nλ
Ua
] = 1

(now the exponent is not even just bounded on one side, it’s bounded on both sides by the definition of the
stopping time). And if we write out what this means, it’s

E[eλa1[BUa = a]e−λ2Ua/2] + E[e−λa1[BUa = a]e−λ2Ua/2].
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And the point of the previous argument is that this is

eλa + e−λa

2
E[e−λ2Ua/2] = 1.

So you get a formula for the Laplace transform of Ua (which contains some 1/cosh).

This completes the unit on martingales and filtrations; for the next two weeks we’ll talk about a generalization
called continuous semimartingales, and then we’ll get to stochastic integration.

§8 February 26, 2025

Today we’ll start the chapter on continuous semimartingales; these will be both the integrators and inte-
grands for our stochastic integrals, as we’ll see later.

§8.1 Intuition for continuous semimartingales

The simplest example of a semimartingale is Brownian motion with drift — specifically, σBt + µt. So we
have a straight line µt which is your drift, and then you have some fluctuations on top of your straight line.
In some sense, continuous semimartingales are basically just locally supposed to look like Brownian motion
with drift.

Continuous martingales basically are Brownian motions locally — in the sense that you can find a time-
change so that you get a Brownian motion. So at least locally, if you actually graph the process, the
fluctuations are supposed to look like BM, for a martingale.

But semimartingales are a bit more general — they don’t just look like BM, but they also have a drift term
(at least locally). So there’s always a direction you’re trending towards. It doesn’t have to be a straight line
— your drift can be some curvy thing, and then on top of this you have BM-type fluctuation.

So these are some pictures to have in mind. In this chapter, all processes are indexed by R+ = [0,∞) and
are real-valued.

§8.2 Finite variation functions

You can always write a semimartingale as basically a martingale part plus a drift part; we’ll start by
discussing the drift part.

The first part of the discussion is just some analytic facts, so probability isn’t coming in yet.

Definition 8.1. A signed measure on a finite interval [0, T ] is a difference between two finite positive
measures on [0, T ].

Definition 8.2. Let T ≥ 0. We say a continuous function a : [0, T ] → R with a(0) = 0 has finite
variation (FV) if there exists a signed measure µ such that

a(t) = µ([0, t]) for all t ∈ [0, T ].

We’re being maybe less general than you have to be — in principle you don’t have to assume your function
is continuous, but we’re going to.

By general arguments (for instance, using the π–λ theorem), one can show that a determines µ. Indeed, if µ
were a probability measure, then a is the cumulative distribution function of it, and your CDF determines
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the measure. Here we’re being slightly more general (the measure doesn’t have to be a probability measure,
or even positive), but the same proof just works — your ‘CDF’ (or really, the analog of the CDF) determines
the measure.

And since we’re always assuming a is continuous and starts at 0, the masure µ has no atoms — basically,
you can’t have jumps in your function. (You don’t necessarily have to assume a is continuous; if you allowed
discontinuous functions, then the associated measure might have atoms. But we’ll assume this is never the
case.)

One analytic lemma: By definition, a signed measure means you can decompose it as a difference of two
positive measures. You might wonder when that decomposition is unique. In principle it never is, because
you can always add one piece to both measures — if you had µ = µ1 + µ2, you could always write µ =
(µ1 + ν)− (µ2 + ν). So there’s no way it can be unique. But the next lemma says that if you assume some
further things about µ1 and µ2, then it does have to be unique.

Lemma 8.3

Let a be a finite variation function on some interval [0, T ], with associated measure µ. Then there is a
unique decomposition

µ = µ+ − µ−

such that µ+ and µ− are supported on disjoint Borel sets.

(We’re not writing it, but here µ+ and µ− are finite positive measures.) So you just need to add this
additional condition that they’re disjointly supported to get the unique decomposition.

Proof. Let’s start with some arbitrary decomposition µ = µ1 − µ2 (we know one exists by the definition of
a signed measure). Let ν = µ1 + µ2. One can check that µ1 and µ2 are both absolutely continuous with
respect to ν — if ν(A) = 0, then µ1(A) = µ2(A) = 0 (this is just by definition, since µ1 and µ2 are positive).
So the Radon–Nikodym theorem gives measurable functions h1 and h2 which are basically the densities of
µ1 and µ2 with respect to ν, meaning that dµ1 = h1 dν and dµ2 = h2 dν.

Now let h = h1− h2. Then you have that h is the density of your starting measure µ with respect to ν, i.e.,
dµ = h dν.

So now we’ve found this density of our starting measure with respect to some base measure. And the natural
thing to do is to split based on the sign of h — we can decompose h = h+−h−. Clearly these are supported
on different sets — at any given point, at most one of h+ and h− is nonzero. So we can let dµ+ = h+ dν
(so the density of µ+ is h+), and similarly dµ− = h− dν. Then we get µ = µ+ − µ− (again, because the
densities are decomposed in this way).

So we’ve found a decomposition into measures supported on disjoint sets (because h+ and h− are) — we
have supp(µ±) ⊆ {t ∈ [0, T ] | h±(t) > 0}; we’ll denote these sets by D+ and D−, with D+ ∩D− = ∅.
Now we’ll show uniqueness. For this, we claim that you can find µ+ purely in terms of µ itself — we must
have

µ+(A) = sup{µ(C) | C ∈ B([0, T ]), C ⊆ A}.

So the claim is that for any such decomposition into µ+ and µ−, this has to be true. And the right-hand
side doesn’t really see your decomposition, so that would show uniqueness.

To see this, suppose we have some decomposition µ = µ+ − µ− (not necessarily the one we constructed
above). By definition we have

µ(C) = µ+(C)− µ−(C) ≤ µ+(C) ≤ µ+(A)

(since µ− is a positive measure and C ⊆ A). So that shows one direction of the equality — that µ+(A) ≥
sup{µ(C)}. To finish, we just need to show the other direction. Basically, we want to exhibit C for which
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µ+(A) = µ(C). For this, we know µ+ is supported on some set D+, so µ+(A) = µ+(A ∩D+). (Note that
D+ is not necessarily the one we constructed; it’s just the support of µ+, which by hypothesis is disjoint
from the support of D−.) And we can write this as

µ+(A ∩D+)− µ−(A ∩D+),

using the fact that µ+ and µ− have disjoint supports (so the second term is just 0). And this is precisely
µ(A ∩D+) — and A ∩D+ is some set C contained in A, so that shows the reverse inequality.

So we’re able to decompose these finite variation functions, more or less.

Notation 8.4. We write |µ| = µ+ + µ−; we call this the total variation of µ.

If µ is a signed measure, then this is a finite positive measure.

Fact 8.5 — We have |µ(A)| ≤ |µ| (A) for all A ∈ B([0, T ]).

This is because the left-hand side is |µ+(A)− µ−(A)|.
Moreover, since we have

µ(A) = µ+(A ∩D+)− µ−(A ∩D−)

(where D± are the supports of µ±), this is bsaically saying that

dµ

d |µ|
= 1D+ − 1D−

(where the left-hand side denotes the Radon–Nikodym derivative of µ with respect to |µ|) — because by
definition, what it means to be a density is basically the above equation. So µ has a density with respect to
|µ|, and it’s basically given by this difference of indicators on its positive and negative parts.

As some more remarks, if we have a finite variation function a, then by definition

a(t) = µ([0, t]) = µ+([0, t])− µ−([0, t]).

So we get that a is the difference of two nondecreasing continuous functions which vanish at 0. Continuity
follows because µ has no atoms, so neither can µ+ or µ−; so µ±([0, t]) also define continuous functions.

Another remark is that the converse is also true — if you had two continuous nondecreasing functions
vanishing at 0, then when you take the difference, you get a FV function. To do that, you kind of need to
use Caratheodory’s extension theorem — if you have a(t) = a1(t)−a2(t) (where a1 and a2 are nondecreasing
continuous functions vanishing at 0), you want to go from this to a signed measure; so you want a1 and
a2 to be the CDFs of some positive measure. And to do that, you need to use Caratheodory’s extension
theorem.

So these are all different ways of thinking of FV functions.

Definition 8.6. Let f : [0, T ] → R be a measurable function such that
∫
[0,T ] |f(s)| |µ| (ds) < ∞. Then

we define ∫
[0,T ]

f(s) da(s) =

∫
[0,t]

f(s)µ(ds).

Similarly, we define
∫
[0,t] f(s) |da(s)| =

∫
[0,T ] f(s) |µ| (ds).

Here in the background we’re assuming we have a FV function, which gives us some µ; and we take its total
variation |µ|, and we assume f is integrable with respect to that.

What does this mean? The point is that da is basically a measure; so integrating against da basically means
integrating against the associated measure.
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Example 8.7

If a(t) = t, then what would you want to define
∫ T
0 f(s) da(s)? Here da is just ds, so naturally you’d want

to define this as
∫ T
0 f(s) ds. And that’s precisely what this integral does — we’re basically integrating

our function with respect to the Lebesgue measure on this interval.

So this example is at least consistent with what you would expect.

Fact 8.8 — We have |
∫ T
0 f(s) da(s)| ≤

∫ T
0 |f(s)| |da(s)|.

You basically use the definition of what da is and split µ = µ+ − µ−. On the left you have a difference, and
on the right you have a sum of positive things; so that’s why you get this inequality.

As another remark, by restricting your finite variation a to a smaller interval [0, t] ⊆ [0, T ], you can always
define these smaller integrals ∫ t

0
f(s) da(s) and

∫ t

0
f(s) |da(s)| .

(You basically just restrict µ to this smaller interval and view this thing as a Lebesgue integral.)

Fact 8.9 — The function t 7→
∫ t
0 f(s) da(s) is finite variation.

This is under the assumption that f is integrable against |µ|. And the reason is that the associated measure
is just going to be f dµ — you can define a measure whose density with respect to µ is f ; and unwinding
the definitions, you’ll see this is precisely the measure associated to this. It starts at 0 and is continuous
(e.g., by dominated convergence), and it comes from an actual signed measure, namely this one.

Now let’s get to a proposition, which basically tells you how to approximate the total variation measure.

Proposition 8.10

For all t ∈ [0, T ], we have ∫ t

0
|da(s)| = sup

{
p∑

i=1

|a(ti)− a(ti−1)|

}
,

where the sup is over subdivisions of [0, t]. More precisely, for any increasing sequence of subdivisions
0 = tn0 < · · · < tnpn = t whose mesh size tends to 0, we have

lim
n→∞

p∑
i=1

∣∣a(tni )− a(tni−1)
∣∣ = ∫ t

0
|da(s)| .

The integral on the left is just the total variation of the measure on the interval [0, t]. And the natural
discrete approximation is as these finite Riemann sums. So the claim is that you can evaluate this as some
sort of Riemann approximation procedure.

When we say ‘increasing,’ we mean in the sense of increasing sets; and the mesh size is the maximum
difference between two consecutive points.

So this is basically saying you can find a value of your measure on some interval as the limit of sums of
values of the measure on partitions of the interval, or something like that.

So far, nothing has been random. But eventually we’re going to define a finite variation process to be a
stochastic process whose sample paths are finite variation (and which is adapted); and when proving various
things about measurability, it’s useful to have this discrete approximation.
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The proof of this is interesting in that it uses martingales — it’s an analysis statement, but you can prove
it by introducing probability.

Proof. Without loss of generality we can assume t = T . Let’s first prove the easier direction of th equality,
that

∫ t
0 |da(s)| is greater than or equal to the sup. To see that, let’s just evaluate this Riemann sum; by

definition
p∑

i=1

|a(ti)− a(ti−1)| =
p∑

i=1

|µ((ti−1, ti])| .

And we can take the absolute value inside, so we get that this is at most

p∑
i=1

|µ| ((ti−1, ti]).

And this is a partition of the interval, so this is equal to |µ| ((0, T ]). And by definition, this is just
∫ T
0 |da(s)|

(we’re just taking f = 1 in the definition). So for any subdivision of the interval, you have this inequality.

Now we have to prove the other direction — we have to show that for any increasing sequence of subdivisions
with mesh tending to 0, you actually have this convergence.

To do that, let’s take some increasing sequence of subdivisions ({tni })n. Without loss of generality assume
|µ| ((0, T ]) ̸= 0 (if it’s 0, then both sides have to be 0, so the statement is trivial).

Now let’s define a probability space — let Ω = [0, T ] and F = B([0, T ]). And let’s define a discrete-time
filtration

Fn = σ((tni−1, t
n
i ] | 1 ≤ i ≤ pn)

(where pn is the number of points in the nth subdivision), and F∞ = σ(Fn | n ≥ 1). So we have this filtered
probability space.

Claim 8.11 — We have F∞ = B([0, T ]) = F .

As a couple of words, it’s true because you assumed the mesh size tends to 0. So the point is for instance you
want to be able to write any given interval (s, t) ⊆ [0, T ] as a countable union of intervals in the Fn’s. But
because your mesh size tends to 0, you can do this. And once you show (s, t) is in the generated σ-algebra,
it has to be contained in the Borel one (which is contained in intervals of this form). So that’s the idea —
because the mesh tends to 0, you can write this interval (s, t) as a countable union of intervals you do have.

Now let’s define the following random variable — we let X : (Ω,F)→ (R,B) be defined as the density of µ
with respect to its total variation — so

X =
dµ

d |µ|
.

Recall that this density is a difference of indicators, so

X = 1D+ − 1D− .

So this is certainly a measurable function on (Ω,F).

Now let’s define a probability measure P on (Ω,F) by

P[A] =
|µ| (A)
|µ| ([0, T ])

.

We have to divide for this to be a probability measure (so that Ω itself has size 1).

So we have all this setup now. The key computation to do, which will probably be on the next homework:
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Exercise 8.12. We have

E[X | Fn] =

pn∑
i=1

µ((tni−1, t
n
i ])

|µ| ((tni−1, t
n
i ])

1(tni−1,t
n
i ]
.

Basically, we’re defining this Doob martingale that’s going to be closed by X itself (in discrete time). We
know that X is bounded, so it’s integrable; so that’s fine. Then by martingale convergence, we’re going to
get that E[X | Fn] converges almost surely to X (we know X is F∞-measurable — a priori Radon–Nikodym
tells you X is F-measurable, but F = F∞). And martingale convergence, when you unwrap it, is going to
give exactly the convergence we want.

And what is this martingale going to be? It has to be a linear combination of indicator functions. Because
we defined our filtration at finite times, it’s discrete; so any measurable function with respect to Fn has to
be a linear combination of these indicators. This means all we have to do is figure out the coefficients in this
linear combination. And if you use the definition of conditional expectation, you’ll see that the coefficients
have to be as above. (The way you come up with this is by putting in general coefficients, and then solving
using the definition of conditional expectation.)

Note that µ((tni−1, t
n
i ]) = a(tni )− a(tni−1) by definition.

So now by the uniformly integrable martingale convergence theorem, we get

E[X | Fn]→ E[X | F∞] = X in L1.

(The latter equality is because X is F∞-measurable.)

The convergence in L1 implies convergence of L1 norms, so

E[|E[X | Fn]|]→ E[|X|].

(If you have variables converging in L1, then their norms converge as real numbers; this is a consequence of
the triangle inequality.)

But X is a difference between two indicator functions on disjointly supported sets, so you can show E[|X|] =
1. (There’s some argument you actually have to do — in principle if D+ ∪D− = [0, T ] then |X| is always
equal to 1. But the supports of your measures in principle don’t have to partition the interval. But the
point is that |X| = 1 P-almost surely, where P is the measure you defined — in other words, basically X = 1
on the support of your probability measure.)

And now let’s compute the left-hand side. Again, we just have a linear combination of indicators, so the
expectation shouldn’t be too hard to compute — we get

E[|E[X | Fn]|] =
pn∑
i=1

∣∣a(tni )− a(tni−1)
∣∣

|µ| ((tni−1, t
n
i ])

·
|µ| ((tni−1, t

n
i ])

|µ| ([0, T ])

(because we’re taking the expectation of an indicator, which is just the probability of that interval,a nd you
plug in the formula for P[A]). Now we have this cancellation, and we’re basically done — we get that this
sum converges to 1, and if we move the denominator to the right-hand isde, we get∑∣∣a(tni )− a(tni−1)

∣∣→ |µ| ([0, T ]) = ∫ t

0
|da(s)| .

So that’ll be one thing that’s useful. Now let’s prove another approximation result. (Here we’re again
assuming we have some FV function a.)
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Proposition 8.13

Let f : [0, T ]→ R be continuous, and let ({tni })n be a sequence of subdivisions of [0, T ] with mesh size
tending to 0. Then we can write∫ T

0
f(s) da(s) = lim

n→∞

pn∑
i=1

f(tni−1)(a(t
n
i )− a(tni−1)).

This is kind of the first thing you’d guess as how to define an integral — as the limit of these types of
approximations (a sort of Riemann approximation). And indeed it’s true.

Proof. First, f is continuous, so it’s bounded on any finite interval, which means it’s definitely measurable
with respect to |µ|; so the left-hand side is well-defined.

Now let’s approximate f as a sum of indicators — so we let

fn =

pn∑
i=1

f(tni−1)1(tni−1,t
n
i ]
.

The idea is that you kind of want to view the sum on the right-hand side as the integral against da of some
linear combination of indicators; and it’s basically going to be the above.

Before we see that, first note that fn → f by continuity (and the fact that the mesh size tends to 0). We
also have that

sup
n
∥fn∥L∞ ≤ ∥f∥L∞ <∞

(where this denotes the sup norm on the finite interval [0, T ]). To finish, the right-hand side of the lemma
statement can be written as

RHS =

∫
[0,T ]

fn(s)µ(ds).

We basically want to apply some convergence theorem; it’s more convenient with a positive rather than
signed measure, so we can write this as∫

[0,T ]
fn(s)µ+(ds)−

∫
[0,T ]

fn(s)µ−(ds).

Now we can apply the bounded convergence theorem to each piece (they’re bounded by the above argument)
to get that this converges to f dµ, which is precisely the left-hand side.

Now, if you have a function over all times:

Definition 8.14. We say a function a:R+ → R is finite variation if the restriction of a to any finite
interval has finite variation.

Remark 8.15. If a is finite variation on R+, then there exists a unique σ-finite positive measure µ on
R+ (σ-finite means that you can write R+ as an increasing union of bounded sets, and your measure is
finite on all of them) whose restriction to any finite interval [0, T ] is the total variation of the function
a|[0,T ].

Definition 8.16. For any positive measurable function f , we define∫ ∞

0
f(s) |da(s)| =

∫
f dµ

(where the integral is over the entire interval).
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Because f is nonnegative, this is always defined, though it might be ∞.

Definition 8.17. For integrable f (i.e., f such that
∫∞
0 |f(s)| |da(s)| <∞), we define∫ ∞

0
f(s) da(s) = lim

T→∞

∫ T

0
f(s) da(s).

One can check (by e.g., dominated convergence) that this limit exists, and basically equals
∫
f dν.

§8.3 Finite variation processes

Now we can get onto finite variation processes — so far, we’ve just seen some deterministic facts.

Throughout, let’s fix a filtered probability space (Ω,F , (Ft),P).

Definition 8.18. An adapted process (At) is a finite variation process if it has finite variation sample
paths on R+. If additionally the sample paths are nondecreasing, we say that A is a increasing process.

As a consequence, A has continuous sample paths and A0 = 0 (because any finite variation process is
continuous and is 0 at t = 0).

Definition 8.19. If (At) is a finite variation process, we define its total variation process as

Vt =

∫ t

0
|dAs| .

Then (Vt) is going to be an increasing process. Why is (Vt) adapted? (The rest is certainly true — it has
finite variation increasing sample paths.) This follows from the theorem that we can write∫ t

0
|dAs| = lim

n→∞

pn∑
i=1

∣∣A(tni )−A(tni−1)
∣∣

as a limit of discrete approximations. Each of these discrete approximations is certainly Ft-measurable
(because the tni form a subdivision of [0, t]), and the limit of Ft-measurable functions is Ft-masurable.

Remark 8.20. Any finite variation process can be written as a difference of two increasing ones (similarly
to fininte variation functions).

Proposition 8.21

Let A be a finite variation process, and let H be a progressive process such that∫ t

0
|Hs(ω)| |dAs(ω)| <∞ for all t ≥ 0 and ω ∈ Ω.

Then the process H ·A given by

(H ·A)t =
∫ t

0
Hs dAs

is also a finite variation process.

This is kind of a special case of stochastic integrals — where you’re integrating against a finite variation
process. Here A is going to be our integrator (since we’ve set up all this notion of integrating against A),
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and our integrand is going to be a progressive process. We need to make some integrability assumptions so
that this is well-defined.

We usually omit ω in our notation, but here we’re writing this to emphasize that it’s true for all ω ∈ Ω.

This is not really the main case of stochastic integration — the main case is when you integrate against
things like Brownian motion or martingales — but to be able to integrate semimartingales, you’ll need to
be able to integrate against both Brownian motion and finite variation processes. So we’re doing this case
first.

Proof. The fact that sample paths are finite variation functions is a remark we already made — if µ is
the measure associated to A (so we fix a given ω ∈ Ω, so now we have a finite variation function and
this associated measure), then this integral has associated measure H dµ. (We basically wrote this remark
earlier — when you integrate against nice enough functions, at least integrable ones, you get another finite
variation function.)

The main point is you have to show this thing is adapted. The fact that it has finite variation sample
paths is basically immediate (there’s no probability theory involved, just analysis), but you need to show
it’s actually an adapted process. In other words, we need to show (H ·A)t0 ∈ Ft0 .

To show this, it suffices to show that given a measurable function h : Ω × ([0, t],Ft0 ⊗ B([0, t0])) → (R,B)
such that

∫ t0
0 |h(ω, s)| |dAs(ω)| <∞ for all ω, we have that the random variable∫ t0

0
h(ω, s) dAs(ω)

(the integral without absolute values) is Ft0-measurable. Why does this suffice? If you recall the definition
of a progressive process, by definition a progressive process is measurable in the form of h above. So now
it suffices to show the claim is true for any measurable function h like this; and then we’ll apply it to
this progressive process. (And the second assumption will be true for our H because that’s part of the
assumption of the proposition.)

How do we show this? Any time you want to show some claim like this, you start with the simplest
possible thing. What are measurable functions with respect to Ft0 ⊗ B([0, t0])? They’re basically going to
be combinations of indicator functions of events in this product σ-algebra, and the simplest ones of those
are product events.

So let’s first consider an event of the form E × (s0, s1], where E ∈ Ft0 and (s0, s1] ⊆ [0, t0]. And let h be
the indicator of the product event, i.e.,

ht(ω) = 1E(ω)1(s0,s1](t).

Then h is bounded by 1, so the integrability assumption is certainly okay. And in this case, we have∫ t0

0
hs dAs = 1E(As1 −As0)

(here we’re no longer writing the ω’s) — you’re more or less computing the integral of an indicator. The
point is we’re integrating with respect ot s, so the 1E doesn’t matter and we can pull it out; then we’re
integrating the indicator of an interval, and that gives you the difference of endpoints.

And 1E ∈ Ft0 , and A is adapted and s1, s0 ≤ t0; so this is all in Ft0 .

So basically, we proved the claim for the simplest possible measurable functions we could think of. Now, as
always, you have to find the right way to make this approximation argument work. For instance, let’s let
G ⊆ Ft0 ⊗ B([0, t0]) be the collection of F ∈ Ft0 ⊗ B([0, t0]) such that the map

ω 7→
∫ t0

0
1F (ω, s) dAs(ω)
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is Ft0-measurable. So it’s the collection of events for which you get a random variable which is Ft0-
measurable.

We already showed that G contains all product events of the form E×(s0, s1] with E ∈ Ft0 and (s0, s1] ∈ [0, t0]
(that was the first part). Now you want to use some sort of monotone class argument to show that G has
to contain the generated σ-algebra.

This is going to be on the next homework; it’s an exercise. Le Gall points you to the right monotone class
theorem to use. But basically, you want to show that in fact

G = Ft0 ⊗ B([0, t0])

via some monotone class argument.

And if we now know this, then we know the indicator function of anything in this product σ-algebra gives
me a Ft0-measurable function, then we’re basically done — because you can approximate any general h as
a linear combination of indicators.

So given a general function h ≥ 0, we can approximate h by a linear combination of indicators hn ↗ h.
(We’re not going to write this out, but it’s some usual approximation thing where you split based on the
values of h — whether it takes values in some interval of length 1/n — and you take the smaller point in
that interval, so you increase up to h.) Then the monotone convergence theorem tells you that∫ t0

0
hn dAs →

∫ t0

0
h dAs.

And each hn is a linear combination of indicators, so these are measurable by the above claim; and the limit
of measurable things is measurable. So that tells you the right-hand side is also Ft0-measurable.

This deals with nonnegative h; for general h you can write h = h+− h− and apply this to both the positive
and negative parts.

Remark 8.22. Often, we only have a weaker condition that almost surely, for all t ≥ 0, your process H
is integrable up to time t, meaning that∫ t

0
|Hs(ω)| |dAs(ω)| <∞.

The proposition assumed it’s true for all ω, but in principle sometimes you’ll only have it for almost all
ω.

Here, it’s useful to have a complete filtration. Assuming (Ft) is complete, you can define a modified
process H ′ by

H ′
t(ω) = 1EHt(ω),

where you basically modify it off the ‘good event’

E =

{∫ n

0
|Hs(ω)| |dAs(ω)| <∞ for all n

}
.

The ‘almost sure’ assumption says P[E] = 1; and the point is we’re just setting H to 0 off this good
event.

And H ′ is still progressive — because we started with a progressive process H and modified it on a
measure-0 event, and the fact that the filtration is complete lets you do that.

And now we can define
H ·A = H ′ ·A,

because H ′ is literally integrable for all ω by definition.
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§9 March 3, 2025

§9.1 Review

To quickly recap what we did last time, we introduced finite variation processes, which we usually denote
by A. The main result from last time was that given a FV process A and a suitable integrand H (which is
progressive and satisfies an integrability condition), you can define

(H ·A)t =
∫ t

0
Hs dAs,

and this is also a FV process. This didn’t really require much probability theory at all — you’re just
integrating an integrable function with respect to a finite measure. The main thing in the proof was the
fact that this actually gives you an adapted process; so there was some approximation argument we did last
time to show why that was the case.

As a heuristic remark, another reason this has to be adapted is you can kind of approximate this integral
— or you would expect to be able to approximate it — by some sort of Riemann sum approximation

n∑
i=1

Htni
(Atni

−Atni−1
).

And in the case where H is continuous, we showed that when you take the mesh to 0, you actually recover
this integral. We didn’t show it when H is just a progressive process. But you would believe that under
some nice assumptions, you should be able to approximate the integral as a limit of this finite sum. And
this finite sum is certainly going to be Ft-measurable. (But the proof in the book was by this monotone
class argument; but this is maybe the heuristic way to see things.)

Another remark we’ll stress is that basically you should think of FV processes as varying like dt, i.e.,

dAt ∼ dt.

This is almost the definition of a FV process — we defined it based on a measure, but this is how you should
think about it. What this means is that At+ε − Aε ∼ ε — the variation on a small interval looks like the
interval itself. In particular Brownian motion is not a FV process — heuristically we have Bt+ε−Bt ∼ ε1/2

instead. Basically you think of FV processes as Lipschitz functions, for instance — any Lipschitz function
definitely satisfies this condition. So that’s the heuristic picture of a FV process — your variation over a
time interval is like dt.

Remark 9.1. If H and K are progressive such that
∫ t
0 |Hs| |dAs| <∞ and

∫ t
0 |HsKs| |dAs| <∞ for all

t, then you get the associativity property that

K · (H ·A) = (KH) ·A.

So you have this associativity of integrals. (The integrability assumptions are just so that everything is
well-defined.) This is an example of the associativity property of stochastic integrals, as we’ll see later,
in the special case where you just have FV processes.

The proof is basically that if you define a density k(h dµ) — so you have some base measure µ (which
you think of as A) and two densities k and h (which are integrable functions), then you can first define
this new measure h dµ, and then you can find this new measure with respect to h dµ. And this is the
same as taking the density kh dµ. So that’s basically all this is saying.
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§9.2 Continuous local martingales

That concludes our discussion of FV processes; now we’ll move to the other part of the discussion of
semimartingales, which is continuous local martingales.

For some setup, throughout this discussion we fix a filtered probability space (Ω,F , (Ft),P).

§9.2.1 Heuristics

For some heuristic remarks, you should basically think of a continuous local martingale M — first, it’s some
generalization of a martingale. You should think of them as locally like Brownian motion — in particular,
you should have dMt ∼ d

√
t, whatever this means, in the sense that at a heuristic level,

Mt+ε −Mt ∼ ε1/2.

This is one fundamental property of continuous local martingales, and it’s quite different from FV processes.
So basically you can’t be both at the same time (unless you’re just 0), and we’re going to prove that soon.

You should have this picture where in a FV process you might have some continuously differentiable function,
which is basically the drift of your process. And then around this function, you have some small fluctuations;
and that’s what this local martingale part is doing. We’ll see you can decompose a semimartingale into
these two parts — the drift and variance.

Note that when ε is small, ε1/2 is much larger than ε — so continuous local martingales vary much more
wildly (at small levels) than FV processes.

§9.2.2 Definition

Notation 9.2. If T is a stopping time and (Xt) is a continuous stochastic process (i.e., a stochastic
process with continuous sample paths), we write

XT
t = Xt∧T .

We call XT the stopped process.

This is because we’re only looking up to time T , and after that it’s constant.

We proved before that this is actually a random variable; and if X is adapted, then by continuity it’s
progresive, so this thing will actually be adapted as well.

Fact 9.3 — If S is a stopping time, then (XS)T = XS∧T = (XT )S .

This is just from plugging things right into the definition.

Now we’ll define continuous local martingales. The point is that the L1 condition — that your process be
integrable at all times — is kind of restrictive. So you kind of want to remove it but still have some nice
properties about your process, and that’s the motivation.

Definition 9.4. An adapted process (Mt) with continuous sample paths and such that M0 = 0 almost
surely is a continuous local martingale if there exists a sequence of stopping times (Tn) such that
Tn ↗∞ and for each n, the stopped process MTn is a uniformly integrable martingale.

More generally, we say that M is a continuous local martingale if it’s an adapted continuous process
and Nt = Mt −M0 is a continuous local martingale.

By Tn ↗∞ we mean Tn ≤ Tn+1 ≤ Tn+2 ≤ · · ·, and they converge to ∞ (for every ω ∈ Ω).
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Definition 9.5. We say that a sequence of stopping times (Tn) reduces M if Tn ↗∞ and for all n, the
stopped process MTn is a uniformly integrable martingale.

In other words, this condition of a continuous local martingale means you have a sequence of increasing
stopping times going to ∞ which reduces M .

Remark 9.6. Note that we don’t require Mt ∈ L1. The point is we want to loosen the martingale
condition to remove this restriction.

Remark 9.7. Any continuous martingale is a continuous local martingale — you can just take the
sequence of stopping times Tn = n. In the martingale module, we proved that if you stop your process
at a deterministic time, then (Mt∧n) is always uniformly integrable. And as a consequence, if you start
with a continuous martingale, then Tn = n reduces your martingale.

The proof of this was that (Mt∧n) is closed by the endpoint of your interval — we have

E[Mn | Ft] = Mn∧t.

However, the converse is not true — otherwise what would be the point of this definition? To see
that, you can consider (for instance) Z + Bt, where Bt is a Brownian motion and Z ̸∈ L1 (and Z is
independent of (Bt)). This cannot be a martingale because this thing is not in L1 (it starts at Z because
B0 = 0). But one can check that you can actually find a sequence of stopping times (Tn) which reduces
this, so it’s actually a continuous local martingale.

This is a somewhat contrived example, but later we’ll see some more natural examples — it might come
out of looking at 1/|Bt+x|, where you have a 3-dimensional Brownian motion (we add some fixed time
x because we don’t want to have ∞ at time 0). It’ll probably be an exercise (but you have to use Ito’s
formula for it) that this is a continuous local martingale, but it’s not going to be a martingale. But
that’s for later.

§9.3 Some properties of continuous local martingales

We’ll now talk about some properties of continuous local martingales. We already saw one property — any
continuous martingale is also a continuous local martingale.

Proposition 9.8

In the definition of a continuous local martingale, we can replace ‘uniformly integrable martingale’ with
‘martingale.’

This says you don’t need ‘uniformly integrable’ in the definition of a continuous local martingale — it suffices
to display some sequence of times for which the stopped process is just a martingale. Indeed, if you look at
other sources than Le Gall, often they’ll just define it with martingale instead of UI martingale. The proof
is that if (MTn) is a martingale, then (MTn∧n) is still a martingale, and it’s going to be uniformly integrable
for the same reason as above. (It’s also a consequence of something we proved last week — Tn ∧ n is a
bounded stopping time.) (The other part is that Tn ↗∞, so Tn ∧ n↗∞ as well.)

Proposition 9.9

If M is a continuous local martingale and T is a stopping time, then the stopped process MT is also a
continuous local martingale.
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The reason why you have this is that if (MTn) is a UI martingale, then so is (MT∧Tn) — again, this was a
consequence of some proposition we proved last time. And MT∧Tn = (MT )Tn (by the commutation property
we mentioned earlier). So if (Tn) reduces M , it also reduces the stopped process MT .

Proposition 9.10

If a sequence of stopping times (Tn) reduces M and (Sn) is a sequence of stopping times with Sn ↗∞,
then (Tn ∧ Sn) also reduces M .

For this, we have that Tn ∧ Sn ↗∞, so we just need to check why you get a UI martingale. And the point
is that as before, if (MTn) is a UI martingale, then by the optional stopping theorem you can stop it at
another stopping time Sn and still get a UI martingale.

Proposition 9.11

The space of continuous local martingales is a vector space.

The reason this is true is basically a consequence of Proposition 9.10 — if you have two continuous local
martingales M and M ′ reduced by (Tn) and (T ′

n), you need to find a sequence of stopping times reducing
M + M ′. And the natural sequence of stopping times is (TnminT ′

n). That reduces both M and M ′ by
Proposition 9.10, so it also reduces M +M ′ (if you add two UI martingales, it’s still a UI martingale).

Now let’s get into some results about continuous local martingales.

Proposition 9.12

(i) A nonnegative continuous local martingale such that M0 ∈ L1 is actually a supermartingale.

(ii) A continuous local martingale M such that there exists Z ∈ L1 which dominates the entire process
(meaning |Mt| ≤ Z for all t) is a uniformly integrable martingale.

(iii) If M is a continuous local martingale with M0 = 0, or more generally M0 ∈ L1, then the sequence
of stopping times

Tn = inf{t ≥ 0 | |Mt| ≥ n}

reduces M .

In particular, (i) says that Mt is integrable for all t. We’re not assuming a priori that’s the case, but actually
it will be the case if we assume M0 ∈ L1. (The nonnegativity assumption is important for this.)

For (ii), maybe the most common case we’ll apply it is where Z is just constant. In particular, a bounded
continuous local martingale is actually a uniformly integrable martingale.

For (iii), you’re just looking at the first time your martingale goes above n; the claim is that this reduces
M .

Proof of (i). Let (Tn) be a sequence of stopping times reducing M . Then for all times s ≤ t and all n, we
have the martingale property

E[MTn
t | Fs] = MTn

s .

As a consequence, in particular, we have

E[MTn
t ] = E[MTn

0 ] = E[M0]

(because you can apply this with s = 0).

Now we use the fact that Tn ↗∞; so for any fixed t, as you send n→∞, we have MTn
t →Mt; and similarly

we have MTn
s →Ms.
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We want to apply Fatou’s lemma. So first we want to say why this thing is integrable — we claim it’s a
supermartingale, so why is it integrable? We have Mt = lim infMTn

t (because it’s actually just the limit);
Fatou’s allows us to take the lim inf outside and say

E[Mt] ≤ lim inf
n→∞

E[MTn
t ].

(Here’s where we use the nonnegativity assumption, which is required to apply Fatou.) And this is equal to

lim inf
n→∞

E[MTn
0 ] = E[M0].

This shows M is integrable for all t (because M is nonnegative, and we’ve shown its expectation is finite).
So Mt ∈ L1.

Now we need to show the supermartingale property. So we start with the martingale property at finite
n and also apply Fatou’s, but conditional Fatou’s. First, we have to say Mt is integrable in order to say
E[Mt | Fs] is well-defined (actually this is not so important, because Mt is nonnegative); we’ve done this,
so we can apply conditional Fatou’s to get that

E[Mt | Fs] ≤ lim inf
n

E[MTn
t | Fs].

And now we can use the martingale property to say this is equal to

lim inf
n

MTn
s .

But we have limnM
Tn
s = Ms; so this shows the supermartingale property.

Proof of (ii). Part (ii) says that if we have this domination condition, then M is actually a UI martingale.
The fact that it’s UI just follows — any collection of random variables satisfying this uniform domination
condition is UI (you can verify that directly from the definition). So the main thing is to show why it’s a
martingale.

So let (Tn) reduce M . We had the martingale property

E[MTn
t | Fs] = MTn

s .

And what we want to do is take limits on both sides. As a consequence of the assumption, we have
Mt,Ms ∈ L1, which means the conditional expectation after taking the limit is well-defined. And you just
want to apply the conditional dominated convergence theorem — the right-hand side is fine because it
converges almost surely (or even surely) to Ms. And on the left-hand side, you apply conditional dominated
convergence to show this converges to E[Mt | Fs]. So we get

E[Mt | Fs] = Ms,

which is precisely the martingale property.

Proof of (iii). First, let’s say why this process is uniformly integrable. By the definition of Tn, you might
think that |MTn

t | ≤ n. But there’s also the case where you have to use the initial starting value instead (this
is if n is smaller than your initial value, because then t is just 0); so we actually have

|MTn
t | ≤ n+ |M0| .

And now you have that (MTn
t ) is UI, because you’ve dominated it by an integrable random variable. And

one can check that Tn ↗∞ (it’s clearly monotone in n, and it increases to ∞ because Mt is continuous —
this is just some fact about continuous functions).
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Remark 9.13. As one word of caution, we saw that the uniform domination condition in (ii) suffices to
say a continuous local martingale is actually a UI martingale. And part of the proof was saying that
this condition implies your process is uniformly integrable.

There’s other conditions that also imply your process is uniformly integrable. In particular, a continuous
local martingale which is itself uniformly integrable — or even more, bounded in Lp for p > 1 (one
can use Hölder’s inequality to show that if you’re Lp-bounded for p > 1, you’re UI) — is actually not
necessarily a martingale. This is quite counterintuitive. You might think you just need this condition
|Mt| ≤ Z to say you’re UI, and then you have to be a martingale. But that’s not actually the case —
your process itself can be UI, but not a martingale.

It’s hard to give intuition for why this is true, but the example we’ll see later is 1/|Bt + x| — basically
the inverse distance of a 3D Brownian motion. We’ll see that this is a continuous local martingale but
not a martingale (as mentioned earlier), but it’s actually Lp bounded for all p.

§9.4 Continuous local martingales vs. FV processes

Now let’s move on to proving another thing about continuous local martingales. This theorem is basically
what we said near the beginning — you cannot be both a continuous local martingale and a FV process —
the conditions are incompatible with each other.

Theorem 9.14

Let M be a continuous local martingale and a finite variation process. Then M is indistinguishable
from 0.

In other words, almost surely, for all times t we have Mt = 0. We basically don’t care about processes up
to indistinguishability.

The intuitive reason why this is the case is that on one hand a finite variation process varies like dAt ∼ dt,
but you should think of a continuous local martingale as dMt ∼ d

√
t. These are very different conditions,

so they can’t both be satisfied.

Proof. In some sense, we already saw this proof for Brownian motion. Define the stopping times

τn = inf

{
t ≥ 0

∣∣∣ ∫ t

0
|dMs| ≥ n

}
.

(Note that M starts at 0 as a consequence of it being a FV process — all FV processes start at 0. And
given a FV process, you can consider this total variation process

∫ t
0 |dMs|; it’s going to be adapted and all

that so τn is actually a stopping time.) And τn ↗∞.

Also note that the stopped process M τn
t satisfies

|M τn
t | = |Mt∧τn −M0∧τn | ≤

∫ t∧τn

0
|dMs|

(we proved this total variation is the sup over all partitions of your interval of the sum of difference incre-
ments; and this is a partition of the interval, where we just take the two endpoints). And by the definition
of τn, this is at most n.

So the sequence (τn) reduces M — because this stopped process M τn is bounded and it’s a continuous local
martingale, so it’s actually a UI martingale. In other words, we’ve shown (M τn) is a UI martingale, which
means (τn) reduces M .
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Now consider a subdivision of our interval [0, t] — say we fix a time t. We want to show Mt is 0 almost
surely — that’s what we’re working towards. So we fix a subdivision

0 = tk0 < tk1 < · · · < tkpk = t.

(These subdivisions don’t have to be nested for this proof, but they do need to have mesh size tending to 0
as k →∞.)

When you have a bounded martingale (or more generally, a L2 martingale), you want to look at the second
moment — because it has this nice decoupling property where the increments are uncorrelated. So you can
write

E[(M τn
t )2] = E

[
pk∑
i=1

(M τn
tki
−M τn

tki−1

)2

]
(we showed this last week, even at the level of conditional expectations — it just follows because different
increments are decorrelated). And now you can bound this by the sup and sum — you can basically bound
L2 by L1 times L∞ — and you get that this is at most

E

[
sup

1≤i≤pk

|M τn
tki
−M τn

tki−1

|

∣∣∣∣∣
pk∑
i=1

∣∣∣∣M τn
tki
−M τn

tki−1

∣∣∣∣
∣∣∣∣∣
]
.

(We did something similar to this with Brownian motion, where we saw that this thing converged to t; the
point is that continuous local martingales are supposed to be kind of similar to Brownian motion, so we’re
basically following the same proof.)

Now we can further bound the above. The sum of the increments is also bounded by n — because it’s
bounded by the total variation on your time interval. So we get that the right-hand side is bounded by

n · E

[
sup

1≤i≤pk

∣∣∣∣M τn
tki
−M τn

tki−1

∣∣∣∣
]
.

(This is by what we proved last time, that the total variation is the sup over all subdivisions of the sum of
increments, and by how we defined our stopping time.)

And this goes to 0 as k → ∞. Why? The process M is bounded, and this is bounded by 2M . And M
is continuous and the gap inside is going to 0. So you can use dominated convergence to say that the
expectation goes to 0.

So what have we shown? The left-hand side doesn’t see k at all — we just introduced this parameter k
tracking our subdivision, but the left-hand side was independent of k. So we’ve shown that

E[(M τn
t )2] = 0.

We wanted to show this for Mt, not the stopped process; so we can just apply Fatou and get

E[M2
t ] ≤ 0

(because M2
t = lim infM τn

t — it’s actually the limit — and you can pull the lim inf outside). And that
implies Mt = 0 almost surely.

This is true for any fixed t. But M is continuous, so you can take a countable dense sequence of times;
and by continuity you’re going to get that M is indistinguishable from 0 (if you’re 0 at a countable dense
sequence of times and you’re continuous, then you’re actually 0 everywhere).
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Student Question. Where did we use that M was a FV process?

Answer. Otherwise τn might always be 0. Here we used the fact that τn ↗ ∞; and this comes from
the fact that the total variation process is a continuous function, so in particular it’s finite.

It’s kind of like — going back to this other property of Brownian motion, where we showed that this
sum of absolute increments is infinite almost surely. And we actually showed this by starting from
the fact that the sum of squared increments is basically t. And these two things are incompatible. At
the infinitesimal level, it’s basically saying this — imagine I break my interval into pieces of 1/n. For
a FV process, we have

∑n
i=1 1/n = 1. And that means

∑n
i=1(1/

√
n)2 = 1. But that has to mean∑n

i=1 1/
√
n =

√
n → ∞. That’s the basic reason for why for Brownian motion, this sum of absolute

increments has to be infinite (if you take a finer and finer mesh size).

§9.5 Quadratic variation

Now let’s get to defining probably the most important thing about continuous local martingales. This is
precisely this type of thing — the sum of squared increments. As we said, for continuous local martingales
we expect the sum of squared increments to be O(1) as we take the mesh size tending to 0 — so that thing
is going to be called the quadratic variation.

From now on, we assume (Ft) is complete — that means F0 contains all null sets. This completeness
assumption is needed so that certain processes you define later on are still adapted (you want to be able to
modify processes on measure 0 sets, and when you modify a process you need to know that measure 0 set
is measurable, or adapted; and this completeness says it’s F0-measurable, so it’s also Ft-measurable).

In the notes, this is highlighted as the most important theorem of the chapter. It’s also probably going to
be the most difficult or involved proof in this entire course. It takes 30 pages in the notes, because you have
to do this long computation.

Theorem 9.15

Let M be a continuous local martingale. Then there exists an increasing process (⟨M,M⟩t), unique
up to indistinguishability, such that M2

t − ⟨M,M⟩t is a continuous local martingale. Moreover, for any
t > 0 and a sequence of increasing subdivisions 0 = tn0 < · · · < tnpn = t with mesh size tending to 0, we
have

⟨M,M⟩t = lim
n→∞

pn∑
i=1

(Mtni
−M2

ti−1
).

We call ⟨M,M⟩ the quadratic variation of M .

Recall we defined an increasing process as a FV process whose sample paths are nondecreasing.

§9.5.1 Some big-picture stuff

The fact that you have nontrivial quadratic variation — this is in principle not just 0 — is encoding the
fact that you vary like

√
t on small intervals. If this were 0, then you’re actually going to get that M is 0

almost surely — we’ll probably see that later. For instance, if ⟨M,M⟩ = 0, which says you don’t really vary
like
√
t on small intervals, then M2

t is a continuous local martingale, and it’s nonnegative. And we have this
result that a nonnegative continuous martingale starting in L1 is a supermartingale. So we can apply that
here; then you have a supermartingale starting at 0 which is nonnegative, and that implies it’s 0.

Then you might ask, what is this martingale M2
t − ⟨M,M⟩ supposed to be? Do I have a representation of

it? That’s exactly stochastic integration — in particular, this is going to be a special case of Ito’s formula
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— that whatever this difference is, you can write it as a stochastic integral. In fact, one consequence of Ito’s
formula is that you can write

M2
t =

∫ t

0
Ms dMs + ⟨M,M⟩t,

whatever this means (when we talk about stochastic integration, we’ll define what the integral term means).

So this is sort of the first instance of Ito’s formula we’re seeing. Why is it all going to be true? It kind
of comes from the fact that if you have a (local) martingale, oftentimes what you want to do is take some
continuous function f of your martingale, e.g., the square, and you want to take derivatives — so you want
to look at

d

dt
f(a(t)).

Classically in calculus, we know that if a is a continuously differentiable function of t and we apply some
differentiable function f to it, the chain rule tells me

d

dt
f(a(t)) = f ′(a(t))a′(t).

If you try applying the same logic to looking at the time-derivative of a continuous local martingale, you
might think that

d

dt
M2

t = 2Mt dMt

(taking f(x) = x2, whose derivative is 2x — whatever dMt means, we’ll talk about it later). But this is
actually not true. That’s what’s new about Ito’s formula, and what sets it apart from regular calculus. The
reason why it’s not true, we can basically already see from the statement of this theorem. Because what
does the derivative of M2

t mean? It means I take a small increment and try to see what it looks like, so I
consier M2

t+ε −M2
t . And I can write this as

(Mt + (Mt+ε −Mt))
2 −M2

t .

Basically I want to do Taylor expansion on a quadratic function, so let’s see if I can do that. When you
look at a quadratic function and take this difference, in principle you get a cross-term 2Mt(Mt+ε−Mt). But
then you also get this square term — you actually get

2Mt(Mt+ε −Mt) + (Mt+ε −Mt)
2.

And the whole point is in classical calculus, if Mt+ε −Mt ∼ ε (e.g., if you had a FV process instead of a

martingale), then when we take the square, you’re really summing
∑ε−1

ε2 = ε. So we’re basically proving
the chain rule for this quadratic function, if a is differentiable — you only need to expand to first order,
because the second order terms are negligible.

But this is no longer true if you have a martingale — Mt+ε −Mt varies like
√
ε, so when you square it, it

varies like ε2. And when you sum up ε−1 terms of order ε, you get O(1).

So that’s why in stochastic calculus you get this correction term — because you’re not actually finite
variation, you’re like a martingale. And this means you get the correction term ⟨M,M⟩t in the chain rule.

This is the first instance of that.

§9.5.2 Proof of uniqueness

We’ll start the proof; we definitely won’t finish today, but we’ll see how far we’ll get.

First let’s talk about uniqueness. That’s going to be an easy consequence of what we showed before — that
you can’t be both FV and a continuous local martingale. So if A1 and A(2) are both such that

M2
t −A

(1)
t and M2

t −A
(2)
t
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are both continuous local martingales — I can add continuous local martingales and still get a continuous
local martingale, so that means

A
(1)
t −A

(2)
t = (M2

t −A
(2)
t )− (M2

t −A
(1)
t )

is a continuous local martingale. But it’s also a FV process, because sums and differences of FV processes
are also FV processes. This means A(1) −A(2) = 0 up to indistinguishability.

So uniqueness is basically immediate; it’s really about constructing such a process.

§9.5.3 Proof of existence for bounded M

Whenever you try to prove a theorem like this, you first make a bunch of simplifying assumptions — because
if you can’t prove the simpler case, how can you prove the general case? So we’ll assume M0 = 0 and that
M is bounded — there is some constant a such that M is bounded uniformly in time by a. (The reason
we’ll be able to remove these assumptions is we have a continuous local martingale, so you can always take
some sequence of stopping times where your process is bounded; so we’ll start with this simpler situation
where your process is bounded to begin with.)

Now fix a time K > 0 and an increasing sequence of subdivisions 0 = tn0 < · · · < tnpn = K with mesh size
tending to 0.

Where’s all this going to come from? We always just discretize and see what happens in discrete time, so
that’s what we’re going to do. We can write our martingale Mt — for t ∈ [0,K] — as a sum of telescoping
increments

Mt =

pn∑
i=1

(Mt∧tni −Mt∧tni−1
)

(this is where we use the fact that M0 = 0 — otherwise we’d have to insert it into this sum, because it
doesn’t telescope with anything). Now when we take the square, we’re going to get(

pn∑
i=1

(Mt∧tni −Mt∧tni−1
)

)2

.

And as usual, when you expand out the square of a sum, you get the diagonal terms and the cross-terms.
The diagonal term is going to precisely be the sum of squared increments

pn∑
i=1

(Mt∧tni −Mt∧tni−1
)2.

And for the cross-terms, we’re going to get

2

pn∑
i=1

(Mt∧tni −Mt∧tni−1
)
∑
j<i

(Mt∧tnj −Mt∧tnj−1
).

And when you write it in this particular way, you see that this inner sum over j also telescopes. So the
second part is going to be equal to

2

pn∑
i=1

(Mt∧tni −Mt∧tni−1
)(Mt∧tni )

(when the sum over j telescopes, we get the two endpoints — one is at the right endpoint j = i − 1, and
the other is at the left endpoint, where we get M0 = 0).

And what’s the point of all this algebra? Now I have this process which I can define as 2Xt
n (for fixed n,

the process in t is precisely this sum).
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Claim 9.16 — (Xn
t ) is a martingale.

This is where you start believing that when you subtract out the quadratic variation you get a martingale
(or that the QV should be of this form) — because on a discrete level, this is true. And actually this is a
martingale even in continuous time. The only problem is that if you look at the sum of squared increments
at continuous times, it’s not necessarily increasing — it’s increasing on your fixed points in the mesh, but
in between it can vary. So you eventually want to take a fine-mesh limit and get an increasing process in
continuous time.

So that’s kind of what we’re working towards; we’ll continue with the proof next time.

§10 March 5, 2025

§10.1 Quadratic variation

Today we’ll continue with the proof of the main theorem defining the quadratic variation.

Theorem 10.1

Let M be a continuous local martingale. Then there exists an increasing process (⟨M,M⟩t), unique up
to indistinguishability, such that M2

t − ⟨M,M⟩t is a continuous local martingale. Furthermore, for any
t > 0 and an increasing sequence of subdivisions 0 = tn0 < · · · < tnpn = t with mesh size tending to 0, we
have that

⟨M,M⟩t = lim
n→∞

pn∑
i=1

(Mtni
−Mtni−1

)2

in probability.

This states that if there’s a continuous local martingale, there’s a unique increasing process such that M2
t

minus this process is itself a continuous local martingale; and the way you compute it is by this limit. Last
time we gave some intuition for why this should be the right thing.

Remark 10.2. We’re assuming (Ft) is complete. That’s an assumption in this theorem; we’ll see why
we need it. Basically, in principle we’re going to get an increasing process on an almost sure event;
and you want to modify it to be almost surely increasing, not just increasing. But when you modify it,
you need to keep the condition that it’s adapted to your filtration. So you want to be able to say that
when you modify on a measure-zero event, you’re still adapted. And that’ll be true if your filtration is
complete, because any measure-zero event is in F0.

§10.2 Some remarks

Another heuristic way to see this — recall the quadratic martingale (of e.g., Brownian motion). In the
section on martingales, we had some general principles of how you generate martingales starting from a
martingale itself, or some process with independent increments. In particular, if you take the square of
the process, the thing to subtract is basically the variance. Here you have a local martingale instead of a
martingale, but it’s natural you want to subtract some variance-like thing; and infinitesimally the variance
is supposed to look like this.

As another remark, you should basically think of the quadratic variation as the ‘variance’ of M . Of course,
this doesn’t make formal sense because M is a continuous local martingale, so it doesn’t even have to
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be integrable — so the variance isn’t well-defined. But this is somewhat true on an infinitesimal level —
basically, increments of ⟨M,M⟩t are telling you locally how much your variance is. In particular, you should
think of Mt as in some sense a Gaussian random variable N (0, ⟨M,M⟩t) — so you should basically think
of continuous local martingales as sort of normal random variables. In some way, they’re like Brownian
motion, just with time changed.

One way to make this precise is that if at some time t you have ⟨M,M⟩t = σ2 almost surely (in principle it’s
a random variable, but we’re supposing it’s actually a constant), then it is actually true that Mt ∼ N (0, σ2).
So this lends some motivation to heuristics like this — if the thing literally is a constant, then you literally
do have a standard normal distribution. (We will need Ito’s formula to prove this, but we’ll prove it later.)

So basically you think of local martingales as mixtures of Gaussian distributions where the variance term
could be random. In particular, maybe the reason Mt might not be integrable is that ⟨M,M⟩t can have
very poor tail behavior — maybe it’s super large on average, so your variance tends to be super large, and
then when you compute this mixture the variance actually explodes.

As a third remark, in fact if B is a (Ft)-Brownian motion, then one computes tha t⟨B,B⟩t = t — basically
the simplest possible increasing process. In particular, here the quadratic variation is not random, it’s
deterministic. (This is also consistent with what we just said about variance.) So you should always think
of BM as the simplest, most concrete case.

Why is this true? We already showed previously that B2
t − t is a martingale (the quadratic martingale of

Brownian motion). And martingales are continuous local martingales; so by the uniqueness part, you’ve
computed its quadratic variation.

§10.3 Proof of existence

Last time we had a short argument for why uniqueness is true. This was basically just that you can’t be both
a local martingale and a FV process (unless you’re 0) — those two are incompatible with each other. And
then we got to the following point: we fix K > 0 (think of this as an integer), and an increasing sequence of
subdivisions 0 = tn0 < · · · < tnpn = K. We also started by making some simplifying assumptions: we assumed
that M0 = 0 (almost surely) and that M is bounded. Again, any time you prove a result, you start in the
simplest possible case (because if you can’t prove it in the simplest case, you probably can’t prove it in full
generality). This is similar to how in analysis, any time you prove some inequality (like Sobolev), you start
with smooth functions (rather than a general function with finite Sobolev norm). So for us, we start with
bounded martingales — now it’s not just a local martingale, but a martingale.

And we wrote our local martingale at time t as the sum of its increments (basically, you can telescope), as

Mt =

pn∑
i=1

(Mt∧tni −Mt∧tni−1
).

(In principle you might need M0, but here we don’t have that because M0 = 0.)

Then we had this computation — what I want to look at is M2
t . And when you expand out the square of

this sum, as usual you get the diagonal terms and the cross-terms. The diagonal term looks exactly like
what we’re claiming should be the quadratic variation, more or less — it’s

pn∑
i=1

(Mt∧tni −Mt∧tni−1
)2.

And for the cross-terms, there’s this algebraic thing where you can actually write it as

2

pn∑
i=1

Mt∧tni−1
(Mt∧tni −Mt∧tni−1

).
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The reason is in principle the cross-term is

2
∑
j<i

(increment at i)(increment at j).

And you reorganize this as first a sum over i, and then inside, a sum over j < i. The increment over i is
going to be the second term. And when you sum over j < i, you have this telescoping thing; so you just
pick up the right endpoint and the left endpoint. The right endpoint is going to be Mt∧tni−1

, and the left
endpoint is M0 = 0. So you get this algebraic identity. And it’s going to be quite important — we’ll use it
elsewhere in the proof as well (that you can group the cross-terms and get this telescoping sum).

Then we defined this sum as
pn∑
i=1

Mt∧tni−1
(Mt∧tni −Mt∧tni−1

) = Xn
t .

So we get that

M2
t =

pn∑
i=1

(Mt∧tni −Mt∧tni−1
)2 + 2Xn

t

(where the first term is what we should eventually be thinking of as the quadratic variation).

The first thing to note in this proof is:

Claim 10.3 — (Xt
n) is a bounded martingale.

In the end, this is where the statement comes from — we want to figure out what we need to subtract from
M2 to get a martingale. And we wrote M2 in this way and saw the second term is a martingale, so we
should just be subtracting the first.

Proof. The short reason is any time you have a Riemann sum approximation like this, with increments of
your martingale and something measurable with respect to the left endpoint of your increment, you get a
martingale. For example, when proving Doob’s upcrossing lemma you define a submartingale out of your
submartingale, and it’s something like this — you always keep your thing you’re multiplying the increment
by measurable with respect to the left endpoint.

It really suffices to check that each term inside the sum is a martingale. If you ignore the sum, each summand
is a process in t; so we just want to check that each summand is a martingale. More generally, it suffices to
check that for any r ≤ s and some bounded Fr-measurable random variable Z, the process

Vt = Z(Mt∧s −Mt∧r)

is a martingale. (It suffices to check this because it applies to each summand, and a sum of martingales is
a martingale.)

(The fact that it’s bounded comes from the fact that each of the M ’s is bounded.)

To see this, let t0 ≤ t1. We basically just want to check the martingale property

E[Vt1 | Ft0 ] = Vt0 .

We’ll do some case analysis.

Case 1 (t1 ≤ r). Then by definition, Vt0 = Vt1 = 0 (because you’re taking t ∧ s and t ∧ r; so in Vt1 you get
Mt1 −Mt1 = 0, and similarly with Vt0).

Case 2 (t0 ≤ r ≤ t1). In this case, you can use the tower property to say that

E[Vt1 | Ft0 ] = E[V E[Mt1∧s −Mr | Fr] | Ft0 ].
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(We want to show the right-hand side is 0 — we still have t0 ≤ r, so Vt0 is still 0.) But

E[Mt1∧s −Mr | Fr] = 0

by the martingale property. So this case is done.

Case 3 (r ≤ t0 ≤ t1). This may not be the most efficient way to do it, but now let’s compute E[Vt1 | Ft0 ].
Because Z is Fr-measurable and therefore Ft0-measurable, we can pull it out, and we get

ZE[Mt1∧s −Mt1∧r | Ft0 ].

And because of our assumption, t1 ∧ r = r; and this is Ft0-measurable, so we don’t need the conditional
expectation, and so we get

Z(E[Mt1∧s | Ft0 ]−Mt1∧r).

To finish, we just need to show that this first conditional expectation is Mt0∧s. We again split into cases —
if t0 ≥ s, then we have

E[Mt1∧s | Ft0 ] = Ms

(because t1 ≥ t0 ≥ s, so t1 ∧ s is just s, and Ms is Ft0-measurable). And if t0 < s, then

E[Mt1∧s | Ft0 ] = Mt0

by the martingale property of M , which you can write as Mt0∧s.

So in summary, we’ve shown this claim that for any n, this process (Xn
t ) is a martingale. You see it just

reduces to a bunch of case analysis. But the way you remember it is any time you see a sum of increments
of your martingale multiplied by something measurable with respect to the left endpoint, you’re going to
get a martingale. In fact, this is basically how you define stochastic integrals.

You might think we’ve written M2
t minus this sum of squared increments as a martingale. Are we done?

No. If you think about this thing
pn∑
i=1

(Mt∧tni −Mt∧tni−1
)2

as a process in t, it’s not necessarily increasing — it’s only increasing on a mesh of points. On your mesh
it’s increasing because you’re summing nonnegative things. But in between, it’s not necessarily increasing
— this thing may increase or decrease in between your mesh. So this itself is not an increasing process —
it’s only an increasing process if you restrict to your discrete set of points. So we’re not done.

But this is why you want your mesh size tending to 0. We have a mesh basically tending to the continuum,
so in the limit you might think that whatever limit you get out of this process in n is going to be increasing.
And that’s exactly what we want to show. So we want to take this limit in n and show these process
converge. And whatever this process converges to, it’s going to be increasing — because it’s increasing on
your mesh of points, which is getting dense in [0,K]. So that’s what we’re working towards.

How do you show this process
∑pn

i=1(Mt∧tni −Mt∧tni−1
)2 converges? We’re actually going to show the second

process (Xn
t ) converges (as n → ∞) — because M2

t doesn’t depend on n. The reason you want to do this
is because it’s a martingale, and martingales have special properties, so if you can work with a martingale
you probably should.

What does it mean for a martingale to converge? I want to define a limiting process out of this, but I don’t
know what the limit is yet. So you basically show this is going to be a Cauchy sequence, and then appeal
to some completeness about spaces to show any Cauchy sequence converges.

So basically, we want to show:

Page 95 of 267



18.676 — Stochastic Calculus Class by Sky Cao (Spring 2025)

Goal 10.4. Show that
lim
n→∞

sup
m≥1

E[(Xm
K −Xn

K)2]→ 0.

Basically what this is saying is that your processes Xn, evaluated at the endpoint K, are Cauchy in
L2(Ω,F ,P) as a sequence in n.

This is where the true difficulty of the theorem lies — in showing this. We said last time that this is probably
going to be the hardest proof in the class. The construction of stochastic integration and Ito’s formula are
relatively less involved. But to prove this, you actually have to do some long calculations, and in the middle
it’s kind of hard to see what the end result is going to be. So we’re going to defer this. (And for the complete
proof, there are some parts we might skip and assign as homework — because one absorbs a long proof
better that way.)

Why is this going to be enough to eventually get what we want? We’re going to assume this for now. We’re
saying this thing is hard, but modulo the hard thing, it’s going to be relatively easy.

We said we wanted to show
∑n

i=1(M
2
t∧tni
−Mt∧t2i−1

)2 converges as a process; but we’re saying the second

term converges. But in this claim, we took the right endpoint, not the entire thing itself.

But the reason we can do this is because it’s a martingale. For L2 martingales, you can always convert a
L2 bound on the endpoint into a L2 sup bound over t — because of the L2 maximal inequality, which says
that you actually have

E

[
sup

t∈[0,K]
|Xm

t −Xn
t |

2

]
≤ 4E[|Xm

K −Xn
K |

2]

(because each X is a martingale, if you take a difference you still get a martingale; so we’re applying the
L2 maximal inequality to this difference, which is a martingale). (The constant 4 doesn’t matter; but this
should be the right constant for p = 2.) To change notation, we’re going to write

E[∥Xm −Xn∥2C([0,K])]

to denote the sup on the left-hand side.

So you’re going to apply this. And then this convergence is going to allow you to obtain a subsequence {nj}
such that for all j, we have

E[
∥∥Xnj+1 −Xnj

∥∥2
C([0,K])

] ≤ 2−j .

(This is similar to what you do when you show that convergence in probability means you have a subsequence
converging almost surely — 2−j doesn’t matter much, you just want it to be summable in j). This implies

E

 ∞∑
j=1

∥∥Xnj+1 −Xnj
∥∥
C([0,K])

 ≤ ∞∑
j=1

2−j/2 <∞

(the reason for j/2 is we want the L1 norm instead of the L2 norm, so we use Hölder and get a square root).
This implies

∞∑
j=1

∥∥Xnj+1 −Xnj
∥∥
C([0,K])

<∞ almost surely.

And that’s going to imply that the subsequence (Xnj ) is Cauchy in the space of continuous functions on
your interval [0,K].

So let E be the event that the above sum is finite (so E is probability 1). Then on this event E, we have
what we just said — the sequence (Xnj ) is Cauchy in C([0,K]) (the space of continuous functions in my
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interval). And this space is complete, so this means there exists some limiting continuous function. So we
can define a process

Yt(ω) = 1E(ω) · lim
j

X
nj

t (ω).

Basically, on the event E, I want to define Y to be the limit of the Xnj , which exists because of what we
just said (it’s Cauchy); and off the event we define Y to be 0. Then Y is always going to be a continuous
function.

So in particular, we obtain a stochastic process Y with continuous sample paths. Moreover, Y is adapted,
because (Ft) is complete. (Why is Yt going to be Ft-measurable? In this limit, each X

nj

t is Ft-measurable,
just by the way we defined Xn. And you take a limit, and it’s still going to be Ft-measurable. And E is
also Ft-measurable, because it’s in F0 by the completeness assumption. This is one of the places we need
this completeness assumption — because you want a process which always has continuous sample paths,
not just on some almost sure event.)

Moreover, for all times t ∈ [0,K], we have that

E[
∣∣Xnj

t − Yt
∣∣2]→ 0.

(i.e., we get convergence in L2). The point is we had almost sure convergence, so we need to say why that
implies convergence in L2. And that’s just because everything is bounded — X is bounded, so Y is also
bounded, and this is just going to be true.

Why did we want this almost sure convergence? We want to say why Y is itself a martingale. It’s a limit
of martingales, and as long as we have some sort of convergence like this in L2, it’s itself also going to be a
martingale. So we can show that

E[Yt | Fs] = Ys,

i.e., Y is a martingale — because in the pre-limit this is true when you replace Y by Xnj . And then you want
to take a limit and say the conditional expectations converge, and that’ll be true by the above convergence
thing.

So we get a martingale Y , at least on our interval [0,K]. Then we obtain that (Yt∧K) is a martingale on
the entire real line — because if you have a martingale on this finite interval, and you just make it constant
after that interval, then it’s going to be a martingale for all time.

So now we’re basically done with the martingale part — we succeeded in showing that the limit of Xn gives
a martingale. Now we want to say why, when we subtract 2Xn from M2

t , we get an increasing process.

Goal 10.5. Show that M2
t − 2Yt is increasing.

This will basically finish the construction of the quadratic variation, at least on a bounded interval [0,K]
— because we get this increasing process, and then when we subtract it from M2

t we get 2Yt, which is a
martingale.

Why is this increasing? Well, for each n, this sum of squared increments

t 7→
pn∑
i=1

(Mn
ti −Mtni−1

)2

is increasing on our mesh of points (tni ) — so if you restrict your times onto this discrete mesh of points,
you get an increasing function.

And then we took the limit. Because the Xn’s converge in C([0, k]), so does this function (because their
sum M2

t does not depend on n). So we obtain that (at least on the event E — off this event we don’t have
convergence)

M2
t − 2Yt = lim

j
M2

t − 2X
nj

t

Page 97 of 267



18.676 — Stochastic Calculus Class by Sky Cao (Spring 2025)

is increasing on a countable dense subset of [0,K]. That’s because if you take t to be any point in your
mesh, then it exactly coincides with this discretized function (the pre-limit on your mesh). So when you
take the limit, you get this increasing function on the union of all your meshes; and because you took the
mesh size to 0, that union is countable dense.

And because it’s continuous, that implies M2
t − 2Yt is increasing on the entire interval [0,K].

So now we just define our increasing process AK by

AK
t = 1E · (M2

t − 2Yt).

And based on what we just said, when E happens A is increasing; and if E does not happen then A is just
always 0, so it’s always increasing.

So AK is an increasing process, and the process

(M2
t∧K −Ak

t∧K)t≥0

is a martingale. (We’re adding in these t ∧K’s to extend the process to the entire interval; but after K it’s
just a constant, so I only have to worry about whether it’s a martingale before time K. And before time K
it’s just going to be 2Y , at least on an almost sure event; so I get that this is a martingale.)

§10.3.1 Stitching things together

Now what it remains to do is — I kind of constructed this process on any finite interval, so now I just want
to stitch these processes together to get a process on the infinite interval (basically, I want to remove this
min with K). So we apply what we’ve obtained with K being any integer ℓ ≥ 1, and we get that for each
ℓ, we have a process (Aℓ

t)t∈[0,ℓ]. And one can check that these processes with different ℓ’s have to coincide
with each other, at least up to indistinguishability — almost surely,

Aℓ
t∧ℓ = Aℓ+1

t∧ℓ

for all ℓ ≥ 1 and t ≥ 0. Why is that the case? Basically it comes from the uniqueness part of the theorem.
Because if I look at — by definition Aℓ+1 is supposed to make

M2
t∧(ℓ+1) −Aℓ+1

t∧(ℓ+1)

a martingale. (Basically we constructed Aℓ+1 so that this is going to be true.) But if you restrict to the
smaller interval [0, ℓ], then this thing we wrote is just going to be equal to

M2
t∧ℓ −Aℓ+1

t∧(ℓ+1).

But then we also constructed
M2

t∧ℓ −Aℓ
t∧ℓ

to be a martingale. So we have these two processes such that at least on this common interval, we get a
martingale when we subtract the process from M2. And basically redoing the proof of uniqueness, that’s
going to tell me the difference of Aℓ and Aℓ+1 is both a martingale and a FV process (because they’re both
FV processes). And that can’t happen because their difference is 0.

You want this because you can stitch these things together; so now let’s say why.

SO let F be the event that this holds — i.e., that Aℓ
t∧ℓ = Aℓ+1

t∧ℓ for all ℓ ≥ 1 and t ≥ 0. Then we just define

⟨M,M⟩t = 1FA
⌈t⌉
t .

(We could have put in any integer greater than or equal to t in the superscript, because on the event F , it’s
all the same.) Then one checks that this actually defines an increasing process, and that (M2

t −⟨M,M⟩t) is
a martingale. (The fact it’s increasing is it coincides with an increasing process on any finite interval; and
the fact that it’s a martingale is again because if you look at a finite interval [0, ℓ] it’s a martingale, and ℓ is
arbitrary.) Here we again took an indicator on an almost sure event, so this is another place where we need
the filtration to be complete (because we want ⟨M,M⟩ to be Ft-measurable).
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Student Question. Why did we need to do this partitioning on [0,K] — why couldn’t we just do it on
the entire real line?

Answer. When you look at the endpoint, ultimately you want that the process converges, but you
usually prove that just by showing the endpoint converges — that

lim sup
n→∞

sup
m≥n

E[(Xm
K −Xn

K)2]→ 0.

And it’d be less clear what’s the endpoint otherwise.

So we’ve basically shown the first part of the theorem, modulo the statement in yellow — at least under the
assumption that M is bounded and M0 = 0. Now let’s show under those same assumptions why the second
part is true. That’s basically going to follow from what we already did.

For the second part, note that by construction, we have (almost surely)

⟨M,M⟩K = AK
K = M2

K − 2YK

by construction. And this was basically

lim
j→∞

∑
i

(M
t∧t

nj
i
−M

t∧t
nj
i−1

)2

in L2. (This is because we showed Y k itself converges in L2; and the difference Y k −Ak doesn’t depend on
k.)

But L2 convergence implies convergence in probability. So we get this statement, but actually even more
— the convergence is actually in L2, at least when you have a bounded martingale.

§10.3.2 The general case

So we’ve proven the theorem under the simplifying assumption that you have a bounded martingale M . Now
let’s briefly talk about how you extend to the general case of a continuous local martingale not necessarily
started at 0. The full details will be on the next homework, because again it’s basically that you want to do
this stitching thing — by definition a continuous local martingale always has a sequence of stopping times
reducing it, so you basically localize so that you have a bounded martingale. Then you apply this result
for bounded martingales; and then you take the sequence of stopping times to ∞ and stitch them together.
(It’s in the book, so you can just read it and write it up if you want, but it’d probably help conceptually to
try to work it out.)

In general, youc an write a continuous local martingale M as

Mt = M0 +Nt

(where N is a continuous local martingale starting at 0). That means you can expand

M2
t = M2

0 + 2M0Nt +N2
t .

And there’s an exercise on this week’s homework:

Exercise 10.6. M0Nt is a continuous local martingale.

So if you can construct the quadratic variation of the N part — your continuous local martingale starting
at 0 — then you’ve constructed the quadratic variation of the whole thing (because the QV is what you
have to subtract to get a CLMG, and M2

0 + 2M0Nt is already a CLMG).
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So with this, we can reduce to the case that M0 = 0 (which we’ll assume from now).

And for a general CLMG starting at 0, this will be on the next homework. To start, you basically want to
take a sequence of stopping times which not only reduces your local martingale, but makes it bounded —
you can for instance take

Tn = inf{t ≥ 0 | |Mt| ≥ n}.
Then you apply our previous result to the stopped process MTn — this is always going to be bounded now
— and then stitch things together. So that’s kind of the summary of what you’d do.

So that kind of — once you do these exercises, that basically completes the proof of this theorem, modulo
the hard part (the statement in yellow). Now we’ll talk about how you show this claim in yellow.

Student Question. Why is A finite variation?

Answer. It’s continuous and increasing. And as a result, it’s going to be finite variation. Because for
instance, in Le Gall there’s some statement where if you can write your function as a difference of two
continuous increasing functions, then it’s finite variation. And here it’s just itself.

But the more actual reason why this is true is you basically think of your continuous increasing function
as the CDF of a measure — not necessarily a probability measure, but it’ll be some positive finite
measure. Then you can apply the Caratheodory extension theorem to say why you can go from a CDF
to a measure itself — basically a CDF allows you to define a measure on a union of disjoint intervals
(by taking the difference of two endpoints), so now you have some sort of pre-measure on unions of
disjoint intervals (which is an algebra or something). And by Caratheodory you can extend this to a
measure on the real line (or at least on the fixed interval you’re starting with).

§10.4 Proving Goal 10.4

Now let’s go back to proving this claim. Let’s first fix m ≥ n — so the partition tm is finer than tn. We’ll
draw tn in blue, and tm in yellow on top of it (but you should really think of them as being overlaid).

Before we show this convergence to 0, we just want to compute this second moment; so let’s try to compute
that. How are we going to compute it? Well, let’s start by first computing the cross-term E[Xm

KXn
K ]. (When

you expand out the square, you’re going to get this cross-term; so we’ll have to understand this guy first.)

By the definition of the Xn, we’re going to get two sums — one corresponding to each partition — and
because we’re just looking at the endpoint K, there are no more mins (each ti is at most K). So we get

E[Xm
KXn

K ] =

pn∑
i=1

pm∑
j=1

E[Mtni−1
∆n

i Mtnj−1
∆m

j ],

where ∆m
i = Mtni

−Mtni−1
is your increment (this will reduce the amount of writing). (Each Xn

K is a sum,
so when you take the product you get two sums.)

The first thing to note is that:

Claim 10.7 — If i and j are such that (tni−1, t
n
i ] and (tmj−1, t

m
j ] are disjoint, then this expectation is 0.

This all comes back to the fact that L2 martingales are quite special. The point is you want to reduce the
amount of terms in your double sum. And actually you note that almost all the cross-terms are zero; there’s
only certain cross-terms which are nonzero.

Proof. For any i and j satisfying this condition, you can basically reduce to the following scenario: you have
four ordered times u1 < u2 < u3 < u4, and you can write this expectation as

E[Mu1(Mu2 −Mu1)Mu3(Mu4 −Mu3)].
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This is because tm is a finer partition, so either your smaller interval is contained in one of the larger ones,
or it’s disjoint, in which case you can do this.

And now you use tower — you take a further conditional expectation with respect to the second-to-last
endpoint, and this becomes

E[Mu1(Mu2 −Mu1)Mu3E[Mu4 −Mu3 | Fu3 ]]

(everything before is Fu3-measurable). And by the martingale property this inner expectation is 0.

For some notation, note that for each 1 ≤ j ≤ pm, there is a unique index i, which we’re going to write as
i(j), such that

(tmj−1, t
m
j ] ⊆ (tni−1, t

n
i ].

And so then by using this claim, we obtain that

E[Xn
KXm

K ] =

pm∑
j=1

E[Mtn
i(j)−1

∆n
i(j)M

m
tj−1

∆m
j ]

(we’re switching the sum; then if I first sum over j and the inner sum is over i, there’s only one i that’s
going to contribute, and it’s precisely i(j)).

In particular, for n = m, you get that the second moment of Xn
K takes the form

E[(Xn
K)2] =

pm∑
i=1

E[M2
tni−1

(∆n
i )

2] (10.1)

(the two parts of the product are the same). That’s one identity we’re going to need.

Now we’ll just write out the claim for the formula for E[Xn
KXm

K ]. We’ve got to this point, and we’re going
to expand out this second moment. We have these non-cross terms for n, and similarly you’re going to have
an identity for m like this. And you’re also going to have this cross-term. Somehow we need to reorganize
these to get an identity we can work with. That final identity is hard to guess, but in the end we get that:

Claim 10.8 — We have

E[(Xn
K −Xm

K )2] =

pm∑
j=1

E[(Mtmj−1
−Mtn

i(j)−1
)2(∆m

j )2].

So through some magic reorganization procedure you can get something like this (which we’re not going to
do today, because we’d run out of time and it’ll be on next week’s homework). We might indicate a simple
case where you have just four points on Monday.

So let’s just take this for granted now, and show why this is going to imply Goal 10.4. So this is our new
claim, which we’ll talk about more on Monday (and part will be next week’s homework) — proving this
identity starting from the one for E[Xn

KXm
K ]. (You have to do some magic reorganizations adn use the

martingale property in the right places.) If you want to get started on this before Monday, try the example
with four points (it’s in the notes too). You can also try to prove this straight away, but if you work out
the 4-point example, you kind of see the right way to reorganize things. Again, if you want to prove things
in full generality, it’s a good general principle to first try a very simple case.

So now let’s assume this and finish off the proof. We want to bound the right-hand side of Claim 10.8.
We’re going to apply Cauchy–Schwarz. But before we do that, we want to bound each of these differences
just by taking a sup — this gives

E[(Xn
K −Xm

K )2] ≤ E

 sup
i,j:i(j)=i

∣∣∣Mm
tj−1
−Mtni−1

∣∣∣2 pm∑
j=1

(∆m
j )2


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(the point was we replaced the first thing with the max it could be, so we could pull it out of the sum). Now
if you apply Cauchy–Schwarz, you can bound this thing by the fourth moments of each thing, and you get

E

[
sup

i,j:i(j)=i

∣∣∣Mm
tj−1
−Mtni−1

∣∣∣4]1/2 · E
 pm∑

j=1

(∆m
j )2

21/2

.

And why does this converge to 0? The first thing is going to converge to 0 because I’m taking the mesh
size to 0, so as n gets larger and larger, the distance between these two points tmj−1 and tmi−1 is going to get
smaller and smaller, and then you can use uniform continuity.

So let’s call these two expectations I1 and I2. Then we just showed I1 → 0 — before you take the expectation
this converges to 0 surely, because M is continuous on a bounded interval, so it’s uniformly continuous, and
so the sup is going to be over smaller and smaller intervals. So the sup is going to converge to 0 almost
surely. And M is bounded, so you get this convergence to 0 of the expectation as well.

So then we just need to show that the second term is O(1) — you want to bound it uniformly in m and n.
Why is that true? Well, if we expand — let’s take the term without the final square root(since that doesn’t
matter). If we expand the square of this sum, we get

pm∑
j=1

(∆m
j )4 +

∑
j ̸=i

(∆m
j )2(∆m

i )2

(we again get the diagonal terms, and then the off-diagonal terms). And then I want to look at the
expectations of these things, which I’ll call E1 + E2.

Let’s look at E1 and E2 individually. The thing I know about L2 martingales is that if this were not a 4
but actually a 2, I’d be in business — the increments of L2 martingales are uncorrelated, so if I sum the
squares and take an expectation, that’s just the expectation of the square of the endpoint.

But I took a bounded martingale, so I can just bound two powers of this by a constant. So let C be the
constant with |M | ≤ C. Then I can bound

E1 ≤ C2E

 pn∑
j=1

(∆m
j )2

 .

And it’s a L2 martingale, so this is precisely

C2E[M2
K ].

(Again in full generality it’d be (MK −M0)
2 for a general L2 martingale, but we took M0 = 0.) And M is

bounded, so this is just bounded by C4.

So the diagonal terms don’t cause you a problem. To finish, we just have to say why E2 is fine. A priori
we’re afraid because they’re cross-terms, so there are way more of them. Again you want to use magic
properties of L2 martingales to combine things — you only want to sum once.

Again, if we fixed j and summed over j′ with j < j′, I want to be able to bound the inner sum by something
good. And this is again going to be the uncorrelated property of L2 martingales. Basically if you fix j
and sum over j′, you condition on ∆m

j or something; and then you use the uncorrelated property of L2

martingales, even when you take conditional expectations, to prove this.
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§11 March 10, 2025

§11.1 Review

Last time we constructed the QV; the main idea was to consider some mesh and take

M2
t −

∑
i

(Mtni ∧t −Mtni−1∧t)
2.

And you noted that this was a martingale. Then you take a limit as n→∞, and get an increasing continuous
function. The way you show the sum converges to a limit is by showing the martingale converges to a limit.
(This is all under the assumption that M is bounded; removing that assumption is on the homework.) You
want to work with martingales because martingales have nice properties.

Last time, we promised to wrap up some of the things, but we’re going to skip that; you can read the notes
for the final estimates. We wanted to show some fourth moment was uniformly bounded in n; and this
fourth moment is basically the second moment of something like

∑
i(Mtni ∧t −Mtni−1∧t)

2. And we sshowed
that when you expand out the square, the diagonal term is relatively okay, and the cross-terms you can also
bound. Again that’s a place where you use L2 martingale theory. And then there’s the computation of this
second moment identity which was kind of the key to everything; we’ll probably skip over the explicit case
of when you take a mesh of four points, because you’re going to work out the general case for homework. If
you’re stuck, you can read the special case of four points.

Under the hood, we basically had to construct an instance of a stochastic integral — actually what this
martingale Yt is going to be is a stochastic integral of the sense Yt =

∫ t
0 Ms dMs. When we construct

stochastic integrals and apply Ito’s formula — we’re working towards constructing something like this, but
after doing that we’ll see that this martingale Y (which we defined as a limit of the martingales above) is
basically going to be this stochastic integral.

So basically, what you’re going to get is some identity like

M2
t = 2

∫ t

0
Mt dMt + ⟨M,M⟩t.

This is going to be an instance of Ito’s formula. So what we basically did was proving Ito’s formula in the
case where you’re taking the square of a martingale.

Recall the heuristic that if X(t) is a continuously differentiable function in time and we consider f(X(t)),
then classical calculus tells us that we get the chain rule

d

dt
f(X(t)) = f ′(X(t))X ′(t).

Ito’s formula is different because it’s stochastic calculus. Here if you take f(x) = x2, then if you believed in
ordinary calculus you’d (informally) get

dM2
t = 2MtdMt.

But the point here is that X (which is now Mt) is not continuously differentiable — it doesn’t even have
finite variation (it’s a martingale, so locally it varies like

√
•). So you have to add in this quadratic term,

getting
dM2

t = 2MtdMt + d⟨M,M⟩t.

All this is to say that after we cover stochastic calculus and Ito’s formula, when you look back at this you’ll
see that what we were basically doing was proving this particular instance of Ito’s formula.

So basically we’ve constructed the quadratic variation; and now let’s continue with developing the theory
of local martingales.
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§11.2 Properties of continuous local martingales and quadratic variation

Proposition 11.1

Let M be a continuous local martingale, and let T be a stopping time. Then almost surely, for all t ≥ 0,
we have that

⟨MT ,MT ⟩ = ⟨M,M⟩T∧t.

We could also have written the right-hand side as ⟨M,M⟩Tt (by definition). So the QV of the stopped
martingale MT is the same as the stopped QV of the original.

What does this mean? If you think about it, the stopped martingaleMT becomes constant after the stopping
time T . So after the stopping time, your QV should basically be constant — it’s measuring how much your
martingale is varying, and if you’re constant then there’s no variation. So you’d expect that after T , this
QV should just become constant. (The QV is an increasing process.) And that’s precisely what’s satisfied
by the stopped QV ⟨M,M⟩T∧t, because after T this just becomes constant.

That’s intuitively how you think about this statement; but the way you prove it is by using uniqueness of
the QV process.

Proof. By definition M2
t − ⟨M,M⟩t is a continuous local martingale (CLMG). So when you consider the

stopped process
M2

T∧t − ⟨M,M⟩T∧t,

you again get a continuous local martingale. But you could’ve written this as (MT
t )

2−⟨M,M⟩T∧t. So we’re
saying this stopped quadratic variation makes the square of the stopped local martingale a local martingale.
And by uniqueness, we thus get that ⟨M,M⟩T∧t (this stopped QV) has to be the same as ⟨MT ,MT ⟩t
(which is defined as the unique increasing process, up to indistinguishability, starting at 0 such that when
you subtract it from (MT

t )
2 you get a CLMG).

Now we basically said that if your QV is constant after some point, then basically your martingale should
also be constant — it shouldn’t be varying — because the QV is measuring how much your martingale is
varying. In particular:

Proposition 11.2

Let M be a continuous local martingale with M0 = 0 almost surely. Then ⟨M,M⟩ = 0 (for all t ≥ 0) if
and only if M = 0.

(Both of these statements are up to indistinguishability.)

Proof. One direction is immediate — if M = 0, then the QV has to be 0 (because 0 is already a continuous
local martingale, so you can subtract 0 and get a continuous local martingale). So we just have to prove the
converse implication.

But for this, we’re going to get that M2
t is a continuous local martingale — if the QV is just 0, then by

definition M2 is a continuous local martingale. And it’s also nonnegative. And thus, because M starts at
0, this means M2

t is a supermartingale. (This was a result we proved last week — if you have a nonnegative
continuous local martingale started at 0, then it’s a supermartingale.) In the notes we wrote out a direct
proof of the following fact, but the proof is basically proving this fact (that if you have a nonnegative CLMG
started at 0, it’s a supermartingale).

Fact 11.3 — We have E[M2
t ] ≤ E[M2

0 ] = 0.
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But then this basically finishes — it tells you that for any fixed time t, Mt = 0 almost surely. And because
M is continuous, this means it’s indistinguishable from 0.

So those are two basic properties of the relation between QV and local martingales. Let’s now prove another
property which allows you to say when your martingale is in L2, just based on the quadratic variation.

Notation 11.4. If A is an increasing process, we define A∞ = limt→∞At ∈ [0,∞].

The limit could be infinite, but it always exists because A is increasing.

Theorem 11.5

Let M be a continuous local martingale with M0 ∈ L2.

(i) The following are equivalent:

(a) M is a (true) martingale bounded in L2.

(b) E[⟨M,M⟩∞] <∞.

Furthermore, if these hold, then M2
t − ⟨M,M⟩t is a uniformly integrable martingale, and thus

E[M2
∞] = E[M2

0 ] + E[⟨M,M⟩∞].

(ii) The following are equivalent.

(a) M is a (true) martingale with Mt ∈ L2 for all t ≥ 0.

(b) E[⟨M,M⟩t] <∞ for all t.

Furthermore, if these hold, then M2
t − ⟨M,M⟩t is a (true) martingale.

For (i), the identity on second moments follows from the uniform integrability (and optional stopping) —
whenever you have a uniformly integrable martingale, its expectation at time 0 is the same as its expectation
at time ∞. Its expectation at time 0 is just E[M2

0 ], and its expectation at time ∞ is E[M2
∞]− E[⟨M,M⟩t].

Remark 11.6. There’s an analogous statement in discrete time — there’s some notion of quadratic
variation for discrete-time martingales, and you have a similar statement characterizing when you have
a bounded L2 martingale.

This is all consistent with the heuristic we said last time where we think of the QV as the ‘variance’ of your
local martingale. It doesn’t have to be integrable, but if your variance is finite in this sense, then you’re
actually in L2.

For (ii), sometimes E[⟨M,M⟩∞] <∞ is too much to require. For instance, if M is a BM, the QV at time t is
just t, so the QV at time ∞ is ∞. So even for such a nice martingale, this statement is not true. Here we’re
not requiring M to be bounded in L2; it just has to be in L2 for all times. The integrability of M2

t −⟨M,M⟩t
is just because M2

t ∈ L2 by (a) and ⟨M,M⟩t ∈ L1 by (b).

Proof of (i). Assume (a) holds, so M is a (true) martingale bounded in L2. Let (Tn) reduce M
2
t −⟨M,M⟩t.

(This is going to be a local martingale, so we can always take a sequence of times for which it reduces.)
Then for all times t, we’ll have that

E[(MTn
t )2 − ⟨M,M⟩Tn∧t] = E[M2

0 ]

(because once we localize using the stopping time Tn, this becomes a UI martingale, and we can use the
optional stopping theorem). And by assumption, the right-hand side is finite.
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We want to show E[⟨M,M⟩∞] is finite, so let’s rearrange and write

E[⟨M,M⟩Tn∧t] = E[(MTn
t )2]− E[M2

0 ].

Now what we want to do is take n → ∞ and apply some sort of convergence theorem — either Fatou or
monotone convergence or dominated convergence (these are the usual three things you have to work with).
That certainly works for the left-hand side — you can either apply Fatou or monotone convergence (because
this thing actually is monotone as n→∞). So on the left-hand side, you just get E[⟨M,M⟩t].
The right-hand side is slightly more problematic — (MTn

t )2 is not dominated by any integrable random
variable, so you can’t apply DCT. It’s also not monotone in n (or there’s no reason it has to be). And
Fatou’s also doesn’t really work.

But what you kind of realize is that you can apply the L2 maximal inequality to this second part. First, we
can trivially bound

E[⟨M,M⟩Tn∧t] ≤ E[M2
0 ] + E

[
sup
s∈[0,t]

M2
s

]
(because Tn ∧ t ∈ [0, t]). And then the L2 maximal inequality tells me that this is at most

E[M2
0 ] + 4E[M2

t ].

And this is going to be finite.

So now Ihave this inequality
E[⟨M,M⟩t] ≤ E[M2

0 ] + 4E[M2
t ]

for any t. Now if we take t→∞, we get that

E[⟨M,M⟩∞] ≤ E[M2
0 ] + 4 sup

t≥0
E[M2

t ],

and we assumed the right-hand side is finite. So this proves that (a) implies (b).

Now let’s prove that (b) implies (a). So now let’s start with the identity

E[(MTn
t )2 − ⟨M,M⟩Tn∧t] = E[M2

0 ]

and rearrange it so that on the left-hand side we have the thing we want to bound; then we get

E[(MTn
t )2] = E[M2

0 ] + E[⟨M,M⟩Tn∧t].

Now this is where you can kind of apply Fatou on the left-hand side — if we send n → ∞, we have
M2

t = lim infn→∞(MTn
t )2, and on the right-hand side you can apply monotone convergence; so we get

E[M2
t ] ≤ E[M2

0 ] + E[⟨M,M⟩∞].

And we assumed E[⟨M,M⟩∞] is finite, so we get supt≥0 E[M2
t ] is finite. That proves (b) implies (a).

Proof of (ii). For (ii), you just apply (i) to a stopped martingale M t0 (where we fix some time t0 for which
we want to show (ii)). If your martingale is always in L2, then this stopped martingale is bounded in L2 (it’s
bounded by the second moment at the endpoint t0). So now you have an L2-bounded martingale, and you
get that ⟨M t0 ,M t0⟩∞ has finite first moment. But by our previous proposition, this is just ⟨M,M⟩t0∧∞ =
⟨M,M⟩t0 . And vice versa (if ⟨M,M⟩t0 is finite, then M t0 will be bounded in L2; and if you apply this with
any t0, then you get a martingale that’s always in L2).

The one lesson to take away is any time you’re working with L2 martingales, you always remember the L2

maximal inequality. If you’re trying to prove something and your inequality isn’t working out, you might
want to use this — it’s very strong. (More generally there’s an Lp maximal inequality for any p > 1.) This
is a property specific to martingales, and it’s very useful.
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§11.3 Bracket of continuous local martingales

Now let’s extend the QV to a bilinear form on local martingales. Just like there’s variance, there’s also
covariance; so that’s kind of what we’re going to define next.

Definition 11.7. Let M and N be continuous local martingales. Then their bracket , denoted ⟨M,N⟩,
is the finite variation process defined as

⟨M,N⟩t =
1

2
(⟨M +N,M +N⟩ − ⟨M,M⟩ − ⟨N,N⟩).

(Sometimes this is also called the covariation.)

The whole point of where this definition comes from is, very abstractly, that if you have a notion of L2

length, then you can basically recover the inner product. In other words, in a Hilbert space, knowing the
length of any vector allows you to recover the inner product between any two vectors, by this formula; the
reason that’s true is because your inner product is bilinear.

So if you want to define the inner product between any two martingales, you use this identity — because if
you assume bilinearity and imagine expanding out the right-hand side, then formally you exactly get ⟨M,N⟩
(if you expand out you get the diagonal terms and two cross-terms, and if the thing is symmetric you get
exactly ⟨M,N⟩). (But in reality we’re defining the bracket in this way.)

Proposition 11.8

Let M and N be continuous local martingales.

(i) ⟨M,N⟩ is the unique finite variation process (up to indistinguishability) such that MtNt−⟨M,N⟩t
is a continuous local martingale.

(ii) The map (M,N) 7→ ⟨M,N⟩ is bilinear and symmetric.

(iii) If 0 = tn0 < · · · < tnpn = t is an increasing sequence of subdivisions of [0, t] with mesh size tending
to 0, then

lim
n→∞

pn∑
i=1

(Mtni
−Mtni−1

)(Ntni
−Ntni−1

) = ⟨M,N⟩t

in probability as n→∞.

(iv) For every stopping time T , we have

⟨MT , N t⟩ = ⟨MT , N⟩ = ⟨M,N⟩T .

(v) If M and N are (true) martingales bounded in L2, then MtNt−⟨M,N⟩t is a uniformly integrable
martingale. Consequently, ⟨M,N⟩∞ is well-defined (as the almost sure limit of ⟨M,N⟩t) and in
L1, and

E[M∞N∞] = E[M0N0] + E[⟨M,N⟩t].

For (i), this is completely analogous to the quadratic variation — if M = N then this thing turns out to
exactly be the quadratic variation. You’d certainly expect that; the reason it’s true is you have to look at
⟨2M, 2M⟩ and say why this is 4⟨M,M⟩. And how would you prove this? For instance, you can use the
characterization — if you consider (2Mt)

2− 4⟨M,M⟩t, this is going to be a local martingale — because you
can take out a factor of 4 and you get 4 times a local martingale. And by the uniqueness of QV, we’re going
to get ⟨2M, 2M⟩ = 4⟨M,M⟩.

For (ii), in fact ⟨−,−⟩ is going to actually be a Hilbert space inner product. To say that, you want to say
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that if your norm is 0 then your vector is actually 0. And we just proved that — your norm is the QV, and
we just proved that if your QV is 0 then the martingale is actually 0.

For (iii), this is a discrete approximation statement; instead of taking a sum of squared increments, we’re
taking a sum of products of increments. For the proof, you just go back to the definition of the bracket, and
use the fact that for QV you have this discrete approximation result. And then you’re basically doing this
calculation about expanding out a square, and then you’re going to get this.

Property (iv) is the most delicate to prove; for the others you can probably see how to prove it, but this
one actually takes some argument. The proof that the first and third are equal is just by uniqueness; but
the fact that you can remove the stopping on N will take some effort.

Proof sketches. For most of these, we’re just going to say verbally what you do; we’ll focus on (iv), the hard
one. For (i), you prove this the same way you prove uniqueness for QV — if you have a CLMG which is also
FV, it has to be 0. For (ii), the fact it’s bilinear and symmetric — for instance, the fact that it’s symmetric
just follows from the definition (if you swap the roles of M and N , you just want to say M +N = N +M ,
which is just true). For bilinearity, the way you’d maybe prove this is by first proving (iii), and then using
the fact that you have these discrete approximations; then you can just check bilinearity for these discrete
approximations, which is true.

And (iii) is true because you can use the discrete approximations for each of the QV terms and calculate
what you’d get, and it’s all set up so that you’d get these cross-terms.

For (v), by our previous results, if you have L2-bounded martingales then M∞ and N∞ exist and are in L2,
so their product is in L1. The fact that the limit of this bracket exists follows from the fact that the limits
of ⟨M +N,M +N⟩ and so on exist (because these are just QVs). So the limit exists almost surely. And to
see that it’s in L1, you again just bound by the L1 norms of each of those brackets ⟨M +N,M +N⟩ and so
on — each of these things is individually integrable, so their sum is also integrable. And the final identity
should reduce to the one for ⟨M,M⟩ (where again you expand out the square and rearrange terms).

Proof of (iv). Let’s first prove the easy part — that the first and third terms are equal. We’ve already
proved this for QV; you can basically use the fact that MtNt − ⟨M,N⟩t is a CLMG, so when you stop it,
the result

MT
t N

T
t − ⟨M,N⟩t∧T

is again a CLMG. And then you use the characterization in (i) — by definition MT
t N

T
t − ⟨MT , NT ⟩t is a

CLMG, and ⟨MT , NT ⟩ is the unique process you subtract from MT
t N

T
t to get this. So that proves the first

and third are equal.

Why are the first and second equal? Intuitively, when you stop both processes, you’re saying that past T
my processes are constant, so the QV should also be constant. What happens when I stop just one of
these processes? Kind of hwat you should think of is after time T , your process basically looks like MTNt.
And the point is if you write this as MT (Nt −NT ) +MTNT (you think of MTNT as some initial value at
your stopping time; it’s not a process in t), then MT (Nt − NT ) looks like a local martingale. (If T is a
deterministic time, then this is the type of martingale we identified in the proof of the construction of QV
— anything like this, when T ≤ t, is going to be a local martingale.) So basically what you’re saying is that
as a process, MTNt is certainly not going to be equal to MTNT ; because after time T the latter is constant,
while the former is a local martingale. But the bracket is precisely the thing you have to subtract to get
a local martingale; so with MT (NT − Nt) you shouldn’t have to subtract anything. So that’s why you’d
believe ⟨MT , N⟩ should be constant after T .

But then how would you prove this? The proof uses this discrete approximation — at the very least if you
take T to be fixed, you can use the discrete approximation to prove this.
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For any t ≥ 0, we have that Sn → ⟨MT , N⟩t in probability, where we define

Sn =

pn∑
i=1

(Mtni ∧T −Mtni−1∧T )(Ntni
−Ntni−1

)

(we’re just writing out what (iii) tells you in this case, where we have some increasing sequence of subdivisions
of [0, t]). We also have that S′

n → ⟨MT , NT ⟩t in probability, where we analogously define

S′
n =

pn∑
i=1

(Mtni ∧T −Mtni−1∧T )(Ntni ∧T −Ntni−1∧T )

(we’re again just writing out property (iii), taking MT and NT as our local martingales).

Now on the event {T ≥ t}, you have that these are exactly the same sums — because when T ≥ t, the min
tni ∧ T is always going to give you tni . So on this event, you have Sn = S′

n for all n.

And by the definition of convergence in probability, you have

P[
∣∣Sn − ⟨MT , N⟩t

∣∣ ≥ ε, T ≥ t]→ 0

as n → ∞ (convergence in probability says that the first probability goes to 0; so certainly if we add in
T ≥ t, it still goes to 0). And smiilarly

P[
∣∣S′

n − ⟨MT , NT ⟩t
∣∣ ≥ ε, T ≥ t]→ 0.

So we then obtain that
P[
∣∣⟨MT , N⟩t − ⟨MT , NT ⟩t

∣∣ ≥ 2ε, T ≥ t] = 0.

And since ε was arbitrary, we have that on the event {T ≥ t}, we have ⟨MT , N⟩t = ⟨MT , NT ⟩t almost
surely.

All this is just saying the intuitive statement that if you’re before your stopping time, then the processes
MT

t Nt and MT
t N

T
t are the exact same (because the extra min with your stopping time isn’t doing anything).

Now we have to consider the case where T < t. So now let’s introduce two times 0 ≤ s < t; we’re going to
show that

⟨MT , N⟩t − ⟨MT , N⟩s = 0 and ⟨MT , NT ⟩t − ⟨MT , NT ⟩s = 0

almost surely, on the event that {T ≤ s}. The proof of this claim is basically going through the same
discrete approximation. You first take your sequence of meshes to always contain your fixed time s (and by
definition they also contain your endpoint t). And now you go back to the discrete approximation. When
you look at the discrete approximation, you see that

⟨MT , N⟩t − ⟨MT , N⟩s = lim
∑
s≤tni

(Mtni ∧T −Mtni−1∧T )(Ntni
−Ntni−1

)

(because I’m taking the discrete approximation for the entire interval, and the part before s gets cancelled
out by what we’re subtracting). And similarly, if you take the other process, you get exactly the same thing,
except now you have a min with T — you get

⟨MT , NT ⟩t − ⟨MT , NT ⟩s = lim
n→∞

∑
tni−1≥s

(Mtni ∧T −Mtni−1∧T )(Ntni ∧T −Ntni−1∧T ).

But the point is that on the event {T ≤ s}, we have tni ∧ T = T and tni−1 ∧ T = T . Because I’m only
summing over these points which are at least s, when I take this min, I just get t; so this second factor is
just 0. This means I’m taking a limit in probability of 0; and that gives me that this is equal to 0.
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And similarly, in the first case (with ⟨MT , N⟩t), we get the same thing for the first factor.

So that’s why this claim is true, for any fixed s < t.

Now that we’ve proven this, we’re basically done; you have to use some sort of density argument, which
we’ll now describe.

If we combine the first statement for when your stopping time is before your fixed time, and the second
statement for when it’s after your fixed time, you get that almost surely, for all rationals q1, q2 ∈ Q with
0 ≤ q1 < q2 (we’re just taking a countable union of these events as s and t vary over rationals), we have

⟨MT , N⟩q2 = ⟨MT , NT ⟩q2 if T ≥ q2

(in this case, it’s the first statement for {T ≥ t}, taking t = q2). Otherwise, we have

⟨MT , N⟩q2 = ⟨MT , N⟩q1 and ⟨MT , NT ⟩q2 = ⟨MT , NT ⟩q1 if T ≤ q1.

So we have all these identities on a dense set of times. And now you can just use continuity. If you take q2
converging to some time less than or equal to T , you actually get that for all t ≤ T , you have

⟨MT , N⟩t = ⟨MT , NT ⟩t

(you just replace q2 by t by taking a limit and using continuity). And for all times 0 ≤ T ≤ s < t, we have
that

⟨MT , N⟩t = ⟨MT , N⟩s and ⟨MT , NT ⟩t = ⟨MT , NT ⟩s
(i.e., the brackets individually are constant after this time). So now you can take s = T . We’ve proven these
two brackets are equal for any time before your stopping time. Then for any time after your stopping time,
you can use these two identities to get

⟨MT , N⟩t = ⟨MT , N⟩T

(your bracket becomes constant after your stopping time — that’s what we just showed). But for any time
before your stopping time the two brackets are equal, so this is equal to ⟨MT , NT ⟩T ; and again by the fact
they become constant, this is ⟨MT , NT ⟩t.

To summarize, you’re using discrete approximation to show that at any time before the stopping time, the
two brackets are equal; and after your stopping time, the bracket becomes constant (more precisely, for any
s < t it’s equal at s and t). And once you’ve shown these using the discrete approximation, you can use
this density argument to show that in fact the bracket is constant for all times after your stopping time.

Here’s a consequence.

Proposition 11.9

Let B and B′ be independent (Ft)-Brownian motions. Then ⟨B,B′⟩ = 0.

This kind of makes sense — if the BMs are independent, you should think their product is itself going to
be a martingale.

Proof. We’ll assume both B and B′ start at 0 (the bracket doesn’t care where you start — in the discrete
approximation you’re only looking at increments, so the starting time never enters, which means you can
ignore it and assume you’re starting at 0).

Approach 1 is you can just try to show that BB′ is a martingale; then you can just use the uniqueness of
the bracket. So as long as you can show BB′ is a martingale, their bracket is 0.
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What goes into showing this? You want to show that

E[BtB
′
t | Fs] = BsB

′
s.

And for this, you’d expand the Brownian motion into increments, and you’d try to use the independent
increment property. The left-hand side is going to be

E[(Bs +Bt −Bs)(B
′
s +B′

t −B′
s) | Fs].

And then when you expand out this product, you’re going to get

BsB
′
s + E[(Bt −Bs)(B

′
t −B′

s) | Fs]

(the cross-terms with Bs or B′
s times the other increment are going to be 0; but then you have this other

term with the product of the two increments). So you want to say this last term is 0. But what you want
to be careful of is for this, you need to say that Bt −Bs and B′

t −B′
s are independent given Fs — because

you want to say this conditional expectation of products is a product of conditional expectations.

But this is not what we assumed. We assumed B and B′ are independent, but we didn’t assume they’re
conditionally independent given your filtration. So this is where the approach becomes problematic. It would
probably work if your filtration was the canonical filtration of your BMs; but the problem is it doesn’t have
to be the case that independent BMs are conditionally independent given the filtration. This is why Le Gall
does this other approach, because this one is kind of problematic.

So instead, you define this new process

Xt =
1√
2
(Bt +B′

t).

Why do you want this 1/
√
2? As a distribution Xt ∼ N (0, t) (by assumption Bt and B′

t are independent;
and when you sum two independent Gaussians with this factor, you get exactly N (0, t)). Moreover, Xt

itself is a Brownian motion. But it’s not necessarily a (Ft)-Brownian motion (this is kind of the key point
why the above failed) — it’s a Brownian motion if you take the natural filtration of B and B′, but it’s not
necessarily one with respect to the given filtration.

But the fact that it is a Brownian motion implies that

⟨X,X⟩t = t.

And now we can use bilinearity — you expand out the definition of X, and you get that

1

2
⟨B,B⟩t +

1

2
⟨B′, B′⟩t + ⟨B,B′⟩t = t

(combining the two cross-terms using symmetry). But B and B′ are BMs, so their QVs are just t; this
implies ⟨B,B′⟩ = 0.

§11.4 Orthogonal martingales

We said you can basically think of the bracket as an inner product. In particular:

Definition 11.10. Given two continuous local martingales M and N , we say they’re orthogonal if
⟨M,N⟩ = 0, or equivalently if MN is a continuous local martingale.

Page 111 of 267



18.676 — Stochastic Calculus Class by Sky Cao (Spring 2025)

(This means ⟨M,N⟩ is indistinguishable from 0 as a process.)

If M and N are orthogonal CLMGs bounded in L2, then we have

E[MtNt] = E[M0N0].

This is kind of a consequence of what we proved earlier — for any L2 bounded martingale, you have this
identity plus the expectation of the bracket. And here they’re orthogonal, so the bracket is just 0; so you
get this identity.

Even more, for any stopping time T , you have that the stopping time version of this identity is true — i.e.,

E[MTNT ] = E[M0N0].

For this you’d use the optional stopping theorem and the fact that MN − ⟨M,N⟩ is a UI martingale (when
you have L2 bounded martingales); and the bracket itself is 0, so you just apply the optional stopping
theorem to MN .

So those are some remarks about orthogonal martingales. Next time we’re going to prove some type of
Cauchy–Schwarz inequality (called the Kunita–Watanabe theorem).

§12 March 12, 2025

§12.1 The Kunita–Watanabe theorem

As a quick recap of last time, we mostly defined the bracket of continuous local martingales and showed
various properties; it’s basically a bilinear extension of the quadratic variation. Continuing with this bracket,
today we’ll start out by proving the following theorem, which is basically a Cauchy–Schwarz type inequality
for the bracket in terms of the QVs.

Proposition 12.1 (Kunita–Watanabe)

Let M and N be continuous local martingales and let H and K be measurable processes. Then almost
surely, ∫ ∞

0
|Hs| |Ks| |d⟨M,N⟩s| ≤

(∫ ∞

0
H2

s d⟨M,M⟩s
)1/2

·
(∫ ∞

0
K2

s d⟨N,N⟩s
)1/2

.

Recall the bracket is always a FV process; last week or two weeks ago we discussed integration with respect
to FV processes. The assumption is M and N are CLMGs, and H and K are measurable. Before in the
section on FV processes, we kind of assumed that the integrand is going to be progressive; you needed this
progressive assumption to say the integral itself is an adapted process (that was why you needed it). Here
we’re not necessarily assuming progressivity, because this is just a statement about integrals — so you can
assume just measurability (H is a process, so it’s a function of t and ω, and we’re asking it to be measurable
with respect to the joint σ-algebra; progressivity has the additional assumption that on [0, t] × Ω, you’re
measurable with respect to the product σ-algebra involving Ft).

This estimate basically looks like Cauchy–Schwarz, and indeed the proof is basically several applications of
Cauchy–Schwarz. The main thing is why you can replace d⟨M,N⟩s by the QV, and the reason you can
do that is basically Cauchy–Schwarz; you’ll see this if you go to the discrete approximation of the bracket,
which is what we’ll do.

Proof. Only for this proof, we’ll use the notation

⟨M,N⟩ts = ⟨M,N⟩t − ⟨M,N⟩s.
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By the discrete approximations, we can express

⟨M,N⟩ts = lim
n→∞

pn∑
i=1

(Mtni
−Mtni−1

)(Ntni
−Ntni−1

)

(where the limit is in probability, and your subdivisions are of [s, t] instead of [0, t]). But for each fixed n,
let’s call this thing Sn; then you can just apply Cauchy–Schwarz to bound this sum by the corresponding
discrete approximations of the QVs — we have

Sn ≤

(
pn∑
i=1

(Mtni
−Mtni−1

)2

)1/2( pn∑
i=1

(Ntni
−Nn

ti−1
)2

)1/2

.

And as n→∞, th right-hand side converges in probability to (⟨M,M⟩ts)1/2(⟨N,N⟩ts)1/2. So from this, you
obtain that for all s < t, almost surely we have that

⟨M,N⟩ts ≤ (⟨M,M⟩ts)1/2(⟨N,N⟩ts)1/2.

Then by taking a countable dense subset of s and t (e.g., the rationals), we can take the ‘almost surely’
outside and say that almost surely, the above holds for all rational s < t.

Assume this event occurs. Basically we’re just going to take an outcome ω of our sample space where this
is true for all rational s < t. The remaining part of the argument is just deterministic — there’s no more
probability, it’s just some real analysis.

First of all, by continuity, this is going to be true for all s < t, not just rationals.

Claim 12.2 — For all s < t, we have∫ t

s
|d⟨M,N⟩u| du ≤ (⟨M,M⟩ts)1/2(⟨N,N⟩ts)1/2.

When we take this absolute value, we’re integrating the total variation measure — recall any FV process
decomposes as a difference of two positive measures, and the total variation takes the sum. (We could have
written the right-hand side as an integral with the QV instead of the bracket — this is an increasing process,
so the total variation is the same as the process itself.)

Proof. Why is this true? We had a lemma one or two weeks ago saying that the total variation is the sup
over discrete approximations. So now we can go back to the discrete approximation — again we take some
subdivision of points, and we get

pn∑
i=1

∣∣∣⟨M,N⟩titi−1

∣∣∣
(and the left-hand side is a sup over all possible subdivisions giving you these sums). First, we apply the
earlier inequality to replace each of these by the right-hand side, so this is at most

pn∑
i=1

(⟨M,M⟩titi−1
)1/2(⟨N,N⟩titi−1

)1/2.

(To be precise, we should have put absolute values on the Sn before, but that inequality is still true.) Then
you apply Cauchy–Schwarz and get that this is at most(

pn∑
i=1

⟨M,M⟩titi−1

)1/2( pn∑
i=1

⟨N,N⟩titi−1

)1/2

.
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And these things are telescoping sums, so this is exactly going to be

(⟨M,M⟩ts)1/2(⟨N,N⟩ts)1/2.

(Then we take a sup over all meshes and get this claim.)

We’re working towards an approximation argument — you think of H as a general measurable function,
and so far we’ve proven the claim for when H and K are indicator functions on intervals. Now we want to
go from indicator functions on intervals to indicator functions on general Borel sets (eventually we’ll want
to approximate H and K by sums of indicators on general Borel sets — that’s usually how you approximate
measurable functions). The problem is you can’t do this with indicator functions of intervals, so the next
step is to go from indicators of intervals to indicators of Borel sets.

Claim 12.3 — For any bounded Borel set A ⊆ R+, we have∫
A
|d⟨M,N⟩u| ≤

(∫
A
d⟨M,M⟩u

)1/2(∫
A
d⟨N,N⟩u

)1/2

.

(This is the same thing, except now we’re integrating over A instead of [s, t].)

Proof. For this, you have to do some abstract measure theory stuff. You want to eventually apply some sort
of monotone class theorem, for instance. The first step, which we’ve already proved, is that it holds when
A = [s, t] is just an interval (that’s precisely what the previous claim says).

The second step is that it also holds when A is a finite disjoint union of intervals. Why is that true?
Well, it’s another application of Cauchy–Schwarz — if you have a finite disjoint union of intervals, then the
left-hand side is the sum over each of these disjoint intervals, and you apply Cauchy–Schwarz (exactly as in
the previous step, but using the inequality for a single interval), and you basically get this result. So the
argument is basically the same manipulation as in the proof of the previous claim.

And you might recall that the set of all finite disjoint unions of intervals — for example, when you construct
the Lebesgue measure on R, you first get a pre-measure by assigning a measure to finite disjoint unions of
intervals (by summing the lengths); and then Caratheodory’s extension theorem says that you can extend
it to the set of Borel sets. The point is that this set of finite disjoint unions of intervals is an ‘algebra,’ and
because of that you’ll be able to apply some sort of monotone class theorem. You have to choose the right
one — you want to say if I have this identity for a sequence of sets A (which is increasing), then it also
holds for their limit (and also if the sets are decreasing). Here’s the particular one we need:

Theorem 12.4

Suppose we have a collection of sets C such that:

(a) For any increasing collection of sets {An} ⊆ C with An ↑ A, we have A ∈ C.

(b) For any countable decreasing collection of sets {An} ⊆ C with An ↓ A, we have A ∈ C.

(c) C contains an algebra A of sets.

Then C contains σ(A).

The first property (a) here is true by monotone convergence (these things are all integrals with respect to
positive measures). For (b) you basically want to apply monotone convergence but for decreasing functions;
you can apply Fatou’s lemma on the left-hand side, and some sort of monotone convergence on the right.
(The only way monotone convergence fails for decreasing functions is if you’re not integrable, meaning the
thing is always ∞; but if the thing is always ∞ then the bound is true. If the right-hand side is always ∞
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then you’re done; and if it’s finite for some An then it’s finite for all the ensuing ones, and then you can
even apply dominated convergence.)

So you have these three assumptions on your collection C, and the theorem says that then it contains the
generated σ-algebra of A.

We already said why (a) and (b) are true; and (c) is true taking A to be the algebra of finite disjoint unions
of intervals (it’s an algebra because it’s closed under finite intersections and unions, and complements if you
restrict to a bounded interval).

So if we apply this monotone class argument, w get that C ⊇ B([0, T ]) for any T ; and that basically means
it contains any bounded Borel set of R+. That proves the claim.

Now that we’ve done that, the next thing is to consider sums of indicator functions.

Claim 12.5 — Suppose that h =
∑p

i=1 λi1Ai and k =
∑p

i=1 µi1Ai are nonnegative, and the Ai are
disjoint Borel sets such that

⋃
Ai = [0,K]. Then the statement is true for h and k.

Proof. We can always assume nonnegativity, because the statements are about absolute values of our func-
tions. So we fix some large K and partition this interval into large Borel sets, and look at indicator functions
based on this partition. Then we want to prove the theorem for this particular h and k; but this is basically
Cauchy–Schwarz again. We can write this integral as∑

i

λiµi

∫
Ai

|d⟨M,N⟩u| ,

and then apply the earlier inequality and Cauchy–Schwarz — applying the previous inequality gives

p∑
i=1

λiµi

(∫
Ai

d⟨M,M⟩u
)1/2(∫

Ai

d⟨N,N⟩u
)1/2

.

And then I can apply Cauchy–Schwarz, and I end up with(∫
h2 d⟨M,M⟩u

)1/2(∫
k2 d⟨N,N⟩u

)1/2

(we get λ2
i and µ2

i , which is why we have h2 and k2).

Finally, we finish by approximating H and K by sums of indicator functions {hn} and {kn}. You can
definitely approximate a general measurable function H by a sequence of sums of indicators converging up
to H, and similarly with K. But why can you ensure they’re indicators on the same sets Ai? You can do
that by taking a common refinement. So that’s the one thing you need to note; but then you can finish by
using monotone convergence.

Somewhere when constructing the stochastic integral, we’ll need to apply this.

§12.2 Continuous semimartingales

So in summary we discussed FV processes and CLMGs; now we can finally define what a continuous
semimartingale is. It’s basically a sum of a FV process and local martingale.
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Definition 12.6. A process X is a continuous semimartingale (CSMG) if Xt = Mt +At where (Mt) is
a continuous local martingale and (At) is a finite variation process.

Of course this is all relative to a filtration, which we assume is fixed (the notions of martingale and FV
processes rely on that — they have to be adapted by definition).

One thing to note is that:

Fact 12.7 — The decomposition Xt = Mt +At is unique up to indistinguishability.

This is just because again, you can’t have a process be both FV and a CLMG. If you had two different
decompositions M1

t +A1
t = M2

t +A2
t , then you could rearrange to get

M1
t −M2

t = A2
t −A1

t .

So this difference would be both a CLMG and a FV process, meaning it’d have to be 0 (up to indistin-
guishability).

You can extend the notion of brackets to these CSMGs.

(We call this the canonical decomposition of a CSMG; it’s canonical because it’s unique.)

Definition 12.8. Let X = M + A and Y = M ′ + A′ be continuous semimartingales. Then the bracket
of X and Y is defined as

⟨X,Y ⟩ = ⟨M,M ′⟩.

In particular, the quadratic variation ⟨X,X⟩ is just ⟨M,M⟩.

In some sense, this is very intuitive for the heuristic reasons we mentioned last week — recall that intuitively
you think of the martingale as like a Brownian motion, so infinitesimally dMt varies like

√
dt, while the FV

part varies like dAt ∼ dt. And the whole reason you get the quadratic variation is because you vary like
√
dt

— infinitesimally the QV looks like dMt dMt (you look at the square of your martingale increment), which
varies like dt. Anything on the order of dt, once I integrate I have to care about it. But we actually have
dAt dAt ∼ (dt)2, which means if I integrate it I don’t have to care about it. Similarly dMt dAt ∼ (dt)3/2, so
I also don’t care about it. So that’s why you’d want to define your bracket in this way — if you just assume
(which will be true) that it’s bilinear, then when you plug in these canonical decompositions and expand
out, you get the martingale part plus stuff that look like dM dA or dAdA, which are both basically 0. So
you should really just see this martingale part.

And indeed, we’re going to show that the bracket of these semimartingales also has a discrete approximation,
and it’s precisely the one you’d expect.

Proposition 12.9

Let 0 = tn0 < · · · < tnpn = t be an increasing sequence of subdivisions of [0, t] with mesh size tending to
0. Then we have

pn∑
i=1

(Xtni
−Xtni−1

)(Ytni − Ytni−1
)→ ⟨X,Y ⟩t.

So it’s the same statement as for the bracket of CLMGs. The reason is basically this heuristic. By definition
the RHS is the bracket of the martingale parts. And we can expand out each thing on the left-hand side using
the decomposition. We’ll get the martingale part times the martingale part, which by the decomposition is
going to converge to ⟨X,Y ⟩t; and the remainder will be lower-order by the above heuristic.
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Proof. To simplify notation we’ll assume X = Y ; the proof works the same in the general case (or you
should be able to deduce it from just the case X = Y , because we defined the bracket of CLMGs based on
the X = Y case).

Then when we expand out hte sum, we get

pn∑
i=1

(Mtni
−Mtni−1

)2 + 2

pn∑
i=1

(Mtni
−Mtni−1

)(Atni
−Atni−1

) +

pn∑
i=1

(Atni
−Atni−1

)2.

The first piece converges to the right-hand side (by our discrete approximation result from last time); so we
just want to say the last two pieces converge to 0. And that’s basically our heuristics from before.

Let’s look at the middle term (this should be larger than the last term by our heuristics, and the proof will
also show why the last term converges to 0).

We know A is finite variation, so if I ignore the martingale and take absolute values, the sum of that thing
is going to be controlled as n→∞. So the idea is I want to bound

|Sn| ≤ max
i

∣∣∣Mtni
−Mtni−1

∣∣∣ · pn∑
i=1

∣∣∣Atni
−Atni−1

∣∣∣ .
And the last term is at most

∫ t
0 |dAs|, which is finite. And the first term converges to 0 in probability —

actually it converges to 0 surely, because the mesh size is tending to 0 and M is continuous, so it’s uniformly
continuous on any compact interval, which means this max of increments goes to 0. So we get Sn → 0 in
probability.

And you can say something similar for the last thing. (We didn’t actually have to make the earlier heuristic
quantitative — we didn’t use the fact that M varies like

√
t on small intervals, even tε would have worked.)

CSMGs are going to be both the integrators and integrands for stochastic integrals — we’ll generate CSMGs
with respect to CSMGs. But if you want, you should think of BM as your integrator — integrating things
with respect to BM is good enough for most applications (but Le Gall develops the theory in general).

§12.3 Stochastic integration

So now we finally come to the whole point of this course, which is stochastic integration. Up to this point,
we’ve been developing skills — kind of like if you play football, you have to spend some time in the weight
room or else there’s no way you can actually be a professional football player. But you might not care as
much about the weight room and just want to play football. Or if you’re a musician you have to spend a
bunch of time developing your technique, not just playing the pieces you want. We spent the first 4–5 weeks
developing the basic foundational material, though that may not be why you wanted to take this class. But
that’s needed because it’ll be used all over the place when we define these stochastic integrals.

But now we’re coming to the main part of the course. In some sense, defining the stochastic integral is also
some technical thing, and after that we can start playing around with these stochastic integrals and Ito’s
formula.

We’re going to assume throughout in the background that we have a filtered probability space (Ω,F , (Ft),P),
and also that the filtration is complete. So far, the place we needed completeness — or the main place —
is when we constructed QV, the fact that you can guarantee it’s always continuous (not just almost surely
continuous, but it is continuous for every ω) needed completeness, because we wanted to modify it on a set
of measure 0 and we wanted that to preserve adaptedness.

As with any integral, you always define it on special cases first, so let’s do that.
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§12.4 The Hilbert space of L2 bounded martingales

The frist thing we’ll do is define integrals for L2-bounded martingales. This will take some effort, but then
the extension to local martingales is just abstract measure theory arguments — you localize your CLMG so
that it’s bounded in L2, and then get the integral, and then you want to remove the localization and stitch
these things together. So this is actually the main thing.

For some notation:

Notation 12.10. Let H2 be the space of L2-bounded (continuous) martingales with M0 = 0.

(All martingales in this course are continuous. We also identify indistinguishable processes — we treat any
two processes as the same if they’re indistinguishable.)

Equivalently, a martingale M is in H2 if and only if M is a continuous local martingale starting at 0 and
such that E[⟨M,M⟩∞] < ∞ (this is something we proved last class — recall that the implication from the
right to left is just applying the L2 maximal inequality in the right place).

Why are we defining this? The way you’ll construct this integral is basically by functional analysis. You’re
going to define an isometry on a Hilbert space. And this is going to be our Hilbert space.

We need to check that it’s actually a Hilbert space: in particular, it has to have an inner product, and it
has to be complete under that inner product. We’ll work towards that.

But first, for some more preliminaries, because M is bounded in L2 it’s also UI. This means it’s closed, so
you can write it as a Doob martingale — we have

Mt = E[M∞ | Ft],

and this converges in L2 and almost surely to M∞. (That’s another fact about L2 bounded martingales.)

Also recall that if M and N are L2-bounded martingales (i.e., M,N ∈ H2), then ⟨M,N⟩∞ is well-defined
(it’s the limit of brackets at finite times), and it’s in L1 (this is another thing we proved last time).

So we can define a symmetric bilinear form on H2:

Definition 12.11. We define ⟨M,N⟩H2 = E[⟨M,N⟩∞] = E[M∞N∞].

We said you think of ⟨−,−⟩ as a bilinear form on the space of local martingales; if you restrict to L2-bounded
martingales, it’s actually a bilinear form.

Recall the last identity is true because the bracket is such that if you take MtNt − ⟨M,N⟩t you get a UI
martingale; and then you use the optional stopping theorem.

So we’ve defined this bilinear form. In order for it to be an inner product, it needs to first of all be positive
definite. In other words, we want to say:

Claim 12.12 — If ⟨M,M⟩H2 = 0, then M = 0 (up to indistinguishability).

Why is this true? Well, the condition implies that E[⟨M,M⟩∞] = 0 by definition. And this implies M itself
is 0. We showed this last time; the way you see it is if the QV is 0, that means M2 is a local martingale.
But now you have a nonnegative local martingale, so it’s a supermartingale; that means E[M2

t ] = 0 for any
t, which implies this.

So it satisfies this condition of an inner product. And it’s symmetric and bilinear, so all that is fine.

The main thing now to verify — a Hilbert space is an inner product space which is complete.
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Proposition 12.13

The space H2 equipped with this inner product is a Hilbert space.

Proof. For the proof, we need to show why it’s complete. By definition, completeness means that any Cauchy
sequence converges. So let’s take a Cauchy sequence (Mn) ⊆ H2. We need to construct a continuous L2-
bounded martingale such that Mn converges to that L2-bounded martingale.

Let’s start with what a Cauchy sequence means; by definition we get

lim
N→∞

sup
min{m,n}≥N

⟨Mm −Mn,Mm −Mn⟩H2 = 0

(just writing out the definition of Cauchy in this particular case). By the definition of the norm, this implies
that

sup
m,n≥N

E[(Mn
∞ −Mm

∞)2]→ 0

as N → ∞ (we just wrote the limiting statement slightly differently, and use teh fact that E[⟨M,N⟩∞] =
E[M∞N∞]).

The first thing we want to note is that this condition here implies that the endpoints (Mn
∞) themselves are

Cauchy in L2(Ω,F∞,P) — these endpoints are always F∞-measurable by assumption, and this is exactly
the statement that they’re Cauchy in L2. This means there exists Z ∈ L2(Ω,F∞,P) such that Mn

∞ → Z in
L2. So at least we extracted a limit for the endpoints.

Now we have to use this endpoint limit to construct a martingale for which the sequence of martingales
themselves converge. The natural candidate limit is to take the Doob martingale defined by Z, i.e.,

Mt = E[Z | Ft].

This is a martingale, and it’s L2 bounded because Z ∈ L2. And basically, the faact that the sequence of
martingales Mn converges to that martingale under this inner product is true by the fact that Mn

∞ → Z.
There’s just one slight problem — this martingale is not necessarily continuous. So actually, it’s not
necessarily in H because it might not have continuous sample paths.

So you want to find a modification of this which is continuous. That’s where we’re going to take a subsequence
— take a subsequence {nk} such that the expectation of consecutive differences along this subsequence is
exponentially decaying, i.e.,

E[(Mnk+1
∞ −Mnk

∞ )2] ≤ 2−k.

Now we can use the L2 maximal inequality, which will imply that

E
[
sup
t
(M

nk+1

t −Mnk
t )2

]
≤ 4 · 2−k.

And so thus we’re going to get that

E

[ ∞∑
k=1

sup
t≥0

∣∣Mnk+1

t −Mnk
t

∣∣] <∞

(we lost the square, but you can use Hölder and bound the thing without the square by
√
4 · 2−k, which is

still going to be summable). That implies almost surely,

∞∑
k=1

sup
t≥0

∣∣Mnk+1

t −Mnk
t

∣∣ <∞.
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And that means, at least on this almost sure event, the sequence (Mnk) is Cauchy in the space C([0,∞),R)
under the sup norm. And then you can use the fact that this space with the sup norm is complete — by
the completeness of C([0,∞),R), we get that Mnk converges to some limit, which we’ll call M̃ , on an almost
sure event E (which is the event that our infinite series from before is finite).

Then you can define your martingale M (the one you want to eventually construct) to be M = 1EM̃ (so on

the event E it’s M̃ , and off the event E it’s just 0). This ensures it has continuous sample paths. And M
is adapted because (Ft) is complete (E depends on your process at all times, so you need completeness to
say 1E is F0-measurable).

So we’ve exhibited this limit M in the sense of the sup norm on continuous functions. To finish, we’ve
obtained M as a subsequential limit of the Mns. And we obtained Z as a limit of the entire sequence.
But subsequential limits have to be the same as sequential limits; that means Mt itself is going to be a
martingale, with Mt = E[Z | Ft] almost surely. For example, this is because M is an almost sure limit of
the Mnks. And those are martingales, so you can write

Mt = lim
k

Mnk
t = lim

k
E[Mnk

∞ | Ft].

And if these endpoints converge to Z in L2, then the conditional expectations also converge in L2, and thus
in probability.

So this verifies M is a martingale; and it’s continuous and bounded in L2, so it’s an element of H2.

Finally, we just need to say why our original sequence Mn converges to M . But this is just because

⟨Mn −M,Mn −M⟩H2 = E[(Mn
∞ − Z)2],

because M∞ = Z almost surely. But then by assumption on Z, we precisely defined Z as the L2 limit of
the Mn

∞, so this goes to 0.

The main points here are again using the L2 maximal inequality to upgrade the convergence of the endpoint
to convergence of the sup of all your processes. Then completeness basically comes from the completeness
of L2 and C0 (the space of continuous functions); and you do the usual tricks with subsequences (any time
you want a continuous process, you usually construct it as a uniform limit of continuous processes).

Now let’s set some more notation.

Notation 12.14. Let P be the progressive σ-field on Ω× R+.

Recall that one way of characterizing the progressive σ-field is the smallest σ-algebra with respect to which
all progressive processes are measurable. It’s also the collection

P = {A ⊆ Ω× R+ | (ω, t) = 1A(ω, t) is progressive}.

There was some homework problem about proving equivalent ways of thinking about this σ-algebra.

Definition 12.15. For M ∈ H2, let L2(M) be the set f progressive processes H such that

E
[∫ ∞

0
H2

s d⟨M,M⟩s
]
< 0.

This is basically the L2 norm of H with respect to the quadratic variation of M .

We’re going to identify processes H and H ′ which are such that Hs = H ′
s almost everywhere with respect

to d⟨M,M⟩s almost surely — H is a function of two variables ω and s. An easier way to think about this
is this means

E
[∫ ∞

0
(Hs −H ′

s)
2 d⟨M,M⟩s

]
= 0.
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The reason you want to identify such processes is that then you can view L2(M) as an actual L2 space —
it’s a Hilbert space

L2(Ω× R+,P, dP d⟨M,M⟩).

What we’re saying is on Ω × R+, we have a σ-algebra P. And we can define a measure on this measure
space which maps a given A ∈ P to

E
[∫ ∞

0
1A(ω, s) d⟨M,M⟩s

]
.

One verifies that this actually defines a measure (that’s just monotone convergence — you have to say why
it’s countably additive). With this definition, if you integrate H2, it’s precisely going to give you the thing
E[
∫∞
0 H2

s d⟨M,M⟩s]. (That’s an exercise by the standard machine thing where if this is your measure, then
when you integrate functions you get precisely something like E[

∫∞
0 H2

s d⟨M,M⟩s].)

And the inner product on this space is just the inner product of a L2 space — we deifne

⟨H,K⟩L2(M) = E
[∫ ∞

0
HsKs d⟨M,M⟩s

]
(as the integral of HK against your measure).

We’re first going to construct a stochastic integral where the integrand is H, and you’re going to integrate
H with respect to your L2-bounded martingale M . We’re basically going to define a map from this Hilbert
space L2(M) to H2, the space of L2-bounded continuous martingales. This map, by the way you define it,
is going to have a natural interpretation as a stochastic integral.

§12.5 Integrals for simple processes

We’re going to define this integral as an isometry, but the way you get started is by defining it on simple
processes (as with any integral). What are the classes of simple processes we want to work with?

Definition 12.16. An elementary process is a progressive process H of the form

Hs(ω) =

p−1∑
i=1

Hi(ω)1(ti,ti+1](s)

where Hi(ω) is bounded and Fti-measurable for all i, and 0 = t0 < · · · < t−.

So you have indicators of intervals times some random variables; and this random variable is measurable
with respect to the left endpoint. The fact you take the left endpoint is needed to make the theory work.
It’s somehow related to how when we constructed the QV, we found this martingale, and it was only a
martingale because it looked like a difference of your martingale times some function of the left endpoint.
That’s intimately related to why you want to take the left endpoint here.

Notation 12.17. We write E for the set of all elementary processes.

First of all, E ⊆ L2(M) for all M ∈ H2. Why? Well, the His are bounded by some deterministic constant,
so the finiteness condition in the definition of L2(M) is always true (also because you’re taking a finite set
of points).

Basically what we’re going to do is for such processes, there’s kind of a natural way to define this integral.
So let’s talk about that in the last five minutes.
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How would you define some formal symbol like
∫
Hs dMs for a process of the above form? Well, you just

write it as a finite sum of increments∫
Hs dMs =

∑
Hi(Mti+1 −Mti).

this is maybe the integral over the whole real line [0,∞). If you want to think about this as a process in an
additional time parameter t, you’d simply take a min with t in each of these times — we define∫ t

0
Hs dMs =

∑
Hi(Mti+1∧t −Mti∧t).

This looks very much like the proof of the QV; in that proof H itself was Mti∧t. But as long as it’s
Fti∧t-measurable, this thing is going to be a martingale.

So this defines H ·M = ((H ·M)t). And we’re going to check that this itself is in H2. If you believe what
we just said, it’s true — it’s a martingale, the H’s themselves are bounded, and M is in H2 — so this is
believable.

So you’re going to have a map E → H2, where you think of E as contained in L2(M). So you’re fixing your
M , and you define this map H 7→ H ·M .

The thing you need to check is:

Proposition 12.18

The map H 7→ H ·M is an isometry from E to its image, i.e., it preserves norms.

Second, it’s natural what the approach is — you want to extend your map from the subspace E to the whole
space L2(M). You can do that if your subspace is actually dense. So you want to show:

Proposition 12.19

The space E is dense in L2(M).

Once you show that, you’re basically done — you have a densely defined isometry from a subspace of one
Hilbert space into another, and you can extend it using abstract Hilbert space arguments. That’s what the
stochastic integral will be.

There are some things to check. First, in principal your elementary process could have different representa-
tions. This is true when you construct Lebesgue integrals as well — you have to check your representation
is independent of the particular sum you represented it as. Also you have to check that this is a linear map.
But this is kind of the roadmap for constructing the stochastic integral.

§13 March 17, 2025

§13.1 Elementary processes

To review what we talked about at the end of last time, we’re getting started towards defining the stochastic
integral. The first thing you do is define it for indicator functions, more or less. In this setting, you want
them to be of the following form:
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Definition 13.1. An elementary process H is a progressive process of the form

H =

p−1H(i)∑
i=0

1(ti,ti+1],

where 0 = t0 < · · · < tp and H(i) is bounded and Fti-measurable. We use E to denote the set of
elementary processes.

So here you have an indicator of an interval, and a random variable which is measurable with respect to
the left endpoint. This is kind of a very special thing that allows you to define the stochastic integral. It’s
very important that H(i) is Fti-measurable and not just Fti+1-measurable — this is going to give you a L2

martingale, which is exactly what’ll give you the isometry property that we’ll prove today (that’s how you
define the integral, by an isometry).

Remark 13.2. For any M ∈ H2 (recall that H2 is the set of L2-bounded continuous martingales), E is
a linear subspace of L2(M) (the set of continuous processes which are square-integrable with respect to
⟨M,M⟩).

§13.2 Density of elementary functions

We had an outline last time of how we’ll define the stochastic integral. The first thing we’ll do is prove that
E is dense (as you usually expect of indicator functions — usually you expect to be able to approximate any
measurable function by indicators, and here we can approximate any function in L2(M) by an elementary
process).

Proposition 13.3

For all M ∈ H2, the set E is dense in L2(M).

Proof. To prove a set is dense (this is just abstract Hilbert space theory), it suffices to show that if you have
K ∈ L2(M) which is orthogonal to every element in E (i.e., every elementary process) — with respect to
the inner product on L2(M) that we defined last time — then K = 0 in L2(M).

Remark 13.4. For a set to be dense in a Hilbert space, it suffices to have this property. Intuitively,
the reason this property characterizes denseness is that it’s a vector space, so if the set is not dense,
then it basically has to look like a hyperplane (when you take the closure). Then you can take a vector
orthogonal to everything in your set (which is not 0).

So if the set isn’t dense, this property shouldn’t be true; contrapositively, if this property is true, then
the set has to be dense.

So assume this orthogonality. We’ll define a process

Xt =

∫ t

0
Ks d⟨M,M⟩s

(so X is the integral of K against the QV of M). Our goal is to show that X is both finite variation and
a martingale. Then we can use the result that if you’re both, you have to be 0 (in the sense that almost
surely, Xt = 0 for all t). And then this will imply that K = 0 (this is somewhat believable, though we might
say a couple more words at the end — that if you integrate K and get something that’s zero, then K had
to be zero, at least almost everywhere with respect to this measure).
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The fact that X is a FV process just comes from the fact that K ∈ L2(M). The fact that it’s actually
a martingale is the key thing, and that comes from the orthogonality assumption. You’re assuming K is
orthogonal to every elementary process, and the key observation is that implies you have a martingale; so
we’ll see that.

But first, let’s show why X is a finite variation process. First, why is this integral even well-defined? You
think of d⟨M,M⟩s as a (positive) measure; but why is this integral well-defined? Let’s bound

E
[∫ t

0
|Ks| d⟨M,M⟩s

]
.

We’ll apply Cauchy–Schwarz — you want to do this because you know K ∈ L2, so you want K2. If we do
that (applying Cauchy–Schwarz to the integral, before taking the expectation), we get that this is at most

E

[(∫ t

0
K2

s d⟨M,M⟩s
)(∫ t

0
⟨M,M⟩s

)1/2
]
.

And then you can apply Cauchy–Schwarz again, but this time to the expectation, to separate them; and
you get

E
[∫ t

0
K2

s d⟨M,M⟩s
]1/2
· E [⟨M,M⟩t]1/2 .

The first term is finite because K ∈ L2(M), and the second is finite because M is a L2-bounded martingale.
So almost surely, this thing is finite for all t; and we had a result a few weeks ago that when you have this
condition that the integral is finite, that defines for you a finite variation process. (This is where you have
to use completeness — the expectation being finite just means that this process is finite almost surely, so
you might have to modify it on measure-0 sets.)

So that shows X is going to be finite variation; now it remains to show X is a martingale. This is the key
step in the proof — that the assumption of orthogonality implies X is going to be a martingale.

Before this, another thing is that for X to be a martingale, we need Xt ∈ L1 for all t. But that’s just a
consequence of the previous discussion; so the integrability condition is satisfied.

Now to verify the martingale property, we want to show

E[Xt | Fs] = Xs.

Another way you can put this is that for all bounded Fs-measurable random variables F , we should have

E[F (Xt −Xs)] = 0.

If you had this relation, that would imply E[Xt | Fs] is exactly given by Xs (because Xs is Fs-measurable,
and if you take F to be an indicator function on an event in Fs, that’s precisely the definition of the
conditional expectation).

So how do we show this? We simply take H to be an elementary process of the form

H = F1(s,t].

(If you’ve reduced to showing this, you might guess that you should take this type of elementary process.)
And now we just compute the inner product between K and H. By assumption, this is always 0 (because we
assumed K is orthogonal to all elementary processes). But if you recall how we defined this inner product,
that says

0 = ⟨K,H⟩L2(M) = E
[∫ t

0
KrHr d⟨M,M⟩r

]
.
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Now we plug in our definition for H — H is just an indicator function times a random variable. So you can
basically treat F as a constant in the integration variable r (F is just a random variable, it doesn’t depend
on r); this means you can pull it out of your integral, and you get

E
[
F

∫ t

s
Kr d⟨M,M⟩r

]
(now the fact that you’re just integrating from s to t comes from the fact that you have 1(s,t]). But now you
see that this integral is precisely Xt −Xs. So we get that this is E[F (Xt −Xs)]; this means we’ve shown

0 = E[F (Xt −Xs)],

and therefore that X is actually a martingale.

So to wrap up, we now have a finite variation process which is also a continuous martingale; that means
almost surely, Xt = 0 for all t. (In fact, we maybe don’t even need ‘almost surely.’)

We now want to say why this implies K = 0 almost everywhere with respect to d⟨M,M⟩ (you think of the
QV as a measure on [0,∞)). Why is this true? If you think of the measure µ defined as dµ = K d⟨M,M⟩ (so
µ has density K against the QV), then the statement that Xt = 0 for all t implies that µ([0, t]) = 0 for all t.
(Here µ may be a signed measure, because K could be positive or negative.) So we have a signed measure
with the property that it assigns every interval [0, t] to be 0. This is going to imply (by e.g. Caratheodory
extension) that µ is actually just 0 as a measure — it actually assigns every Borel set 0. (Probably you
don’t even need this extension theorem. You just want to say why a measure is uniquely determined by its
values on these intervals [0, t]; and you can use the fact that they generate the Borel σ-algebra and maybe
the π-λ theorem or something like that.) So you get that this measure is 0. And that implies the density
K has to be 0 — for example, you can look at µ({r | Kr > 0}), and you’re going to get that this is 0 (since
this measure is going to be 0, you can apply it to an event of this form, and that’s going to have measure
0). Similarly you also get µ({r | Kr < 0}) = 0; and that means K = 0 almost everywhere with respect to
this measure.

And once you have this, that means K = 0 in L2(M) — because what it means to be 0 in a hilbert space
is that its norm is 0. And we have

⟨K,K⟩L2(M) = E
[∫ ∞

0
K2

r d⟨M,M⟩r
]
.

But if you know K is 0 almost everywhere with respect to the measure you’re integrating against, then even
the integral (before taking an expectation) is 0.

Student Question. Why does the expectation being finite imply that X is FV?

Answer. It means that almost surely
∫ t
0 |Kr| · · · <∞.

§13.3 Stochastic integrals with respect to L2-bounded martingales

Now that we know E is dense, we can define the first version of stochastic integrals.

First, some notation:

Notation 13.5. We use XT to denote the stopped process XT
t = Xt∧T .
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There’s also this property (which we proved last week) that

⟨MT ,MT ⟩∞ = ⟨M,M⟩T

(intuitively the QV measures how much your process is varying, so if your process becomes constant after
time T , so should the QV). As a consequence of this, if M ∈ H2, then we also have MT ∈ H2 — because
an equivalent characterization of what it means to be in H2 is that the expectation of the QV at t = ∞ is
finite. And if this is true for M , then it’s also true for MT , because

⟨MT ,MT ⟩∞ = ⟨M,M⟩T ≤ ⟨M,M⟩∞.

Also, if you have a progressive process H ∈ L2(M) and T is a stopping time, then we also have

1[0,T ]H ∈ L2(M).

This is intuitive because the L2 norm of this thing can be no bigger than the L2 norm of H. And the fact
that this is going to be a progressive process goes back to the measure theory stuff we spent the first weeks
of class discussing.

Now we can finally define stochastic integrals, with respect to L2-bounded martingales. This is the main
step — to extend to continuous local martingales, you can just localize them to get L2-bounded martingales,
apply this theorem, and then stitch things together.

Theorem 13.6

Let M ∈ H2. Then for every elementary process H ∈ E of the form H =
∑p

i=0H(i)1(ti,ti+1], we can
define

(H ·M)t =

p−1∑
i=0

H(i)(Mti+1∧t −Mti∧t).

Then H ·M ∈ H2 (i.e., it’s a L2-bounded martingale). Moreover, the mapping H 7→ H ·M extends to
a linear isometry L2(M)→ H2.

You should think of H ·M as the stochastic integral of H with respect to your martingale M .

Where does this formula come from? You’re trying to define something like
∫ t
0 H dMs (intuitively). The

whole problem is that M is a martingale, so it’s not FV — it has finite quadratic variation, but that means
the derivative of M in a classical sense doesn’t exist. (For example, BM is 1/2-Hölder, so taking a derivative
of it isn’t well-defined — if it were, then you could define this integral using classical calculus, but it’s not.)
The point is if you have an indicator function, it’s very easy to define this integral — you just say formally
that because H is constant in time I can pull it out, and then I’ve reduced to integrating indicator functions
on intervals — I want something like

∑p−1
i=0 H(i)

∫ ti+1∧t
ti∧t dMs. And in any reasonable definition of an integral,

when you integrate against the indicator on an interval, you should just get the difference of M at your two
endpoints. So that’s where this definition comes from.

Definition 13.7. This process H ·M is often denoted as (H ·M)t =
∫ t
0 Hs dMs, and it’s called the

stochastic integral of H with respect to M .

Remark 13.8. Le Gall calls it the stochastic integral, but often it’s called the Itô integral.

Now let’s prove this. One part of the proof we’ll defer until later is that this thing H ·M is actually well-
defined. The same elementary process could have multiple ways of writing it as a sum of indicators. So
one thing you have to check is that when you have multiple ways of writing H, the formulas you get are
consistent. But we’ll do that later.
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Proof. The first thing we’ll observe is that H ·M is manifestly a martingale — for each i, if we define

M
(i)
t = H(i)(Mti+1∧ti −Mti∧t)

(the ith thing in the sum), then it’s in H2. Why? First, it’s L2-bounded — H is a bounded random
variable, and the second term is L2-bounded. And it’s a martingale by the same computation from when
we constructed the QV — any time you have something of this form (where H(i) is Fti-measurable — this is
the important thing, and why we defined elementary processes the way you did), you get a martingale. And
if you sum a finite number of elements in H2, you still get an element of H2; so H ·M =

∑p−1
i=0 M (i) ∈ H2.

So that’s the first thing.

Next, let’s say why this is going to be an isometry. This was maybe Itô’s key observation — the fact that if
you compute the norm of H ·M as an element in H2, it’s actually going to be exactly the same as the norm
of H as an element of L2(M).

Claim 13.9 — We have ⟨H ·M,H ·M⟩H2 = ⟨H,H⟩L2(M).

This is what it means to be an isometry — we’re mapping H ∈ L2(M), and we’re defining this martingale
H ·M (so we’re mapping from a subspace of L2(M) into H), and we’re saying the norms are preserved.

The fact you’ll get this again comes from the fact that you have this martingale structure where H(i) is
Fti-measurable.

Proof. Recalling the definitions of the inner product on H2, we have

⟨H ·M,H ·M⟩ = E[⟨H ·M,H ·M⟩∞].

So to calculate this, we need to calculate the QV of the process we just defined; so let’s do that. The QV of
H ·M , at least at a fixed time t — well, we wrote H ·M as a linear combination of martingales, so by the
bilinearity of the QV you can expand out and get

⟨H ·M,H ·M⟩ =
∑
i,j

⟨M (i),M (j)⟩t.

And then the thing you realize (very reminiscent, and maybe a generalization, of the fact that the increments
of a L2 martingale are uncorrelated):

Claim 13.10 — If i ̸= j, then we have
⟨M (i),M (j)⟩ = 0

(for all t).

Proof. Why is this true? If we visualize the points ti, ti+1, tj , and tj+1, then the assumption that i ̸= j
means the interiors of these intervals are disjoint. And M (i) only varies on the first, while M (j) is constant
on this interval and only varies on the second. And this is just the bracket of two martingales; if you have
a bracket where it’s always the case that one of the two things in the bracket is constant, then the bracket
has to be 0. (For instance, you can use the discrete approximation of ⟨•, •⟩ that we showed last week.)

So when you expand out the QV, you only get the diagonal terms; this is very similar to the fact that the
increments of a L2 martingale are uncorrelated.

Now let’s see what the QV is when i = j — we can compute

⟨M (i),M (i)⟩t = H2
(i)(⟨M,M⟩ti+1∧t − ⟨M,M⟩ti∧t)
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(We had M
(i)
t = H(i)(Mti+1∧t −Mti∧t), and you think of H(i) as constant in time; this means you can pull

out two powers of it.)

So thus, you get that

⟨H ·M,H ·M⟩t =
p−1∑
i=0

⟨M (i),M (i)⟩t =
p−1∑
i=0

H2
(i)(⟨M,M⟩ti+1∧t − ⟨M,M⟩ti∧t).

But this looks almost like an integral of indicator functions — it’s precisely going to be∫ t

0
H2 d⟨M,M⟩s.

So we get this identity, and that precisely shows the isometry property we wanted — if we now apply this
at time ∞, we get

E[⟨H ·M,H ·M⟩∞] = E
[∫ ∞

0
H2

r d⟨M,M⟩r
]
= ⟨H,H⟩L2(M)

(by definition). So we’ve succeeded in showing this claim (that the map is an isometry).

To emphasize, we’ve shown this is an isometry, but we haven’t shown it’s linear yet. (Usually when you say
‘isometry,’ you mean a linear isometry. We’ve shown that the norms are preserved, but we’ll see why it’s
linear soon.)

But basically we’re almost done proving this; we just have to say why this thing is well-defined and why the
thing is linear. The proof of those two things turn out to be quite similar.

First let’s say why H ·M is well-defined.What do we need to do to check that this definition is well-defined?
Well, we suppose that H can be represented in two different ways, as

H =

p−1∑
i=0

H(i)1(ti,ti+1] =

q−1∑
j=0

K(j)1(sj ,sj+1]

(Le Gall skips over this in the book, but you have to think a bit to fill in the details, which is why we’re
doing it) — where this equality is in L2(M). And then we want to say the corresponding two processes are
the same — we want to show that

p−1∑
i=0

H(i)(Mti+1∧t −Mti∧t) =

q−1∑
j=0

K(j)(Msj+1∧t −Msj∧t).

(This is what we mean when we say the definition is well-defined.)

You have this same problem with defining the Lebesgue integral — there you first define it for simple
functions (sums of indicators), and you have to think there about why it’s well-defined. And you use the
same trick there as here. What you do is you use this refinement trick. First, forget about the second
representation, and let’s focus on H being equal to the first sum of indicators. Then for any refinement of
our subdivision {uℓ} ⊇ {ti} — we had a subdivision {ti} which we used to represent H; we can always take
a refinement, which is a subdivision containing this one (you visualize this by taking your first subdivision,
and then adding some more points) — for any such refinement {uℓ}, we can write

p−1∑
i=0

H(i)1(ti,ti+1] =

r−1∑
t=0

J(t)1(uℓ,uℓ+1]

(the point is that you can basically take 1(ti,ti+1] and split it into a finer sum of indicators). So now we have
a sum over these finer indicators, where the J ’s are properly chosen H’s — more precisely,

J(ℓ) = H(iℓ) where iℓ is such that (uℓ, uℓ+1] ⊆ (tiℓ , tiℓ+1].
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Basically you’re just inserting a telescoping sum for each (ti, ti+1].

So we can always switch to a finer sum. And by explicit computation, you can check that H ·M using this
subdivision is going to be the exact same as the original process you defined, i.e.,

p−1∑
i=0

H(i)(Mti+1∧t −Mti∧t) =
r−1∑
ℓ=0

J(ℓ)(Muℓ+1∧t −Muℓ∧t).

Why is this going to be true? If you for example consider the interval (t0, t1], you’re decomposing it into a
disjoint union of intervals (u0, u1] ∪ · · · ∪ (ur−1, ur]. And you can check that

Mti∧t −Mt0∧t = (Mu1∧t −Mu0∧t) + · · ·+ (Mur∧t −Mur−1∧t).

The point is that this is just a telescoping sum.

In summary, what we’ve said is that at least if we take a refinement of H, that’s well-defined — your
stochastic integral upon taking refinements of the partitions stays the same.

But now given two representations of H, we can take a common refinement — given the two subdivisions
{ti} and {sj}, you can find a subdivision containing both of these, which will be a common refinement.

So we had this slight detour using refinements, but now let’s come back to the situation where we had two
representations of the same elementary process (with H(i) and K(j)). By taking a common refinement {uℓ}
of {ti} and {sj}, we can write both sides by the same mesh {uℓ} — we basically get

r−1∑
ℓ=0

H̃(ℓ)1(uℓ,uℓ+1] =
r−1∑
ℓ=0

K̃(ℓ)1(uℓ,uℓ+1]

(where H̃ and K̃ correspond to J from before), at least in L2(M). And now that you have both things on
a common mesh (or a common subdivision), it suffices to show this identity with tildes, and with the sum
running from 0 to r − 1 — so it suffices to show that

r−1∑
ℓ=0

H̃ℓ(Muℓ+1∧t −Muℓ∧t) =
r−1∑
ℓ=0

K̃ℓ(Muℓ+1∧t −Muℓ∧t).

Why does this suffice? We’re saying that the left-hand side, by our refinement trick, is going to be equal to∑p−1
i=0 H(i)(Mti+1∧ti −Mti∧t); and similarly the right-hand side will be at most the right-hand side of what

we wanted.

So it remains to show this identity. And for that, we’ll have to use our assumption that these are equal in
L2(M); bringing the right-hand side over, we get that the elementary process

r−1∑
ℓ=0

(H̃ℓ − K̃(ℓ))1(uℓ,uℓ+1] = 0

in L2(M). And by the isometry property we proved earlier, the process we get by integrating this with
respect to M is just going to be 0 — i.e., the process

t 7→
t−1∑
ℓ=0

(H̃(ℓ) − K̃(ℓ))(Muℓ+1∧t −Muℓ∧t) = 0

in H2 (because of the isometry property we proved earlier, applied to the particular elementary process
H̃(ℓ) − K̃(ℓ), which is 0 in L2(M)). And if this is 0, then we get the desired identity.
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Remark 13.11. This is something Le Gall kind of handwaves, but if you want to know the details, you
kind of have to go through it — it’s not that complicated, but you do have to be a bit careful and think
through the details.

So now we’ve shown this thing is well-defined; the last thing we need to show is why it’s a linear map. What
do we mean by linearity? We want to show that for H1, H2 ∈ E , we have

(H1 +H2) ·M = (H1 ·M) + (H2 ·M).

Again, this is basically the same refinement trick. A priori the problem you might have is that H1 and H2

might be defined using different subdivisions. But you can use the refinement trick to write them using a
common subdivision, at which point this identity is elementary (it’s basically the same argument as how we
proved the thing is well-defined).

So in summary, we get this linear isometry which is densely defined. And by functional analysis, that allows
you to extend the isometry to all of L2(M); that’s how we get an isometry on this entire space. So that
constructs the stochastic integral with respect to L2-bounded martingales.

Remark 13.12. In the last chapter we discussed semimartingales; so far we’ve just focused on martin-
gales. But we basically defined integrals with respect to FV processes. A CLMG is just a MG plus
a FV process, and we know how to integrate against FV processes; so the point is that as long as
we know how to define the integral against martingales, you can also define integrals with respect to
semimartingales. But the main point is why you can integrate against martingales.

§13.4 Properties of the stochastic integral

Now we’ll see some properties. The first is a characterization.

Proposition 13.13

The martingale H ·M is the unique martingale in H2 such that ⟨H ·M,N⟩ = H⟨M,N⟩ for all N ∈ H2.

So that’s a characterization claim. The next, which is natural if you think of this as an actual integral:

Proposition 13.14

If T is a stopping time, then

(1[0,T ]]H ·M = (H ·M)T = H ·MT .

We’ll see the second claim follows from this characterization, so the main point is proving the characteriza-
tion. If we think about why this is true, the intuition is we can kind of write the left-hand side as∫ t

0
1[0,T ]Hs dMs.

This means as a process in T , the integrand should become 0 after time T ; so that’s why you’d expect the
first identity to be true. And why should we expect the second to be true? Now you’ve got

∫ t
0 Hs dM

T
s ,

so you’re integrating against something that becomes constant after time T ; so you’d intuitively expect the
integral to eventually become constant after T .

If you try to prove this directly, even though it’s intuitive, it actually gets messy. So it’s kind of nice that
it actually follows from the characterization.
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One some level, if you think about Hilbert spaces, any vector on a Hilbert space is characterized by the
linear functional it induces (v 7→ ⟨u, v⟩); if you know your linear functional, then you know the vector. This
is saying something simple — H ·M is an element of your Hilbert space, and ⟨H ·M,N⟩ = H⟨M,N⟩ kind
of describes the linear functional it induces (though this characterization is slightly more general).

Proof of Proposition 13.13. First, uniqueness is pretty immediate — if we had X,Y ∈ H2 both satisfying
this property, then you could take N = X − Y . And then if you unwrap what the property is saying, it’s
saying that

⟨X,N⟩ = H⟨M,N⟩ = ⟨Y,N⟩,

which implies that
⟨X − Y,X − Y ⟩ = 0

(using bilinearity to move the other bracket to the left-hand side, and using the fact that N itself is X−Y ).
This implies X = Y .

Now we actually have to show that this property is satisfied. First, why is H⟨M,N⟩ well-defined? I’m
integrating some element of L2(M) against a bracket, which is a signed measure.

This is where the Cauchy–Schwarz inequality from before (the Kunita–Watanabe theorem) comes into play.
For this to be well-defined, the thing has to be integrable. So let’s try to bound

E
[∫ ∞

0
|Hs| |d⟨M,N⟩s|

]
.

So we’ve fixed some N ∈ H2 and we want to estimate this thing. We need this to be finite, and it’s a direct
application of Kunita–Watanabe — you think of Hs as H · 1, and you get that we can bound this by

∥H∥L2(M) · ∥N∥H2

(since ∥N∥H2 = ∥1∥L2(M) — the latter is just going to be E[
∫∞
0 12 d⟨N,N⟩s]). And by assumption, both are

finite — we have H ∈ L2(M) and N ∈ H2. (We didn’t write it down in the proposition, but it’s supposed
to be part of the statement.)

So this random variable
∫∞
0 Hs d⟨M,N⟩s — this notation means (H · ⟨M,N⟩)∞. This is well-defined and

integrable — i.e., it’s in L1(Ω,F ,P).

Now we need to actually check the property. The way you usually check these things (as in all areas of
probability and analysis) is you check it in the simplest possible case, and extend by density. The simplest
possible case is when we have an elementary function, because that’s the only case where we have an explicit
formula for what H ·M is (otherwise it’s just defined as the limit of something coming from extending your
isometry).

So let’s take H ∈ E , and say H =
∑p−1

i=0 H(i)1(ti,ti+1]. Recall the notation M
(i)
t = H(i)(Mti+1∧t−Mti∧t) (this

is the ith martingale you get when you intreate agains tM). Then we have

H ·M =

p−1∑
i=0

M (i).

Now let’s evaluate the bracket of this integral with respect to another martingale N — by linearity of the
bracket, we cna write

⟨H ·M,N⟩ =
p−1∑
i=0

⟨M (i), N⟩.
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And then we claim that this is going to be equal to

p−1∑
i=0

H(i)(⟨M,N⟩ti+1∧t − ⟨M,N⟩ti∧t).

Intuitively,t he reason is your martingale only varies on [ti, ti+1). The way you’d fully verify this is ofr
instance using the fact that

⟨M ti , N⟩ = ⟨M,N⟩ti

(we showed this last class), and you also do this for ti+1. But now if you evaluate the right-hand sides at
times t and take their difference, that’s precisely what this thing in the parentheses is. And if you take the
difference on the left, it’s precisely this increment Mti+1∧t −Mti∧t.

So now we’ve done that, and we get that

⟨H ·M,N⟩ =
∫ t

0
H d⟨M,N⟩

(H is an indicator function, and any time I have an indicator function, I’m supposed to just get a sum like
this.) So the property is true for H ∈ E .

Finally, you just argue by density. For a general progressive process H ∈ L2(M), by the density of E we can
take a sequence {Hn} ⊇ L2(M) with Hn → H. Then by the isometry we proved earlier (the fact that our
map L2(M)→ H2 is an isometry), that means

Hn · tM → H ·M

in H2 (by the isometry of the stochastic integral).

So to wrap up, if we now have a general L2 bounded martingale N ∈ H2, we can say

⟨H ·M,N⟩∞ = lim
n→∞

⟨Hn ·M,N⟩∞

(all the convergence is in L1 — one can verify using Kunita–Watanabe). And now we can use the fact that
the processes is true for elementary processes to get that this is equal to

lim
n→∞

(Hn · ⟨M,N⟩)∞.

To finish, we just need to say that this is (H · ⟨M,N⟩∞). We’re out of time, so we’ll finish it next time.

§14 March 19, 2025

Some fundamental properties of the Itô integral (which we defined for L2 bounded martingales):

Proposition 14.1∫ t
0 Hs dMs is a martingale.

This is nice because martingales have mean 0 — often in probability you want to compute the expectations
of things, and martingales make this easy (their expectation is 0).

The second thing is the isometry property we used to define the integral.
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Proposition 14.2 (Ito isometry)

We have E[(
∫ t
0 Hs dMs)

2] = E[(
∫ t
0 H

2
s d⟨M,M⟩s)2]. More generally,

E[
∫ t

0
Hs dMs ·

∫ t

0
Ks dMs] = E[

∫ t

0
HsKs d⟨M,M⟩s].

This isometry property is precisely the reason we’re able to define the integration — we first define it for
simple processes and observe that for those you have this property, and then we extend by density.

At the discrete level, it’s good to keep in mind that the isometry of the discrete level says that if you have
a sum of increments

∑
iHi(Mti+1 −Mti) (where Hi is measurable with respect to the left endpoint of the

interval), then

E

[(∑
i

Hi(Mti+1 −Mti)
2

)]
= E

[∑
i

H2
i (Mti+1 −Mti)

2

]
.

The whole point is this sort of encodes the cancellations — in principle you have a square of a sum, so you
could have n2 terms, but actually the off-diagonal terms all cancel out and only the diagonal terms matter
(it’s a fundamental fact about L2 martingales that your increments are uncorrelated).

§14.1 A characterization property

Now let’s continue proving the proposition from last time (the characterization property).

Proposition 14.3

For a L2 bounded integral M , we have that H ·M is the unique element of H2 such that for all N , we
have ⟨H ·M,N⟩ = H⟨M,N⟩.

Moreover, if T is a stopping time, then

(1[0,T ]H) ·M = (H ·M)T = H ·MT .

Recall that the right-hand side means you integrate your integrand H against the measure given by ⟨M,N⟩.

The second property will be needed when we extend Ito integrals to local martingales (doing a localization
with stopping times). It says that you have the processes you’d expect of a stopping time — truncating
your integrand at time T is the same as stopping the integral process at time T (making it constant), which
is the same as stopping the integrator martingale.

Last time, we got part of the way through. Uniqueness was relatively quick. For existence, the strategy was
to first verify the identity for elementary processes H; we did that completely last time. For that, any time
you have an elementary process, you can just do the calculation, so it’s possible to explicitly verify this.
And then you take limits; that’s what we were in the middle of last time. So let’s complete the proof.

Given a general integrand H ∈ L2(M), take a sequence of elementary processes {Hn} ⊆ E with Hn → H
(in your Hilbert space L2(M)). Now we want to justify why you can kind of interchange the limits.

Let’s first try to verify this identity at time ∞. (Both sides are processes, and their value actually exists at
time ∞ — that’s a consequence of the assumption that we’re working with L2 bounded martingales.) You
can show that

⟨H ·M,N⟩∞ = lim
n→∞

⟨Hn ·M,N⟩∞

(where the limit is in L1, or even in probability). (This is because Hn → H, so Hn ·M → H ·M in L2, and
this lets you verify the limit.)
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Then we can use the fact that we verified the identity for elementary processes, so for every n we have
⟨Hn ·M,N⟩ = (Hn · ⟨M,N⟩)∞. So to finish, we just want to say why

lim
n→∞

(Hn · ⟨M,N⟩)∞ = H · ⟨M,N⟩∞

(we’ll show this limit holds in L1, so it also holds in probability). To justify this limit, we can look at the
L1 norm of the difference and use the Kunita–Watanabe theorem to bound this by

E[|((H −Hn) · ⟨M,N⟩)∞|] ≤ ∥Hn −H∥L2(M) ∥N∥H2 → 0.

So this shows why the property is true for a general integrator H.

So we’ve verified the identity at time ∞. But then to verify the identity at any finite time, you can replace
N with N t (the stopped version of N at your finite time t). If you apply this identity, you then get

⟨H ·M,N t⟩∞ = ⟨H ·M,N⟩t∞ = ⟨H ·M,N⟩t

(using properties of how the bracket behaves when you stop one of the processes inside it). And by the
identity, the thing on the left is equal to

(H · ⟨M,N t⟩)∞ = (H · ⟨M,N⟩)t∞ = (H · ⟨M,N⟩)t

(maybe we didn’t need the intermediate step). The point is that ⟨M,N t⟩∞ becomes a measure which is 0
after time t, so if you want to integrate a general function against that measure, you just need to look at
the integral up to time t.

So that verifies that as processes, the two things are equal. Now we can get to the second part of the
proposition. Again, this is basically just playing around with how the bracket behaves when you consider
stopping a process. Let’s look at

⟨(H ·M)T , N⟩t.

Because we’re looking at a stopped process, we can move the stopping time into our evaluation time as

⟨H ·M,N⟩T∧t.

But then we can use the identity we just proved to say this is

(H · ⟨M,N⟩)T∧t.

And this we could have written as
(H1[0,T ] · ⟨M,N⟩)t

(because this is a statement about integrating a function which becomes 0 after your time T ).

By uniqueness in the first part, this is going to imply that

(H ·M)T = (H1[0,T ] ·M).

This is one of the identities in the chain (the first one). And the second one is similar — for the second one,
we look at

⟨H ·MT , N⟩t.

This is an integral of H againsta stopped martingale. So now we first use the identity in the property to
write this as

(H · ⟨MT , N⟩)t.

And now we can move T into the evaluation time to get that this is

(H · ⟨M,N⟩)T∧t.
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And now this is the same as one of the steps in our previous chain, so this implies H ·MT = (H ·M)T

(again by uniqueness), which completes the second identity.

(This part is just algebraic manipulations with the time, but you can kind of guess it by thinking about
what happens if something becomes constant past your stopping time T .)

As one quick application: suppose we look at the quadratic variation of the integral H ·M . Applying the
property twice, we get

⟨H ·M,H ·M⟩ = H · (⟨M,H ·M⟩) = H · (H · ⟨M,M⟩) = H2⟨M,M⟩

(the last step is the associativity of usual integrals). In some sense, this has to be true — it’s a more general
version of the Ito isometry, where E[(H ·M)2t ] = E[⟨H ·M,H ·M⟩t], and by this identity this is supposed
to be E[

∫ t
0 H

2
s d⟨M,M⟩s]. So this is consistent with the Ito isometry. In fact, it’s more general, because it’s

not just about expectations but about the actual paths.

Another way you can kind of remember this, or more generally (if we take different integrators and integrands,
the same thing applies):

Fact 14.4 — We have ⟨H ·M,K ·N⟩t = (HK⟨M,N⟩)t.

§14.2 SDE notation

Usually, people write these stochastic integrals using the following notation (rather than H ·M). If you say

dXt = Ht dMt,

this is kind of a SDE where you’re specifying the time-evoluation of X. We define this to mean that

Xt = X0 +

∫ t

0
Hs dMs for all t.

So you’re just interpreting a SDE in integral form. (A priori dXt = Ht dMt doesn’t have classical meaning
— if you think of M as a Brownian motion, its derivative is of negative regularity. So you’d have to talk
about ODEs where your thing isn’t even differentiable. But whenever we write a SDE like this, we just
mean that this integral equation is true.)

Intuitively, what does it mean for you to satisfy this SDE? If you recall how we defined the Ito integral, that
means

Xti+1 −Xti ≈ Hti(Mti+1 −Mti)

(at least, on a discrete level). Here it’s very important, as usual, that Hti is measurable with respect to the
left endpoint.

Now when we look at this bracket, we’re basically saying that if dXt = Ht dMt and dYt = Kt dMt, then

d⟨X,Y ⟩t = HtKt d⟨M,N⟩t.

This isn’t really even a stochastic differential equation — it’s an actual differential equation (because you’re
saying the time-derivative of some increasing function is some continuous function). If you think on the
discrete level, this is perfectly natural — because on a discrete level, you have

d⟨X,Y ⟩t ≈ (Xti+1 −Xti)(Yti+1 − Yti).

And if we insert each of the above approximations, you get

HtiKti(Mti+1 −Mti)
2,

which is basically the right-hand side HtKt d⟨M,M⟩t.
So these are all heuristic remarks about how you think about these stochastic differentials.
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§14.3 Associativity of stochastic integrals

We want to get to defining the integral in full generality, but first we have one more preliminary proposition.

Proposition 14.5

Let H ∈ L2(M), and let K be a progressive process. Then KH ∈ L2(M) if and only if K ∈ L2(H ·M).
Furthermore, if these properties hold, then

K · (H ·M) = (KH) ·M.

Here H ·M is a L2-bounded martingale, so you can consider its space of progressive processes L2(H ·M).
When we look at K · (H ·M), this is an integral with respect to some L2-bounded martingale.

This is a natural property that you’d expect to be true, but you kind of have to prove it.

Remark 14.6. Often you’d write this in SDE notation; there you’re just saying that if dXt = Ht dMt

and dYt = Kt dXt, then you should be able to ‘substitute’ dXt in the first identity and conclude that
dYt = KtHt dMt. So this is a very natural identity that you’d certainly expect to be true when written
this way — you should just be able to substitute the evolution of X into here.

Proof. Let’s first talk about the if and only if. We had this isometryu property from before, so we know

⟨H ·M,H ·M⟩t =
∫ t

0
H2

s d⟨M,M⟩s.

Maybe it’s better to write this in differential notation, where it says

d⟨H ·M,H ·M⟩t = H2
t d⟨M,M⟩t.

What does it mean for K to be in L2 of this space? This means we have to consider∫ ∞

0
K2

t d⟨H ·M,H ·M⟩t

(the expectation of this thing would be finite if and only if K ∈ L2(H ·M)). But now you can express this
using the above formula — you’re integrating K against this measure, but this measure has a density with
respect to the other measure, so we can rewrite this as∫ ∞

0
K2

t H
2
t d⟨M,M⟩t.

This is even an identity of random variables; so if you take expectations, the first is finite if and only if the
second is.

So that proves the ‘if and only if’; now we need to prove the associativity property. This is where the
characterization of the stochastic integral comes in handy. To prove the second part, let’s consider the
bracket

⟨K · (H ·M), N⟩

(where N is some other L2 bounded martingale). We want to show that this is the same as what we’d get
if instead of K · (H ·M), we input (KH) ·M . But this is just a sequence of algebraic steps. First we can
move K outside to rewrite this as

K · ⟨H ·M,N⟩.
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Then we can move H outside and get
K · (H · ⟨M,N⟩).

And here you just use associativity of regular itnegrals — you think of this whole thing as the integral of
some measurable function against some measure, and that measure has a density with respect to ⟨M,N⟩,
so you can write this as (KH) · ⟨M,N⟩. ANd then you can put KH into the bracket, so this becomes

⟨(KH) ·M,N⟩,

which proves the characterization identity.

§14.4 Integration against general CLMGs

Now we’ll define the processes that we’re going to integrate against CLMGs. The point is that maybe a
process belonging to L2(M) is too restrictive; you might want to integrate more general processes. So we’ll
somewhat relax that restriction.

Definition 14.7. If M is a CLMG, write L2
loc(M) for the set of progressive processes H such that almost

surely, ∫ t

0
H2 d⟨M,M⟩s <∞ for all t.

(‘Loc’ stands for ‘local.’) So we’re not making any assumptions on the expectation — that could be infinite,
just the random variable has to be finite.

Definition 14.8. We define L2(M) as the set of progressive processes H such that

E[
∫ ∞

0
H2

s d⟨M,M⟩s] <∞.

This condition is much stronger than the first one.

Remark 14.9. Again, you can view L2(M) as an actual L2 space, where your measure is basically dP
where P is the probability measure on your sample space, and then d⟨M,M⟩.

Now let’s construct Ito integrals with respect to CLMGs.

Theorem 14.10 (Itô integrals with respect to CLMGs)

Let M be a CLMG. Then for every H ∈ L2
loc(M), there exists a unique CLMG starting at 0, which we

denote H ·M , such that for any CLMG N , we have

⟨H ·M,N⟩ = H · ⟨M,N⟩.

(‘Unique’ is always up to indistinguishability.)

This is kind of abstract, but the point is, how should you define a stochastic integral in this general setting?
Well, we had thsi charcterization property before. And we’re saying we’ll define this thing to be whatever
continuous local martingale satisfies this characterization property (in the general setting where you have
local martingales); this characterization property characterizes a thing, so there’s a unique process.
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Theorem 14.11

If T is a stopping time, then

(1[0,T ]H) ·M = (H ·M)T = H ·MT .

This is the same thing as before — that you can put the stopping time in various places.

Theorem 14.12

If H ∈ L2
loc(M) and K is a progressive process, then HK ∈ L2

loc(M) if and only if K ∈ L2
loc(H ·M),

and in this case we have
K · (H ·M) = (KH) ·M.

This is basically the same associativity property as before, but in this more general setting.

The final claim is that this definition actually extends the one we had for L2-bounded martingales (i.e., it’s
the same as what we constructed before).

Theorem 14.13

If M ∈ H2 and H ∈ L2(M), then H ·M is the same as before.

So that’s the statement of the theorem. The main thing is that integrals against local martingales are still
going to e local martingales (though not necessarily bounded).

Before we get into this proof, the statement is kind of nonconstructive — what is a formula for H ·M? The
intuition is that you still think of it as given by a discrete approximation

H ·M ≈ Hi(Mti+1 −Mti).

The point (which we’ll prove later) is that if you take a mesh, form this linear combination, and take mesh
size to 0, then you converge to the stochastic integral. So this is how you think of the martingale.

Again, it’s very important that H is measurable with repsectt to the left endpoint.

Proof. Without loss of generalith let’s take M0 = 0. (Otherwise you can write M = M0 + M ′ and set
H · M = H · M ′. The point is if you go back to the discrete approximation, you only care about the
increments of M ; you don’t care about where it started. So we may as well assume M starts at 0.)

We can also assume that for all ω ∈ Ω, we have∫ t

0
H2

s d⟨M,M⟩s <∞ for all t.

The assumption is that H is in L2
loc, so this is true almost surely. But at the beginning of this chapter we

said we assume the filtration is complete, so we can modify everything on the almost sure event where this
holds, and we still have all the relevant properties (adaptiveness, progressiveness, and so on). So by doing
this modification, we can just assume that this is true for all ω (not just almost all).

Then, as with most proofs involving local martingales, the idea is to define a sequence of localization times
— stopping times Tn which reduce your local martingale.

So for n ≥ 1, let’s define

Tn = inf

{
t ≥ 0 |

∫ t

0
(1 +H2

s )d⟨M,M⟩s ≥ n

}
.
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It’s basically the integral of H2
s (the reason we put a +1 is just because we also want to say that ⟨M,M⟩s ≤ n

up to your stopping time). Then Tn ↑ ∞ (this is just coming from the fact that this integral is going to be
finite for all t).

And like we just said, because we have this extra 1, we have

⟨MTn ,MTn⟩t = ⟨M,M⟩Tn∧t ≤ n

by definition. This actually means the stopped local martingale MTn is actually L2 bounded (because an
equivalent condition to be a L2 bounded martingale is to say the expectation of your QV at time∞ is finite;
and here your QV is just bounded, which is even stronger). So MTn ∈ H2.

So here’s for instance maybe where we assume M starts at 0 (if it doesn’t, then if M0 was not integrable
MTn would not be a martingale — because this condition is only about the increments of M).

Another thing to note is — we now have a L2 bounded martingale, and we know how to integrate against
such things. But we need our integrand to be in L2 of our L2-bounded martingale. Why is that going to be
true? We claim that H ∈ L2(MTn). And that’s going to be true because∫ ∞

0
H2

s d⟨MTn ,MTn⟩s =
∫ Tn

0
H2

s d⟨M,M⟩s

(because after time Tn, M is just constant and this thing becomes 0). And by the definition of the stopping
time, this is just finite — it’s bounded by n. So this actually means H ∈ L2(MTn).

Now that we’ve verified that, you want to define your integral — at least for times before Tn — as the
integral of H against the stopped martingale (that’s the ntural guess). One thing you have to be careful of
is you want to be able to stitch together these processes. So we need to check that if I have a time before
both Tn and Tm, then the corresponding integrals at that time are the same. For m ≥ n, we have that

(H ·MTm)Tn = H · (MTm)Tn = H ·MTn

(the first equality is because of how integrals behave with respect to stopping times, and the second because
Tm ≥ Tn). What this means is we can define

(H ·M)t = lim
n→∞

(H ·MTn)t.

The point is that eventually this thing stabilizes — once n is large enough that Tn ≥ t, this thing is actually
just constant in n by the above identity. So the RHS stabilizes, which means the limit actually exists.

So now we have our candidate process. It’ll definitely be adapted and have continuous sample paths because
of the way we defined it. But the next thing is, why is this a local martingale? So we need to exhibit a
sequence of stopping times that reduces this thing. And we claim the sequence (Tn) actually just reduce
this process. Why is that? If we look at the stopped process (H ·M)Tn , we want to say why this stopped
process is going to be a UI martingale (that’s what it means for a sequence of stopping times to reduce a
local martingale). Why is this going to be true? Well, the reason is that if I believe that the second property
(H ·M)T = H ·MT is going to hold (we’ll prove it later, or maybe we’ll skip the proof because it’s the same
thing from before), then you should believe that this is going to precisely be H · (MTn). And MTn is a L2

martingale.

This identity is not just trivial — we chose to define H ·M in this way, so we need to show that with this
definition, the above identity (H ·M)Tm = H · (MTn) is true.

To show this, let’s insert the definition of H ·M ; then we get that

(H ·M)Tn = lim
m→∞

(H ·MTm)Tn
t .
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Now in the pre-limit, we can put the Tn onto this martingale — this is going to be exactly equal to

lim
m→∞

(H ·MTn∧Tm)t.

Why? The point is that now I’m back in the L2 bounded case, so the identity where I put the Tn into the
martingale is actually true (because we proved this in the L2 bounded case). And now if I send m→∞, I
just get (H ·MTn)t.

So we’ve shown this identity; and H · (MTn) is a L2-bounded martingale, so (Tn) does reduce our process.
This means H ·M really is a local martingale.

And then you can probably check that if M was a L2 bounded martingale to start with and H ∈ L2(M),
you kind of recover the original definition (that H ·M is the same as before). (We won’t prove this; if you
want, you can check for yourself.)

The next step is we want to show the characterization identity. We’ve succeeded in constructing a CLMG
which starts at 0, and now we want to show why it satisfies ⟨H ·M,N⟩ = H · ⟨M,N⟩.
Again, the idea is that we’ve verified it before taking the limit (because you’re in the L2 bounded case). So
we just have to explain why you can commute the limit.

That requires slightly additional things. Let N be a CLMG. Now we also need to reduce N (before, the
identity was true when both M and N were L2 bounded martingales, so we want to get a L2 bounded
martingale out of N). So we let

T ′
n = inf{t ≥ 0 | |Nt| ≥ n},

so that (T ′
n) reduces N , and when you stop N at these stopping times, it becomes bounded (in particular,

it’s a L2 bounded martingale).

Before we write that, we’ll define a stopping time Sn = Tn ∧T ′
n. Recall that for instance, when we observed

that the sum of CLMGs is a CLMG, the way you prove that is that if you have one sequence of stopping
times reducing your first CLMG and another sequence reducing the other, then when you take their min
that reduces both. So we’ll take this min of the two stopping times. One consequence of this is that NSn is
a L2 bounded martingale.

So we should have that
⟨H ·M,N⟩t = lim

n→∞
⟨H ·M,N⟩Sn

t

(because Sn ↑ ∞). Now I just want to put Sn on each of these terms to get L2-bounded martingales — I
want to say this limit is the same as

lim
n→∞

⟨(H ·M)Sn , NSn⟩

(we used the fact that you can put the stopping time on either of the two terms, at least in the L2 bounded
case). (There might be some additional justification needed, but supposing this is true. . . ) We should now
further get that this is

lim
n→∞

⟨H · (MSn), NSn⟩

(where we do one more step and put the stopping time on M). Now the point is I have L2 bounded
martingales, and using the characterization property, I get that this is

lim
n→∞

H · ⟨MSn , NSn⟩t.

Now this is
lim
n→∞

H · ⟨M,N⟩Sn
t

(this is a property we proved for the bracket of CLMGs — when you have a bracket, you can put your
stopping time on either or both terms). Now we can say this is

lim
n→∞

(H · ⟨M,N⟩)Sn
t = (H · ⟨M,N⟩)t.
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So we proved the characterization identity. We’re not going to show uniqueness; it’s basically the argu-
ment. And the fact about stopping times (with T ) is also basically the same argument, manipulating these
arguments and stopping times, so we’ll skip it as well.

Remark 14.14. One remark: We continue to use SDE notation. So now more generally if M is a
CLMG and H ∈ L2

loc(M), then dXt = Ht dMt just means that Xt = X0 +
∫ t
0 Hs dMs. When we talk

about Ito’s formula, we’ll probably write things in SDE notation. In practice that’s usually how we
write things, so it’s good to get comfortable with it.

§14.5 Integrals with respect to continuous semimartingales

In summary, we defined integrals with respect to CLMGs. And when we talked about FV processes, we
also defined integrals with respect to FV processes (this is just analysis, where you’re integrating against
a measure — that measure is a random thing now, but that’s fine). Now we can combine these to define
integrals against semimartingales. There’s basically nothing to prove here; we just make the very natural
definitions.

What are our integrands going to be? Well, for integrals with respect to local martingales, the natural
integrands are these things in L2

loc. And with FV processes, they’re basically things that are integrable with
respect to the corresponding measure. So you want your condition to be that both of those things are true.

One way to ensure both things are satisfied at the same time is:

Definition 14.15. We say a progressive process is locally bounded if almost surely, we have

sup
0≤s≤t

|Hs| <∞ for all t ≥ 0.

In other words, this says it’s (almost surely) bounded on any finite interval.

Example 14.16

Any adapted process with continuous sample paths is locally bounded. (One of the general measurability
results we showed earlier on is any adapted process with right-continuous sample paths is progressive.
And because it’s continuous, this locally bounded condition is definitely true.)

The point is that any such process is in L2
loc of a local martingale, and also you can integrate any such

process with respect to a FV process — if H is progressive and locally bounded, then for any FV process
V , we have that almost surely, ∫ t

0
|Hs| |dVs| <∞ for all t ≥ 0,

because you can use the fact that H is bounded on all these intervals [0, t] and pull the bounding constant
out; and then you’re just saying that

∫
|dVs| is bounded on every finite interval [0, t], which is basically just

the definition of a FV process. And similarly H ∈ L2
loc(M) for all CLMGs M . Why? Recall that being in

L2
loc means that

∫ t
0 H

2
sd⟨M,M⟩s <∞ for all t. But this is the same situation as before — ⟨M,M⟩ is a FV

process and H is bounded.

So now we can integrate H against FV processes and CLMGs, which means we can integrate it against
semimartingales.
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Definition 14.17. Let X be a CSMG, and let its canonical decomposition be X = M + V . If H is a
locally bounded progressive process, then we define

H ·X = H ·M +H · V = .

Recall that a CSMG is one you can write as a sum of a local martingale M and FV process V ; this is unique
up to indistinguishability (because you can’t be both a CLMG and FV process unless you’re just 0).

More explicitly, this says that (H ·X)t =
∫ t
0 Hs dMs +

∫ t
0 Hs dVs.

Definition 14.18. We similarly write (H ·X)t =
∫ t
0 Hs dXs.

To recap the stochastic integral, when we talked about FV processes, we mentioned that in H · V you’re
just using the fact that you can integrate against measures; this is just real analysis. The thing that’s
fundamentally new in stochastic calculus is defining

∫
Hs dMs, and this uses hte isometry property and

special properties of L2 bounded martingales. Then you can put these together and define integrals with
respect to CSMGs.

Remark 14.19. Again, in SDE notation, you could write your semimartingale as

dXt = dMt + dVt.

But what does this mean? Usualy we take this to mean that Xt = X0 +
∫ t
0 dMs +

∫ t
0 dVs (at least,

that’s what we said for stochastic integrals). We have
∫ t
0 dVs = Vt, kind of just by definition — that’s

what this means. So this part is consistent — if we want to say that this implies X = M + V , then
we have the V part. But why is the first part equal to Mt? Certainly this is a very natural property
expect — the fact that if you interpret this SDE notation in the integral form or as X = M + V , the
two interpretations are consistent.

Is this obvious from the construction of the stochastic integral? We can probably use the character-
ization property. If we define H to be the process which is always 1 (certainly that’s a progressive
process in L2

loc), the claim is that if I integrate 1 against a local martingale, I should just get the local
martingale back — i.e., H ·M = M . Hopefully this shoudl be true (or else this would be a really bad
notion of integral), but how do we prove it? We just need to check that

⟨H ·M,N⟩ = ⟨M,N⟩.

Why is that true? We can use the earlier identity to pull the H out, and write ⟨H ·M,N⟩ = H · ⟨M,N⟩.
And now this is a usual integral in analysis — I’m just integrating 1 against a measure, so I get the
measure back, and this is ⟨M,N⟩.

Remark 14.20. Another way to see this is that eventually we’re going to prove that the discrete
approximations

∑
iHi(Mti+1 −Mti) converge to the integral (we haven’t done this yet). But if H is 1,

then this telescopes and it’s just Mt.
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Remark 14.21. As is often the case when you define integrals so abstractly, when actually computing
them you have to think. We were able to compute this one (where we integrate 1 against M). But
another common integral to compute is

∫ t
0 Ms dMs. This is always well-defined because if M is a local

martingale, it has continuous sample paths, so it’s a progressive locally bounded process. So we can
write down this integral; we’ve certainly constructed it. But what is it — can you actually work with
it?

The point is we should have ∫ t

0
Ms dMs =

1

2
(M2

t − ⟨M,M⟩t).

We’re going to see this from Itô’s formula. We may have mentioned this in the QV part of the course.
Recall that the QV is defined as the unique increasing process such that when you subtract it from
M2, you get a local martingale; and in the proof of constructing the QV, we were working with
discrete approximations to precisely this thing

∫ t
0 Ms dMs. We basically showed that as a sequence of

local martingales, when you take mesh size to 0, we have
∑

iMti(Mti+1 −Mti) converging to a local
martingale, which is this one.

(This discussion is circular because we need the QV to construct these stochastic integrals; but it’s at
least a consistency check.)

And we’ll see more examples later.

§14.6 Properties of the integral with respect to CSMGs

Let’s finish by discussing some properties of the integral with respect to semimartingales.

Proposition 14.22

The map (H,X) 7→ H ·X (where H is a locally bounded progressive process and X is a semimartingale)
is bilinear.

This is kind of just by definition. It’s maybe a good thing to check tha tthe stochastic integral is linear —
that

(H1 +H2) ·M = H1 ·M +H2 ·M.

We used this when defining the stochastic integral for L2-bounded things — we checked that on elementary
processes it’s linear, so it remains linear when you extend. And you can check that linearity still holds in
this more general setting, again by some localization thing. (Or you can use the characterization; that’s
probably more direct.)

You also have the natural associativity property.

Proposition 14.23

If H and K are both progressive and locally bounded, then H · (K ·X) = (HK) ·X.

(We use ‘progressive and locally bounded’ to make sure both sides are well-defined. If you want to be more
general, you can say that if the left-hand side is well-defined then so is the right-hand side and vice versa,
and they have to be equal.)

Again in SDE notation this is very natural — you can write dYt = Ht dXt and dZt = Kt dYt, and then this
says dZt = KtHt dXt.

The third property is that you have the same thing about putting stopping times in various places.
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Proposition 14.24

For every stopping time T , you have

(H ·X)T = (H1[0,T ]) ·X = H · (XT ).

Proposition 14.25

If X is a CLMG, or respectively a FV process, then the same is true for H ·X.

So if you integrate against a local martingale you get a local martingale; if you integrate against a FV process
you get a FV process. That’s another very nice thing about the stochastic integral, which we mentioned at
the beginning — it respects martingale structure.

Proposition 14.26

If H =
∑

Hi1(ti,ti+1] where Hi ∈ Fti , then (H ·X)t =
∑p−1

i=0 Hi(Xti+1 −Xti).

This is slightly more general than being an elementary process (elementary processes additionally require
the Hi to be bounded), so there’s something to check here.

So in summary, we’ve finished constructing stochastic integrals. In the remaining part of the course, we’ll
be exploring what you can do using stochastic integrals. Next week is Spring Break; when we return we’ll
talk about Itô’s formula. Sadly Sky won’t be here that day, but there will be a substitute.

§15 March 31, 2025

(Sky is not here, so Yuanzheng Wang is teaching.)

§15.1 Review

Let’s first recall what we did before break.

Definition 15.1. A CSMG Xt is a sum Mt+Vt where Mt is a CLMG and Vt is a FV process. We define
⟨X,X⟩t = ⟨M,M⟩t.

We have a discrete sum approximation of the QV — if we have a sequence of subdivisions with mesh size
going to 0, then

pn∑
i=1

(Xti −Xti−1)
2 → ⟨X,X⟩t

in probability. The week before break, we tried defining the stochastic integral with respect to a CSMG.

Definition 15.2. For a progressive and locally bounded process H, we define
∫ t
0 Hs dXs =

∫ t
0 Hs dMs +∫ t

0 Hs dVs.

(Locally bounded means that the local supremum of H is always fininte — i.e., sup0≤s≤t |Hs| <∞ for all t.)

If Hs is locally bounded, the second part is comparatively easier to define, and it turns out this is just a FV
process. The week before break we tried defining

∫ t
0 Hs dMs, which turns out to be a CLMG; thus this is a

CSMG.
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We took two steps to define this stochastic integral. The first step is we tried to define it for some ‘nice’ M
and ‘nice’ H. And then we used a localization technique to extend it to general CLMGs and H.

In the first step, we considered the space H2 — the space of continuous martingales bounded in L2. This
space is a Hilbert space with inner product given by ⟨M,N⟩H2 = E[M∞N∞].

First, we considered any M ∈ H2. For such M , we considred the space L2(M), the space of all progressive
H such that E[

∫∞
0 H2

s d⟨M,M⟩s] <∞.

Then for such M ∈ H2 and such nice H, we defined
∫ t
0 Hs dMs by an Ito isometry mapping H 7→

∫ t
0 Hs dMs.

This is an L2 isometry from L2(M) to H2. It turns out that in this case, the stochastic integral
∫ t
0 Hs dMs

is a continuous martingale bounded in L2, with QV given by
∫ t
0 H

2
sd⟨M,M⟩s.

In the second step, we just used a localization technique. By introducing a bunch of stopping times, we were
able to extend the definition of this integral

∫ t
0 Hs dMs to every CLMG M and every H ∈ L2

loc(M), where

this is defined as the space of all progressive H such that for every t > 0, we have
∫ t
0 H

2
s d⟨M,M⟩s <∞. We

can see that if H is locally bounded, then this condition is always satisfied. So if we can define the integral
for any such M and any such H, then we’re able to define our desired stochstic integral.

So by combining these two steps we’re able to define
∫
Hs dMs, and therefore

∫
Hs dXs.

This is what we’ve done before the spring break. Today our main goal is to introduce Ito’s formula, which
is kind of the most important topic in this stochastic calculus course.

§15.2 Some technical results

But before doing this, we need to introduce two technical results. The first is a stochastic version of the
usual L1 dominated convergence theorem. Here we’re considering a general CSMG X, which has a canonical
decomposition as M + V , and we fix t.

Proposition 15.3 (DCT for stochastic integrals)

Let X = M + V be a CSMG, and let t > 0. Let (Hn)n≥1 and H be locally bounded progressive
processes, and let K be a nonnegative process. Assume that the following hold almost surely:

(i) Hn
s → Hs for every s ∈ [0, t] (as n→∞).

(ii) We have |Hn
s | ≤ Ks for all n and all s ∈ [0, t].

(iii)
∫ t
0 K

2
s d⟨M,M⟩s <∞ and

∫ t
0 Ks |dVs| <∞.

Then
∫ t
0 H

n
s dXs →

∫ t
0 Hs dXs in probability.

We don’t require K to be locally bounded; but since it’s always nonnegative, the two integrals in (iii) are
always defined.

To prove this, we want to use the definition of the stochastic integral. This is a sum of a CLMG part and a
FV part. So to prove this convergence in probability, it suffices to prove convergence in probability for each
part.

Proof. Let’s first consider the FV part. By the usual L1 dominated convergence theorem, we have that∫
Hn

s dVs →
∫
Hs dVs almost surely. Here a priori we know the Hn, V , and H are always random; the way

we’re using DCT is that we fix an almost sure sample ω ∈ Ω that satisfies (i)—(iii). Under this sample,
H becomes a deterministic function s 7→ Hn

s (ω), V becomes a deterministic process (which can be seen as
a deterministic finite measure), and H also becomes a deterministic process; and we can use the usual L1
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dominated convergence theorem to say that∫ t

0
Hn

s (ω) dVs(ω)→
∫ t

0
Hs(ω) dVs(ω).

(And this sample is almost sure, so we also get that this convergence is almost sure.)

Now it remains to show that the CLMG part also converges, i.e., that
∫ t
0 Hs dMs →

∫ t
0 Hs dMss in probability.

Recall that in the construction of this CLMG, we used two steps. In the first, we used an Ito isometry to
define this integral for some nice M and H, and in the second step we used a localization technique. This
is also the idea of hwo we are goign to prove the convergence in probability.

So we’re going to first consider the case where M is a continuous martingale bounded in L2, i.e., M ∈ H2.
Assume that Hn, H, and K are all in L2(M). Then by Ito’s isometry, we have

E

[(∫ t

0
Hn

s dMs −
∫ t

0
Hs dMs

)2
]
= E

[∫ t

0
(Hn

s −Hs)
2 d⟨M,M⟩s

]
.

The the right-hand side can again be interpreted as an L1 integral, but here over two variables s (the time
parameter and omega (the sample over probabilistic space). So here we have a double integral where we
ifrst integrate against the QV, then take an expectaton nder the probability measure.

And under this L1 integral, by (i) we know that Hn−H → 0 almost surely for an alost sure pair of samples
(s, ω). Then by (ii), we now that (Hn

s −Hs)
2 ≤ (2Ks). And then because K ∈ L2, we know that Hn

s −Hs)
2

is also integrable.

Then by the usual L1 DCT, the RHS converges to 0.

This tells us that the left-hand side also converges to 0 in probablotu. SO our two stochastic integrals
converge to each otheer in L2, which implies convergence in probability.

Then to handle the general case, we will use thej localization technique. We’ll define a sequence of stopping
times as

Tm = inf{u ≥ 0 |
∫ u

0
(1 +K2

s ) d⟨M,M⟩s ≥ n} ∧ t.

SO the first thing is exactly thee stopping time we encountered. And we fix t and we’re only considering
the stochastic integral up to time t.

Then under this stopping time, we know the stopped process MTm is in H2, and Hn, H,K ∈ L2(MTm).
Then for every m, we get that ∫ t

0
Hn

s dMTm
s →

∫ t

0
Hs dM

Tm
s

in probability.

Now because M is a CMLG (by assumption (3), which requires our last integral to be fininte). . . we know
that as m→∞, we should also have

∫ n
0 (1+K2

s ) d⟨M,M⟩s →∞, and therefore Tm → t (i.e., P[Tm = t]→ 1).

Then the convergence in probability should follow from these two equations — namely, that

P[]

(using H ·M as an abbreviation of P[
∣∣(Hn ·M)t − (H ·M)t

∣∣ ≥ ε)) — is at most

P[Tm ̸= t] + P[
∣∣Hn ·MTm

∣∣
r
− (H ·MTm)t].

And by what we talked aboiut before, for any fixed m the right-hand side converges to what we want. Then
we can take m→∞; then the first part also goes to 0, and the convergence in probability should follow.

There’s one more technical result that we need to prove.
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Proposition 15.4

Let X be a CSMG, and let H be an adapted process with continuous sample paths. Then for every
t > 0 and every seequence 0 = tn0 < · · · < tnpn = t of subdivisions of [0, t] with mesh size tending to 0,
we have

pn−1∑
i=0

Htni
(Xtni+1

−Xtni
)→

∫ t

0
Hs dXs

in probabiltiy as n→∞.

In short, thsi sauys that the stochastic integral with respect to a CSMG on the right can be approximated
by some kind of a Riemann sum.

Remark 15.5. Mote that any continuous local martingale is locally bounded.

Note that when we take the Riemann sum, we’re always taking the leftmost endpoint of each interval.

Proof. We’re actually trying to use the stochastic version of the DCT here. So we’ll define Hn as a sequence
of step functions

Hn = H01{0} +

pn−1∑
i=0

Htni
1(tni ,tni+1)

.

So we can imagine graphing H and drawing tn1 , t
n
2 , and tn3 ; so we take the value H0 from 0 to tn1 , then value

Htn1
from Tn

1 to Tn
2 , and so on.

Now because H has continuous sample paths, we know that Hn → H pointwise by continuity. Also,
because we’re taking the left endpoints and H is adapted and continuous, we know every step function Hn

is a progressive process.

Now to apply the DCT, we need to find a dominating function for all the step functions. In this case, we’ll
just take the dominating function

Ks = sup
0≤r≤s

sup |Hr| .

Clearly K dominates Hn; and because H has continuous sample paths, so does K, which means it is locally
bounded. In particular K will satisfy the integrability condition (iii) from DCT.

So by the previous proposition, we can conclude that
∫ t
0 H

n
s dXs →

∫ t
0 Hs dXs in probability.

And then because of our definition of the step function Hn, the left-hand side is just the Riemann sum in
our desired proposition,a nd the right-hand side is also the same. So the proof just follows.

Remark 15.6. Here there’s an important remark: It’s crucial that we’re approximating H by its values
at the left endpoints. There are two reasons why this is important. First, suppose we took not the left
endpoint, but e.g. the right endpoint ti+1. Then the value of Hn at time tni would depend on the value
of H at time tni+1, which might not be Ftni

-measurable. And even if adaptedness was satisfied, taking a
different point in the interval may give you a different value in the limiting Riemann sum. Actually for
instance, if we took the midpoint (for each interval, we took (tni + tni+1)/2 here), this leads to a certain
stochastic integral called the Stratonovich integral, which has different values than the Ito integral; we
will see this later.

So it’s important to take the left endpoint, or else the fluctuations of the CSMG might lead you to a
different limit value.
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§15.3 Ito’s formula

Now we’ll introduce the main topic of today’s lecture, Ito’s formula. In short, this formula shows that
sufficiently regular functions of CSMGs are also CSMGs, and we can write out explicitly their final decom-
positions as a CLMG plus a FV process.

Theorem 15.7 (Ito’s formula)

Let X1, . . . , Xp be CSMGs. Let F : Rp → R be C2. Then for every t ≥ 0, we have

F (X1
t , . . . , X

p
t ) = F (X1

0 , . . . , X
p
0 )+

p∑
i=1

∫ t

0
∂iF (X1

s , . . . , X
p
s ) dX

i
s+

1

2

p∑
i,j=1

∫ t

0
∂ijF (X1

s , . . . , X
p
s ) d⟨Xi, Xj⟩s.

So we write F (X1
t , . . . , X

p
t ) as the sum of three terms. The first is just a constant — the value of F at time

0. The second term is a sum of p stochastic integrals. In each, the integrand is a first-order derivatie of f
(wh is icontinuous), and we’re integrating against one CSMG. So each integral should again be a CSMG.
And we can write out the explicit canoncail decomposition — it’s

∫
∂iF dM i

s+
∫
∂iF dVs (wheere the secodn

part is FV and the third a CLMG). And the third is 1/2 times a sum of p2 terms. Each is a function of
the X’s integrated against the QV of Xi and Xj , which is an increasing process. So the third term is a FV
process.

And in all, we can see that F (x1, . . . , xp) is again CSJG. The continuous local part is given by the second
term, and the FV part is given by both the second and third term.

In SDE notation, we can take a formal derivative and write

dF (X1
t , . . . , X

p
t ) =

p∑
i=1

∂iF (X1, . . . , Xt) dX
i
s +

1

2

p∑
i,j=1

∂ijF (Xs
1 , . . . , X

s
p) d⟨Xi, Xj⟩s

(maybe all s’s should be t’s).

§15.4 Examples

Before going into the proof, let’s first look at some examples.

Example 15.8

Take p = 1, and take X1
t = Bt to be a standard 1-dimensional Brownian motion. Then Ito’s formula

tells us that

dF (Bt) = F ′(Bt) dBt +
1

2
F ′′(Bt) d⟨B,B⟩t.

Recall that ⟨B,B⟩t = t, so we can replace this by

dF (Bt) = F ′(Bt) dBt +
1

2
F ′′(Bt) dt.
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Example 15.9

In the higher-dimensional case, we can take (X1
t , . . . , X

p
t ) as a standard p-dimensional BM (B1

t , . . . , B
p
t ),

which means that each Xi
t is a standard one-dimensional BM, and these p BMs are jointly independent.

Then Ito’s formula tells us that

dF (B1
t , . . . , B

p
t ) =

p∑
i=1

∂iF
′(B1

t , . . . , B
p
t ) dB

i
t +

1

2

∑
i̸=j

∂ijF (Bp
1 , . . . , B

p
t ) d⟨Bi, Bj⟩t.

And we know that

⟨Bi, Bj⟩ =

{
t i = j

0 i ̸= j

(in the second case they’re independent). So the left-hand side is just

p∑
i=1

∂iF dBi
t +

1

2

p∑
i=1

∂iiF dt.

We xan write this in short as

∇F · dBt +
1

2
∆F dt

(where ∇F and dBt are both p-dimensional, and we’re taking a vector product; and ∆F is the Lapla-
cian).

We can also read Ito’s formula as a stochastic version of the chain rule. But it’s different from the ordinary
chain rule in calculus becaiuse of the extra second-ordre term.

In ordinary calculus, we know (f(g(t)))′ = f ′(g(t))g′(t) dt. In SDE notation, wee might write d(f(g(t))) =
f ′(g(t))g′(t) dt. And we can combine the last two terms together tow rite d g. This means if Xt is not a
CSMG but a usual regular process, then we shoudl have df(Xt) = f ′(Xt) dXt (this is the ordinary chain
rule).

But now, when X has stronger fluctuations, we actually have

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d⟨X,X⟩t.

Recall that the QV can be approximated by a direct sum of squares — we could also write d⟨X,X⟩t as
dXtdXt.

What’s the intuition behind why we have an extra second-order term here? Recall that for a CSMG, we
have

⟨X,X⟩t = ⟨M,M⟩t.

And we can take a formal derivative and write

d⟨X,X⟩t = d⟨M,M⟩t.

Then we know that because X is just a sum of a CLMG plus a FV process, the LHS is actually a sum of
four terms — it’s

d⟨M,M⟩t + d⟨M,V ⟩t + d⟨V,M⟩t + d⟨V, V ⟩t,

just using the linearity of QV to expand. And then because the QV can be approximated by a sum of
squares, d⟨M,M⟩t is somehow equal to

dMt dMt =
∑

(Mti −Mti−1)
2
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(taking mesh size to 0).

Meanwhile, on the left we have four terms — dMtdMt + dMtdVt + dVtdMt + dVtdVt.

And in the lecture on CSMGs, Sky gave an intuitive explanation to the eequality here. We shoudl roughly
think of dMt ∼ (dt)1/2, and dVt ∼ dt. Then dMtdMt on the right has order dt. And dMtdMt has order dt,
dMtdVt and dVtdMt are (dt)3/2, and dVtdVt (dt)

2. Then when summing over t, all lower-order terms (with
power of dt bigger than 1) should vanish in the limit. So these three terms should vanish, because their
powers are bigger than 1. So that’s why when taking a limit, we only have the term dMt dMt left on the
left and right, and that’s why we should have ⟨X,X⟩t = ⟨M,M⟩t.

And the same intuition actually applies here. We can use Taylor’s formula to formally write

dF (Xt) = F ′(Xt) dXt +
1

2
F ′′(Xt) dXt dXt + lower order terms

(where the lower order terms are o(dXt dXt)). The first term F ′(Xt) dXt is of order (dt)
1/2 + dt. So this is

not a lower-order term; when summing over t it shouldn’t vanish, andi t gives us the first term.

The second term is of order (dt)1/2·2 = dt. So this also should not vanish, and it actually gives us the
quadratic variation term in the formula.

And then all the lower order terms have a power of dt bigger than 1, so they all vanish when summing over
t. So that’s why Ito’s term has a first-order and second-order term, but no others.

Meanwhile, in the usual chain rule, the first term is of order dt and should be kept, but the second term is
already of order (dt)2. That’s why in the ordinary chain rule we only have one term on the right-hand side.

So that’s kind of an intuitive explanation of Ito’s formula. And now we’re going to build a rigorous proof
on this intuitive idea.

§15.5 Proof of Ito’s formula

Let’s first take the univariate case p = 1. Then to have this discrete sum story, we’re going to take a
sequence of subdivisions {tni }0≤i≤pn with mesh size going to 0. Here we’ll also require the subdivisions are
increasing (meaning any subdivision point remains a subdivision point as n gets larger).

Let’s write

F (Xt)− F (X0) =

pn−1∑
i=0

F (Xti+1)− F (Xti).

And then we’re going to use Taylor’s expansion. This is kind of the dF (Xt) term in the above intuition,
and after Taylor expansion we should have that this is equal to

pn−1∑
i=0

F ′(Xti)(Xti+1 −Xti) +
1

2

pn−1∑
i=0

F ′′(Xti)(Xti+1 −Xti)
2 + · · · ,

wheere the rest are lower-order terms. To simplify the argument, we’ll drop the lower-order terms. Instead
of using the Peano form of Taylor expansion, we’ll use the Lagrange form; so we instead write

pn−1∑
i=0

F ′(Xtni
)(Xtni+1

−Xti) +
1

2

pn−1∑
i=0

F ′′(θni )(Xti+1 −Xti)
2,

where θni ∈ [Xtni
, Xtni+1

]. Then we want to prove that the right-hand side here converges to the sum of our
two terms as the mesh size goes to 0.
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The first part is comparatively easier to handle — we can just apply the proposition above. This term is
exactly a Riemann sum where we’re taking the left endpoint, so this already converges to∫ t

0
F ′(Xs) dXs

as the mesh size goes to 0. So it only remains to show that the second term converges to the third term in
Ito’s formula.

So let’s write the term there as a sum of two terms, as

pn−1∑
i=0

F ′′(θni )(Xtni+1
−Xtni

)2 =

pn−1∑
i=0

(F ′′(θni )− F ′′(Xn
ti))(Xtni+1

−Xtni
)2 +

pn−1∑
i=0

F ′′(Xtni
)(Xtni+1

−Xtni
)2.

The second term is again a Riemann sum taking left endpoints, and the first term is sort of an error term.
So it suffices to show that the second term converges to the appropriate stochastic integral (as the mesh size
goes to 0), and the first term converges to 0.

First, we know that the term F ′′(θni )− F ′′(Xtni
) can be uniformly bounded — we have

max
i

∣∣F ′′(θni )− F ′′(Xtni
)
∣∣ ≤ V∆n := sup

s1,s2∈[0,t],|s1−s2|≤∆n

∣∣F ′′(s1)− F ′′(s2)
∣∣

(where ∆n is the mesh size of the nth subdivision). And because of our assumption that F ∈ C2, we know
that F ′′ is uniformly continuous on the interval [0, t]. Then because our mesh size ∆n is going to 0, we have
V∆n → 0 (almost surely).

So the first term here is bounded by

V∆n ·
pn−1∑
i=0

(Xtni+1
−Xtni

)2.

And we know the sum converges to the QV of X at time t (in probability) while the first part converges to
0. So their product should converge to 0 · ⟨X,X⟩t = 0.

So this part converges to 0 in probability. Now it just remains to show that the second term converges to

pn−1∑
i=0

F ′′(Xtni
)(Xtni+1

−Xtni
)2 →

∫ t

0
F ′′(Xt) d⟨X,X⟩t.

But recall that before, we learned a sequence of RVs Xn converge to X in probability if and only if for every
subsequence Xnk

, there exists a further subsequence that converges almost surely. Here we’re going to apply
this principle, and we’ll show that we have almost sure convergence along a suitable subsequence. This will
suffice to give the convergence in probability.

Let’s rewrite this sum as an integral — this is equal to∫ t

0
F ′′(Xs) dµn(s),

where µn is a random measure given by a finite sum of Dirac measures — µn =
∑pn−1

i=0 (Xtni+1
−Xtni

)2 δ{ti}.
(This is just a reformulation of the original discrete sum.)

We’re also going to rewrite the right-hand side as∫ t

0
F ′′(Xs) dµ(s),
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where µ is the measure induced by the QV of X (which is itself an increasing continuous process).

Now what we want to show is that the expectation of F ′′ under µn converges, along some subsequence,
almost surely, to E[F ′′] under the random measure µ. This should remind you of the notion of weak
convergence — somehow we want to prove that the random measures µn converge to µ in the notion of weak
convergence, almost surely along a subsequence. Then because F ∈ C2, we’ll have that the expectation
converges correspondingly.

Let D be the union of all the subdivisions, i.e., D =
⋃

n{tn0 , . . . , tnpn}. Because we’re taking increasing
subdivisions with mesh size tending to 0, we have that D is dense in [0, t].

Now because we’re taking increasing subdivisions, which means every subdivision point remains a subdivi-
sion point as n gets larger, this implies that for every s ∈ D, as long as n is sufficiently large, there exists

an index p
(n)
s such that tn

p
(n)
s

= s (this means that in the nth subdivision, s is a subdivision point).

Then again using the fact that the QV can be approximated by a discrete sum, we have that

p
(n)
s −1∑
i=0

(Xtni+1
−Xtni

)2 → ⟨X,X⟩s

in probability as n→∞.

Then by the definition of µn and µ, the LHS is the mass of [0, s] under the measure µn (i..e, µn([0, s])), and
the RHS is exactly µ([0, s]).

So combining these equations, we know µn([0, s]) → µ([0, s]) in probability, for any s ∈ D. Because D
is countable, we can use a diagonal argument to obtain a subsequence of µn — say µnk

— such that
µnk

([0, s])→ µ([0, s]) for every s ∈ D, almost surely. (This is kind of a combination of two steps. The first
is because we have convergence in probability, we can extract a further subsequence which converges almost
surely. Then for each s we have a subsequence which converges almost surely, and we can use a diagonal
argument to extract a further subsequence where we have convergence almost surely for every s ∈ D.)

This is enough to deduce that µnk
→ µ, in the sense of weak convergence of finite measures (at least, on the

interval [0, t]), almost surely. Here we’re using a portmanteau theorem which gives you a bunch of equivalent
definitions of weak convergence, and we’re using the property that µ is almost surely absolutely continuous
with respect to the Lebesgue measure; then because we have almost sure convergence on a dense set, we
also have almost sure weak convergence.

And then on this almost sure event, we will have that Eµnk
[F ′′(Xs)1[0,t]] → Eµ[F”′(Xs)1[0,t]] (this is also

the portmanteau theorem, which says that if we have weak convergence, then we have a convergence of
expectation of any bounded continuous function, and vice versa).

Finally, by the definition of µn and µ, this expectation is just the integral∫ t

0
F ′′(Xs) dµn(s)

from before, and the expectation with respect to µ is the integral with µ in place. So we’ve shown that
these integrals, and therefore our discrete sums, converge almost surely along a subsequence.

So the univariate case of Ito’s formula follows.

We will stop here, and next time Sky will continue to prove Ito’s formula in the multivariate case.

§16 April 2, 2025

§16.1 Itô’s formula

Today we’ll start by finishing the proof of Ito’s formula, whose statement we recall here.
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Theorem 16.1 (Itô’s formula)

Let X1, . . . , Xp be CSMGs. Let F ∈ C2(Rp,R). Then

dF (X1
t , . . . , X

p
t ) =

∑
i

(∂iF )(X1
t , . . . , X

p
t ) dX

i
t +

1

2

∑
i,j

(∂ijF )(X1
t , . . . , X

p
t ) d⟨Xi, Xj⟩t.

It’s basically the stochastic chain rule — as we tried to emphasize in previous classes, the usual chain rule
in calculus doesn’t hold when you have semimartingales. In particular, when you have the martingale part,
which isn’t C1 but only C1/2 (or just below 1/2-Hölder), you have to expand to second order in your chain
rule. Usually this second term is called the Ito correction.

We should know this formula by heart. It’s hopefully quite intuitive — where does it come from? You
basically do a second-order Taylor expansion, and you basically use that in your Taylor expansion, whenever
you see dXi

t dX
j
t , this basically becomes a quadratic variation term d⟨Xi

t , X
j
t ⟩. (And the first-order term

of the Taylor expansion gives the first thing — the usual term from the chain rule. But then because this
thing is not necessarily 0 for martingales, you get the Ito correction term.)

Here we’ve written the formula in SDE notation; we’re sometimes going to omit the summation over indices
i and j, so we’ll write this as

dF (X1
t , . . . , X

p
t ) = (∂iF )(X1

t , . . . , X
p
t ) dX

i
t +

1

2
(∂ijF )(X1

t , . . . , X
p
t ) d⟨Xi, Xj⟩t

(where the sums are implicit).

Last time we proved the univariate case, so now we’ll finish with the multivariate case.

Proof. Take a sequence of subdivisions with mesh size tending to 0. Then as before, we want to Taylor-
expand F (Xtni+1

) − F (Xtni
). If you do this to second-order (you always Taylor expand around the left

endpoint), you get

(∂jF )(Xtni
)(Xtni+1

−Xtni
) +

1

2
(∂jkF )(θnijk)(X

j
tni+1
−Xj

tni
)(Xk

tni+1
−Xk

tni
),

where θnijk is on the line segment between Xtni+1
and Xtni

(but these points are close together because your
mesh size is tending to 0, so you should basically think of it as the left endpoint Xtni

— that’s basically how
we’re going to use it).

As before, if you sum over i, you’ll have that the first-order terms converge to the stochastic integral — we
have ∑

i

(∂jF )(Xtni
)(Xtni+1

−Xtni
)→

∫ t

0
(∂jF )(Xt) dX

j
t

in probability as n → ∞. And for the second-order terms, if you again sum over i, you’ll have this term
θnijk, and you want to approximate the thing by what you get if you replace θ with the left endpoint, so let’s
do that: we have ∑

j

∂jkF (θnijk)− ∂jkF (Xtni
) · (Xj

tni+1
−Xj

tni
)(Xtni+1

−Xk
tni
)→ 0

as n→∞, by the same considerations as in the univariate case (because if we ignore the difference in ∂jkF ,
the rest converges to something of order 1 — coming from the quadratic variation — and this difference
converges to 0, because ∂jkF is continuous and θnijk gets arbirarily close to Xtni

). So to finish, all we need
to show is that ∑

i

∂jkF (Xtni
)(Xj

··· −Xj
···)(X

k
··· −Xk

···)→
∫ t

0
∂jkF (Xt) d⟨Xj

t , X
k
t ⟩
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in probability (at least, we’ll show this along a subsequence). But basically you can just argue as before —
you can find that there exists a subsequence, which we’ll still denote as {(tni )}, such that almost surely, for
all j and k, if you define the measure

µjk
n =

pn−1∑
i=0

(Xj
tni+1
−Xj

tni
)(Xk

tni+1
−Xk

tni
)δ{tni }

(basically, this is a discretized version of the quadratic variation), then as a measure, this converges to
d⟨Xj , Xk⟩ as n → ∞. (The covariation is a FV process, so it always corresponds to some finite measure
(at least on finite intervals); this convergence means you’re converging to that measure in the sense of
weak convergence.) And the sense of weak convergence is enough to imply the thing we want (since weak
convergence by definition means that integrals of continuous functions converge.)

And why will this be true? (We will sometimes call the thing ‘covariation,’ but Le Gall calls it the ‘bracket.’)

We defined the bracket as a linear combination of QVs — specifically, you can use that

⟨X,Y ⟩ = 1

2
(⟨X + Y,X + Y ⟩ − ⟨X,X⟩ − ⟨Y, Y ⟩).

And if you look at any individual QV term, you can find a subsequence where we have this convergence (we
did that in the univariate case). And there’s only finitely many j and k, so there’s only finitely many QV
terms to consider. So you can find a subsequence which works for all of them, and along that subsequence
you will have that this convergence holds.

And with that, that basically wraps up the proof of Itô’s formula.

Remark 16.2. This last part is maybe the most technical part, but modulo that it’s very believable
that this should be true — it’s just second-order Taylor expansion, using the rules of stochastic rather
than regular calculus.

§16.2 Some examples

Example 16.3

Suppose we take F (x, y) = xy. Then you’ll have

d(XtYt) = Xt dYt + Yt dXt + d⟨X,Y ⟩t.

There’s various ways you could see this. You can just think about applying Ito’s formula — if you take the
derivative in x you get the Yt dXt term, and if you take the derivative in y you get the Xt dYt term, and
when you take the derivative in both x and y you should be getting the d⟨X,Y ⟩t term. Specifically, we have
∂xxF = 0, ∂yyF = 0, and ∂xyF = ∂yxF = 1. Each one is 1, so there’s two of them, and that cancels the 1

2 .

This is always kind of confusing. The way Sky would rather think about this type of calculation — and how
you compute things in practice — is that you think about applying the rules of usual calculus, but now you
allow yourself to take d twice. At least at a formal level, you can write

d(XtYt) = (dXt)Yt +Xt(dYt) + dXtdYt.

(There’s no terms with d2Xt or d2Yt, where the d falls on the same variable twice, because these are 0.)
And this last thing is going to give d⟨X,Y ⟩t (it’s a different notation for precisely this).

The way you think about this calculation is that infinitesimally, this should mean that if I consider differences
of the form

Xt+εYt+ε −XtYt,
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I should get something like
(Xt+ε −Xt)Yt+ε +Xt(Yt+ε − Yt).

But this first thing is at Yt+ε, while I wanted it to be at Yt. So now I can write this as

(Xt+ε −Xt)Yt +Xt(Yt+ε − Yt) + (Xt+ε −Xt)(Yt+ε − Yt).

The reason I want to do that is that the first two stochastic integrals are defined by taking the left endpoint
of your integrand. So the first thing gives me the Y dX term, the second the X dY term, and the third gives
the QV (because that’s what the QV is on a discrete level).

As a special case of this example:

Example 16.4

If X = Y , we have d(X2
t ) = 2Xt dXt + d⟨X,X⟩t.

As we mentioned before, we basically had to prove this when constructing the QV — so Ito’s formula kind
of recovers this, so this is kind of circuilar in some sense. But in some sense, what this says is that as
soon as you prove Ito’s formula for the square function, you get it in general — because all you needed was
convergence for the stochastic integral and for the QV terms, and for the QV terms was by far the most
technical part. And in the proof when we constructed the QV, we basically took this difference and showed
that the martingale term converged to a martingale, which was basiclaly 2Xt dXt. When we constructed the
QV, basically at a discrete level we identified a martingale, and we showed that as you take mesh size to 0
that martingale converges to this thing 2Xt dXt. Once you get that, you get that the discrete approximations
to d⟨X,X⟩t converge. So we said that the proof of QV would make more sense once you know Ito’s formula,
because it’s kind of a special case of that.

More generally, if you have more products:

Example 16.5

We have d(X1 · · ·Xp) =
∑p

i=1(
∏

j ̸=iXj) dX
i +
∑

i<j

∏
k ̸=i,j Xk d⟨Xi, Xj⟩

Heuristically, when we take the d of the LHS, there’s the terms where only one d appears, and it can appear
on any of the X’s. And then you have the terms where two d’s appear. This is what you’d get if you
think about putting the d on two individual terms. (The ordering is what removes the 1

2 factor from Ito’s
formula.)

Example 16.6

If Bt is a d-dimensional Brownian motion and F is a function of d variaboes, then

dF (Bt) = ∂jF (Bt) dB
j
t +

1

2
∆F (Bt) dt.

And usually when you have Brownian motion, you don’t write this summation over indices; you just write
this as

dF (Bt) = ∇F (Bt) · dBt +
1

2
∆F (Bt) dt.
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Example 16.7

If F is a function of d+ 1 variables and we compute dF (t, Bt) (note that t is a CSMG — it’s actually
just a FV process), we get

dF (t, Bt) = ∇F (Bt) dBt + (∂t +
1

2
∆)F (t, Bt) dt..

Here in the first term the gradient is only over the last d variables (not t) — if you want to separate
into a martingale part and a FV part, you want to group the dt part with the rest. You never see a
derivative in t and in one of the spatial variables — because if you ever see something like that, then
you’re computing the QV dt dXi

t , and this is 0 because the bracket of a FV process and a semimartingale
is always 0. (So if it’s the time variable, you only see one variable.)

What does this mean?

Fact 16.8 — If you have a harmonic function, with ∆F = 0, then F (Bt) is a local martingale.

And if F is C2 with bounded first derivative, then it should actually be a martingale (not just a local
martingale) — because the first term is bounded, so it’s the stochastic integral of a bounded integrand,
which should give you a martingale thing.

And now in the second example:

Fact 16.9 — If F solves the partial differential equation (∂t +
1
2∆)F = 0, then F (t, Bt) is a local

martingale.

And if F is smooth and bounded, then it’s actually a martingale.

You might recognize that this almost looks like the heat equation, but with a + instead of − — it’s kind
of a backwards heat equation. You can still relate solutions to the backwards heat equation to solutions to
the heat equation, as follows.

If you have a solution to the heat equation (∂t − 1
2∆)u = 0 where u : [0, T ]× Rd → R, then if you define

F (t, x) = u(T − t, x)

and then you compute ∂tF + 1
2∆F , the time-derivative of F is the negative of that of u, so this is going to

be (−∂tu + 1
2∆u) (where if the left was evaluated at (t, x), then this one is evaluated at (T − t, x)). So at

least on finite intervals, you can get solutions to the backwards heat equation from ones to the forwards one.

And if you have the martingale part, that gives you a formula for F and therefore u — you’re basically
saying

EF (T,BT ) = EF (0, B0).

If you let B start at some point x and we plug in our formula for F , the right-hand side is going to be
E[u(0, BT )]. So we get the formula

u(T, x) =

∫
ρT (x− y)u(0, y),

where ρT is the density of N (0, T ). This is a formula that basically relates the solution to the heat equation
to the density of BM.

So assuming you actually have a martingale and not a local martingale (which shouldn’t be too bad to
justify if you assume u ∈ C∞ and all its derivatives are bounded), then you get a formula for the solution
to the heat equation in terms of the original value. Usually with the heat equation you’re solving some
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evolution thing — you set some initial value at time 0, and want to understand the solution at later times.
This is an explicit formula for that, where you’re just convolving against Gaussian density.

This is one application of Ito’s formula. (It’s probably in Chapter 7 of Le Gall.)

If you think about doing something for the harmonic case ∆F = 0, you can get similar formulas. It makes
more sense to think about harmonic functions on some domain (e.g. a ball of radius 1) with some boundary
conditions. And then you’ll be able to find a formula for the value of the harmonic function inside the ball,
related to its boundary values. (This is related to the mean equation that you can also prove by other means
in a PDE class.)

§16.3 Stratonovich integral

Now that we’ve defined the Ito integral and proved Ito’s formula, we’ll talk about this other stochastic
integral. It’s maybe not mentioned in the textbook, but it’s an important thing to know because sometimes
it comes up.

First, Ito’s formula is a stochastic chain rule. But you might ask a question:

Question 16.10. Is there a stochastic integral which satisfies the usual chain rule?

So maybe you don’t want to work with this Ito correction term; is there a way to define these integrals
(differently from the Ito integral, of course) such that the actual chain rule holds? The answer is yes, nad
it’s called the Stratonovich integral. At some point (maybe next class), we’ll give an example of why you
would want the chain rule to hold.

How would you guess the definition of the Stratonovich integral — how would you guess a formula for the
stochastic integral for which the chain rule holds?

Well, let’s go back to why the usual chain rule doesn’t hold — why you get the Ito correction term. At least
in the univariate case, when you’re proving Ito’s formula, all you’re doing is a second-order Taylor expansion

F (Xt+η)− F (Xt) = F ′(Xt)(Xt+η −Xt) +
1

2
F ′′(Xt)(Xt+η −Xt)

2 + lower-order terms.

And the fact that the second thing might be order-1 in the limit gives you this first-order correction.

You see this because you tried expanding around the left endpoint. What if you tried expanding around the
right endpoint — so we’re expanding around F (Xt+h) instead? If you do that, you’ll get

F (Xt+h)− F (Xt) = F ′(Xt+h)(Xt+h −Xt)−
1

2
F ′′(Xt+h)(Xt+h −Xt)

2 + lower-order terms

(it’s a − because if you took F (Xt)− F (Xt+h) you’d get a +).

Now if you stare at these two identities, what you notice is that if you average the two identities, you get

F (Xt+h)−F (Xt) =
1

2
(F ′(Xt)+F ′(Xt+h))(Xt+h−Xt)+

1

2
(F ′′(Xt)−F ′′(Xt+h))(Xt+h−Xt)

2+lower-order terms.

But now you notice that because you did this averaging, this difference F ′′(Xt) − F ′′(Xt+h) (assuming
F ∈ C2) — these two values are very close so this difference is going to be o(1). Now if you repeated the
proof of Ito’s formula, more or less, you would actually get that this quadratic term disappears. Because
before you had F ′′(Xt)(Xt+n −Xt)

2, which in the limit is O(1). But now you have this difference of F ′′s,
and that difference is o(1), so the whole product is going to be o(1).

So what that leads you to guess is that you want to define a stochastic integral such that∫ t

0
f(Xs) ◦ dXs = lim

n→∞

1

2
(f(Xtni

) + f(Xtni+1
))(Xtni+1

−Xtni
)
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(where we use ◦ as new notation to indicate that this is different from Ito integration). Why? At a
discrete level dF is whatever we had on the right-hand side. If we take limits, we expect the second term is
disappearing, so we expect that

df(Xt) = f(Xt) ◦ dXt.

So at least in this specific for,ula where I’m integrating f(X) against dX, I want the limit to be given by
this discrete approximation of endpoints.

Why dos this limit exist? It’s actually a very simple reason. What you just notice is that you can write the
right-hand side as

lim
n→∞

∑
i

· · ·

(you have the average of two endpoints; you can write that as the sum of the left endpoint and the difference
between the two endpoints). So you just use that

1

2
(f ′(Xtni

) + f ′(Xtni+1
)) = f ′(Xtni

) +
1

2
(F ′(Xtni+1

)− F ′(Xn
ti)).

Then you get that

RHS =

∫ t

0
F ′(Xs) dXs +

1

2
⟨F ′(X)X⟩t dt.

(Suppose F is smooth, so there’s no issues about regularity — then F ′ ∈ C2, so Ito’s formula tells you
⟨F (X), X⟩ is well-defined. And the difference term does converrge to this.)

So in summary, now we have a guess for what the Stratonovich integral should look like, at least for f(X)
integrated against X. More generally:

Definition 16.11 (Stratonovich integral). If X and Y are CSMGs, the Stratonovich integral of X against
(or with respect to) Y is defined as∫ t

0
Xs ◦ dYs =

∫ t

0
Xs dYs +

1

2
⟨X,Y ⟩t.

This is motivated by the fact that if X = f(x) and F ′′.

In particular, because X and Y are both CSMGs, so is the Stratoniv j process as a process in p.

We’ve made this definition, but let’s verify that the corresponding discrete approximation does converge.
We saw the special case where you integratef ′(x) against x, but now we’ll see why oit converges in general.

Proposition 16.12

Let X and Y be continuous semimartingales, and take a sequence of subdivisions {tni } with mesh size
tending to 0. Then

pn∑
i=1

Xti+1 +Xti

2
· (Yti − Yti−1)→

∫ t

0
Xs dYs

(in probabiltty).

The proof is about the same — you just notice that

1

2
(Xti−1 +Xti).
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This is what you shoudl remember about the Stratonovich integral — that the above is the discrete approx-
imation that gives you the integral. So Ito is left endpoint, and Stratonovich is the average of endpoints. If
you just remember this, then you will be able to recover the definition fo the Stratonovich integral, using
the above algebraic identity.

Remark 16.13. In SDE notation,w eoften write dZ = X ◦ Y to denote that Zt = Z0 +
∫ t
0 Xs dYs

(similarly to the Ito sense). This also means dZ = X dY + 1
2d⟨X,Y ⟩.

One finaly thing we might write is that ◦ dZ basically means 1 ◦ dZ. ANd if you integrate 1 against intself,
that’s just the Ito integral 1 dZ = dZ. Another way to say this is if you take your integrand to be 1, it does’t
mattter which endpoint you take.

The way you see this is that the bracket of 1 and anything else is just 0, so then you’re just elft with the
Iot erm.

§16.3.1 Chain rule

Those are some considerations on the Stratonovich integral; but now let’s prove the chain rule. We guessed
the definition fo the Stratonovich integral, but now starting from this integral we want to show that the
chain rule is actually satisfied. So let’s show that.

Proposition 16.14 (Chain rule)

Let X ∈ Rd be a CSMG, and let f ∈ C3(Rd,R). Then

df(X) = ∇f(X) ◦ dX = ∂jf(X) ◦ dXj .

Three derivatives might not be needed — kind of what you’d expect is all you should need for f is that
the difference F ′′(Xt)−F ′′(Xt+h) should be lower-order, so you might just need F to be twice continuously
differentiable. But the way we’re going to prove this is by using Ito on F ′, and in Ito you assume your
function is C2, so we need to assume F ∈ C3. But if you’re more refined with the proof, you might be able
to just prove this for C2.

Proof. The first thing is you want to calculate df . Ito’s formula tells ius that

df(X) = ∂jf(X) dXj +
1

2
∂ijf(X) d⟨Xi, Xj⟩.

And somehow we have to say why this is goingto be equal to the thing we wrote. So now let’s start from
the other side of the identity we want to show — let’s compute what

∂jf(X) ◦ dXj

is supposed to be. Well, by definition the Stratonovich integral is

∂jf(X) ◦ dXj = ∂jf(X) dXj +
1

2
⟨∂jf(X), dXj⟩.

How do we compute this bracket? For that, we need to be able to decompose ∂jf(X) into a martingale
part and a FV part, and we only care about the martingale part (the FV part times dx will be 0). And
that’s exaclty what Ito’s formula gives us (it gives a semimartingale and a FV part). So you just insert Ito’s
formula into this bracket — not this version of Ito’s formula, but if we apply Ito’s formula to ∂jf (that’s
the thing we want to decompose). So we apply Ito’s formula to say

∂jf(X) = ∂jkf(X)dXk +
1

2
∂jkif(X) d⟨Xk, Xi⟩
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(we applied Ito’s formula to ∂jf instead of f ,which is why we have three derivatives). Now if I insert the
RHS into the bracket ⟨∂jf(X), dXj⟩, the second term is going to disappear (any FV thing times dX is 0).
So the only thing I have to worry about when computing the bracket is the first term, which means

⟨∂jf(X), dXj⟩ = ⟨∂jkf(X) dXk, dXj⟩ = ∂jkf(X) d⟨Xk, Xj⟩

(where we pull things out using bilinearity). (This is where SDE notation really helps — imagine writing
this out with integrals everywhere.)

And now this is precisely what we computed from Ito’s formula for df (where k plays the role of i) — we
wanted

∂ijf(X) d⟨Xi, Xj⟩.

(Note that because you’re C2, the derivatives commute.)

Remark 16.15. If you wanted to go into the details of the proof, you could probably improve the C3

assumption to a C2 assumption.

§16.4 Stochastic processes on manifolds

Why do you want to use Stratonovich? The general application is that in geometric settings, it’s good to
use it. What do we mean by geometric settings? If you want to define stochastic processes on manifolds,
you want to use the Stratonovich integral because it satisfies the chain rule.

Example 16.16

Let’s consider processes on the sphere — this is a very explicit case where your manifold is actually a
subspace of Euclidean space.

So we let d ≥ 1, and Sd = {x ∈ Rd+1 | |x| = 1} ⊆ Rd+1 (this is some sub-manifold of Rd+1). Fo ra general
x ∈ Rd+1 which is nonzero, let’s define the projection operator Px ∈ End(Rd+1) (this means it’s a linear
operator on Rd+1) as the projection onto the orthogonal complement x⊥ (the linear subspace of Rd+1 which
is orthogonal to x). As an explicit formula, Px is a linear operator, so it’s a matrix. And the vector it sends
a given y to is going to be

Pxy = y − x · y
|x|2

x.

We’ll say in a moment why we’re introducing this thing, but first let’s verify that it actually is a projection.

First of all, its image definitely lies in the orthogonal complement of x, because

x · Pxy = x · y − x · x · y
|x|2

x = x · y − x · y = 0.

And one can verify that P 2
x = Px (this one we didn’t prepare the calculations, so it’s left to us to check).

This is what it means to be an orthogonal projection (maybe you also check that it’s symmetric, meaning
P ⊺
x = Px).

So it’s this projection map. Another way you can write this as, which is probably the better way, is that as
a matrix,

Px = id−xx⊺

|x|2

(because if you apply this matrix to y, you get id ·y, and you also get xx⊺y = x(x · y)). If you write it this
way, it’s easier to verify that it’s symmetric; and why P 2

x = Px should just be some calculation where you
expand out the square and get Px back.
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What’s this good for? If you think of Sd as a submanifold of Rd+1, and say you take a point x in Sd, then Px

is precisely the projection onto the tangent space of your manifold. So for all x ∈ Sd (all x which are unit
vectors), Pxmis a projection from Rd+1 to the tangent space. Very concretely, the tangent space is the set
of vectors which are orthogonal to x, so it precisely is the orthogonal complement of x. So in this explicit
example, you have this projection to the tangent space.

And using this projection, you can construct curves which lie in your manifold. How do I construct curves
which lie in Sd? Let y(t) be a smooth curve in Rd+1, and maybe assume y′(t) is never 0; so we have some
very nice smooth curve. Then we can define x(t), which we claim is going to always lie in Sd, as follows.
First, we take x(0) = x0 ∈ Sd to be some fixed point in the unit sphere. (This is usual calculus so far; we’re
not talking about stochastic calculus yet.) Then you define this curve as an ODE, where

ẋ(t) = Px(t)ẏ(t).

So I start with a curve in Rd+1, and all I care about are its increments; and I want to use the icnrements
of my y curve to drive the x curve. If you have the y curve, it’s going to have some increment that’s not
orthogonal to x. But if you want your x to always lie in the sphere, you have to project this increment onto
the tangent space of x.

Claim 16.17 — Assuming x exists, we have x(t) ∈ Sd for all t.

(This is an equation, so you have to say why there exist solutions.) Why? What it means to lie in the unit
sphere is that |x| is always 1. So we want to compute the evolution of the squared norm and show that

d

dt
|x(t)|2 = 0

(because then I always stay norm 1). But what is this time derivative? Again x is smooth, so I can write it
as

d

dt
(xj(t)xj(t)) = 2xj(t) · ẋj(t) = 2x(t) · ẋ(t).

And the claim is that this is supposed to be 0. And I’m specifying the time derivative ẋ(t) — this is

2x(t) · Px(t)ẏ(t)

(the inner product of x and something that has been projected to the orthogonal complement of x). And
by definition this is 0 (since the second thing lies in the orthogonal complement of x).

This is just a reminder of why you want the chain rule to hold in usual calculus — if you want to define a
curve in an embedded manifold in Euclidean space, you have to specify its increments. Its increments are
supposed to lie in the tangent space; and when you have an embedded manifold, you just want to project
onto that tangent. And what the chain rule tells you is that when you project a general increment to your
tangent space, you’re going to stay in the manifold.

Remark 16.18. This generalizes to more general settings (where you have general Riemannian mani-
folds).

Now let’s talk about stochastic processes on this manifold. Say B is a Brownian motion in Rd+1. Consider
a CSMG X satisfying the SDE X0 ∈ Sd and dXt = PXt ◦ dBt. What does this even mean? This means X
is supposed to solve the integral equation

Xt = X0 +

∫
0
6tPXs ◦ dBs.

Note that PXs is a matrix-valued process; so what does it mean to have your integrand be a matrix? But
you can kind of think of dB as a vector; and if we think of a matrix times a vector, this thing should itself
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be a vector. So it should have d + 1 compoments, and I define the ith component (which should be a real
number) as

(PXs)ij ◦ dBj
s .

Because P is a matrix-valued process, any matrix entry is going to be a real-valued process. So this is a
CSMG if X is; so we’re back in the scalar world. That’s how you would interpret a stochastic integral where
you have a matrix-valued integrand against a vector-valued integrator — you just go back to the scalar case.
This is supposed to be the analog of the ODE ẋ(t) = Px(t)ẏ(t), where ẏ is replaced by dB.

You do have to worry about what happens if X reaches 0 (because if it does, then PX is ill-defined); but for
the purposes of this example, let’s assume it never does. So we’ll assume that a process X satisfying this
integral equation exists, and that Xt ̸= 0 for all t. (In practice you can actually prove this, but we won’t
talk about that at least now.) The point we want to make is that assuming this process exists, it actually
has to lie in the sphere.

Claim 16.19 — We have Xt ∈ Sd for all t (almost surely).

Proof. As before, we want to evaluate the evolution d(|Xt|2); we want to show this evolution is 0, so that
|Xt| is constant (and by definition it started at 1).

Because you specified this SDE as a Stratonovich integral, you have the chain rule; so you have

d(|Xt|2) = 2Xi
t ◦ dXt,i = 2Xi

t ◦ (PXt ◦ dBt)i.

Now let’s be very expllicit and write this differential as a sum of scalar things, as

2Xi
t ◦ ((PXt)ij ◦ dB

j
t ).

Here’s one thing that we didn’t really say yet: The Stratonovich integral has the same associativity property
as the Ito integral, so I can write this as

2(Xi
t(PXt)ij) ◦ dB

j
t .

And the point now is that the Xi
t(PXt)ij term is always 0. Why? This is the jth entry of X⊺PX (this

is a row vector). But forgetting about the jth entry, remember that PX is the porjection matrix, so
X⊺PX = X⊺ −X⊺ = 0 (by how we defined PX).

So this calculation shows you that d |Xt|2 = 0, and therefore |Xt| = 1 for all t.

This is an example of why you want the Stratonovich integral. If you think about it, we never actually used
the fact that B is a BM; this all works if B is just a general CSMG. If you do take B to be a BM, then
X is going to be a BM on the unit sphere. Because in general, how do you construct BM on a manifold?
Kind of what you want to say is, what is BM really? It’s just that if you’re at a point x, you want to take a
random direction in your tangent space to move, and this random direction is going to be dictated by some
sort of Euclidean BM. You can extend this to get constructions of BM on a general Riemannian manifold if
you want.

§17 April 7, 2025

Today we’ll begin the new notes on applications of Itô’s formula. That’ll be 2–3 lectures. We’ll see a couple
of applications. In the textbook, he talks about exponential local martingales (which we’ll talk about today),
then martingale representations. We’ll skip over the fact that every CLMG is a reparametrization of BM,
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but if you’re interested you can read about it. We’ll talk about BG (which is some inequality) and then
Girsanov’s theorem (which will take a little longer).

The reparametrization thing is the natural statement that you know BM has a certain QV (it’s just t, as
a function of t), if you’re given a general CLMG and reparametrize time so that at time t the QV is t (in
general it’s some increasing function, but you can reparametrize to make it t), then that’s a BM. We’ll skip
that, but the way you prove it is using Levy’s characterization, which we will prove today.

§17.1 Exponential local martingales

Suppose we’re in classical calculus, and you want to solve the ODE

ż = z(t)ẋ(t)

(assume x is smooth or something). The natural way to solve an ODE of this form is to bring z(t) to the
left to get

ż(t)

z(t)
= ẋ(t).

And the left-hand side is the derivative of log z(t), so you get

d

dt
log z(t) = ẋ(t).

Then you can integrate and get
z(t) = z(0)ex(t).

And indeed, if you differentiate this you get that it satisfies the ODE — ex is its own derivative, so when
you differentiate it in t you get precise ex · ẋ.
Now suppose we want to solve a SDE like

dZt = Zt dMt

where M is a CLMG (think BM). You may be tempted to just write

Zt = Z0e
Mt ,

because that works in usual calculus. But the whole point we’ve been emphasizing over and over is that this
is not true — the usual rules of calculus do not apply in the stochastic world. What we talked about last time
at the end with the Stratonovich integral — if you actually wanted to find a solution to dZt = Zt◦dMt (using
the Stratonovich integral instead of the Ito one), then Zt = Z0e

Mt would actually solve the Stratonovich
SDE, because Stratonovich integrals do satisfy the chain rule. But often you do want to work with Ito
because you get martingales.

Another reason there’s no way eMt will be a solution to the Ito SDE is because the Ito SDE is going to give
you a martingale (you just have a CLMG part), and there’s no way eMt is a martingale (its expectation
would have to be constant, but e.g. eBt depends on t).

How do you actually find a solution to a SDE of this form? We maybe don’t have a great systematic way,
but you kind of want to play around with Ito’s formula. In particular, if you apply Ito’s formula to eMt , it
doesn’t satisfy the Ito SDE. But if you play around with it enough, you’ll actually see that

Zt = eMt− 1
2
⟨M,M⟩t

is the solution. At least this is kind of consistent with BM (and maybe this is a way to guess the form
of the solution). We talked about the exponential martingale of BM, where you had to put 1

2 t here; and
t = ⟨B,B⟩t. So if you think of M as BM at some random time, you might guess the solution to the SDE is
of this form.

This motivates the following definition.
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Definition 17.1 (Exponential local MG). Let M be a CLMG. For λ ∈ C, we define the exponential local
martingale of M , denoted by E(λM), as the process defined by

E(λM)t = exp

(
λMt −

λ2

t
⟨M,M⟩t

)
.

We allow complex parameters, so in general this is a complex-valued process. When we talk about complex-
valued processes, we still have a notion of a martingale:

Definition 17.2. We say a C-valued process (Xt) is a (local) martingale if both (ReXt) and (ImXt)
are (local) martingales.

(This is basically the definition you would guess.)

It’s very important that you just talk about martingales; if you talk about submartingales, you can’t come
up with as canonical a definition.

In particular, E(λM) is going to be a local martingale — we’re going to show that it satisfies the SDE above.
Ito’s formula gives you the canonical decomposiiton of a semimartingale; and that equation tells you there’s
no FV part, only a local martingale part, so it’s actually going to be a local martingale.

Remark 17.3. Something we’re skipping over: we’ll show this process satisfies the SDE dZt = Zt dMt.
But is it the unique solution? In regular calculus, under reasonable assumptions on x, our z was actually
the unique solution (you can go from the ODE to the solution, and this is the only one). But why
would that be true in this case? That we’ll come to probably later, at the end of the course, if we have
time. But for now, it suffices to define this process and verify it’s a local martingale, and we’ll just use
that; but actually it will be the unique solution to that SDE.

Proposition 17.4

The process E(λM) is a CLMG, and moreover,

dE(λM)t = λE(λM)t dMt.

(You have a λ because it’s λM .)

Proof. The proof is you just apply Ito’s formula. You can kind of cook up a function of two variables — the
spatial variable and time variable — and think about applying Ito’s formula. But the way you do this in

practie kind of directly is that we can think about this as a product of two processes eλMt and e−
λ2

2
⟨M,M⟩t .

And basically you can put the d on either of them, so we get

d(eλMt · e−
λ2

2
⟨M,M⟩t) = d(eλMt)e−

λ
2
⟨M,M⟩t + eλMtd(e−λ⟨M,M⟩t) + d(eλMt)d(e−

λ2

2
⟨M,M⟩t).

And the last term is just 0, because ⟨M,M⟩t is a finite variation process.

For the first term, we can again apply Ito’s formula to get(
λeλMt dMt +

λ2

2
eλMt d⟨M,M⟩t

)
e−

λ2

2
⟨M,M⟩t .

And for the second term, this thing is actually finite variation, so the usual rules of calculus apply, and we
get

−λeλMte−λ2⟨M,M⟩t d⟨M,M⟩t.
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And now you see the cancellation — that’s precisely what the correction term of −λ2

2 ⟨M,M⟩t is giving you
(you have to add in this term in order to cancel out the second term that arises when you apply Ito’s formula
to the first term).

So this is equal to

λeλMte−
λ2

2
⟨M,M⟩t dMt.

And this is precisely λE(λM) dMt.

It’s always kind of slow if you think about what the function is supposed to be of my two variables to apply
Ito’s formula; it’s faster to just compute like this. So if you’ll be working with Ito’s formula in the future
you want to be able to compute quickly. Computations are kind of part of math — if you really understand
something deeply, you should be able to do the computations quickly, instead of having to look up Ito’s
formula all the time. But that just comes with applying Ito’s formula a bunch of times and getting used to
working with it.

Example 17.5

In the case of Brownian motion, we’ve seen the exponential martingale before — we have

E(λBt) = exp

(
λBt −

λ2

2
t

)
.

This is actually a martingale (since this thing satisfies very nice tail bounds, e.g., it has finite expecta-
tion).

§17.2 Levy’s characterization of Brownian motion

This is the first big application of Ito’s formula.

Proposition 17.6 (Lévy’s characterization of BM)

Let X = (X1, . . . , Xd) be an adapted d-dimensional process with continuous sample paths. Then the
following are equivalent:

(i) X is a d-dimensional (Ft)-Brownian motion.

(ii) X is a CLMG with ⟨Xi, Xj⟩ = δijt (where δij = 1[i = j]).

In particular, in the 1-dimensional case, a CLMG is an (Ft)-Brownian motion if and only if ⟨M,M⟩t = t
for all t ≥ 0, or equivalently, if M2

t − t is a CLMG.

As usual, we’re imagining we’ve fixed a filtration at the very beginning (and ‘adapted’ is with respect to that
fixed filtration). A d-dimensional BM means that these processes Xi are mutually independent, adapted to
Ft, have independent increments, and have the same finite-dimensional distributions as BM.

For (ii), X is vector-valued, but a vector-valued local martingale just means each of its coordinates is a local
martingale; so extending the notion of local martingales to a vector space is immediate. (Again, it wouldn’t
be as canonical for submartingales.)

(The last part is because one characterization of the QV is the unique process you have to subtract from
M2

t to get a local martingale.)

The fact that (i) implies (ii) is basically immediate — the Xis are independent, so you can kind of just do
this calculation and get the QV. The main thing is really why (ii) implies (i). (And the last statement is a
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direct consequence of the more general one, because in the 1-dimensional case there’s just one component,
and this is the characterization of the QV.) So for the proof, we’ll mainly just focus on why (ii) implies (i).

Proof. We’ll show that (ii) implies (i). Fix a vector ξ ∈ Rd. Then — this is kind of related to how you
prove the (multivariate) central limit theorem. You have a vector X = (X1, . . . , Xd), and if it’s multivariate
normal, that means if you dot-product this with any d-dimensional vector, you get a multivariate Gaussian.
So here we’re going to again dot-product with fixed vectors ξ; we write

(ξ ·X)t = ξiX
i
t

(there’s an implicit summation over the index i, so this is a dot product). This is a CLMG (since the space
of CLMGs is a vector space), and you can compute that its QV is

⟨(ξ ·X), (ξ ·X)⟩t = ξiξj⟨Xi, Xj⟩t

(you can pull out the ξ’s using bilinearity). And using (ii), this becomes

ξiξjδ
ijt.

Here you’re summing over all indices, but δij essentially enforces a restriction that i = j, so this is actually
just going to be |ξ|2 t (where |ξ| is the norm of ξ).

Now we use the proposition from before (on exponential martingales). Take λ = i (this means the square
root of −1). Then by that proposition, the process

exp

(
i(ξ ·X)t +

1

2
|ξ|2 t

)
is a CLMG. (We’re taking λ = i, so with the −λ2

2 we get +1
2 .)

And actually, this is going to be a martingale — the first term is bounded by 1 (it’s just a complex phase).
And the second term is bounded on any [0, t0], and you can apply the fact that if a local martingale
is bounded, it’s an actual martingale (at least on any finite interval, and then you can take an arbitrary
interval). So again we’re just saying if you have a CLMG which is also bounded, that’s actually a martingale
— we proved this a while ago. And this thing actually is bounded, at least on a finite interval.

Now we get an actual martingale; what does that mean? If we look at the martingale property, it tells us
that

E
[
exp

(
i(ξ ·X)t +

1

2
|ξ|2 t

)
| Fs

]
= exp

(
i(ξ ·X)s +

1

2
|ξ|2 s

)
(the conditional expectation at time t given Fs is the thing at time s). And if we rearrange this, we
actually get a Gaussian characteristic function — moving things around (the second term in the conditional
expectation is constant, so you can move it over), you get

E [exp(iξ · (Xt −Xs)) | Fs] = exp

(
−1

2
|ξ|2 (t− s)

)
.

In particular, if you take expectations, you immediately get that the increment Xt −Xs is a d-dimensional
Gaussian distributed as

Xt −Xs ∼ Nd(0, (t− s) · id).

This is already halfway there (to showing that X is going to be a BM); at the very least, the increments
have the correct distributions.

But now you have to show the increments are independent of each other — once you know these two things,
you’ll have that all finite-dimensional distributions of X are the same as BM, so X will be a BM.
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To get this independence, we have to use the aboev identity

E [exp(iξ · (Xt −Xs)) | Fs] = exp

(
−1

2
|ξ|2 (t− s)

)
before taking expectations. Right now, our goal is to show that Xt−Xs is independent of Fs. This is almost
immediate from the above statement depending on how much measure theory you’re willing to assume —
this statement essentially tells me the conditional law of Xt given Fs is this thing, which doesn’t depend on
Fs. And that should give me that the law of Xt doesn’t depend on Fs, which should give the independence.
In papers you could probably just say this, but we’ll make it more formal.

Fix some A ∈ Fs. Then we’ll multiply both sides by 1A and take expectations; so

E [1A exp(iξ · (Xt −Xs))] = P[A] exp

(
−|ξ|

2

2
(t− s)

)
(the fact that A ∈ Fs means we can take A on the inside when taking expectations; and the right-hand side
is just constant, and E[c1A] = P[A] · c).
Now, at least if you assume P[A] > 0, then you can define a ‘conditioned probability measure’

PA[B] =
P[A ∩B]

P[A]

(this is basically the conditional probability of B given that A occurs). Basically what the above identity is
telling you is — you could have moved P[A] to the left-hand side, so what this tells you is that under PA,
the law of Xt − Xs is still the same Gaussian Nd(0, (t − s) id) (because if you move P[A] to the left, you
get the characteristic function of Xt − Xs, but with the probability measure of PA; and we’re saying the
characteristic function is exp(· · ·), which is what comes from this Gaussian distribution).

And that tells us that if we now integrate any bounded measurable function f under this new probability
measure, we get

E[1Af(Xt −Xs)]

P[A]
,

and using the fact that we have the law of Xt −Xs, this is just

E[f(Xt −Xs)]

(here this is again because we showed that under our original probability measure, Xt−Xs is just distriuted
like a Gaussian).

Now if you move P[A] to the right-hand side, you basically get the desired independence. Basically we’ve
shown that for any A ∈ Fs and any bounded measurable function f , we have

E[1Af(Xt −Xs)] = P[A]E[f(Xt −Xs)].

And once you arrive here, this basically is just independence. So this implies Xt −Xs is independent of Fs

(in particular, if you take f to be an indicator function, this is basically the definition of independence).

Then if you iterate this, you obtain that any sequence of increments Xt1 , Xt2 − Xt1 , Xt3 − Xt2 , . . . are
mutually independent, and that basically finishes the proof.

Remark 17.7. Sky mentioned a while ago (when we first introduced local martingales) the fact that you
should think of the QV as telling you how much time you ran the BM for. That’s basically restating this
reparametrization of BM result that we’re skipping. But it also basically comes out of this calculation
here. If you actually knew the QV of your local martingale at time t was (deterministically) t, this
argument tells you that it’s a Gaussian with variance t.
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§17.3 BDG inequalities

Now we’ll talk about another application of Ito’s formula. Before we get to that, let’s recall that if you have
Z ∼ N (0, t), its 2pth moments — there will be an explicit formula

E[Z2p] = (2p− 1)(2p− 3) · · · 1 · tp

(and odd moments are just 0). And actually, if you track the asymptotics carefully, this should be

E[Z2p] ∼ ppE[Z2]p.

It turns out that you have this type of asymptotics, in that higher moments of the Gaussian are basically
controlled by the variance, times some powers of p.

This actually implies some very strong concentration bounds. In general, if a random variable X satisfes
this type of moment bound

E[X2p]1/2p ≲ p1/2E[X2]1/2

(this is what happens if we take 1/2pth powers of both sides; and ≲ denotes ‘up to some constant independent
of p’), this is a very strong statement on the tails — it actually implies that X is sub-Gaussian (we’re not
going to prove this here), which in particular means the tails of X decay like a Gaussian distribution —
specifically,

P[|X| > x] ≲ exp(−cx2),

where c depends on the implicit constant in the earlier≲. So this is another characterization of sub-Gaussians
— that the L2p-norm is bounded by the L2-norm.

More generally, if you take the exponent in p1/2 to not be 1/2, but something larger, then you’ll get ‘stretched
exponential tails.’ If

∥X∥L2p(Ω) ≲ p2k ∥X∥L2(Ω)

(the left-hand side is another way of writing E[X2p]1/2p), then X hsas stretched-exponential tails. In other
words, its tail behavior P[|X| > x] (think of x as being very large) should decay like exp(−cxα), where α
will be related to k (if k = 1/2 then α = 2; if k > 1/2 then α < 2, because then this is a weaker inequality,
which should mean you get less tail decay).

This type of concentration is very important in various situations — basically anything that satisfies this
tpe of exponential tail, you can treat as O(1) (it’s never going to be too big) — as soon as x is big, this
thing is going to dominate.

We’re thinking of local martingales as some time-change of BM (though we’re not going to prove this). And
BM is distributed like a standard Gaussian — so BM does satisfy this type of bound

∥B∥L2p(Ω) ≲ p1/2 ∥Bt∥L2(Ω) .

And if BM satisfies this bound and local martingales are reparametrizations of BM, you might think that
LMs should also satisfy bounds like this. That’s what the following inequalities are.

Proposition 17.8 (Burkholder–Davis–Grundy inequalities (BDG))

Let M be a CLMG with M0 = 0. Then for all p ≥ 1, there is some constant Cp such that for every
stopping time T , we have

E

[
sup

0≤t≤T
|Mt|2p

]
≤ CpE

[
⟨M,M⟩pT

]
.
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We didn’t track Cp carefuly — it should grow with p — but you should be able to.

Here the powers have to work out — we have 2p powers of M on the left-hand side, and on the right-hand
side ⟨M,M⟩ is already quadratic. In particular, this equality is invariant up to scaling.

Le Gall proves a more general statememt, but for instance here we always have 2p ≥ 2; he also proves this
statement between 1 and 2 and for odd powers. But in practice, you don’t rea.ly care about when the power
os between 1 and 2 — you realy just care about the asymptotic behavior. But maybe there are situations
where the expectation is only finite if p ∈ (1, 2), and then maybe you care; but for that you can just read
Le Gall.

This type of proof is very reminiscent to some type of energy inequality if you ever took PDEs before.
Basically what it’s going to boil down to is if you have some inequality like

x2p ≤ x2(p−1)y

(where these are just real numbers, and x, y > 0), this is obviously going to imply x2 ≤ y.

The philosophy is on the LHS you have 2p powers. You really worry if X is super large (if X ≤ 1, you can
just bound this by 1). So you’re worried about the case X is very large. The philosophy is on the LHS you
have 2p powers of something that may be large. You try to bound it by something that has less powers,
and that lets you absorb stuff.

So how do we do that in this scenario? First there’s a bunch of simplifications you can make. We can
assume T = t0 is deterministic (in general, you can apply the inequality to MT

t0 and then send t0 → ∞).
So basically, if you had this inequality where T was always just some fixed time t0, then you could apply
this inequality to the stopped martingale and send t0 →∞. (The limits are fine — these are all monotone
under increasing T , so you can always apply the MCT.)

And also, by localizing M , we can assume that M is bounded. It’s a continuous local martingale, so you
can always localize by stopping at the first time it goes above n (that’s a sequence of stopping times we’ve
sxeen before). If you have this inequality for bounded martingales and want to extend to CLMGs, you just
replace M by a stopped version and send n→∞. The thing is again going to be monotone in n.

So all this is to say that you can assume M i bounded and the stopping tiem is deterministic.

Remark 17.9. This is analogous to how when you prove things in analysis, you prove them first for
smooth functions and then argue by density — so you can take as many derivatives as you want. Here
we do this so that you can take as many moments as you want.

Note that in general, the right-hand side might be ∞ (these are all positive quantities so their expec-
tations are still well-defined).

And now we can apply Ito’s formula — you can think of Ito as giving you the evolution of the process. So if
we forget about the sup, we want to understand how the 2pth moment of M evolves in time, because that’s
what we need to understand. This is where it’s simpler to take an even power — the function x 7→ x2p is
smooth, but if you had an odd power (e.g., x 7→ |x|), it’s not smooth at the origin. You can still apply Ito’s
but you have to be a bit more careful.

But at least for this function, it’s just a smooth function, so there’s no problem in applying Ito’s, and you’ll
get

d(M2p
t ) = 2pM2p−1

t dMt +
1

2
2p(2p− 1)M

2(p−1)
t d⟨M,M⟩t

(the martingale term plus the Ito correction term). This is one illustration of why it’s so nice to have
martingales — why you want to actually decompose into martingales and FV terms.

The fact that M is bounded means the first term will actually be a martingale, not just a local martingale.
This means if you take expectations of both sides (first you integrate both sides, since this thing is really
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shorthand notation for an integral equation), the first thing is a martingale starting at 0, so its expectation
is 0 and we don’t have to worry about it. So the only thing we care about is the expectation of the second
term, and we can write

E[M2p
t ] = p(2p− 1)E

[∫ t

0
M2(p−1)

s d⟨M,M⟩s
]
.

Remark 17.10. Often the way you want to understand the evolution of some expectation is you apply
Ito’s formula, and then you can ignore the martingale part (assuming it’s a martingale) and just try to
understand the evolution of the FV part.

Now that you’ve arrived here, one thing you can do is bound the integrand by the sup over the interval; if
you do that, you get

E[M2p
t ] ≤ p(2p− 1)E

[
sup
0≤s≤t

M2(p−1)
s ⟨M,M⟩t

]
(we’re writing t instead of t0) — you just bound the integrand by the max it could be, and now when we
integrate we just get the QV term.

But now you look at this and it seems kind of bad — if I want to chain things like x2p ≤ x2(p−1)y, you want
the two things to look the same. But the RHS has a sup and the LHS doesn’t, so this looks kind of hopeless.

But then you remember you have the Lp maximal inequality, so the expectation of the 2pth power of the
endpoint does control the expectation of the sup. You really have to use that in a crucial way, or else this
is hopeless.

So by the L2p maximal inequality, we get that there is some constant C ′
p such that

E
[
sup
0≤s≤t

M2p
s

]
≤ C ′

pE[M
2p
t ].

And now you plug in the inequality we had, so we get

E
[
sup
0≤s≤t

M2p
s

]
≤ C ′

pE[M
2p
t ] ≤ p(2p− 1)E

[
sup
0≤s≤t

M2(p−1)
s ⟨M,M⟩t

]
.

And now this is more hopeful. The philosophy on how you would come up with this argument is first you
want to compute the evolution of the 2pth power, and Ito’s formula gives you that. But if you want to come
back to this kind of x2p ≤ x2(p−1)y type inequality, you need to control the RHS by the LHS, and that’s
where you use the L2p maximal inequality.

We’re not done yet because we have an expectation of a product, and we have to separate it. But for that,
we can use Hölder:

Fact 17.11 (Hölder) — We have E[XY ] ≤ E[Xq]1/qE[Xr]1/r where 1/q + 1/r = 1.

In the notes, we finish slightly differently; the way we’re presenting it here is maybe slightly more direct.
Basically, the thing we actually control on th eleft-hand side is just E[sup], but here we have an expectation
of a product, so we want to separate these. Here’s where you use Hölder, thinking of the sup as X and the
⟨M,M⟩t term as Y . We want to choose these parameters such that 2(p− 1)q = 2p — because if I choose q
this way, then the first factor here will be precisely something that’s on the left-hand side. And that means
I have to solve for r now — this is going to tell me that q = p

p−1 , so r = p. Then you apply Hölder with this
choice (which is informed by that you want to get whatever’s on the LHS into the RHS). Then by Hölder
you get

E
[
sup
0≤s≤t

M2p
s

]
≤ C ′

pp(2p− 1)E
[
sup
0≤s≤t

M2p
s

](p−1)/p

· E[⟨M,M⟩pt ]1/p.
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And now we’re basically done. Actually the right inequality to use (with x and y) would have been x ≤
x1−1/py, and that would give x1/p ≤ y.

And what’s crucial is that we have a strictly less than 1 power of the LHS on the RHS — we have p−1
p < 1

(if it were 1, this would be hopeless). And this gives me an estimate on the sup I’m trying to estimate —
we get

E
[
sup
0≤s≤t

M2p
s

]1/p
≤ C ′

pp(2p− 1)E [⟨M,M⟩pt ]
1/p

.

If we raise both sides to the pth power, we get what we want.

Remark 17.12. We probably have

C ′
p = (

2p

2p− 1
)2p

or something like this — whatever comes from the L2p maximal inequality.

If this is the right constant, the thing we were saying before is that if the thing grows by a constant pk

where k is independent of p, then you get subexponential tails. This thing actually might work out —
this C ′

p should be bounded by a constant independent of p, which means you get p2 dependence, which
gives you subexponential tails. (But there could be a mistake here.)

Remark 17.13. If you’ve taken a PDE course, this type of energy estimate may be familiar — you try
to estimate some quantity by a strictly less than 1st power of that same quantity, times some other
quantity (and then you get a bound on that quantity). In this case, the way you do that is by computing
the evolution, and trying to understand the RHS. The good thing about the RHS is it involves strictly
less powers of the original quantity (only 2(p− 1) instead of 2p). So you can hope to estimate the thing
by a strictly-less-than-1 power of the thing. But in order to get that, you have to use the Lp maximal
inequality and Hölder. And the choice of the parameters is always involved because you want to get
the thing on the LHS onto the RHS, so you just have to make this 2(p− 1) into a 2p and then you’re
done.

So that’s the BDG inequality. In applications, it is quite useful — not that we’re really going to give any
applications of it, but at least with these subexponential tails, any time you want a concentration inequality
for a local martingale (or a martingale) you would try to apply BDG to bound its moments, because an
estimate on its moments is going to lead to some type of concentration.

Other martingale concentration inequalities you see in discrete-time are like Azuma–Hoeffding or the
bounded differences inequality; BDG is kind of a continuous-time martingale concentration inequality.

§17.4 The martingale representation theorem

This is another separate application of Ito’s formula.

This martingale representation theorem basically gives you a way to represent random variables as terminal
values of a martingale. It’s in the special setting where you’re working with a BM and its completed
filtration.

Theorem 17.14 (Martingale representation theorem)

Suppose (Ft) is the completed canonical filtration of a Brownian motion B (started from 0). Then for
all random variables Z ∈ L2(Ω,F∞,P), there exists a unique progressive process h ∈ L2(B) such that

Z = E[Z] +

∫ ∞

0
hs dBs.
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(If we don’t say otherwise, B starts from 0 and is R-valued. This same theorem holds for vector-valued
BMs, but we’ll just state it for real-valued ones, at least for now.)

Your random variables Z are in principle functions of your entire Brownian path — you can observe the
entire path and make some function out of that (and we’re assuming it’s in L2).

Recall that for a progressive process to be in L2(B), in the special case of Brownian motion, this means
E[
∫∞
0 h2s ds] < ∞ (more generally, instead of ds you’d take the QV of your martingale, but for BM that’s

just s).

So in other words, for any Z which is a function of your Brownian path (in L2), you can write it as a
stochastic integral along the path — you can basically recover the function by following this martingale to
∞. That’s the first part of the theorem. Here’s the second part.

Corollary 17.15

Consequently, for every martingale M which is bounded in L2 (respectively, for every CLMG M), there
exists a unique process h ∈ L2(B) (respectively, h ∈ L2

loc(B)) and a constant C such that

Mt = C +

∫ t

0
hs dBs.

Recall that L2
loc means that if you integrate on a finite interval, the thing is finite.

Remark 17.16. One remark to emphasize here is that in the L2-bounded case, M is not assumed to
be continuous. In other words, what the second part of this theorem is saying is that any L2-bounded
martingale with respect to this completed filtration of BM actually has a continuous modification. As
usual, this is up to almost sure equality; and the continuous modification is the RHS. (Recall that when
h ∈ L2(B), we get this continuous L2-bounded martingale

∫ t
0 hs dBs.) So actually every martingale

with respect to this filtration has a continuous modification. This is quite strong — why should that
be true?

So that’s the statement of the theorem. We won’t prove it today, but Sky will start by stating this technical
lemma that we need.

Lemma 17.17

Under the assumptions of the theorem, the vector space generated by random variables of the form

exp

i

n∑
j=1

λj(Btj −Btj−1)


is dense in L2(Ω,F∞,P) (where λj ∈ R, and t0 < t1 < · · ·).

(Here we’re using C-valued L2 — these are in general complex-valued functions.)

The way the proof of the martingale representation theorem will go is that we’ll verify explicitly that the
statement holds for such random variables (think of this random variable as a possible Z — it’s bounded
so it’s definitely in L2, and it’s definitely in F∞ because it’s a function of your Brownian path up to tn). So
you ca write down explicitly some h such that when you integrate against BM you get this process. (This
almost looks like the exponential martingale of Brownian motion, up to some scalar factor; and you allow
scalar factors, because it’s a generated vector space.)

And then if you just had that these RVs are dense, and also that this statement is ‘closed’ (in that you
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can take limits and it still holds), then you’ll be able to prove the theorem. So that’s what we’re trending
towards, and we’ll finish that next time.

§18 April 9, 2025

§18.1 The martingale representation theorem

We’ll start today by proving the martingale representation theorem. The setting is you take the completed
canonical filtration of a BM; and it turns out you can represent any random variable which is a function of
your entire Brownian path as some sort of integral along the path.

Theorem 18.1 (Martingale representation theorem)

Suppose that (Ft) is the completed canonical filtration of a Brownian motion B. Then for all Z ∈
L2(Ω,F∞,P), there exists a unique progressive process h ∈ L2(B) such that

Z = E[Z] +

∫ ∞

0
h dB.

In the proof of the theorem, we’ll actually show that this will imply that for any martingale with respect to
this filtration, you can write it as some stochastic integral.

Corollary 18.2

For every martingale M bounded in L2 (respectively, every CLMG M), there exists a unique progressive
process h ∈ L2(B) (respectively, h ∈ L2

loc(B)) and a constant c ∈ R such that

Mt = c+

∫ t

0
hs dBs for all t.

This is quite a strong statement — there’s no reason why it should be true. But it basically says that in
the case of the completed canonical filtration of a BM, these stochastic integrals are the only L2-bounded
martingales we have.

As mentioned last time, the way we’ll prove this is by some density argument, which is why we have the
following technical lemma.

Lemma 18.3

Under the assumptions of Theorem 18.1, the vector space generated by

exp

i

n∑
j=1

λj(Btj −Btj−1)


is dense in L2

C(Ω,F∞,P).

Here the λj ’s are real, and the tj ’s are some finite sequence of times. So we consider any random variable
of this form; and if you take the vector space generated by such things, you get a dense subspace of this
space L2

C(Ω,F∞,P). Here it’s natural that the filtration has to be F∞ and not F (the abstract filtration
associated with your probability space), because these random variables only look at your Brownian path.
So F∞ is the best we can hope for, but that’s all you need.
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Proof. The main step of the proof we’ll actually kind of be assuming (you can Google the needed prerequisites
if you want).

It suffices to show that if Z ∈ L2
C(Ω,P,F∞) is orthogonal to every random variable of this form — meaning

that

E

Z · exp
i

n∑
j=1

λj(Btj −Btj−1)

 = 0

for all λj ’s and tj ’s — then Z = 0 almost surely. This is just some abstract Hilbert space theory; the point
is that if this is true, you can’t have a kind of picture where this vector space spanned by all these random
variables is some lower-dimensional subspace and you could take something in the orthogonal complement.
This picture can’t occur if you could prove a property like this — then you could take Z in the orthogonal
complement. That’s the picture in finite dimensions, at least. We used something like this previously (and
probably drew a similar picture).

So let’s prove this. Why is this going to be true? Let’s fix a set of times {tj}nj=1, and then consider the
complex measure (what is a complex measure? it’s a measure with a real part and imaginary part which
are real-valued measures) µ on Rn (where n is the number of time points we have), defined by

µ(F ) = E
[
Z1(Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1) ∈ F

]
.

So given a Borel set F ⊆ Rn, we’re taking the increments of our BM and seeing whether they’re in F .

Then if you integrate functions against this measure, you’ll get∫
µ(dx)f(x) = E

[
Zf(Bt1 , . . . , Btn −Btn−1)

]
(you can verify by standard arguments that it’s true on indicator functions and you can extend to bounded
measurable functions). In particular, µ is a finite measure — if you take f = 1 you’re computing the total
mass, which is going to be E[Z], and your assumption is that Z ∈ L2, so its expectation is finite. So there’s
no infinities to worry about.

As a consequence of this, you can compute the Fourier transform of µ. If we have ξ ∈ Rn, by definition the
Fourier transform of a measure is defined by

µ̂(ξ) =

∫
µ(dx)eix·ξ.

And now if you use this integration formula, our f is of a very particular form, so we get

µ̂(ξ) = E
[
Z · exp

(
i
∑

ξj(Btj −Btj−1)
)]

(we just used this integration formula for our particular choice of f). But anything like this is just 0 by our
assumption. So we actually have µ̂ = 0.

And here’s where you can Google the result — this is going to have to imply that the measure itself is 0, i.e.,
µ = 0. Basically, the Fourier transform has this property — you can define it on the space of finite complex
measures, and if the Fourier transform of a measure is 0, so is the actual measure. (You probably saw this
in 18.675 for probability measures — we saw characteristic functions, which are the Fourier transform of a
probability measure, and you can do Fourier inversion to recover the measure from the Fourier transform.
Something similar works here.)

And this implies E[Z1A] = 0 for all A ∈ σ(Bt1 , . . . , Btn) (because for any event of this form, you can write
it as the indicator that these increments of B are in some Borel set).

But the set of times was arbitrary; so by more measure theory stuff, this implies that E[Z1A] = 0 for all
A ∈ σ(Bt | t ≥ 0) (if it holds for any finite collection of times, then it holds for the generated σ-algebra on
all times; this is again just some abstract measure theory).
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And by assumption F∞ is the completion of this σ-algebra σ(Bt | t ≥ 0). So any event in F∞ can be
obtained from an event in this σ-algebra by adding or intersecting with measure-0 or 1 events. Anything
about expectations is unchanged if you modify A on a measure-0 event, so it’s going to be also true for all
A ∈ F∞. (There was some exercise earlier in the semester giving an explicit formula for what the completion
of a σ-algebra looks like, and one can verify that if E[Z1A] = 0 is true for all events in the original, it’s also
true for all in the completion.)

But since Z is F∞-measurable, this implies Z = 0 almost surely — for example, you could take A = {Z > 0};
this is in F∞ by assumption, and that tells you Z+ = 0 (and similarly Z− = 0).

Student Question. Why is the Fourier transform 0?

Answer. The Fourier transform is a function Rn → C, and the way we defined our measure is such
that we have this integration formula for

∫
µ(dx)f(x). And by definition the Fourier transform is the

integral of eix·ξ; and using this integral formula, we get this E[Z exp(· · ·)] formula.

And we assumed that Z was orthogonal to every random variable of the form exp(· · ·), which means
this expectation is 0.

Now let’s prove the martingale representation theorem.

Proof of Theorem 18.1. As usual, uniqueness is the easier part: if you had two processes h and h̃, that
would tell you ∫ ∞

0
h dB =

∫ ∞

0
h̃ dB,

which by linearity would tell you ∫ ∞

0
(h− h̃) dB = 0.

We want to conclude h− h̃ = 0. But by the Ito isometry, if we take the second moment of this, we get

E

[(∫ ∞

0
(h− h̃)2 ds

)2
]
= 0.

(In general, you’re integrating against the QV of your BM, but here that’s just ds.)

This tells us that h = h̃ in L2(B) (since we’re just saying that the norm of their difference is 0).

So that’s uniqueness. Now let’s talk about existence. For this, let H be the vector space of all random
varaibles Z for which the theorem statement is true. (You first define H as the set of random variables for
which it’s true, and you have to verify it’s a vector space. But that’s just by the linearity of the stochastic
integral — if you have Z1 and Z2, then they have associated h1 and h2, and the h that’ll work for Z1 + Z2

is just h1 + h2. So it’s actually a vector space.) We’re going to show that:

(1) H is a closed subspace.

(2) H contains a dense subspace, which will be precisely the one that the lemma is about.

So this is the roadmap. Once you show (1) and (2), then we’re done — that’ll imply H contains all of L2.

First, how do you show H is a closed subspace? Well, what does that mean? It means if I have a sequence
{Zn} ⊆ H which converges in L2 to some random variable Z, then we want to show that actually Z ∈ H.
(That’s what it means to be closed.)

Well, by assumption — by the definition of H, you have

Zn = E[Zn] +

∫ ∞

0
hn dB
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(that’s how we defined H), where hn is some progressive process. And you also have that E[Zn] → E[Z]
(from the L2 convergence). Eventually we want to write Z as E[Z] plus a stochastic integral, so at least the
E[Zn]’s converge to the right thing. Now we want h whose stochastic integral is the limit of those of the
hns; how do we do that?

First, using the L2 convergence of the Zn’s and the convergence of the expectations, you get that∫ ∞

0
hn dB

converges in L2(Ω,F∞,P) as a sequence of random variables in n. Here’s again where you use the Ito
isometry — you can compute

E

[(∫ ∞

0
(hn − hm) dB

)2
]
= E

[∫ ∞

0
(hn − hm)2 ds

]
by the Ito isometry. Why am I taking these differences? I want to produce a process h from this statement
that these stochastic integrals converge in L2(Ω,F∞,P). So how am I going to produce this process h?
Well, by this identity and the L2 convergence, we get that the sequence (hn) is Cauchy in L2(B) — because
the norm in L2(B) of the difference between any two hns is precisely the right-hand side, and I know the
left-hand side goes to 0 if you take n and m large enough (by the L2 convergence of these random variables).

And by completeness in L2, this means there exists a limit h ∈ L2(B) such that hn → h. And then now you
use this Ito isometry again, and you get that actually

∫∞
0 hn dB →

∫∞
0 h dB (again, this is in L2(Ω,F∞,P)).

And now we’re basically done. Our starting assumption was that Zn → Z in L2. The terms E[Zn]→ E[Z]
as constants, and we just concluded that the

∫∞
0 hn dB terms converge to

∫∞
0 h dB. So by the uniqueness

of limits, we get

Z = E[Z] +

∫ ∞

0
h dB.

This finishes showing (1), that H is a closed subspace (because this means Z ∈ H).
Now we’ll do (2) — why does H contain this subspace? This is a bit imprecise, because that subspace is a
space of complex random variables. What we mean by (2) is really that H contains the real and imaginary
parts of all of these.

So basically, we need to cook up some integrand h which gives me precisely this random variable

exp

i
∑
j

λj(Btj −Btj−1)

 ,

at least up to constants. And basically, you kind of see this is similar to the exponential local martingales
from last time.

So we fix some λj ’s and tj ’s, and then we want to look at this random variable and show it’s in H. So we
first define an integrand

g =

n∑
j=1

1(tj−1,tj ]λj .

This integrand g is actually deterministic, so it’s definitely a progressive process. Then we can define a
martingale

Mt =

∫ t

0
gs dBs.

Based on this explicit form of the integrand, you can compute this exactly, and it’s going to be

Mt =

n∑
j=1

λj(Btj∧t −Btj−1∧t)
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(you have to be slightly careful and take a min with your time t). Already this looks similar to the thing in
your exponential — if you take t =∞, it is precisely the thing in the exponential (up to the factor of i).

Now let’s look at the exponential martingale

E(iM)t = exp

(
iMt +

1

2
⟨M,M⟩t

)
.

And it’s actually going to be a martingale because of this i, which means it’s basically bounded (the first
part is bounded by 1; the second part isn’t bounded, but we can still control it). Substituting our formula
for M , we get that this is

exp

i
n∑

j=1

λj(Btj∧t −Btj−1∧t) +
1

2

n∑
j=1

λ2
j (tj ∧ t− tj−1 ∧ t)


(the second part is the QV, which you can explicitly compute).

And what is nice about the exponential martingale? Well, where is the integrand going to come from? We’re
trying to show this thing is a stochastic integral. So far, we just succeeded in writing it as an exponential
local martingale, so where does the integral come from?

That’s just the fact from last time that you have a SDE for the exponential local martingale, that

dE(iM)t = iE(iM)t dMt.

And SDEs are interpreted in integral form, so what this SDE really means is that

E(iM)∞ = E(iM)0 +

∫ ∞

0
iE(iM)t dMt.

One final step is I wanted an integral with respect to B, not M . But the way we defined M as a stochastic
integral, basically dM = g dB. So I can substitute g dB into here. The initial value is just going to be 1
(it’s an exponential, and M starts at 0), so we get

E(iM)∞ = 1 +

∫ ∞

0
E(iM)tgt dBt.

And so now we’re basically done. Why? We’ve shown that if you plug in this formula with time ∞, I get
that

exp

i

n∑
j=1

λj(Btj −Btj−1)

 = exp

− n∑
j=1

1

2
λ2
j (tj − tj−1)

 · (1 + ∫ ∞

0
iE(iM)t gt dBt

)
(I used this identity but moved the second part in E(iM)t to the RHS).

So I’ve succeeded in writing the LHS as a constant times a stochastic integral (or 1 plus a stochastic integral).
This stochastic integral is definitely in my vector space (you can check that E(iM)t gt ∈ L2(B), but that’s
true). You also have to check that 1 is in the vector space, but that’s trivially true (we can just take h = 0
and write 1 = E[1] + 0). I add these two and that’s still in my vector space, and then I multiply by some
constant and it’s still in my vector space.

Technically I arrive at this identity and then I have to take real and imaginary parts (because the vector
space is real-valued). But the real and imaginary parts of this thing lie in my vector space, and that’s
enough for density (since if we have a dense subspace of L2

C, then its real and imaginary parts form a dense
subspace of L2

R).

Corollary 18.2 is a direct consequence of Theorem 18.1; so let’s see that.

Page 177 of 267



18.676 — Stochastic Calculus Class by Sky Cao (Spring 2025)

Proof. First let’s see this for L2-bounded martingales — now let M be an L2-bounded martingale. Because
it’s L2-bounded, it’s uniformly integrable; so there exists M∞ ∈ L2(Ω,F∞,P) such that

Mt = E[M∞ | Ft].

(The fact that it’s actually in L2 comes from the fact that you’re L2-bounded.)

Now it’s kind of natural what you want to do — by the first part of the theorem, there exists h ∈ L2(B)
such that you can write M∞ as a stochastic integral

M∞ = E[M∞] +

∫ ∞

0
hs dBs.

Now you just take conditional expectations of both sides, and you get

E[M∞ | Ft] = E[Mt] + E
[∫ ∞

0
hs dBs | Ft

]
.

And the conditional expectation of this integral is just going to be
∫ t
0 hs dBs. Why? Heuristically this is

your integral up to time t; and the integral after that only looks at increments of BM after Ft, which are
independent of Ft. Alternatively, this is just by definition — the integral up to ∞ is just (h ·B)∞, and the
process (h ·B)t is a martingale. If you write out the martingale property, that just tells you this identity.

And this is exactly what the claim was, at least for L2-bounded martingales.

Remark 18.4. Note that in particular, you’re not assuming M is continuous. So you’ve actually
shown that any L2-bounded martingale (in the completed canonical filtration of BM) has a continuous
modification — technically this is always up to almost sure equalities, and the continuous modification
is given by the RHS (since by construction

∫ t
0 hs dBs is continuous in t).

For contrast, for local martingales we’re actually assuming it’s a continuous local martingale. One
reason is because we only defined continuous local martingales.

Now let’s talk about local martingales — let M be a CLMG. As usual, we want to localize — so for instance,
you can take

Tn = inf{t ≥ 0 | |Mt| ≥ n}.

If you stop your local martingale at time Tn, it’s bounded, so it’s also L2-bounded; thus applying this
L2-bounded result to the stopped martingale MTn , we obtain a progressive process hn ∈ L2(B) such that

MTn
t = cn +

∫ t

0
hn dBs

for all t ≥ 0. In principle, this constant cn might also depend on n, but we’re going to show that it doesn’t.
Why? You just apply the t = 0 version of this identity and get MTn

0 = cn; but this is always just M0. So cn
is just going to be M0. (It’s kind of implicit here that M0 has to be almost surely constant — M is adapted
to the completed canonical filtration of BM, where F0 is trivial — you’re assuming the BM starts at 0, so
F0 is just literally {Ω, ∅}; and then when you complete it you add all your null sets, but it still contains only
probability-0 or 1 events, so any random variable measurable with respect to it is almost surely constant.)

Now you want to stitch these processes together — we have an hn for every n, but we want to show they
agree with each other on common intervals. So why is that going to be true? Let m ≥ n. You start with
the identity

(MTm)Tn
t = MTn

t .

(This is because Tm ≥ Tn.) That has to imply an identity for these integrals — because plugging in our
formulas for these things, we get

(hm ·B)Tn
t = (hn ·B)Tn

t
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(we’re going back to the notation in Le Gall where we write stochastic integrals as h ·B; we may as well put
in an additional stopping by Tn on the right, since the process is constant after Tn anyways).

And we proved that you can put this stopping time onto the integrator, so this implies

(hm ·BTn)t = (hn ·BTn)t

(in principle you can put the stopping time anywhere you want; we’re putting it on the integrator, and the
reason we want to do that is now we have the same integrators in the two places). So this actually implies

(hm − hn) ·BTn = 0.

This is true for all times t. And we basically already saw this earlier: You want to go from this statement
to a statement that hm and hn are equal (at least on some interval). And for that, you can basically just
use the Ito isometry — this implies that

E
[∫ Tn

0
(hns − hsm)2 ds

]
= 0.

But basically, I’m claiming by Ito isometry, when you take the second moment of this thing, it’s going to be
equal to this (the fact you only integrate from 0 to Tn is reflected by the fact that your integrator becomes
constant after Tn). But then this implies that almost surely hn = hm (at least, almost everywhere) on
[0, Tn]. (The almost sure comes from the fact that the expectation is 0, and ‘almost everywhere’ from the
fact that the integral of the difference squared is 0, which only really lets us conclude almost everywhere
equivalence.)

But this holds for all m ≥ n; and we can swap the ‘almost sure’ and the ‘for all.’

And this is basically enough to stitch — up to null modifications, you just define

h = lim
n→∞

hn.

The point is that if you look at any time t, eventually the right-hand side becomes constant — eventually
they just all agree with each other.

So we’ve found a candidate integrand h. And with this candidate integrand, we want to show why the
stated result is true. And we want to verify it’s actually in L2

loc(B).

By construction, this stitched process h satisfies∫ Tn

0
h2s ds <∞

for all n. Why? Well, on this time interval, h is equal to hn. And you recall that hn is in L2
loc(B

Tn). And
then if you unwind what it means to be in that, that’s precisely that the expectation of this thing is finite,
which means this thing is finite almost surely.

This is true for all n, and you have Tn ↑ ∞. Combining these two things, you get that indeed h ∈ L2
loc(B).

Remark 18.5. How would you come up with it? You essentially want to find a way to stitch things
together, and after playing around with things enough, you get this.

So we’ve verified h ∈ L2
loc(B); now why does it give us this representation of our local martingale? Let’s

start with the thing that we have by construction — that

MTn
t = M0 +

∫ t

0
hns dBs.

Page 179 of 267



18.676 — Stochastic Calculus Class by Sky Cao (Spring 2025)

We can write this as

MTn
t = M0 +

∫ Tn∧t

0
hns dBs

(that’s kind of playing around with the fact that I can put my stopping time into the evaluation time). And
the point of all this is that for times before my stopping time, by definition this is going to be the process
h itself, so I get

MTn
t = M0 +

∫ Tn∧t

0
hs dBs

(because as long as s ≤ Tn, all the h’s become the same, which means hs = hns ).

This is true pointwise for all t; then if you take Tn ≥ t, this implies

Mt = M0 +

∫ t

0
hs dBs

(because now this Tn ∧ t becomes t).

Remark 18.6. We didn’t say much about uniqueness for Corollary 18.2, but that should be similar to
uniqueness in Theorem 18.1.

§18.2 Some consequences

Let’s now talk about some consequences of this martingale representation theorem. One consequence is the
following.

Proposition 18.7

Let (Ft) be the completed canonical filtration of BM. Then (Ft) is both left and right continuous.

Recall this basically means that Ft =
⋃

s<tFs and Ft =
⋂

s>tFs. So the information that comes just before
time t is equal to the information all the way up to time t; and the information infinitesimally up to time t
is the same as up to time t. This comes from the completion process somehow — the canonical filtration of
BM itself does not satisfy this, but once you complete it to add in all these null events, it basically does.

Proof. We’ll just talk about right-continuity (left-continuity is similar). Suppose we have some Z ∈ F+
t

with Z ∈ L2 (recall that F+
t =

⋂
s>tFs). Now we want to say why Z is measurable with respect to Ft.

(Once you show that, you show these two σ-algebras are equal — of course Ft ⊆ F+
t , so you just have to

show the reverse direction. And if we can show this statement, then we can take Z to be indicator functions
of events, and that’ll imply the containment.)

We have that Z is in F+
t ⊆ F∞, so by the martingale representation theorem, there exists some integrand

h ∈ L2(B) such that

Z = E[Z] +

∫ ∞

0
hs dBs.

The point now is that Z is measurable with respect to this much smaller σ-algebra, so that should tell you
that you don’t actually have to integrate all the way up to ∞ — since Z ∈ Ft+ε for any ε > 0, if you fix
any ε then you get

Z = E[Z | Ft+ε],
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and then if you use this representation for Z and take conditional expectations, now you’re only integrating
up to time t+ ε — so we get

Z = E[Z] +

∫ t+ε

0
hs dBs.

(All of this is almost sure equality.) Now taking ε → 0, our first construction of stochastic integrals gives
you a continuous process (a continuous L2-bounded martingale). So this integral is continuous in your time
endpoint, and taking ε→ 0, you get

Z = E[Z] +

∫ t

0
hs dBs.

But this right-hand side is measurable with respect to Ft (since by construction the stochastic integral is an
adapted process). Thus Z is almost surely equal to a random variable in Ft. But because (Ft) is complete,
this implies Z itself is in Ft. (We’re saying if I modify Z up to some null event then I get something in Ft;
and that event is itself contained in Ft, because it’s complete.)

That’s the first consequence of the martingale representation theorem. Now let’s talk about the second one.
This second consequence is simply saying that any martingale with respect to this filtration has a continuous
modification. In the martingale representation theorem we proved this for L2-bounded martingales, but now
we’re saying it’ll be true for any martingale.

Proposition 18.8

Let (Ft) be the completed canonical filtration of BM. Then all martingales with respect to (Ft) have a
continuous modification.

Proof. Somehow we just want to reduce to the L2-bounded case. So how do we do that? First, instead of
L2-bounded, let’s suppose that M is uniformly integrable. If you can prove it for UI martingales, then you’ll
also prove it for general martingales — because in general you can replace M by a stopped version of M at
a deterministic time t0, i.e., M

t0 . And we had this result from when we talked about martingales that if you
have a martingale and stop it at a deterministic fixed time, then it’s always going to be UI — because Mt0

‘closes’ your martingale. And then you can take t0 →∞ and get a continuous modification for all times.

So it suffices to just prove this for uniformly integrable martingales. And now we have

Mt = E[M∞ | Ft]

for some random variable M∞ which is F∞-measurable.

Now let’s take a sequence of bounded random variables (Mn
∞) (which you think of as approximating the

endpoint M∞) such that Mn
∞ → M∞ in L1. (This is the best kind of convergence you could hope for,

because we only assumed M∞ ∈ L1. But the good thing is you can always produce such a sequence of
bounded things.)

Then each Mn
∞ is going to give you a L2-bounded martingale. One thing to note is first of all that

Mn
t = E[Mn

∞ | Ft]→Mt

in L1. Now by the L2 result, we can write this endpoint Mn
∞ as a stochastic integral (because it’s bounded,

so it’s definitely in L2), giving

Mn
∞ = E[Mn

∞] +

∫ ∞

0
hn dB.

And now, by the L2 result, the martingale (Mn
t ) has a continuous modification for all n (this is how we’re

going to apply the L2 result). So let’s replace Mn by its continuous modification.
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Now we kind of want to say why — Mn is a sequence of continuous functions, and we want to show that as
h→∞, this converges to a continuous function. As soon as you can show that (at least, on a subsequence),
the limiting thing has to be a continuous modification of your original martingale (because you’ve shown this
converges pointwise in L1 to Mt, and if you can show it converges also pointwise to a continuous function,
then that limit has to be almost surely equal to Mt).

We’ll do this by Borel–Cantelli-type arguments. To show (Mn
t ) converges uniformly in the space of contin-

uous functions, we want to find a Cauchy sequence (or rather, a Cauchy subsequence). And the way you
find that is by proving about

P
[
sup
t≥0
|Mn

t −Mn
t | ≥ λ

]
.

First, by Doob’s maximal inequality you can bound this by

3

λ
E [|Mn

∞ −Mm
∞|]

(if you have a UI martingale, the tails of the sup are bounded by the L1 norm of the endpoint, with a
Markov-type bound; and the difference of two martingales is a martingale).

The thing that eventually lets you reduce to a convergent subsequence is you know the RHS is Cauchy,
because by construction Mn

∞ → M∞ in L1. So it’s Cauchy, and then you can construct a very good
subsequence. Basically, since Mn

∞ →M∞ in L1, there’s going to exist a subsequence {nk} such that

E[
∣∣Mnk

∞ −M
nk+1
∞

∣∣] ≤ 2−2k.

For this subsequence, applying Doob’s maximal inequality gives you that

P
[
sup
t≥0

∣∣Mnk+1

t −Mnk
t

∣∣ ≥ 2−k

]
≤ 32k2−2k = 3 · 2−k

(the exact constants don’t matter; I just want both the difference and the probability to be exponentially
small). And now if I sum over k, these probabilities are summable, so by Borel–Cantelli I I get that with
probability 0 these events happen infinitely often — in other words, eventually almost surely the sup of the
difference of successive martingales is less than 2−k, i.e.,

sup
t

∣∣Mnk+1

t −Mnk
t

∣∣ < 2−k

for all sufficiently large k. This implies the subsequence converges — for instance, now if you sum all these
successive differences, you get ∑

k

sup
t

∣∣Mnk+1
−Mnk

t

∣∣ <∞
(there’s finitely many terms you have no control over, but eventually you get 2−k decay, so it’s summable).
And this implies (Mnk) is Cauchy in the spce of continuous functions C([0,∞)) (with the sup norm) — it’s
not even just uniform convergence on compact sets, it’s actually uniform convergence on the entire infinite
real line, which is quite strong.

And this implies there exists M̃ such that Mnk → M̃ in C([0,∞)). So it converges uniformly; in particular,

that also means it converges pointwise, i.e., almost surely Mnk
t → M̃t.

And now you recall that Mnk
t → Mt in L1. And by uniqueness of these limits, that implies Mt = M̃t

almost surely. In other words, M̃ is a modification of M , and it’s continuous by construction. So you have
a continuous modification.
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Remark 18.9. We’ve seen this type of argument several times now — it’s this technical thing where
you want to extract a subsequence that converges uniformly to get a continuous modification.

Next time we’ll start with Girsanov’s theorem, which is the second half of applications of Ito’s formula (it’s
quite separate from this stuff); it’s about what happens to martingales when you change your underlying
probability measure.

Remark 18.10. One thing to emphasize about the martingale representation theorem: I know there
exists h, but is there actually a formula for it? It turns out that there is, and it should be given by
something like

h = E[DtZ | Ft],

where Dt denotes the ‘Malliavin derivative of Z.’ We probably won’t have time to discuss this in the
course, but building on stochastic calculus you can build a notion of differentiation for random variables
in L2. Essentially, we’ll have Z = f(B) — it’s a function of your Brownian motion (some complicated
function defined via stochastic integration). So you can think about differentiating this with respect
to BM — if you vary the BM in some direction, how does the function change? This is all taking
place in infinite dimensions — B itself lies in a space of functions, so you have to talk about directional
derivatives in some infinite space. But you can make sense of it and you get the Malliavin derivative. A
more refined version of the martingale representation theorem is saying that for this integrand h, you
have to take a derivative of Z. And maybe you also have to condition on Ft because after all h had
better be adapted — in principle DtZ might not be Ft-measurable, which is why you need this.

If you’re interested in learning more, this is one thing that occurs in stochastic analysis — differentiation
on infinite spaces with respect to BM.

This is also related to analysis and mathematical physics and quantum field theory; Malliavin calculus
appears there. It’s also related to geometry.

§19 April 14, 2025 — Girsanov’s theorem

Today we’ll start on Girsanov’s theorem, which is the last main application of Ito’s formula that we’ll talk
about. This might take 1.5 classes; we probably won’t finish everything today.

Girsanov’s theorem has to do with change of measure. To start, we won’t go in the order of the notes; we’ll
first discuss an analogy with Gaussian change of measure to set the stage.

§19.1 Gaussian change of measure

What is Gaussian change of measure? Suppose you have X ∼ Nd(0,Σ) (this means X is a Gaussian random
variable in d dimensions with mean 0 and covariance matrix Σ). Then if you fix µ ∈ Rd, you can define a
new probability measure Q on our underlying space (Ω,F) (where we originally had a probability measure
P). We’ll define it by its density with respect to P — we set

dQ
dP

= exp

(
µ ·X − 1

2
µ⊺Σµ

)
.

This is linear in X; the second term µ⊺Σµ is just there to make the total mass 1 (since the total mass of
Q is going to be the expectation of this random variable; then you recall the formula for the exponential
generating function and see that E[exp(µ ·X)] = exp(12µ

⊺Σµ), so you have to divide by this).
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Claim 19.1 — Under Q, we have X ∼ Nd(Σµ,Σ).

So X is still normal; its mean has shifted, but its covariance matrix is the same.

What does this mean? By definition, a random variable is a measurable function X : (Ω,F)→ R. Whenever
you write X ∼ Nd(0,Σ), you’re saying that when you have probability measure P, its law is distributed like
this. Here we’ve changed the underlying probability measure, so the law may have changed. And Gaussian
change of variables says that when you reweight by this exponential-linear thing, you just get a mean shift.

Proof. This is just a computation — you can compute EQ[f(X)] (where f is some bounded measurable
function). If the claim is true, then in the end, we want this to be equal to∫

Rd

f(x)pΣµ,σ(x) dx,

where pΣµ,Σ is the density of Nd(Σµ,Σ). What does it mean for X to have a certain law? That means if I
compute expectations of any function f , then I should get the integral of f against the density.

And because we defined Q by its density, you can compute the expectation over Q as an expectation over
P, but adding in this density term — so

EQ[f(X)] = E
[
f(X) exp

(
µ ·X − 1

2
µ⊺Σµ

)]
.

(Whenever we write EQ, we’re taking an expectation with respect to the new probability measure; when we
write E, we’re using the original underlying one.)

But the assumption is that under P, X has the explicit law Nd(0,Σ). That means we can write this
expectation as an explicit d-dimensional integral∫

Rd

f(x)p0,Σ(x) exp

(
µ · x− 1

2
µ⊺Σµ

)
dx.

But now I want to actually write out the explicit formula for this density, and this becomes

1

(2π)d/2 det(Σ)1/2

∫
Rd

f(x) exp

(
−1

2
x⊺Σ−1x

)
exp

(
µ · x− 1

2
µ⊺Σµ

)
dx

(the prefactor and the first term form the density). Now you want to complete the square — you want to
interpret this product of exponentials as itself a Gaussian density, and the reason you hope to do so is that
this thing is still quadratic in x. There’s now a quadratic term and a linear term, and you can absorb the
linear term by shifting x. If you do the algebra correctly, this becomes

1

(2π)d/2 det(Σ)1/2

∫
Rd

∫
Rd

f(x) exp

(
−1

2
(x− Σµ)⊺Σ−1(x− Σµ)

)
.

This extra term precisely allows you to complete the square — the quadratic terms are the same as before,
the linear term in x is 1

2 · 2(Σµ)
⊺Σ−1x = µ · x, and the last term expands out to 1

2µ
⊺Σµ.

But now you’re done — this prefactor times this exponential is precisely the density pΣµ,Σ.

So this is a Gaussian calculation; the point is that under this change of measure, the mean shifts by Σµ (so
you have to look at the covariance and the µ that you’re reweighting by), but then the covariance stays the
same. So that’s the key thing to take out of this example.
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§19.2 Analogy to Girsanov’s theorem

And basically what Girsanov’s theorem is — you can think of it conceptually as an ‘infinitesimal version’
or analog of Gaussian change of measure. In our world of stochastic calculus, you have stochastic processes
naturally indexed by time. Here you had d-dimensional Euclidean space as your index set, where there isn’t
really a natural time-ordering. But with martingales you do have this natural notion of time; so infinitesimal
refers to infinitesimally in time.

It helps in all of this to think of a mean zero Gaussian as being analogous to being a martingale. Here we
started with a mean 0 Gaussian; in Girsanov’s theorem, we’re going to start with a martingale (or local
martingale).

And you can kind of think of the covariance as a quadratic variation — that’s kind of the analogy.

Basically what Girsanov tells you is that if you have a martingale and use that to reweight your probability
measure, then any martingale under the new probability measure is going to pick up an extra mean term
— so the mean is going to be shifted (it’ll no longer be a martingale). And the shift is some analog of Σµ,
which has to do with the QV.

§19.3 Preliminaries

With that, let’s now begin with some preliminary stuff. We can’t just directly state Girsanov’s theorem; we
need a couple of preliminary results.

Throughout, we’ll assume that (Ft) is complete and right-continuous. (Right-continuity — probably Le
Gall assumes it for technical reasons, and we’re skipping over some of the technical stuff, so we might not
see why it’s needed.)

Proposition 19.2 (Likelihood ratio process)

Let Q be a probability measure on (Ω,F) which is absolutely continuous (with respect to P) on F∞.

For every t ∈ [0,∞] (allowing ∞), let

Dt =
dQ
dP

∣∣∣∣
Ft

.

Then (Dt) is a uniformly integrable martingale.

Furthermore, suppose that (Dt) is continuous. Then for all stopping times T , you can write

DT =
dQ
dP

∣∣∣∣
FT

.

Finally, if P and Q are mutually absolutely continuous with respect to F∞, then

inf
t≥0

Dt > 0 P-almost surely.

The way we write ‘absolutely continuous’ is as Q≪ P. What it means to be absolutely continuous on F∞
is for any A ∈ F∞, if P[A] = 0, then Q[A] = 0.

What does Dt mean? If Q is absolutely continuous with respect to P on F∞, this is also true on every
Ft. And whenever you have this absolute continuity, you can write its Radon–Nikodym derivative — this
will be some Ft-measurable function with the property that if you integrate the Radon–Nikodym derivative
(with respect to P) against any event in your σ-algebra, you just get the mass of it under Q — i.e., for every
A ∈ Ft, we have

E[Dt1A] = Q[A].

Page 185 of 267



18.676 — Stochastic Calculus Class by Sky Cao (Spring 2025)

The way we’re going to show that (Dt) is a UI martingale is by showing it’s the expectation with respect
to Ft of D0.

A priori you don’t know (Dt) is continuous. This is perhaps where right-continuity of the filtration helps
you (then (Dt) should have a continuous modification). But we’re skipping over that technical stuff, so we’ll
just assume that (Dt) is continuous.

Mutually absolutely continuous means that P is also absolutely continuous with respect to Q.

Why is this called ‘likelihood ratio’? You can think of D as a density — the density of Q with respect to
P, which is another name of the likelihood ratio. So you’re saying this is one way to get martingales — you
have an absolutely continuous measure Q with respect to P, and condition on the sub-σ-algebras.

Proof. First, we claim that
Dt = E[D∞ | Ft].

Note that D∞ is nonnegative (by the definition of a Radon–Nikodym derivative) and integrates to 1; so as
long as you show this, you get a UI martingale.

To see this, first note that Dt ∈ Ft (by the definition of a Radon–Nikodym derivative). That’s the first
property of a conditional expectation. Moreover, for A ∈ Ft, you get that

E[Dt1A] = Q[A].

But Ft ⊆ F∞, so we could also write Q[A] as

Q[A] = E[D∞1A].

But this is the defining property of conditional expectations, showing that this is true.

Now we’ll move on to the second part, about stopping times. The reason you need to assume you have
continuous (or right-continuous) sample paths is because you want to apply the optional stopping theorem
(which has some assumption of continuity). Then you can say that

DT = E[D∞ | FT ]

(because this is a UI martingale). But you can also show that

E[D∞ | FT ] =
dQ
dP

∣∣∣∣
FT

.

This is basically the same argument we just did — if you have some A ∈ FT , then we have that

E[DT1A] = E[E[D∞ | FT ]1A] = E[D∞1A] = Q[A].

And because A ∈ FT by assumption, I can also write this using the RN derivative as

E

[
dQ
dP

∣∣∣∣
FT

1A

]
.

This is true for every A, and it’s enough to pove what we want (since conditional expectations are unique).

For the third part, the argument in the notes is slightly different from the book, so you can also read that if
you want. The one in the notes assumes something about RN derivatives — namely that since Q≪ P and
P≪ Q with respect to F∞, what you really should have then is that

D−1
t =

dP
dQ

∣∣∣∣
Ft

.
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In the notes we didn’t write any justification. But the reason it should be intuitive is that the defining
property of Dt is that

E [DtZ] = EQ[Z]

for any nonnegative random variable Z (previously we wrote indicator functions, but we can instead replace
the indicator with Z). But now you can just say that if I’m allowed to have any nonnegative random
variable, I can plug in Z = Y D−1

t . That should give me the identity

E[Y ] = EQ[Y D−1
t ]

(at least, formally). And if you have this identity, that’s precisely the statement

D−1
t =

dP
dQ

∣∣∣∣
Ft

,

since now you’re reducing derivatives with respect to P into ones with respect to Q.

Of course, there’s something you have to make precise here – you have to use mutual absolute continuity
somewhere, and we didn’t really explain where. But we’ll just assume this is true.

Then under Q, we have that (D−1
t ) is a UI martingale — we’re basically applying the first result, but

with the roles of P and Q reversed. And we’re still assuming Dt is continuous, so D−1
t is also continuous.

Applying the proof of the first result, you get the martingale structure

EQ[D
−1
∞ | Ft] = D−1

t .

Then we have
D−1

t → D−1
∞ Q-almost surely

(when you have a UI martingale, you converge almost surely to the limit (and also in L1)). But we also
have

D−1
∞ <∞ Q-almost surely.

(Why is that true? If I compute EQ[D
−1
∞ ], this should be the same as computing EP[1] — this is again one

of the consequences of the Radon–Nikodym derivative. But this is just 1. So EQ[D
−1
∞ ] is finite, which means

D−1
∞ <∞ almost surely.)

If you combine these two things (this is again why we need to assume your sample paths are continuous),
we get that

sup
t≥0

D−1
t <∞ Q-almost surely

(since you have a continuous function in time that converges at ∞ to something finite, so the entire path
has to be bounded).

Then you use mutual absolute continuity to go from Q-almost surely to P-almost surely (probability 1 events
are the same under both measures).

But now if you take inverses, you get that

infD−1
t > 0 P-almost surely.

Somehow, another kind of intuitive thing is that this uniform integrability condition sort of tells you you’re
not losing any probabilitiy mass as you go to ∞, because Dt → D∞ in L1 as well as almost surely. This is
saying it’s somehow intimately related to absolute continuity in some way.

The main thing about this proposition is that if you have absolutely continuous probability measures, that
gives you a natural martingale.

Now let’s talk about one more preliminary result before we get to Girsanov.
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Proposition 19.3

Let D be a CLMG taking strictly positive values. Then there exists a unique CLMG L such that

Dt = exp

(
Lt −

1

2
⟨L,L⟩t

)
.

Moreover, we have an explicit formula for L — we have

Lt = logD0 +

∫ t

0
D−1

s dDs.

Here D is a CLMG; because it takes strictly positive values, D−1
s is finite (on any finite interval, D−1 is

going to be bounded); that’s why this stochastic integral will be well-defined. So that’s the statement of the
theorem.

Proof. As usual, uniqueness kind of just follows — if you had Lt and L̃t which worked, that implies that
both become D once you take this exponential thing, but that implies

Lt −
1

2
⟨L,L⟩t = L̃t −

1

2
⟨L̃, L̃⟩t.

But that implies L − L̃ is both a CLMG (because each is a CLMG) and a FV process (because you can
move the CLMGs to the LHS and the QVs to the RHS, so you get that this difference is also a difference
of QVs), which means L− L̃ = 0.

For existence, you can recall that this form looks very familiar — it’s actually just E(L)t. So you want to
find L whose exponential local martingale gives you D.

But the exponnetial local martingale satisfies dE(L)t = E(L)t dLt. And you want E(L)t to be D. So you
want to find L such that

dDt = Dt dLt.

And then you make the guess that you should have dLt = D−1
t dDt. That’s where your guess comes from.

Now if you define dLt in this way, you just have to verify why this identity is true. And why is it going to
be true? The way Sky did it in the notes is that you can compute

d(logDt)

(the evolution of logD — here D takes strictly positive values, so going back to the Remark put on the
homework, technically log is not C2 on all of R, but if you assume your process takes strictly positive values,
you can do some localization argument to still apply Itô’s formula to logD), the derivative of log x is 1

x and
the second is − 1

x2 , so you get

d(logDt) =
dDt

Dt
− 1

2

1

D2
t

d⟨D,D⟩t.

In the notes, this was maybe written a bit confusingly; but you just want to verify that the right-hand side
itself you can write as dLt − 1

2d⟨L,L⟩t. Because if I can now say that the RHS is given by this evolution,
then I just integrate both sides, and then I get that

logDt − logD0 = Lt − L0 −
1

2
⟨L,L⟩t.

And then you see I just need to set L0 = logD0 (which is completely consistent with our identity) — because
the QV at time 0 starts at 0, and you want D0 = eL0 , which is why you want this.
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So we just need to verify that

dDt

Dt
− 1

2

1

D2
t

d⟨D,D⟩t = dLt −
1

2
d⟨L,L⟩t.

For this, you see that dL is already the dDt
Dt

term by definition, so we just want to say why the second terms
are equal — so I just want to compute

1

2
d⟨L,L⟩t.

And going back to properties of the QV, the way you internally think about it is that d⟨L,L⟩t = dLt dLt.
And if you think about it this way, you get

1

2
D−2

t dDt dDt =
1

2
D−2

t d⟨D,D⟩t.

The more formal way to say this is that

⟨(H ·K),M⟩ = H · ⟨K,M⟩,

and similarly if both your things are stochastic integrals, applying this thing twice gives you

⟨H ·K,H ·K⟩ = H2 · ⟨K,K⟩.

All we’re doing is writing this in differential notation, which is the same as this integral identity. (This
second way is how Le Gall writes it, but the first way is how at least Sky does calculations.)

Basically, the outcome of this is that the first proposition gives us a strictly positive martingale (it’s not just
a local martingale, but an actual martingale; and it’s strictly positive because we’re going to assume mutual
absolute continuity). That means we can now write that UI martingale as the exponential martingale of some
L. That’s kind of how you combine these two propositions. Now with that, we can talk about Girsanov’s
theorem.

§19.4 Girsanov’s theorem

Theorem 19.4 (Girsanov)

Let P and Q be mutually absolutely continuous with respect to F∞. Let

Dt =
dQ
dP

∣∣∣∣
Ft

.

Assume that (Dt) has continuous sample paths, and let (Lt) be the CLMG such that D = E(L).

Then if M is a CLMG under P, then N − ⟨M,L⟩ is a CLMG under Q.

In all our applications, the fact that (Dt) has continuous sample paths is going to be guaranteed. The second
proposition guarantees us that we can go from D to L (using the explicit formula stated).

We’ve erased the analogy with Gaussian change of measure; but you think of Q as a reweighting of P by
this exponential local martingale of L. So L before was µ ·X in the Gaussian change of measure analogy.
And now you’re saying if I start with a martingale under P (which you think of as something with mean 0),
when I change the measure, it no longer has mean 0 — M itself is no longer a martingale. But you subtract
out by the mean shift; and if you subtract out the mean shift ⟨M,L⟩, it really is a martingale. You should
think of ⟨M,L⟩ as analogous to Σµ in the Gaussian change of measure. So this is saying under a change of
measure, martingales have a mean-shift, and if you subtract that out you get back a martingale.

So that’s the statement; now let’s prove it. It’s really an exercise in Ito’s formula.
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Remark 19.5. Before the proof, we’ll remark that the notion of a local martingale depends on your
underlying probability measure (even for the notion of a martingale, you’re always taking expectations
with respect to your probability measure). On the other hand, the notion of a FV process does not
depend on the underlying measure. So basically the QV (or really, the bracket), which by construction
is a FV process, is FV under both P and Q. Because it’s a pathwise statement — that every sample
path is a FV function — so there’s nothing about expectations in that definition.

As a consequence, M is still going to be a semimartingale under Q — M − ⟨M,L⟩ is going to be a
CLMG, and its FV part is going to be ⟨M,L⟩.

Proof. This is an exercise in Ito’s formula; let’s see why. The claim is that M − ⟨M,L⟩ is going to be a
martingale under Q; this means I have to think about taking expectations like

EQ[(Mt − ⟨M,L⟩t)].

At least informally, I’d expect this to be 0. But Q is defined by a Radon–Nikodym derivative, so you can
transform expectations over Q to ones over P — basically, you want

E[Dt(Mt − ⟨M,L⟩t)] = 0.

This is just informal. What you’d actually expect is that when you compute the Ito differential under P,
you should have

d(Dt(Mt − ⟨M,L⟩)t) = dCLMG.

The point is when you compute Ito differentials, you have martingale parts and finite variation terms; and
the claim is that all the FV terms cancel out, so you get a CLMG. We’ll see that this will imply when you
back to Q, you’ll have just the first part being a CLMG.

So in summary:

Claim 19.6 — Under P, we have that Dt(Mt − ⟨M,L⟩t) is a CLMG.

Proof. Like we said, you want to apply Ito’s formula to a product of two semimartingales; as usual, you get

d(Dt(Mt − ⟨M,L⟩t)) = (dDt)(Mt − ⟨M,L⟩t) +Dt(dMt − d⟨M,L⟩t) + dDt(dMt − d⟨M,L⟩t).

Now we have to find some sort of cancellation using the definition of D.

Any martingale term we’re okay with — so for the first term, dDt · (· · ·) is a martingale term, because D is
a CLMG. So this term we’re okay with — it’s integration against a CLMG, which gives you a CLMG. So
we can ignore this whole first term.

For the second term, Dt dMt is also fine (because M is by assumption a CLMG). But we do have to care
about the Dt d⟨M,L⟩t term.

For the last term, dDt d⟨M,L⟩t is 0 because ⟨M,L⟩ is FV — you can only have nonzero brackets when
things have martingale parts.

So you’re going to get
−Dt d⟨M,L⟩t + dDt dMt +CLMG terms.

And we have to say why this first thing is 0. But for this, recall that D = E(L), which means dDt = Dt dLt

(since the exponential local martingale satisfies this SDE). Now you plug this in and get that the first line
is

−Dt d⟨M,L⟩t +Dt dLt dMt.

And now you see you can combine dLt dMt into d⟨M,L⟩t, and this is exactly the cancellation you want.

So all you’re left with in this computation is local martingale terms, which you’re okay with.
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So we’ve proved Claim 1, that this is a local martingale. Now how do we finish? Assuming no issues with
integrability — basically, just assume everything is bounded, or at least has all moments, so there are no
issues with integrability (so we’re assuming e.g. that it’s not just a CLMG, but actually a martingale) —
then the martingale identity says that

E[Dt(Mt − ⟨M,L⟩t) | Fs] = Ds(Ms − ⟨M,L⟩s).

Now you want to use this to conclude why M − ⟨M,L⟩ is a martingale under Q. But if we have A ∈ Fs,
then

EQ[(Mt − ⟨M,L⟩t)1A],

by the definition of conditional expectation I need to say why I can replace the t with the s here (that’ll
give me the martingale identity). For this, we convert Q-expectations into P-expectations by introducing D
— we get that

EQ[(Mt − ⟨M,L⟩t)1A] = E[Dt(Mt − ⟨M,L⟩t)1A].

And now using the martingale property for this, we can replace t with s to say this is

E[Ds(Ms − ⟨M,L⟩s)1A].

And now I can go back, and this is also

EQ[(Ms − ⟨M,L⟩s)1A].

So that gives the martingale property, in the ideal scenario where this thing is a martingale.

Now we have to handle the general case, where this thing is just a CLMG. That’s just the usual localization
arguments, though it’s not super immediate.

So to localize, we let

Tn = inf{t ≥ 0 | ⟨L,L⟩ ≥ n or |Lt| ≥ n or |Mt| ≥ n or ⟨M,L⟩t ≥ n}

(we basically want everything in the expectations to be bounded; the first two things ensure that D is
bounded, and the last two things ensure that Mt − ⟨M,L⟩t is bounded). Then for each n, the stopped
process

DTn
t (MTn

t − ⟨M,L⟩Tn
t )

is a bounded CLMG, and thus in fact a bounded martingale. This combines several results — one that
if you start with a CLMG and then add in a stopping time, you still have a CLMG. And by definition of
this stopping time, it’s going to be bounded; and we have a result saying any bounded CLMG is actually a
martingale.

So that’s the first step of the localization. Now all you want to do is now that you have a finite n, you get
some martingale identity like the above thing; and then you just send n→∞.

But you have to be kind of careful, for reasons we’ll explain. In the end, you want to verify that M −⟨M,L⟩
is a local martingale; now that you’ve localized and gotten a bounded martingale, you want to show that
under Q, this stopped process MTn − ⟨M,L⟩Tn is a martingale. (Once we show this, we’re done — the
definition of CLMG just means you can find a sequence of stopping times Tn ↑ ∞ such that for every n you
have a UI martingale).

Your first try would just be to mimic what we did before — you want to fix s ≤ t, take an event A ∈ Fs,
and then you want to compute

EQ[(M
Tn
t − ⟨M,L⟩Tn

t )1A].

And then you’d do the usual thing where you convert this into an expectation with respect to P, as

EQ[D• · (MTn
t − ⟨M,L⟩Tn

t )1A].
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But you have to be careful what you put in D• — you can only really put in Dt. What you really want to
put in is DTn

t , since you know that the stopped process itself is a P-martingale. But you don’t actually have
this identity a priori where you can put in DTn

t . Why? In general, you worry about if Tn ≤ t. What we
want to say is that the time you put in here has to be larger than the times in the rest of the thing — 1A
is going to be Fs-measurable, and (MTn

t − ⟨M,L⟩Tn
t ) is going to be FTn∧t-measurable. So we need to make

sure our time in D is larger than both of these. So the problem is if for some reason you have Tn ≤ s — in
that case you cannot put DTn∧t here, because you need the time to be greater than both the times Tn ∧ t
and s (kind of by definition of what the density is).

So at best, what you can hope for is probably Dt (since definitely t ≥ s and t ≥ Tn ∧ t). But then you have
a problem — because this is not the thing you know is a martingale; you only know it’s a martingale with
DTn

t .

So that’s why we said you have to be careful. But you can get around this. How? You first just take your
event A ∈ FTn∧s. For such an event, you can actually write

EQ[(M
Tn
t − ⟨M,L⟩Tn

t )1A] = E[DTn
t (MTn

t − ⟨M,L⟩Tn
t )1A],

because now you’re not worried about if Tn ≤ s (then 1A is going to be FTn-measurable, not just Fs-
measurable). And now that you’ve got this thing, which is a bounded martingale, you can apply the
martingale identity to replace t with s; we definitely have FTn∧s ⊆ Fs, so we can turn this into

E[DTn
s (MTn

s − ⟨M,L⟩Tn
s )1A].

And then we can write this as
EQ[(M

Tn
s − ⟨M,L⟩Tn

s )1A].

So the message is that the same computation as before works, but only if you restrict A ∈ FTn∧s.

What does this give you? It gives you some identity of conditional expectations, but with respect to the
σ-algebra FTn∧s instead — the outcome is that

EQ[(M
Tn
t − ⟨M,L⟩Tn

t ) | FTn∧s] = MTn
s − ⟨M,L⟩Tn

s .

But basically this allows you to conclude. Why? Now if I take a conditional expectation

EQ[M
Tn
t − ⟨M,L⟩Tn

t | Fs],

what I really want to show is that this thing on the inside is the martingale, so I want to show this thing is
equal to the stopped process at s. But what you do now is just split based on whether the stopping time is
above or below s — for simplicity, we’ll write MTn

t − ⟨M,L⟩Tn
t = XTn

t . Then we have

EQ[X
Tn
t | Fs] = EQ[1(Tn ≥ s)XTn

t | Fs] + EQ[1(Tn < s)XTn
t | Fs].

Then you notice that the second term is kind of a trivial conditional expectation — if Tn < s, then XTn
t is

just equal to XTn
s . And then the conditional expectation doesn’t do anything (because the thing is already

Fs-measurable); so we can write

EQ[1(Tn < s)XTn
t | Fs] = XTn

s 1(Tn < s).

For the first term, we want to use the identity we just arrived at; so we want to say that it’s equal to

EQ[1(Tn > s)XTn
t | FTn∧s].

At least intuitively, why is this believable? On the event Tn > s, the Tn ∧ s becomes s, which is what you’re
conditioning on originally. So that’s the heuristic, but you actually have to verify why it’s true. We skipped
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it in the notes, but you can try verifying it yourself; it’s a good exercise (you just have to play with the
definition of conditional expectation).

But now that you can actually have this, we can pull out 1[Tn > s] (since it’s measurable with respect to
the σ-algebra we’re conditioning on) to get

1(Tn > s)EQ[X
Tn
t | FTn∧s] +XTn

s 1[Tn < s].

And now we can use the identity we just proved to get that this is

1(Tn ≥ s)XTn
s +XTn

s 1(Tn < s) = XTn
s .

And now if we plug in what X was, we see that (XTn
t ) = (MTn

t − ⟨M,L⟩Tn
t ) is a Q-martingale.

And once we know the stopped process is a martingale, the unstopped process M − ⟨M,L⟩ is a CLMG.

That’s it for Girsanov. The main takeaway is if you ignore this technical stuff about integrability, it’s just
Ito’s formula and realizing the two FV terms cancel each other — to show something’s a martingale, you
compute its evolution using Ito and show the FV terms cancel. That makes you believe things should work,
but in the general case you then need this localization argument, which you have to think through.

Remark 19.7. One comment is that it might have been better to organize the proof this way, to make
things more clear: What we just showed is that if you have some process X times this likelihood ratio
martingale D, then if the stopped process (XD)T is a P-martingale, then the stopped process XT by
itself is a Q-martingale. That’s basically what we showed, for this specific case of X = M − ⟨M,L⟩.
It’s somewhat believable because D is what lets you convert expectations iwth respect to Q into ones
with respect to P.

Next time we’ll continue talking about Girsanov’s theorem.

Remark 19.8. One thing Sky wanted to mention at the beginning of class, a remark on the martingale
representation theorem — last time, there was a question about how this theorem doesn’t contradict
the kind of process where you have a martingale that starts at 0, is constant until time 1, and then you
flip a coin and if it’s heads it becomes 1 from then on forever, and if tails it becomes −1? This is a
martingale; let’s call it Mt. And it’s kind of clear this cannot have a continuous modification — there’s
no way to resolve the jump here.

But we said that every martingale has a continuous modification. . .

The point is there’s no way you can write this as Mt = E[f(B) | Ft]. Any martingale that’s bounded
and adapted to your Brownian filtration, you can write as a function of your entire Brownian path B,
conditioned on Ft. And the point is there’s no way to find a function f such that you get a process
that looks like this. So the point is that it’s impossible to realize such a martingale as being adapted
to the filtration of your BM.

§20 April 16, 2025

§20.1 Some consequences of Girsanov

Let’s quickly discuss some immediate consequences of Girsanov’s theorem.

Recall that in the setting of Girsanov, you define a measure Q with respect to P, and it’s basically coming
out of some sort of exponential martingale of a martingale L, i.e.,

dQ
dP

= E(L)∞
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(we assume Q and P are mutually absolutely continuous, so there are some restrictions on L).

Under this change of measure, Girsanov’s theorem basically tells you how martingales change. It tells you
the drift a martingale picks up when you change the measure, because it tells you what you have to subtract
to get a martingale again. Specifically, a CLMG under P is a CSMG under Q — the reason you know that
is Girsanov gives you teh explicit decomposition

M = (M − ⟨M,L⟩) + ⟨M,L⟩.

We mentioned last time that the concept of a FV process doesn’t depend on the underlying probability
measure, so ⟨M,L⟩ is still FV; and Girsanov says that M − ⟨M,L⟩ is a CLMG under Q.

It also follows that CSMGs under P are also CSMGs under Q (again because the concept of FV processes
doesn’t depend on the probability measure), and vice versa. So the notion of CSMG doesn’t depend on
your probability measure.

That’s one comment. The second is:

Fact 20.1 — Let X and Y be CSMGs under P (and therefore also Q). Then actually, ⟨X,Y ⟩ is the
same under P and Q.

The reason for this is that you could have computed the probability as a limit in probability of discrete
approximations, as

⟨X,Y ⟩t = lim

pn∑
i=1

(Xtni
−Xtni−1

)(Ytni − Ytni−1
)

(where the limit is in probability). And since P and Q are mutually absolutely continuous, convergence
in probability under P is equivalent to convergence in probability under Q. It’s not immediately obvious
why this is true, because absolute continuity is a statement about measure-0 sets, whereas convergence in
probability is a statement about probabilities tending to 0. But one way you could see the equivalence is

to use that Xn
prob−−→ X is equivalent to the statement that for all subsequences Xnk

, there exists a further

subsequence Xnkj
such that Xnkj

a.s.−−→ X. (This is a fact we won’t prove.) So the point is that convergence

in probability is equivalent to this statement about almost sure convergence; and this is about probability
0 or 1 events, so it’s going to be the same under P and Q.

The final comment is that if B is an (Ft)-Brownian motion under P, then B̃ = B−⟨B,L⟩ is a CLMG under
Q, and moreover by the above fact (and the fact that the bracket doesn’t care about the FV term ⟨B,L⟩),
we have

⟨B̃, B̃⟩t = ⟨B,B⟩t = t.

Then Lévy’s characterization implies that B̃ is an (Ft)-Brownian motion under Q.

§20.2 Conditions for uniform integrability of E(L)

Now we’ll talk about something a bit technical. We want to talk about conditions which allow you to
apply Girsanov’s theorem. In Girsanov’s theorem, the assumption is that Q and P are mutually absolutely
continuous. What you really need is that E(L) is uniformly integrable. So you want to understand conditions
on L for which E(L) is actually a uniformly integrable martingale — if you know E(L) is a UI martingale,
that’ll imply Q and P are mutually absolutely continuous (one needs to prove this, but we’ll skip that).

Let’s first suppose that L is a CLMG with L0 = 0 (at least, almost surely), and ⟨L,L⟩∞ <∞ almost surely.
This latter condition implies that L∞ exists almost surely. This was probably on the homework one or two
weeks ago. In a couple of sentences, why would this be true? First, if ⟨L,L⟩∞ is integrable, then you have
a L2-bounded martingale; then it’s UI integrable, and you can apply the convergence theorem. But if this
is finite almost surely, you can do some truncation argument to basically pretend it’s bounded — you take
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a stopping time which is the first time this goes above some level. Then you’re bounded. And because it’s
finite almost surely, the limit of these stopping times goes to ∞.

The point of all this is that under these conditions, E(L)∞ is well-defined (since it’s defined in terms of L
and its QV; and if both of these things exist at time ∞, then you can talk about E(L)∞).

So in other words, then E(L) is a nonnegative CLMG which converges almost surely to the corresponding
thing

E(L)∞ = exp

(
L∞ −

1

2
⟨L,L⟩∞

)
.

And in particular, by Fatou, this implies that

E[E(L)∞] ≤ 1.

We might also want to assume here that E(L) is a true martingale. At least if you assume that, then this is
true (by Fatou’s). In principle, you want E[E(L)t] ≤ 1 for all t to conclude by Fatou that inequality. And
it will be exactly equal to 1 if this thing is a martingale, because L0 = 0.

And now the claim is that actually if this is an equality, then this martingale is a UI martingale.

Claim 20.2 — If E[E(L)∞] = 1, then E(L) is a UI martingale.

Proof. Intuitively, why that would be true is the fact it might be strictly less than 1 is kind of saying you’re
losing mass as you go off to∞. The classic example of something that’s L1-bounded but not UI is where you
take a sequence of thinner and thinner functions (rectangular boxes) where the width is 1

n and the height
is n. Then the almost sure limit is going to be 0, but for every finite n it has L1-norm 1. So you’re losing
mass to ∞. The point of this condition that it’s exactly equal to 1 is more or less ruling out this scenario.

To see why this implies uniform integrability, you can first apply conditional Fatou to say that

E[E(L)∞ | Ft] ≤ E(L)t.

But if you now combine this with E[E(L)∞] = 1, you obtain that this is actually an equality almost surely
— i.e.,

E[E(L)∞ | Ft] = E(L)t.

The point is that if the expectation of the LHS is 1, well, we also know E[E(L)t] = 1 (since we’re assuming
this thing is a martingale, so the expectation at every finite time is 1). But if you have this inequality, then
there’s no way for it to be strict on some positive-probability event (then there’s no way their expectations
would be equal).

So combining this with the assumption, you get that actually E[E(L)∞ | Ft] = E(L)t; and that gives you a
UI martingale.

We want to give conditions under which E[E(L)∞] = 1, and that’s going to imply we get a UI martingale.
Now if we define this new measure Q in that way, we get a situation where we can apply Girsanov’s theorem.

Theorem 20.3

Let L be a CLMG such that L0 = 0. Consider the following three properties:

(i) (Novikov’s criterion) E[exp(12⟨L,L⟩∞)] <∞.

(ii) (Kazamaki’s criterion) L is a UI martingale and E[exp(12L∞)] <∞.

(iii) E(L) is a UI martingale.

Then (i) =⇒ (ii) =⇒ (iii).
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So this gives you criteria under which you get that E(L) is a UI martingale. In practice, (i) is the one we’re
going to see most often, because ⟨L,L⟩∞ is probably actually going to be bounded for us, so (i) will be
trivial to verify.

The proof is kind of playing around with technical things.

Proof of (i) =⇒ (ii). The first thing to notice is that (i) implies

E[⟨L,L⟩∞] <∞

(the assumption on the exponential is much stronger). Once you have this, you know at least that L is a UI
martingale (actually it’s L2-bounded, which is even stronger). And then what you now say is, we’re trying
to bound E[exp(12L∞)]. So you take this and kind of want to introduce the thing in (i), which you have
control of; you can write

E
[
exp

(
1

2
L∞

)]
= E

[
E(L)1/2∞ · exp

(
1

4
⟨L,L⟩∞

)]
.

And now you can use Cauchy–Schwarz to bound this by

E[E(L)∞]1/2E
[
exp

(
1

2
⟨L,L⟩∞

)]1/2
.

But we just showed the first thing is at most 1, and the second part is finite by assumption.

Remark 20.4. To justify E[E(L)∞] ≤ 1, we might need to justify why this condition implies E(L) is a
true martingale.

But actually we can get away without assuming E(L) is a true martingale — there’s a result that a
nonnegative CLMG is actually a supermartingale (basically the proof is actually Fatou’s), so you will
have E[E(L)t] ≤ 1 because it’s a supermartingale.

So this part wasn’t too bad; really the work is in showing that (ii) implies (iii). This is where you have to
be quite clever.

Proof of (ii) =⇒ (iii). First, since L is a UI martingale, by the optional stopping theorem you have that
for all stopping times T , we have

LT = E[L∞ | FT ].

And then you use conditional Jensen’s to bound

exp

(
1

2
LT

)
≤ E

[
exp

(
1

2
L∞

)
| FT

]
(LT is itself a conditional expectation; Jensen’s inequality lets you put a convex function inside the expec-
tation, and conditional Jensen’s lets you put it inside the conditional expectation).

Now, your assumption is that E[exp(12L∞)] < ∞. Something that was mentioned at some point when we
talked about UI martingales is that if you have an integrable function, then the collection of all random
variables formed by taking conditional expectations with all sub-σ-algebras is a UI collection — so the
collection (E[exp(12L∞) | FT ]) is UI (where this collection is indexed by stopping times T ).

Let’s also quickly write the definition of uniform integrability for a collection, since we’re going to use it
later:
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Definition 20.5. For an arbitrary collection of random variables (Xλ)λ∈Λ, we say it’s uniformly inte-
grable if for all ε > 0, there exists δ > 0 such that for any event P[A] < δ, we have

sup
λ∈Λ

E[|Xλ|1A] ≤ ε.

This is some sort of uniform control over the tails of all your random variables — the key point is you
can find some condition so that as long as you satisfy P[A] < δ, it works for all random variables in your
collection. This is quite a stringent condition.

But we have that this collection is UI, and that exp(12LT ) is bounded by a random variable in this collection,
and it’s also nonnegative. So if you look at the definition of uniform integrability, you also get that the
collection of random variables (exp(12LT )) (again indexed by stopping times T ) is UI.

That’s the first thing to note that we’ll use.

And now, you want to introduce an auxiliary parameter 0 < a < 1. You should think of it as close to 1 —
we’ll eventually take a → 1 — but the purpose of this is to give you some room in applying Hölder, as we
will see.

So fixing this parameter a, we define

Z
(a)
t = exp

(
a

1 + a
· Lt

)
.

As a comment, since a < 1, this a
1+a is always strictly less than 1

2 , which means we’ll be able to bound the

expectation of this by the expectation of exp(12Lt), by Hölder. In particular, these random variables are
integrable; and they’re also in Lp for some p > 1 which depends on a.

One thing you realize is that you can write

E(aL)t = exp

(
aLt −

a2

2
⟨L,L⟩t

)
(so instead of E(L), we have E(aL)), by definition. And it turns out that you can write this as

E(aL)t = E(L)a
2

t · (Z
(a)
t )1−a2 .

This is some algebra — the point is that the a2 in E(L)t takes care of the QV term, so you just have to say

why when you combine the appropriate power of Z
(a)
t plus a2L, you’re going to get aL. The identity you

use is basically

a2 + (1− a2) · a

1 + a
= a2 + (1− a)a = a.

So that’s one thing to note. Next, what we’re going to show is that, actually this is going to define for us a
UI collection of random variables:

Claim 20.6 — The collection of random variables (E(aL)T ), indexed by stopping times T , is uniformly
integrable.

Proof. Well, we have this identity for E(aL)t, so somehow we want to bound this in terms of our two terms.
And because a

1+a < 1
2 , we’ll be able to use control of exp(12L) to control Z; and the E(L)a2t term will be

fine, because its expectation is going to be at most 1 for similar reasons to before.

We’re going to try to directly verify the condition of UI. So let Γ ∈ F (this plays the role of the event A
from the event). Our goal is to estimate

E [1ΓE(aL)T ] .
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Now you use the identity for E(aL)t combined with Hölder to estimate this by

E [E(L)T ]a
2

E
[
1ΓZ

(a)
T

]1−a2

.

Basically, what you did here was you used the fact that E[XY ] ≤ E[Xp]1/pE[Y q]1/q where 1/p + 1/q = 1.
Then you just need to choose the right p and q. You want to get exactly one power of E(L)T in the
expectation, while in the bound you have a2. So you want to choose p such that pa2 = 1, i.e., p = 1/a2.

That imposes 1/q = 1− a2, so in other words q = 1/(1− a2). Then you see that when you raise (Z
(a)
t )1−a2

to the qth power, this also becomes 1.

And E(L) is a nonnegative supermartingale, so E[E(L)T ] ≤ 1; and you’re just left with the second factor,
which is at most

E[1ΓZ
(a)
T ]1−a2 .

Now we’re going to use Hölder again to bound this by

E

[
1Γ exp

(
1

2
LT

)(1−a2)· 2a
1+a

]
.

Where does this come from? Here we used the fact that E[X] ≤ (EXp)1/p, and you just want to again
choose the right p. And since a < 1, we have a

1+a < 1
2 . So you want p · a

1+a = 1
2 (since the thing with 1

2 is

what you control — we said the thing with 1
2 is UI). And we have this equation for p; that means we should

have p = 1+a
2a . And thus when we take Zp, we’re goin gto get this 1

2 by construction, and when we take 1/p
on the outside, we get 2a

1+a .

But now we use the fact that the collection exp(12LT ) is UI; that’s going to imply our claim, because you
just look at the definition of uniform integrability. We can bound E[1ΓE(aL)T ] by this, and if this is UI
then we’re done.

Student Question. Where did we use a < 1?

Answer. The first step seems fishy if a = 1 — specifically, where we bound

E[1ΓE(aL)T ] ≤ E[E(L)T ]a
2
E[1ΓZ

(a)
T ]1−a2 .

The problem is here you need p = 1 and q =∞; then you get the L∞ norm of Z, and we don’t control
that. We control the expectation of Z to some power, but we don’t know that Z is actually bounded.

Now we’re almost done, but there’s still some work left to do. Now we know this collection (E(aL)T )T a stopping time

is UI. Finally, since E(aL) is a CLMG — basically, we want to show that E(aL) is UI (this is what we’re
working towards). You can then believe that if we know it’s UI for all a < 1, by some limiting procedure as
a→ 1, you would get the uniform integrability of the thing we actually want, i.e., E(L).

Why is this going to be a UI martingale? Well, we just showed it’s UI, so we just need to show it’s a
martingale. But a CLMG which is UI is not necessarily a martingale, so we have to be careful.

At least, since it’s a CLMG, there is a sequence of stopping times (Tn) such that the localized versions

(E(aL)t∧Tn)t

are UI martingales. And then for s ≤ t, I want to verify the martingale identity. So if I take the conditional
expectaiton at time t given Fs, i.e.,

E[E(aL)t | Fs],
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the value at time t is the pointwise limit of these stopped processes as n→∞, so this is

E
[
lim
n→∞

E(aL)t∧Tn | Fs

]
.

And now you use the fact that if you fix t and consider this as a collection of random variables in n, it’s
UI (because of the above claim). And because it’s UI, you can commute the expectation and limit (this is
some sort of conditional version of a limit theorem), so this is

lim
n→∞

E[E(aL)t∧Tn | Fs].

This is very important — it’s the step that doesn’t hold in general for a UI CLMG. The fact you have a
CLMG tells you this (E(aL)t∧Tn)t is UI in t for a fixed n; but even if you assume the original process is UI,
you don’t know that if you fix t, the thing is UI in n — that’s not true in general, but for us it is true,
because we were able to show it.

And because E(aL) is a UI martingale, this is equal to

lim
n→∞

E(aL)s∧Tn = E(aL)s.

So we’ve shown that E(aL) is a martingale.

Now that you have this martingale identity, you might try to conclude by taking limits in a. That’s not
what we do (you probably run into some issue). Instead, you recall that it suffices just to lower-bound the
expectation of the thing at time ∞ by 1 — to show that E(L) is a UI martingale, it suffices to show that
E[E(L)∞] ≥ 1, because we basically have the argument we just erased.

So we’re going to try to lower-bound this expectation by 1, and here is where you’ll be able to take limits
in a. We have a UI martingale for a < 1, which means

E[E(aL)∞] = E(aL)0 = 1.

And then you again use this identity

E(aL)t = E(L)a
2

t (Z
(a)
t )1−a2 ,

now at time ∞, to write this as a product

1 = E[E(aL)∞] = E
[
E(L)a2∞(Z(a)

∞ )1−a2
]
.

(We’re just inserting our previous identity.) And then you just do the same thing where you apply Hölder
in exactly the same way, which should give that this is at most

E[E(L)∞]1/a
2
E[Z(a)

∞ ]1−a2 .

This is true for all 0 < a < 1. And now you take the limit. You want to claim that E[Z(a)
∞ ]1−a2 → 1 as

a→ 1. Why is that going to be true? Well, we need one more step of Hölder here to replace this expectation
by E[exp(12L)], precisely as we did before, because that’s the thing we control; so applying Hölder again, we
get that this is at most

E[E(L)∞]1/a
2
E
[
exp

(
1

2
L∞

)](1−a2)· 2a
1+a

.

Now the good thing is that E[exp(12L∞)] doesn’t depend on a; the only dependence on a is in the exponent.
And it’s finite by assumption. So now we can send a ↑ 1, and we get E[E(L)∞] ≥ 1, which is precisely what
we wanted.
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Student Question. Where does the first equality

E[E(aL)t | Fs] = E
[
lim
n→∞

E(aL)t∧Tn | Fs

]
come from?

Answer. It’s just true pointwise, even before you take the conditional expectations, since Tn ↑ ∞. The
line after that uses the uniform integrability of the collection (E(aL)t∧Tn)n, which is the thing that you
had to prove.

§20.3 Applications of Girsanov

Now we can talk about more applications of Girsanov.

Suppose b is a bounded measurable function of time and space — i.e., on R+ × R (where R+ is your time
variable, and R your space variable). Assume g ∈ L2(R+,B(R+), dt) is L

2 with respect to the usual Lebesgue
measure, such that you have a pointwise bound

|b(t, x)| ≤ g(t).

Example 20.7

As a model scenario which satisfies this assumption, for instance if b is bounded on some finite intervla
of time [0, A] × R and 0 outside this interval — so for times before A it’s bounded on this space, and
after that it’s 0. Then you can make g also be 0 after time A, and it’s also going to be bounded; so you
get a L2 function that way. So that’s one scenario where you’ll have this assumption be satisfied.

Now let B be an (Ft)-Brownian motion. We’ll define a process

Lt =

∫ t

0
h(s,Bs) dBs.

In principle, one has to check that b(s,Bs) ∈ L2(B). The fact that it’s going to be in L2(B) should just
come from the assumptions on b and g — we have to bound something like

E
[∫ ∞

0
|b(s,Bs)|2 ds

]
.

But you have this pointwise bound by g, which is actually a (deterministic) L2-function; so this is bounded
by ∫ ∞

0
g(s)2 ds <∞.

So the norm bound is fine. But you also have to check that it’s progressive, because L2(B) is the set of
progressive processes satisfying this bound. This we’re just going to skip (usually with these measurability
things, it should be true — at least if b is continuous you’d definitely believe it, because any continuous
process which is adapted is also progressive, so at least if the thing is continuous it should be fine; and if b is
just a general measurable function, maybe you just approximate it by continuous functions or something).
So we’re not going to check this.

Then we can look at the associated exponential martingale

E(L)t = exp

(∫ t

0
b(s,Bs) dBs −

1

2

∫ t

0
b(s,Bs)

2 ds

)
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(the first term is L, and the second is ⟨L,L⟩).

We already estimated
∫
b(s,Bs)

2 by
∫
g(s)2, and the estimate is true even before you take expectations

(because it comes from the pointwise bound). So the first condition in Theorem 20.3 is true — we have

⟨L,L⟩∞ =

∫ ∞

0
b(s,Bs)

2 ds ≤
∫ ∞

0
g(s)2 ds <∞.

So this is actually a bounded random variable, which means (i) is satisfied.

So Theorem 20.3 says that E(L) is a UI martingale (which we’ll call D). Now we can apply Girsanov’s
theorem — let a new measure Q be defined by

dQ
dP

= D∞ = E(L)∞.

By Girsanov — we started with a Brownian motion B, so if we apply Girsanov’s theorem with the local
martingale M being B, we fet that

B − ⟨B,L⟩

is an (Ft)-Brownian motion under Q. This is combining Girsanov with the third consequence mentioned in
class today — this is a CLMG and its QV is the same as that of BM, so it’s actually a BM by Levy.

Moreover you can compute this bracket, because L is actually just a stochastic integral against B — so we
have

B − ⟨B,L⟩ = B −
∫ t

0
b(s,Bs) ds.

So let’s define this process

βt = Bt −
∫ t

0
b(s,Bs) ds.

Then under Q, (βt) is a Brownian motion.

You can put this another way — under Q, there exists an (Ft)-Brownian motion (βt) such that the process
X = B (this is more for notational reasons) satisfies the SDE

dXt = b(t,Xt) dt+ dβt.

Why does X satisfy this SDE? Well, recall that SDEs are just integral equations; written in integral form,
we’re supposed to have

Xt =

∫ t

0
b(s,Xs) ds+ βt.

But then you just look at the definition of β — β is your BM minus precisely this first part, because we
defined X = B. So by this definition of β, you have this identity, which you could write in SDE notation
like this.

The whole point of all this, the thing to be emphasized, is you don’t need any assumptions on b in terms
of regularity. For instance, you don’t need to assume b is Lipschitz in its variables. So the consequence of
this application is that if you want to solve an SDE of this form, at the very least you can find a probability
space and a BM and a process X which solves your SDE. And again, you don’t need to assume b is Lipschitz
or has any regularity properties. This is in sharp contrast to usual ODE properties — you might recall
that usually to talk about existence for ODEs, b has to somehow depend continuously on your parameters,
because you usually set up some fixed-point contraction mapping argument (you view an ODE as an integral
equation and want to say the RHS defines a contracting map, and then you apply fixed point theorems to
conclude; but in order for it to be a contraction map, you usually need b to have regularity). Girsanov gives
you a different way to construct solutions to SDEs (which are like stochastic ODEs) using probability theory
(change of measure) instead of more analytic considerations.
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In the last week, we’ll hopefully come back to how you could construct a solution to this SDE using fixed-
point arguments. Maybe I give you a Brownian motion and want a solution to this SDE with this precise
BM; that’s more restrictive, and then you do need a fixed-point argument. This is more flexible — it’s
saying I can find a BM on some probability space and a process X satisfying the SDE, so your notion of
‘solution’ is looser.

§20.4 Cameron–Martin formula

Now let’s talk about a special case of this example, called the Cameron–Martin formula.

Suppose now that actually this function b is just b(t, x) = g(t) — so your function doesn’t depend on space
now, just time. And as before, suppose g ∈ L2(R+). For t ≥ 0, let

h(t) =

∫ t

0
g(s) ds

(this is the
∫ t
0 b(s,Bs) ds term from before, coming from ⟨B,L⟩).

Definition 20.8. The set of all functions h of this form is known as the Cameron–Martin space, and
denoted by H.

Remark 20.9. You’re basically saying that for any such function, its derivative is in L2 (since ḣ = g).
So basically, the Cameron–Martin space is a sort of L2-based Sobolev space of order 1, but restricted to
the set of functions starting at 0. This is a side comment, but if you’ve taken analysis before you might
have seen Sobolev spaces, and that’s what this is — functions that have one derivative in L2 (and start
at 0).

From this previous discussion, we can define a new probability measure Q; in this particular case, it will be
given by

dQ
dP

= exp

(∫ ∞

0
g(t) dBt −

1

2

∫ ∞

0
g(t)2 dt

)
= D∞.

And then as a special case of the previous result, under Q, the process

βt = bt − h(t)

is a Brownian motion.

What’s a consequence? If you think of β as a random variable taking values in C[0,∞] (the space of continu-
ous functions), you can think about measurable functions of this random variable — Φ : (C([0,∞)), C)→ R+,
where C is the smallest σ-algebra making all your coordinate functions measurable (from the first home-
work; don’t worry about it too much). The point is I’m viewing β as a single random variable, rather than
a stochastic process.

And then we’re saying if I compute
E[D∞Φ(B)]

(so I’m taking some expectation of some function of my Brownian path), the fact that I have D∞ here
means that this is

EQ[Φ(B)]

(by the way that Q is defined). But under Q, I can write this as

EQ[Φ(β + h)]
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(because that’s what B is). And the claim was that under Q, β is a BM. So it has the same law as B under
P. So I could actually have written this as

E[Φ(B + h)],

because the law of β under Q is the same as that of B under P (they’re both Brownian motions).

That leads to the following result. Basically, a consequence of this is that the law of a shifted BM is
absolutely continuous with the law of a BM. Let’s write this a bit more precisely.

Theorem 20.10 (Cameron–Martin formula)

Let W (dw) be the law of Brownian motion, i.e., the Wiener measure on C([0,∞), C). Let h ∈ H (this
means it starts at 0 and its derivative is in L2). Then for any nonnegative measurable Φ, we have∫

W (dw)Φ(w + h) =

∫
W (dw)Φ(w) · exp

(∫ ∞

0
h(t)dw(t)− 1

2

∫ ∞

0
h(t)2 dt

)
.

Here w is a continuous function; so the LHS is actually another way of writing E[Φ(B+h)] (I’m just rewriting
this identity in some other way). And for the LHS, again this is an expectation with respect to B, so I can
write it as an integral with respect to this Wiener measure. There’s a Φ(w), because we had Φ(B); and
then D∞ is what we wrote up there.

Note that
∫∞
0 h(t) dw(t) is defined for W -almost every w (it’s an Ito integral, defined by some Ito isometry;

so it’s defined for almost every w, but that’s okay for this formula).

Another way to say this is that if I think about the law of this shifted BM, I can reduce any expectation
of the shifted BM to an expectation with respect to the original. You might think that’s useful because we
understand BM very well, perhaps better than if you dd in some shift. So if you let Wh be the law of B+h,
this measure Wh is again going to be a probability measure on (C([0,∞)), C). And to integrate functions
against Wh, you have ∫

Wh(dw)Φ(w) =

∫
W (dw)Φ(w + h).

(This is some abstract thing about pushforwards.) But the point is that Wh is absolutely continuous with
respect to W , and its RN derivative or density is precisely this extra thing

dWh(w)

dW (w)
= exp

(∫ ∞

0
h(t) dw(t)− 1

2

∫ ∞

0
ḣ(t)2 dt

)
.

(This is just another way of writing the theorem, since the LHS of the theorem is
∫
Wh(dw)Φ(w).)

So this says the law of shifted BM is absolutely continuous with respect to the law of BM, and its RN
derivative is given by this exponential local martingale. You can imagine if you take h(t) = ct (so it’s a
linear function), you’re basically shifting BM by a line — so now you have a straight line plus a BM. Then
ḣ(t) = c. (This is technically not in L2, but you can do a version of this for finite time, so that’s fine.) Then
you’re basically saying the law of Bt + ct relates to the law of Bt by something like

exp

(∫ T

0
c dBt −

1

2
c2t

)
.

But if I integrate against a constant in a stochastic integral, I just get the constant times B; so this becomes

exp

(
cBt −

1

2
c2t

)
.

(The point is you can do this same thing for a finite interval, where your laws are on finite times and ∞
is replaced by a finite time; then you can describe the law of shifted BM as some density times the law of
BM.)
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Remark 20.11. Next week Monday is a holiday. Sky will be gone on Wednesday, so there will be a
substitute. We’ll start with Markov processes, because they’re needed for the more interesting stuff
we’ll talk about in the final weeks of class.

§21 April 23, 2025

Sky is not here, so Jeonghyun Ahn is giving the lecture.

Today we’ll start a new topoic, called Markov processes. This will be the main theme of the rest of our
lecture; and in the end, we’ll see some connections between Markov processes and SDEs.

§21.1 Markov processes — intuition

You can intuitively think of a Markov process as a continuous generalization of Markov chains. Let’s recall
the definition of a Markov chain:

Definition 21.1. A Markov chain on a finite state space S is given by a transition matrix p : S × S →
[0, 1], where p(x, y) = P[X1 = y | X0 = x].

Here the states are discrete, and time is also discrete — we’re going from time 0 to time 1, time 2 to time
3, and so on.

For Markov processes, we want to generalize this in two extents. First, we want to make the state space into
some general measurable space. Second, we want to make time continuous. These two generalizations will
define something called a Markov process. So defining a Markov process will be one goal of today’s lecture.

§21.2 Infinite state space

First, we want to generalize the state space to some measurable space (E, E). To define a transition kernel
(as with finite Markov chains), the inutition is that it should look like

p(x,A) = P[X1 ∈ A | X0 = x] for x ∈ E and A ∈ E .

This will be the motivation for defining a Markov transition kernel, which basically serves the same role as
the Markov transition matrix for finite chains.

Definition 21.2. A function Q : E×E → [0, 1] is called a Markov transition kernel if it has the following
two properties:

(1) For every x ∈ E, the map E → [0, 1] given by A 7→ Q(x,A) is a probability measure on (E, E).

(2) For every A ∈ E , the map E → [0, 1] given by x 7→ Q(x,A) is measurable with respect to E .

So this is a function which takes a state and a measurable set. The first condition says that if you fix any
state x, then you get a measure on E.

Later we’ll see that Q will correspond to the above object p we introduced.

Remark 21.3. One can see that if E is countable, then the Q we defined here is just the same as
the transition kernel for a Markov chain (the kind we know pretty well) — then we can just track
(Q(x, {y}))x,y∈E (we track the probabilities of going from state x to state y). These will determine Q;
and this is the same thing as the transition kernel of the Markov chain.

We want to make one more definition — we also want to be able to apply Q to a function.
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Definition 21.4. Let f : E → R be bounded and measurable. Then we define Qf by

(Qf)(x) =
∫
E
f(y)Q(x, dy).

When we write Q(x, dy), we mean we’re integrating with respect to the measure Q(x, •) (where you fix x,
and plug in your set A ∈ E — this gives a probability measure).

Intuitively what this function means is, you just start at x, and observe the state after one step and take the
expectation of f at that new state — so we think of (Qf)(x) as E[f(X1) | X0 = x]. This is just intuition,
because we haven’t yet made sense of what Xt is; but this is what you should think of Qf as.

Fact 21.5 — The function Qf is also bounded and measurable.

Proof. To see that it’s measurable, you can first check this for indicator functions f = 1A — then we have

(Q1A)(x) = Q(x,A)

(applying Q is the same as plugging in A into your transition kernel), which is measurable by definition.

And since we have measurability for indicator functions, you can use simple function approximation to argue
that Qf is measurable in general (because a limit of measurable functions is measurable).

For boundedness, you can just observe that Q(x, •) is a probability measure — so we have

|(Qf)(x)| ≤
∫
|f(y)| Q(x, dy) ≤ ∥f∥∞

(because Q(x, •) is a probability measure).

Remark 21.6. In the above proof, we just bounded the norm of Qf by the norm of f . This means Q
is a contraction on the space of bounded measurable functions E → R (with the sup norm), which we
call B(E).

§21.3 Continuous time

Next, we want to generalize time to be continuous. How are we going to do this? Instead of considering
the transition from tiem 0 to time 1, we want to consider all possible transitions from time 0 to time t. The
intuition here is considering a family of the Markov transition kernel (Qt)t, where t denotes the time. And
Qt should intuitively mean

Qt(x,A) = P[Xt ∈ A | X0 = x].

If we have a family of transition kernels (Qt), then we can define a Markov process from it.

So let’s make this formal by specifying what properties these Qt’s have to satisfy.

Definition 21.7. A family of transition kernels (Qt)t≥0 is called a transition semigroup if it satisfies the
following three properties:

(1) Q0(x, dy) = δx(dy) (i.e., when t = 0, Q0(x, •) is just a point mass at x).

(2) (Chapman–Kolmogorov equations) For all s, t ≥ 0 and A ∈ E , we have

Qs+t(x,A) =

∫
E
Qs(y,A)Qt(x, dy).

(3) (Measurability) For all A ∈ E , the map (t, x) 7→ Qt(x,A) is measurable with respect to B(R)⊗E .
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In (2), Q(x, dy) is a probability measure, and you’re integrating the function Qs(y,A) over this measure.

Let’s explain each of these conditions. First, (1) is obvious — at time 0 you should still be at state x.
And (3) is just a measurability condition that makes the analyis work. For (2), the Chapman–Kolgomorov
equation — which is the most nontrivial one —- can be thought of in the following way. Suppose you have
a Markov process (which we haven’t defined yet). We draw a graph with time on the x-axis and state on
the y-axis. And we want to compute the probability, starting at x at time 0, that we end in A at time
s + t. Then you can look at time t and see where you end up. If we’re at y at time t, moving from x to y
corresponds to Qt(x, dy), and moving from y to A has probability Qs(y,A). And if you integrate over all y,
you get the right answer.

There’s one more remark about this equation. The Chapman–Kolgomorov equation can be rewritten in the
following form. The left-hand side is just (Qs+t1A)(x). And the right-hand side can be written as∫

E
(Qs1A)(y)Qt(x, dy).

Recall the definition of Qf means that Qs1A is a function of y, and you’re integrating over this measure.
YOu can write this as applying Qt to this function — so this is simply Qt(Qs1A). So what CK tells us is
that

Qs+t1A(x) = Qt(Qs1A)(s),

which means that we have
Qt+s = Qt · Qs

(if we view Qt as an operator B(E)→ B(E)).

This property is where the name semigroup comes from —- a semigroup is a group without inverses, so you
have a binary operation between two elements, and time adds up to give another element.

§21.4 Markov processes

NOw we’re ready to define Markov processes (which we’ll abbreviate as MP). First, we’ll need to fix a
probability space and filtration (Ω,F , (Ft),P) (and your Markov space will be defined with respect to this).

Definition 21.8. Let (Qt) be as above. A Markov process witih respect to (Ft) is an Ft-adapted process
taking values in E such that for all s, t ≥ 0 and f ∈ B(E), we have

E[f(Xs+t) | Fs] = (Qtf)(Xs).

Recall that the right-hand side is just
∫
E Qt(x, dy)

This means if you observe Xs+t at time s, its expectation only depends on where you are at time s.

Remark 21.9. There’s a better way to see this — let’s take a conditional expectation over all of X0,
. . . , Xs, i.e.,

E[f(Xs+t) | σ(Xr)0≤r≤s] = (Qtf)(Xs).

Importantly, the left-hand side only has information on times [0, s], and the right-hand side only depends
on time S. So this tells you that the expectation only depends on where you are at at time s — it’s
about forgetting the past. This is the main philosophy of Markov processes.

§21.5 Finite-dimensional distributions

Next, we’ll see that if you’re given a Markov process with transition semigroup Qt, then you can determine
the finite-dimensional distributions.

Page 206 of 267



Class by Sky Cao (Spring 2025) 18.676 — Stochastic Calculus

Proposition 21.10

(Qt) determines the finite-dimensional distributions of (Xt).

Proof. Suppose you have an initial distribution X0 ∼ µ. Then for any 0 < t1 < · · · < tp and sets A0, . . . ,
Ap, we have that

P[X0 ∈ A0, Xt1 ∈ A1, . . . , Xtp ∈ Ap]

=

∫
A0

y(dx0)

∫
A2

Qt1(x0, dx1) · · ·
∫
Ap−1

Qtp−1−tp−2(xp−2, dxp−1)

∫
Ap

Qtp−tp−1(xp−1, dxp).

This is a long integral, so let’s parse it. The innermost thing is a function of xp, so after integrating out
with eespect to xp, you get a function over x0. Then the next thing is a function on xp−1, and when you
integrate that you get a function on xp−2, and so on.

Proof. We’ll use the fact that

E[f(Xs+t) | Fs] = (Qtf)(Xs) =

∫
Qt(Xs, dx)f(x).

Now we want to consider E[1{X0∈A0,...,Xtp∈Atp}]. The usual strategy is to condition on filtrations which
become coarser and coarser.

First, if we condition up to time tp−1, then we’ll get that this is

E[1X0∈A0,...,Xtp−1∈Atp−1
E[1Xtp∈Ap | Ftp−1 ]].

By applying CM, you can replace the inner expectation with Qtp−tp−1(Xtp−1 , dx). Then you apply this again
and get

E[1···,Xtp−2∈Ap−2E1Xt−1∈Ap−1

∫
A
Qtp−tp−1(Xtp−1 , dxp) | Ftp−2 ].

Now you can apply (∗) in the same way as before, and you get

E[1···
∫
Ap−1Qtp−1−tp−2

(Xtp−1 , dXp−1) ·
∫
Ap

· · ·].

Let’s see one example of Markov processes, which is Brownian motion (our favorite example).

Example 21.11

A d-dimensional BM is a Markov process.

What should the transition kernel Qt(x,A) be? This should be

P[Bt ∈ A | B0 =
1

√
2πt

d
exp

(
−(y − x)2

2t

)
.

To chedk that this is a Markov process, we need to check that ifyou condition on Fs, then you have a
transition kernel — i.e.,

P[Bt ∈ A | Fs] = Qt−s(Bs, A).

And you h show this because Bt −Bt′ is the increment (whic is 0) and check this processholds.

In general, later you’ll see that for some SDEs, the solution can be written as a MP; BM is one example of
that.
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§21.6 Resolvent

Now we’ll go to the next topic, called the resolvent. This is an important object which we get from the
transition semigroup.

Definition 21.12. Flr any λ > 0, the λ-resolvent of (Qt) is a linear function Rλ : B(E)→ B(E) given
by

Rλ(f) =

∫ ∞

0
e−λt(Qt, f)(x) dt.

We need to check that this integral is well-defined, adn that it leads us to a bounded measurable function.

Proof of well-definedness. First, measurability is because by the definition of Qt we have that (t, x) 7→
Qtf(x) is measurable.

For boundedness, we can just use the fact that ∥Qtf∥ ≤ ∥f∥. And you can similarl ycheck that it’s
bounded.

Let’s write some properties of the resolvent.

Proposition 21.13 (1) We have ∥Rλf∥∞ ≤
1
λ ∥f∥∞.

(2) For 0 ≤ f ≤ 1, we have 0 ≤ Rλf ≤ 1
2 .

(3) If λ, µ > 0, then Rµ −Rν + (λ− µ)RλRµ = 0.

Proof. The proofs of (2) and (1) are direct; (3) is a long r computation, but we’ll go through it.

We start wtih (RλRµ)(λ) and expand out th definition, and we get∫ ∞

0
e−λtQt

(∫ ∞

0
eµs (Qsf)(dx)

)
.

This means we’re integrating Qt over the measure — this is∫ ∞

0
e−λt

∫
E
Qt(x, y)

∫ ∞

0
e−µy(Qsf)(y) ds dt.

Then we can exchange the order of summation by Fubini (everything is bounded by the sup-norm bound
on f .) So we can swap s and q so that this becomes∫ ∞

0
e−λt

∫ ∞

0
e−µs

∫
E
Qt(x, dy)(Qsf)(y) ds dt.

And this thing inside is Qt(Qs(f)). So now you have∫ ∞

0
e−λt

∫ ∞

0
eµsQt+sf(x).

Finally, the first term is e−(λ−µ)t and the second is e−µ(s+t).

Now in the second and third terms, you can substiteus+ t into just s, so you get∫ ∞

0

∫ ∞

t
e−µsQsf(x) ds dt.
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Now we’ll change the order of integration again; this gives∫ ∞

0
e−µs(Qsf)(f)

∫ s

0
e−(λ−µ)t.

And now we can just compute this, and we get∫ ∞

0
e−µs(Qsf)(x) ·

1− e−(λ−µ)t

λ− µ
ds.

So we get

Rt =
1

λ− µ
(Rµ(f)−Rλf(x)),

which is exactly what we wanted.

You may wonder how you think of that third equation. But there is some intuition where it comes from.

Later on, we’ll see that this transition semigroup Qt can be written as etL for some operator L, which will
be called a generator. Then with this formal notation, we can compute the resolvent by thinking of this just
as an exponential — as if it’s a real number — then we have

Rλ =

∫ ∞

0
e−λt · etL =

∫ ∞

0
et(L−λ) dt = (λ− L)−1

So the resolvent can be written as some sort of inverse operator. (This is informal right now, but we’ll make
sense of it.)

And we also have the matrix identity M−1 − N−1 = M−1(N − M)N−1. If you put in M = R−1
λ and

N ← R−1
µ , then you get Rλ −Rµ = Rλ(µ− λ)Rµ, which is exactly what we wanted. And we’ll make sense

of this at the end of the class.

§21.7 Feller process

The next thing we’ll define is the Feller process, which is a class of Markov processes with better properties.
The reason is we want to argue about continuity. In the definition of a Markov process, there’s no notion of
continuisy. So first we want to make our state spacs into a topological space.

Let (E, E) be metrizable, locally compacat, σ-finite (i.e., you can cover it by a countable number of compact
sets), and equipped with the Borel σ-algebra. Or you can just think of it as Rn and ignore all these fancy
adjectives.

Definition 21.14. We say f tends to 0 at ∞ if for every ε > 0, there is a compact set K ⊆ E such that
|f(x)| ≤ ε for all x ∈ E \K.

And let C0(E) be the space of continuous functions which tend to 0.

Then you can check that C0(E) is a Banach space, equipped with the sup norm.

Definition 21.15. A Feller semigroup is a semigroup (Qt) satisfying the following two properties:

(1) For any function f ∈ C0(E), we have Qtf ∈ C0(E) for all t.

(2) For any f ∈ C0(E), we have ∥Qtf − f∥∞ → 0 as t→ 0.

A Markov process is Feller If its associated semigroup (Qt) is Feller.
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You’ll see that at frist, it looks like you’re imposing many conditions; but actually this will cover a large
enough class of Markov processes. For example, Bownian motion os a Feller process, and many processes
arisig from SDEs will also be Feller.

Let’s state some properties.

Fact 21.16 — If f ∈ C0(E), then for all λ > 0, we have

Rλf =

∫ ∞

0
e−λtQtf dt ∈ C0(E).

Proof. We need to show this function is continuous and vanishes at∞. So we want to look at Rλf(y) taking
y → x. If you write down the definition, because Qty → Qtx as y → ∞, you want to apply dominated
convergence to show you can put the limit inside the interval.

But we can see that
∥∥e−λtQtf

∥∥
∞ ≤ e−λt ∥f∥∞, so this will converge to Rλ(x).

Similarly you can argue that Ryλf(y)→ 0 as y →∞.

Now let’s consider the space of functions that can be represented as a resolvent. Let λ > 0, and let

R = {Rlambdaf | f ∈ C0(E)}.

What we can show is that this set R doesn’t actually depend on your choice of λ.

Proposition 21.17

The set R doesn’t depend on λ. Moeover, it is a dense subset of C0(E).

Proof. First we’ll show the independence from λ. This can be done by recalling the resolvent identity that
we just proved — we showed that

Rλ(f + (λ− µ)Rµf) = Rµf.

So any function in Rµ can be interpreted as in the image of Rλ; this shows Im(Rµ) ⊆ Im(Rλ), and you can
swap their roles to get the reverse containment).

For (2), this is harder; we want to approximate any function in C0(E). The idea here is — recall that at
least intuitively, we have that Rλ = (λ−L)−1. This means λRλ = (Id−λ−1L)−1. If you take λ→∞, then
the λ−1 term goes to 0, so you might hope this converges to Id as λ→∞.

With this in in mind, we might guess to consider

(λRλf)(x) =

∫ ∞

0
λe−λ(Qtf)(x) dt =

∫ ∞

0
e−λt(Qt/λ)(f)(x) dt.

We want to show this uniformly converges, so we take a difference — we can bound

∥λRλf − f∥ ≤
∫ ∞

0
e−λt

∥∥Qt/λf − f
∥∥
∞ dt.

So you have a uniform obund. And you’re taking λ→∞, so the Qλ term should go to 0. Also, you can see
this thing is bounded by 2 ∥f∥∞, so we can apply the dominated convergence theorem.

Page 210 of 267



Class by Sky Cao (Spring 2025) 18.676 — Stochastic Calculus

§21.8 Generators

We’ll finish just by introducing what a generator is.

Let’s recall the intuition from earlier about the Markov semigroup — we wanted to interpret this kernel Qt

as some exponential Qtf = etLf (where L is an operator); this L would be a generator. How could you
cecover L from t? You could take a derivative at time 0 — so you consider

lim
t→0

Qtf − f

t
.

Unfortunately, however, this limit doesn’t exist in general for arbitrary f .

So we want to restrict the domain C0 into some smaller domain so that this lmiit does exist, and show that
subset is dense in C0. And that subset will turn out to be the R we just defined.

Goal 21.18. Show that Lf = limt→0
Qtf−f

t is well-defined for f ∈ R, and that R is dense in C0(E).

§22 April 28, 2025

§22.1 Review

Last class, we introduced Markov transition groups and started discussing the basics of general Markov
processes in continuous state space and continuous time. This is a kind of basic language that if you want
to continue doing this kind of probability theory, it’s crucial to see (if you want to do continuous-time
continuous-state processes). Also, last time we saw the notion of a Feller semigroup, which is basically some
sort of regularity property (which will be satisfied for all Markov processes that arise for us):

Definition 22.1 (Feller semigroup). Let (Qt) be a transition semigroup on E. We say (Qt) is a Feller
semigroup if:

(i) For all f ∈ C0(E), we have Qtf ∈ C0(E).

(ii) For all f ∈ C0(E), we have ∥Qtf − f∥ → 0 as t→ 0.

Usually we take E = Rd (at least, that’ll suffice for us). And you want your semigroup to map functions
decaying at ∞ to functions decaying ∞. That’s kind of saying that as a probability measure, Qt should
kind of not put too much mass at ∞ — you kind of want your probability mass to be controlled in some
sense.

There’s also the definition of a resolvent:

Definition 22.2. Let λ > 0. The resolvent is the map Rλ : B(E)→ B(E) defined by

(Rλf)(x) =

∫ ∞

0
e−λt(Qtf)(x) dt.

We won’t ever use this directly; the main reason we introduced it is to talk about this thing called a
generator, which is going to characterize your semigroup (and which comes up over and over again — it’s
maybe the most important concept for continuous-time Markov processes).

§22.2 Generators
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Definition 22.3. Let D(L) = {f ∈ C0(E) | limt↓0
Qtf−f

t exists in C0(E)}. For f ∈ D(L), we define

Lf = lim
t↓0

Qtf − f

t
.

Remark 22.4. The set D(L) is actually a linear subspace of C0(E). We call L the generator of the
transition semigroup (Qt), and D(L) is called the domain of L.

Example 22.5

For Brownian motion, the generator will basically be the Laplacian ∆. The Laplacian isn’t defined for
all continuous functions (because you have to take two derivatives). So you have to take some space
on which you can define the Laplacian; for example, you can consider the space of twice continuously
differentiable functions with compact support — we have

C2
c (Rd) ⊆ D(∆) ⊆ C0(Rd).

This is a definition; now we’ll begin to develop some foundational properties of this generator. The first is
that it actually commutes with your semigroup.

Proposition 22.6

Let f ∈ D(L) and s ≥ 0. Then Qsf ∈ D(L) and LQsf = QsLf .

Proof. If s = 0, then Qsf is f itself, and this is a trivial identity; so we just need to prove it when s > 0.
For this, we look at the difference quotient

1

t
(Qt(Qsf)−Qsf).

We want to verify that if we fix s and take the t→ 0 limit, this will actually exist. To see why, we want to
use the semigroup property of Q — Q is a semigroup, so you can actually take the Qs outside and think of
this as

Qs

(
1

t
(Qtf − f)

)
(this is because QtQs = Qt+s = Qs+t = QsQt, so these commute). And by assumption f ∈ D(L), so as you
take t → 0, the inside converges to Lf . And Qs is a contraction (so in particular it’s continuous); so this
converges to QsLf as t ↓ 0.

Another fundamental property of the generator is the ‘heat equation.’

Proposition 22.7

For f ∈ D(L), for all t ≥ 0, we can write

Qtf = f +

∫ t

0
Qs(Lf) ds = f +

∫ t

0
L(Qsf) ds.

This is the integral form of the identity, but if you take derivatives in t on both sides, you’re basically saying
that the function t 7→ Qtf is C1 (it takes values in a space of functions, but you can define continuously
differentiable functions which are function-valued), and moreover, its time derivative is precisely

∂tQtf = LQtf = QtLf.
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You see that if you integrate both sides of this identity, you precisely get the integral form.

Before we talk about the proof:

Remark 22.8. If you view ∂tQtf = LQtf as an equation on the operator Qt, you’re saying that Qt

basically satisfies the differential equation ∂tQt = LQt. If you’re on a finite state space, then Qt is just
going to be a (finite square) matrix. And if you were to try solving this matrix ODE (where L is some
other matrix), there’s really just one solution — you’d get Qt = etL. (If everything was a real number,
this would be the solution; and the same is true if you have matrices.) This matrix exponential can be
defined by the usual Taylor series

Qt = etL =
∞∑
k=0

tk

k!
Lk.

And you can make sense of ∂tQt = LQt even in infinite dimensions. This is why you can expect the
generator to determine the semigroup — you can expect you can write Qt in terms of L in a similar
manner (but that won’t be super important for us, so we won’t really go into it).

Proof. Let’s directly try computing the time derivative of Qtf — fix some t, and consider a difference
quotient

1

ε
(Qt+εf −Qtf).

We want to take the ε→ 0 limit (if it exists, that gives us the time derivative).

And this looks very similar to the generator — for instance, you can write this as

Qt

(
Qεf − f

ε

)
.

As ε→ 0, this converges to QtLf , which by the previous proposition is LQtf .

So you’ve shown Qtf is C1 (as a function of t), with ∂tQtf = LQtf = QtLf . And being C1 means that
the derivative has to be continuous in time; but Lf by definition is a continuous function decaying at ∞,
and by your Feller assumption QtLf is going to be continuous in time. (This should come out of the second
identity — you have ∥Qt+εf −Qtf∥ ≤ ∥Qεf − f∥, and if you send ε → 0, then this goes to 0. Here we’re
using the fact that Qt is a contraction.)

Also, we have this formal viewpoint of the semigroup in terms of the generator, you can also think about
the resolvent in the following way: we have

Rλf =

∫ ∞

0
e−λtQtf dt.

Now if you formally substitute in Qt = etL, you get

Rλf =

∫ ∞

0
e−λteLt dt =

∫ ∞

0
et(L−λ) dt

(by L − λ we really mean L minus λ times the identity operator). If you formally believe that the usual
rules of integration apply with these things, then you should get that this is

−(L− λ)−1

(this is becaus
∫∞
0 e−tα dt = α−1 for real numbers α). So you should really think of the resolvent as some

sort of inverse of your generator (really plus some constant). In the notes, this is why you have the resolvent
identity — taking the difference of two resolvents is really the difference of inverses of two matrices.
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Remark 22.9. You can make all this precise if L is a finite matrix (assuming it’s diagonalizable) — then
you can write an eigendecomposition of etL in terms of the eigenbasis (where you act on each eigenbasis
element by an exponential of the corresponding eigenvector). Then you’re really just reducing, on each
eigenvector, to computing a one-dimensional real integral

∫∞
0 e−tα dt. So this all makes sense when L

is a finite-dimensional diagonalizable square matrix. And you can make this all make sense even in
infinite dimensions if e.g. L is the Laplacian; that gives you relations to PDE.

But at least because of this formal relation, you expect that

Rλ(λ− L)f = f and (λ− L)Rλf = f

(because of this formal inverse relation). This is what we’ll prove next.

Remark 22.10. We’re kind of proving all these propositions to eventually prove that the generator
actually determines the semigroup, because that’s maybe the main conceptual thing to understand —
if you want to give the semigroup, you can just talk about the generator.

Remark 22.11. The reason you want λ > 0 is that in principle, L could have a 0 eigenvalue, and that
would be really bad when you integrate (if λ = 0), because then you’d be integrating 1 from 0 to ∞,
which would blow up.

That’s actually the case for the Laplacian — it has a 0 eigenvalue, because it’s 0 on any constant (or
even linear) function. Having a 0 eigenvalue basically means having a nonzero kernel.

That’s why you want λ > 0 — then actually λ− L will never have a 0 eigenvalue.

Proposition 22.12

Let λ > 0. Then:

(i) For every g ∈ C0(E), we have that Rλg ∈ D(L) and

(λ− L)Rλg = g.

(ii) For f ∈ D(L), we have Rλ(λ− L)f = f .

For (i), the point is that if you know Rλg ∈ D(L), then you can apply L to it. The reason why you expect
this to hold is precisely because of the above formal interpretation — Rλ is kind of like taking an inverse
of L. The whole issue with the domain thing is because coming back to the Laplacian, in general you
can’t take two derivatives of a function. But Rλ is like taking the inverse of a Laplacian, which actually
maps a continuous function to a twice differentiable function; and then you can apply two derivatives. So
heuristically, the point of why you have this statement is that Rλ is heuristically like applying an inverse,
so then you should be able to apply the generator (since you just applied its inverse).

Proof of (i). The proof is basically playing around with these definitions. For (i), let’s again write out the
definition of the generator — we want to compute

ε−1(QεRλg −Rλg).

Eventually we want to show this has a limit as ε→ 0, and we want to show that limit is whatever is going
to be imposed by this identity — we basically want to have that

LRλg = λRλg − g.
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So basically we want to show that as ε→ 0, this thing converges to the right-hand side.

To do that, let’s write out the definition of the resolvent; then this becomes

ε−1

(
Qε

∫ ∞

0
e−λtQtg dt−

∫ ∞

0
e−λtQtg dt

)
.

The first thing you have to say is that you can move the operator inside them integral to get

ε−1

(∫ ∞

0
e−λtQt+εg dt−

∫ ∞

0
e−λtQtg dt

)
.

Basically the reason why you can do this is Qε is a contraction, so it’s continuous. You can approximate
both integrals by taking a limit of discrete sums; and on the discrete level you have this commutation, so
you just need to say why you can take this limit in the right way, and this can be justified using the fact
that Qε is a continuous operator.

Now we want to figure out how to take the ε→ 0 limit. After playing around with it, you realize you want
to decompose the integral in the following way: We write the second integral as a 0 to ε part and an ε to
∞ part. So we get

−ε−1

(∫ ε

0
e−λtQtg dt

)
+ ε−1

(∫ ∞

0
e−λtQt+εg dt−

∫ ∞

ε
e−λtQtg dt

)
.

The whole point of doing this was that you can group the last two integrals — we’ll call this I1 + I2, where
I1 is the first term and I2 is the second (these depend on ε, but we won’t write that out).

Let’s first look at I1, which is easier to handle. Since Qtg → g as t→ 0, we’ll have that I1 → −g as ε→ 0.
This is because you kind of see that you have this integral from 0 to ε, but you also have this ε−1, so this is
really behaving like an average of your integrand at very very small times. And at very small times e−λt is
basically 1, and Qtg converges to g (in a uniform sense — in the Banach space C0(E)). So this whole thing
should converge to −g (the − is because of the − sign in front). So the first term is relatively direct, just
using the Feller assumption (specifically the second part of it).

Now let’s talk about I2. Now we want to group these two integrals together, which means we want to change
variables to rewrite the second as an integral from 0 to ∞. Once you do that, you can write

I2 = ε−1

∫ ∞

0
(e−λt − e−λ(t+ε))Qt+εg dt.

(In the second term, when we change variables, we replace t by t + ε; then you can group the Qt+ε’s and
just get this difference.)

Now as ε→ 0, you want to interpret the ε−1 and this grouping of exponentials as converging to something
(we’re basically taking the derivative of these exponentials) — pointwise in t, we have that

ε−1(e−λt − e−λ(t+ε))→ λe−λt

(the derivative of e−λt is −λe−λt).

Now we just need to say why we can commute the limit and integral. If we can do that, we’ll be done — if
we substitute λe−λt and ε→ 0, we precisely get λRλg, which is what we want I2 to be.

To do that, we need to do some sort of dominated convergence. We want a bound on this thing which is
uniform in ε (because we want dominated convergence, so we need to bound this by some common integrable
function). For this, we can use the bound

ε−1
∣∣∣e−λt − e−λ(t−ε)

∣∣∣ = e−λ

∣∣1− e−λε
∣∣

ε
.
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Now we can bound this by

e−λt · λε
ε

(using the fact that 1− e−x ≤ x). This is a uniform bound in ε. And that’s basically what you need to get
dominated convergence (you also need to say Qt+εg is uniform, but g is bounded because it’s in C0(E), and
Q is a contraction, so you can always bound this by some constant that doesn’t depend on ε).

So this allows you to apply the dominated convergence theorem, to say that

I2 →
∫ ∞

0
λe−λtQtg dt,

which you recognize is λRλg.

Now if you put these two things together, we get precisely that

LRλg = λRλg − g.

We’re saying that as ε → 0, this difference quotient converges, so Rλg ∈ D(L); and the value of L on this
thing is basically the limit, where we showed I2 → λRλg and I1 → −g, giving what we want.

Proof of (ii). To prove (ii), we need to apply Rλ to the generator. So let’s write out the definition of the
resolvent; then this becomes

RλLf =

∫ ∞

0
e−λtQtLf dt.

Then using the fact that L and Qt commute, this becomes∫ ∞

0
e−λLQtf dt.

What you want to do is basically be able to pull L out of the integral. Let’s assume for a moment that you
can do that, so this becomes

L

∫ ∞

0
e−λtQtf dt

(we’ll call this identity (∗); we’re going to prove it at the end). Assuming this, we’re basically done — then
you get that this is LRλf . And we computed LRλf in part (i) — this is precisely λRλf − f . And now if
you rearrange this identity, you should get what you want — we’ve shown

RλLf = λRλf − f,

and if you rearrange that identity you get Rλ(λ− L)f = f .

So it all becomes about justifying why (∗) is true — you want to be able to commute the generator with
the integral. And why is that going to be true? Well, f by assumption is in D(L); we’re going to have to
use that. Let’s start with the right-hand side of (∗), i.e., the expression

L

∫ ∞

0
e−λtQtf dt.

And let’s write out the definition of L: so this is

lim
ε↓0

ε−1

(
Qε

∫ ∞

0
e−λtQtf dt−

∫ ∞

0
e−λtQtf dt

)
.

And in the first part, we saw that you can commute Qε inside the first integral, because Qε is a bounded
operator; so we can write this as

lim
ε↓0

∫ ∞

0
e−λtε−1(Qt+εf −Qtf) dt.
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So the identity is true for any ε > 0, before taking the limit. Now you take the limit; you see that
ε−1(Qt+εf − Qtf) → QtLf . Then you have to justify some sort of dominated convergence, but that’s
doable (using that Qt is a contraction). In the end, you’re going to get that this limit is∫ ∞

0
e−λtQtLf dt.

And now you can use the fact that Qt and L commute to get that this is
∫∞
0 e−λtLQtf dt, which was the

other side of (∗).

Remark 22.13. A consequence of this is that the set R = Im(Rλ) (the image of the resolvent — last
time it was proven that the image of Rλ doesn’t depend on λ, using the resolvent identity) is precisely
D(L). Moreover, Rλ and λ− L are inverses of each other.

§22.3 The generator determines the semigroup

Now we can prove this corollary we mentioned earlier that the generator determines the semigroup. And
then after we prove that (which is a kind of foundational fact — we might not ever apply it, but it’s good
to know), we’ll talk about how you compute the generator in explicit examples.

Corollary 22.14

The (Feller) semigroup (Qt) is determined by the pair (L,D(L)).

Proof. Let f ∈ C0(E), and for convenience assume f ≥ 0. Then first, we can note that L and D(L)
characterize Rλf — it’s the unique element of D(L) such that (λ − L)Rλf = f . We just proved that this
identity is true, and the fact that it’s unique comes from the fact that if you have g1 and g2 such that
(λ− L)g1 = (λ− L)g2 (so g1 and g2 are both possible values of Rλf , and we want to show they’re equal),
then you can apply the other identity to say that

Rλ(λ− L)g1 = Rλ(λ− L)g2,

and since Rλ(λ − L) is the identity, this implies g1 = g2. (So uniqueness is basically because you have
inverses.)

So L and D(L) characterize the value of Rλf for any λ.

On the other hand, the values of Rλf for all λ > 0, defined by

(Rλf)(x) =

∫ ∞

0
e−λt(Qtf)(x) dt,

uniquely determine the function t 7→ (Qtf)(x). (Here we’re fixing some x in our space and viewing this as
a function of t. The point is that if I know this integral for every λ, then I actually know the function of
t. This is some statement about inverting Laplace transforms. You can basically view this as the Laplace
transform of some function in t, and you want to say why that uniquely determines the function. You can
just Google this; Le Gall doesn’t provide a reference.)

Because of that, you get that Qtf is determined by the pair (L,D(L)) for every f which is nonnegative.
But then knowing Qtf for every nonnegative f allows you to obtain Qtf for general f (you can split a
continuous function into positive and negative parts).

Remark 22.15. This is a very soft proof — the main step, the fact that you can invert Laplace
transforms, we’re sort of assuming.
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§22.4 Computing the generator

Now let’s talk about how you can compute the generator. If you had a formula for the semigroup — for
example, last time we saw it for BM — then yolu can try to directly compute the limit using the definition of
the generator. So that’s the direct way. But usually there’s maybe an easier way to compute the generator,
and that’s what we’ll talk about.

We need some setup: Suppose that on some probability space (Ω,F ,P), we have, for all x ∈ E, a stochastic
process (Xx

t ) (the superscript x denotes the starting point, as we’ll see soon) with continuou sample paths,
which is actually Markov with semigroup (Qt). Here we’re always assuming (Qt) is Feller (we’re talking
about a generator, which requires you to assume this), with respect to the filtration (Ft), and such that

P[Xx
0 = x] = 1

(i.e., the process Xx starts at x).

This is some setup — suppose that given (Qt), we were able to construct all these stochastic processes on a
common probability space. For BM, this is very easy — to get a BM started at x, you just take a standard
BM and add x.

Theorem 22.16

Let h, g ∈ C0(E). Then the following are equivalent:

(i) h ∈ D(L) and Lh = g.

(ii) For all x ∈ E, the process given by

h(Xx
t )−

∫ t

0
g(Xx

u) du is a martingale with respect to (Ft).

The way we’ll usually use this is that we’ll verify (ii), and then you can get the value of L on a function h
(it’ll be g). And as we’ll see, the way we verify (ii) is typically by Ito’s formula.

Proof (i) =⇒ (ii). For this, recall we have the integral form

Qth = h+

∫ t

0
LQsh ds = h+

∫ t

0
QsLhds.

And the assumption in (i) is that Lh = g, so we can write this as

Qth = h+

∫ ∞

0
Qsg ds.

Now we want to verify (ii). So let’s compute the conditional expectation of h(Xx
t ) (we eventually want to

show something is a martingale) — so we want to compute

E[h(Xx
t ) | Fs].

First, you have a Markov process, so you can write this as

(Qt−sh)(X
x
s )

(since X is a Markov process with semigroup Q). Now you want to use your identity (which we wrote for
time t) at time t− s. If you do so, you get that this is

h(Xx
s ) +

∫ t−s

0
(Qug)(X

x
s ) du.
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Now you can see where the martingale comes from — you’re taking h minus an integral, and you want to
get h at time s minus an integral. So to get it, you just need to reinterpret the second term. For this, we
again use the fact that you have a Markov process, so you can write this as

h(Xx
s ) +

∫ t

0
E[g(Xx

s+u) | Fs] du.

Now you rewrite this integral as one from s to t, ygiving

h(Xx
s ) +

∫ t

s
E[g(X∗

u) | Fs] du.

That implies this thing is a martingale — if you write out hte martingale identity for this process, it’ll
precisely be a rarrangement of the above, because you subtract out the integral from 0 to t.

We actually need one more step — we want to take the conditional expectation outside and write this as

h(Xx
s ) + E

[∫ t

0
g(Xx

u) du
∣∣∣ Fs

]
.

This takes some justification, but it’s true; and now this is precisely the martingale identity.

Proof (ii) =⇒ (i). (This is the direction we’re most interested in.)

Let’s start with the definition of a generator — we want to compute

ε−1(Qεh(x)− h(x))

(as ε→ 0). You want to interpret this in terms of your Markov process; we have

Qεh(x) = ε−1(E [h(Xx
ε )]− E[h(Xx

0 )])

(because Xx
0 = x). (The last term is just h(x).)

This is what we’re trying to understand. Now we want to use the fact that we have a martingale, so when
we take an expectation at time t, that’s equal to the expectation at time 0. So we get

E[h(Xt)]− E
∫ t

0
g(Xu) du = h(x).

Now we can rearrange this identity to rewrite our difference as just an expectation of the ingegral of g —
we get

ε−1

∫ ε

0
E[g(Xu)

2] du.

Now it’s kind of clear wha tyou want to do — we want to say that as ε→ 0, this converges to g. And this
is going to be true (though there’s some justification required).

As a first step, let’s write this in terms of the semigroup as

ε−1

∫ ε

0
(Qug)(x)|, du

(since Xx starts ar 0).

Now we want to basically say that

sup
x

∥∥∥∥ε−1

∫ ε

0
(Qug)(x) dx− g(x)

∥∥∥∥→ 0.
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Because we want to show that ε−1(Qεh(x)− h(x)) converges (as a function) oiin C0(E), where convergence
is given by the sp norm. For the left-hand side, we can write it in terms of this norm as∥∥∥∥ε−1

∫ ε

0
(Qug − g) du

∥∥∥∥ .
Then you use the triangle inequalit yto put the norm inside the integral; so you get

ε−1

∫ ε

0
∥Qug − g∥ du.

And the inside goes to 0 as u→ 0; so you’re taking an average of a function which goes to 0, which means
this also goes to 0.

This shows h ∈ D(L) and Lh = g.

Student Question. How do you justify exchanging the integral and expectation in
∫ t
s E[g(X

x
u) midFs]?

Answer. Let’s say you have something like∫ t

0
E[Xu | G] du,

where X is a process in u, and you want to say why this equals

E
[∫ t

0
Xu du

∣∣∣ G]
(where G is some σ-algebra). So you want to take A ∈ G and show that

E
[∫ t

0
E[Xu | G] du1A

]
= E

[∫ t

0
Xu du1A

]
(by the definitions of conditional expectation). Now on the left-hand side, we can take the indicator
inside the integral (you need some kind of regularity, but suppose E[Xu | G] is measurable as a function
in n, which should be true), we can write this as∫ t

0
E[E[Xu | G]1A] du.

(You can justify the exchange of regular expectation and integration by assuming X is bounded, which
will be fine.) And now you juse hte definition of conditional expectation to get that this is equal to∫ t

0
E[Xu1A] du.

And you can again take the expectation outside the integral to get this identity.

Let’s see an example of the theorem.
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Example 22.17

Let (Bt) be a d-dimensional (Ft)-Brownian motion starting at 0. Define Bx
t = x+ Bt. Then for all x,

(Bx
t ) is a Markov process with semigroup

(Qtf)(x) = E[f(x+
√
tZ)]

for Z ∼ N (0, I) (because x +
√
tZ is the law of Bx

t ). And you can write this as an explicit integral
against the Gaussian density, but we’ll skip that.

The semigroup is going to be Feller (that’s left as an exercise), so it has a generator. How do you
compute it?

Well, by Ito’s formula, say we take f ∈ C2
b (R2) (a twice-differentiable function where f and its first and

second derivatives are bounded and continuous). Then we can compute df(Bx
t ), and we’ll get a martingale

part and a FV term. If you subtract the FV term, then you’ll get a martingale, so you can apply this
theorem.

Ito’s formula gives you that

df(Bx
t ) = ∇f(Bx

t ) dB
x
t +

1

2
∆f(Bx

t ) dt

(the fact that we assumed boundedness means that the first term is a martingale, not just a local martingale).
So you can rewrite Ito’s formula another way, and you get that

f(Bx
t )−

1

2

∫ t

0
∆f(Bx

s ) ds

is a martingale. (This is the integral formulation of Ito’s formula.) Thus by the theorem, you get that
f ∈ D(L), and moreover

Lf =
1

2
∆f.

This shows C2
b (Rd) ⊆ D(L).

So this theorem allows you to explicitly compute the generator, and for BM it’s this explicit expression —
just the Laplacian.

Remark 22.18. The identity ∂tQtf = LQtf in the case of Brownian motion becomes

∂tQtf =
1

2
∆Qtf.

Basically you’re saying you can solve the heat equation by running a Brownian motion. If you call
Qtf = ut (it’s a function of t and also x — we’re not writing the spatial variable), you get ∂tut =

1
2∆ut.

So BM is intimiately related to the heat equation, because if you specialize this equation to BM you
get exactly the heat equation.

The Markov property stuff we’re going to skip, because next time we’ll go into some more explicit examples
of Markov processes and talk about some of their properties. The Markov property is in the notes, but we
won’t really use it. But it’s also good to know, so if you want to you can read the notes.

§22.5 Invariant measure

We’ll end today by defining the notion of an invariant measure.
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Definition 22.19. Let (Qt) be a Markov semigroup, and µ be a probability measure on E. We say µ is
an invariant measure for (Qt) if for all bounded functions f ∈ B(E) and all times t ≥ 0, we have that∫

µ(dx) (Qtf)(x) =

∫
µ(dx) f(x).

Usually E is some topological space, so you take E and its Borel σ-algebra; but we can just think of E as
Rd.

In terms of an actual process, basically if you have a Markov process X with semigroup Q and you let its
initial distribution be X0 ∼ µ, then you’re just saying that Xt ∼ µ for all t ≥ 0. That’s why you call it an
invariant measure — the law of your Markov process doesn’t change if you start from this measure.

Next class we’ll see a process whose invariant measure is a standard Gaussian; so you should think of it as
the SDE version of a standard Gaussian. It has many important properties that we’ll begin discussing next
time.

§23 April 30, 2025

Today we’ll begin discussing the Ornstein–Uhlenbeck process, which is one of the most explicit examples
of a SDE. (Well, the most explicit would just be dX = dB, but this is not very interesting; this is the
second-most.)

§23.1 Ornstein–Uhlenbeck process

To set the stage, throughout B will be a d-dimensional (Ft)-Brownian motion, where we assume (Ft) is
complete (we always assume completeness, because we needed it to e.g. define the quadratic variation).

Definition 23.1. An Ornstein–Uhlenbeck (OU) process (Xt) is an adapted stochastic process with
continuous sample paths satisfying the SDE

dXt = −Xt +
√
2 dBt. (23.1)

This is an SDE. We’ll comment on the factor of
√
2 later (more generally you can let it be any positive

constant, and we’d probably still call it an OU process). Even more generally, you can also put a positive
constant factor in front of the −Xt — you could consider

dXt = −αXt + β dBt,

where α, β > 0. But if you understand the standard case, you basically understand the more general one as
well. So we’ll just focus on the standard one (and we’ll see later why we want the

√
2).

By definition, this means X satisfies the integral equation

Xt = X0 −
∫ t

0
Xs ds+Bs

for all t. We haven’t specified the interval on which (Xt) is defined; usually we think of it as an infinite
interval, but if it’s a finite interval then you just ask this on that finite interval.
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§23.2 Existence

Given an SDE, the first thing you ask is:

Question 23.2. Why do solutions to this SDE even exist?

One reason this SDE is very explicit is it’s aactually linear. If you ignore the Brownian term, it’s exactly
just a linear ODE. And if I had a linear ODE like ẋ(t) = −x(t), I know how to solve this — we’d just have
x(t) = e−tx(0).

More generally, there’s this thing called Duhamel’s principle where if you have a linear inhomogeneous ODE

ẋ(t) = −x(t) + g(t),

it turns out that if you can solve the corresponding homogeneous ODE, you can also write out a solution to
the inhomogeneous one. What you basically think of is this term g(t) is inserting new initial data at every
time t. And if our initial data at time 0 is x(0) we can solve the homogeneous ODE; that kind of leads us
to guess that the explicit formula

x(t) = e−tx(0) +

∫ t

0
e−(t−s)g(s) ds

should work. The idea is the thing is linear, so the solution should be given by adding up a bunch of
solutions. The first term corresponds to what you’d have if g didn’t exist; and the rest corresponds to
inputting a bunch of information from g at different times. If g enters at time s, then you have to solve up
to t− s, which is why you get the e−(t−s)g(s) term.

And you can check by explicit computation that indeed this explicit formula does solve your ODE. We’re
not going to do that, because we’re going to check it for the SDE, and the proof is very similar.

But the point is if you have a linear inhomogeneous ODE, you can just write down the solution.

Now we have a SDE — g is kind of this Brownian forcing. So you kind of can guess a format for the solution:

Proposition 23.3

Let X0 ∈ F0. Then the process

Xt = e−tX0 +
√
2

∫ t

0
e−(t−s) dBs

is an OU process.

(You want your process to be adapted, so you certainly want X0 to be F0-measurable.) We basically define
things in exactly the above form, except htat we replace g by

√
2 dBt; and this is now a stochastic integral.

Another way to put it is that if I specify my initial data and view this as an evolution equation, I can write
down an explicit solution, which is just this. This is why this kind of SDE is very special — it’s linear, so
we can just write down an explicit solution.

Proof. We basically just want to apply Ito’s formula — we want to compute dXt, and writing out the
definition, this is

dXt = d

(
e−tX0 +

√
2

∫ t

0
e−(t−s) dBs

)
.

The first term is FV, so it behaves as ordinary calculus, and we get −e−tX0.
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The way to think about the second term is really that it’s the product of two terms — it’s e−t times a
stochastic integral. So we can write that term as

√
2d

(
e−t

∫ t

0
es dBs

)
.

And now we see this is a product of two semimartingales (really a FV process and a martingale). And the
way to think about it is when you have a product, you put the d on either term; so by Ito, we get

−e−tX0 +
√
2(de−t)

∫ t

0
es dBs +

√
2e−td

(∫ t

0
es dBs

)
(in the general case we have a term where we put a d on both factors, but here the first is a FV process,
so we don’t need to — you only need that when both have a martingale part). We can group the first two
terms to get

−
(
e−tX0 +

√
2

∫
−
0te−(t−s) dBs

)
.

And the last term is d of a stochastic integral, so that just gives the integrand

√
2e−tet dBt.

And then you kind of explicitly see that this is what I defined Xt as — the first term is −Xt, and the second
term is

√
2 dBt. And that’s precisely the definition of an OU process.

So indeed, this specific formula for X does solve the SDE. (This is also how you check the ODE example
with Duhamel’s principle — the Ito correction term doesn’t show up in this case, so you’re actually behaving
like ordinary calculus.)

As a consequence of this, we can define Xt for any time, so actually global solutions always exist. That’s
again a consequence of the fact that the SDE is linear — linear SDEs will always have global solutions (they
don’t blow up in finite time).

§23.3 Uniqueness

So we’ve at least shown solutions exist. But it’s also a natural question whether this is unique:

Question 23.4. If I specify the initial data, is this the only solution I have?

That’s the next claim — that this is the only solution you can have. For a general SDE, usually you have
to take advantage of some sort of Lipschitz condition on the right-hand side, and you want to set up some
sort of contraction mapping argument. But linear equations are kind of special and you can just explicitly
verify things.

Proposition 23.5

Suppose that (Xt) is an OU process. Then

Xt = e−tX0 +
√
2

∫ t

0
e−(t−s) dBs.

So that’s the claim — actually the solution is unique.

Page 224 of 267



Class by Sky Cao (Spring 2025) 18.676 — Stochastic Calculus

Proof. To prove this, you can do something slightly clever — again you use Ito’s formula, and you compute
the evolution of etXt. Let’s apply Ito’s formula to this; then you get

d(etXt) = d(et) ·Xt + et · dXt = et(Xt + dXt).

And then plugging in the definition of an OU process, we get

d(etXt) = etXt − etXt +
√
2et dBt.

And conveniently, the first two terms cancel. So that tells you actually etXt is going to be given by a
stochastic integral — this implies

etXt = e0X0 +
√
2

∫ t

0
es dBs

for all t. Now you move the et to the RHS and get precisely what we claimed.

So this formula is the only solution you have to this SDE.

§23.4 Distributions

Now in what follows:

Notation 23.6. Let (Xx
t ) be an OU process starting at x. In other words,

Xx
t = e−xx+

∫ t

0
e−(t−s) dBs.

A corollary of this explicit formula is that:

Corollary 23.7

We have Xx
t ∼ N (e−tx, 1− e−2t).

Proof. Here you use the fact that whenever your integrand is deterministic, your stochastic integral is just
a normal random variable — so we’ll have∫ t

0
e−(t−s) dBs ∼ N (0, σ2),

where the variance is just given by the variance of the LHS, which we can compute by Ito’s isometry —

σ2 = 2E

[(∫ t

0
e−(t−s) dBs

)2
]
= 2E

[∫ t

0
e−2(t−s) ds

]
.

And now there’s no more expectation. (In general you need the expectation because the QV term could be
random; but the QV of BM is just s, which is deterministic.) And so you can remove the expectation and
evaluate this integral, and it will be 1− e−2t.

(We forgot to write some factors of
√
2, but this is one of the reasons for it — having it makes this variance

be 1− e−2t.)
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The fact that this is Gaussian — there’s a problem on the HW saying that if you have a deterministic
function, then this integral is the same as your white noise evaluated on that function, which is a Gaussian.
Another way to see this is to use the discrete approximation to the Ito integral — you have the convergence
of approximations. And at the discrete level, this is a linear combination of independent Gaussians, which
is always Gaussian. And the limit in distribution of a sequence of Gaussians has to be Gaussian, so you just
have to compute its variance.

That’s one corollary. And as a result, you see that:

Corollary 23.8

For any x, we have Xx
t

dist−−→ Nd(0, id).

Note that B is a d-dimensional BM, so X is also d-dimensional (in general it’s a vector-valued process).
And in the limit in distribution, you just get some iid standard Gaussians. That’s why we want the

√
2

factor — without it you’d converge to N (0, 12) instead of N (0, 1).

Remark 23.9. The other way you can get N (0, 1) is if you put a 2 in front of the X (and make the
other

√
2 disappear); then you can do the same computations and you should get N (0, 1).

§23.5 Relation to Markov processes

The meta-thing to take away is that whenever you have a solution to a SDE, that’s going to be a Markov
process, for very good reasons.

Proposition 23.10

Let (Xt) be an OU process. Then (Xt) is a Markov process whose semigroup is given by

(Ptf)(x) = E[f(e−tx+
√
1− e−2tZ)]

where the expectation is with respect to Z ∼ Nd(0, id).

You should think of (Ptf)(x) as E[f(Xt)] when X starts at x. And we just saw that when X starts at x,
you have this explicit formula for the law of Xt. So you would guess that the semigroup should be given by
the above thing.

If we want, we can also be more explicit and write this out as an integral, by writing out what is the Gaussian
density for Z (the reason you multiply by the square root is so that the whole thing has variance 1− e−2t).
So if we write this out, we get

1√
2π(1− e−2t)

d

∫
dy f(y) exp

(∣∣y − ee−tx
∣∣2

1− e−2t

)
.

It’s maybe more immediate to write it as

1√
2π(1− e−2t)

d

∫
dy f(e−tx+ y) exp

(
− |y|2

1− e−2t

)
.

Proof. We use the fact that you solve the SDE, and you can write the integral form of the SDE starting at
s instead of 0 — we have

Xt = e−(t−s)Xs +
√
2

∫ t

s
e−(t−u) dBu.
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(We’re rewriting the above general formula, you just kind of replace time 0 with time s — if you view time
s as the initial time, you still solve the same exact SDE, so we have the same formula just with these shifted
times.) And the extra Brownian part, by independence of Brownian increments, is independent of Fs; while
the first term e−(t−s)Xs is adapted to Fs. This allows us to compute E[Xt | Fs] — you basically think of it
as adding the extra term.

Note that
√
2
∫ t
s e

−(t−u) dBu ∼ Nd(0, e
−2(t−s) id), because you’re looking at the difference of your endpoints

to get this t− s. This means
E [f(Xt) | Fs] ,

when you condition on Fs you can treat the e−(t−s)Xs term in the beginning as constant. So you’re going
to get exactly

(Pt−sf)(Xs).

Why? Basically you’re fixing Xs, so you kind of start with this constant thing e−(t−s)Xs, and then you
add this Gaussian noise; and that’s exactly how the semigroup was defined. So this verifies X is a Markov
process whose semigroup is this Pt.

Again, we’ll emphasize there’s many ways you can get a Markov process, but one of the main ways is by
solving SDEs; that’s a source of many examples of Markov processes. If you look into the history, this might
be why Ito developed Ito calculus — he was trying to understand these Markov processes (or something like
that).

And you see if you solved a different SDE, you still expect you’d have a Markov process, but maybe the
semigroup is not as explicit — maybe for a different SDE you don’t have this very explicit way of writing
down your solution. But it’s also clear that a Markov process just says if you’re trying to understand where
to go next, you just need to look at your current time. And that’s exactly what a SDE is — you specify
the evolution of X based on where it is at the current time, plus some Brownian noise. So that’s intuitively
why you expect SDE solutions to be MPs. (You probably have to make some assumptions to make this a
formal statement, e.g., that the SDE has global solutions.)

One exercise that will be on the homework:

Exercise 23.11. (Pt) is Feller.

Recall this means that if f ∈ C0(Rd) (meaning it’s continuous and decays to 0 at ∞) then so is Ptf , and
secondly that you have uniform convergence at small times

∥f − Ptf∥ → 0

as t→ 0 (where the norm is the sup norm).

You have this very explicit formula for the semigroup, so this is just a technical argument. Continuity is quite
direct — basically, your explicit formula is continuous inX0 (if you letX0 vary, that thing varies continuously
— the right-hand term doesn’t depend on the initial data at all). That’ll imply Ptf is continuous. You also
have to say why it decays to 0 at ∞; Sky didn’t feel like covering it in class, so it’s on the homework. The
second thing says no matter where you start, at small times you expect to be close to where you started
(uniformly in the starting point). That’s also maybe quite direct, but we won’t go into it.

But we have a Feller semigroup, so now we can talk about things like the generator. This is the main point
for why we talked about the Markov process stuff — it comes up when you consider these SDEs.

§23.5.1 The invariant measure

Before that, let’s talk about the invariant measure — it turns out that’s basically the standard Gaussian.
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Proposition 23.12

The standard Gaussian Nd(0, id) is the invariant measure for (Pt).

Recall this means that if your initial data is distributed as a standard Gaussian, then at all times you’re
distributed as a standard Gaussian.

Proof. Suppose X0 ∼ Nd(0, id). Then from the explicit formula — or applying the corollary — we see that

Xt
d
= e−tX0 +

√
1− e−2tZ,

where Z ∼ Nd(0, id) is independent of X0. (This comes because these Brownian increments are independent
of F0.) And the variances add up — if I want to compute a variance of a sum of independent Gaussians, I
have to square the variances and add them. So this is equal in distribution to Z.

Another way to say this is that if we let γd be the probability density of the standard Gaussian, if we consider

E[f(Xt)] =

∫
dx γd(x)(Ptf)(x)

(you think of Ptf as E[f(Xt) | X0 = x]; and now if I’m integrating against γd, I’m basically integrating over
all possible values of x, where X0 has law given by γd). And the statement is that this is exactly equal to∫

γd(x)f(x) = E[f(X0)].

So there’s two different ways you can think about invariance — either in terms of the process, or the
measure.

Like mentioned before, you should think of the OU process as the SDE version of a standard Gaussian;
they’re linked because the standard Gaussian is the invariant measure for the corresponding MP. And
because we know everything about standard Gaussians, we know everything about the OU process — for
instance, we can write down a solution.

We’ll see this satisfies very nice properties, like rapid convergence to equilibrium. If you’ve taken a class
on discrete time discrete state-space Markov chains, the point of that theory is to say under certain con-
ditions, your MC converges in distribution to the equilibrium/invariant measure (e.g., if it’s aperiodic and
irreducible). You should think of this as continuous-time continuous-state space MC theory. Usually you
want to understand how fast you converge to equilibrium. In discrete time maybe there are some conditions
about rapid convergence. Something special about OU is that it actually converges exponentially quickly
to the standard Gaussian.

But of course, in terms of actual applications, you don’t care about sampling standard Gaussians using a
Markov chain (you can just do that directly), but rapid convergence is at least theoretically quite important.

§23.6 The generator

Now let’s talk about the generator of this Markov process. Recall last time we talked about how you would
compute the generator; basically you want to find this martingale. So let’s apply this to the OU process.

Suppose f ∈ C2
b (Rd) is twice continuously differentiable, and it and its first and second derivatives are

bounded. Last time we did this for BM, now we’ll do it for the OU process. Given X, you apply Ito’s
formula to get

df(Xt) = ∇f(Xt) dXt +
1

2
∂ijf(Xt) ⟨dXi

t , dX
j
t ⟩.

Page 228 of 267



Class by Sky Cao (Spring 2025) 18.676 — Stochastic Calculus

And then if we write otu the SDE for X, X is an OU process so dX is specified. We get

√
2∇f(Xt) dBt −Xt∇f(Xt) dt+

1

2
∂ijf(Xt)⟨

√
2dBi

t,
√
2 dBj

t ⟩

(the first term is the martingale part; the second is one FV thing; and to compute the QV terms in the
end, you only care about the martingale part of X, which corresponds to the dB part — because when you
input the FV part into the QV you just get 0).

And these QVs are 0 unless i = j, and the
√
2’s cancel out the 1/2 factor, and in the end when we sum in i

and j and use the fact that this is nonzero only when i = j, we get the Laplacian; so this becomes

√
2∇f(Xt) dBt + (−Xt∇f(Xt) + ∆f(Xt)) dt.

And this holds for any OU process — any of the Xx
t s for example.

So we can apply the result from last time (since f and its derivatives are bounded, this martingale part is
actually a martingale, since the integrand is bounded) — f minus its FV part gives me a martingale

f(Xt)−
∫ t

0
(∆f(Xs)−Xs∇f(Xs)) ds.

This means f ∈ D(L), and the generator evaluated at f is going to be the right function g — so

(Lf)(x) = (∆f)(x)− x∇f(x).

So that’s how you compute the generator of a SDE giving you a Markov process — you just apply Ito’s
formula.

Here’s one proposition that appears quite often in other settings; let’s first see it in the explicit OU setting.

We showed that
Lf = ∆f − x · ∇f,

and from now on, when we write L, we mean this operator.

Proposition 23.13

As an operator, L is a symmetric, negative-semidefinite operator on C2
b (Rd) ⊆ L2(γd).

What does this mean? This means if I compute the L2 inner product with respect to the standard Gaussian
measure (which we denote by γd — the measure of the standard d-dimensional Gaussian) — that gives me
a Hilbert space, and this says

⟨Lf, g⟩L2(γd) = ⟨f, Lg⟩L2(γd).

That’s what symmetric means; and negative semidefinite means

⟨Lf, f⟩L2(γd) ≤ 0.

This is somehow the continuous version of what it means to be a reversible Markov process. In discrete time
discrete state space MCs, if you satisfy the detailed balance equations you get a reversible chain; this first
statement is somehow the continuous analog of detailed balance and reversibility.

Proof. Let’s first try to show it’s symmetric, so we’re computing this inner product

(Lf, g)L2(γd) =

∫
dx γd(x)(Lf)(x)g(x).
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And we substitute in the explicit formula we had for Lf and get∫
dx γd(x)(∆f(x)− x∇f(x))g(x).

And now you want to integrate by parts. If I integrate by parts the Laplacian term, I’m going to get

−
∫

dx∇f(x) · ∇(γd(x)g(x))

(this term comes when I integrate by parts ∆f(x) ·γd · g — I take one derivative on the Laplacian and move
it to the other two functions). And then I have the other two terms

−
∫

dxγd(x)(x · ∇f(x))g(x).

(With this integration by parts, we’re applying the general formula
∫
∆hg = −

∫
∇h · ∇g, where these

integrals are against the Lebesgue measure). Now we have to compute ∇(γdg), which we can do using the
product rule; we have

∇(γdg) = (∇γd)g + γd∇g.

And now we use the fact that we can explicitly compute ∇γd, and it’s going to be precisely −x · γd (this is
all evaluated at a point x). So then you see that actually when the gradiant falls on the Gaussian density,
it’s going to cancel out the third term — this first term comes with a −, which cancels out this −, and then
you get exactly the last term

∫
dxγd(x)(x · ∇f(x)) gx. So if you take into account this cancellation, you’re

just left with whatever you get from γd∇g. And that’s going to be

−
∫

dxγd(x)∇f(x) · ∇g(x).

So what we actually managed to show is that

(Lf, g)L2(γd) = −(∇f,∇g)L2(γd).

And you see that’s why you get symmetry — the thing on the right is manifestly symmetric in f and g. So
if you swap the roles of f and g, you get the symmetry statement.

You also immediately get the negative-semidefinite statement — if g = f , this thing is ∇f · ∇f , which is
always nonnegative.

Remark 23.14. All these computations hold in much more generality, but we’re doing it explicitly in
this Gaussian case first; if we have time we’ll later talk about more general measures and more general
SDEs.

Remark 23.15. The way you compute ∇γd is that up to constants this density is exp(− |x|2 /2); the
constants don’t matter for evaluating the gradient, so you just have to evaluate the gradient of this guy,
and that’s what we want.

§23.7 Symmetry and invariance

This symmetry gives you another way to prove invariance of the Gaussian measure with respect to the OU
semigroup (which generalizes) — it’s a general fact that if you have symmetry of your operator with respect
to the L2 space of a given measure, then the semigroup L generates is going to leave this measure invariant
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(recall that the operator determines the semigroup). So if some operator L is symmetric with respect to the
L2 space of a given measure, then that measure has to be invariant.

In the Gaussian case we did this by an explicit computation; but for more general SDEs you don’t have
explicit formulas, so you have to use this more general statement. So let’s talk about that.

So we’ll give another proof of invariance using only that

(lf, g)L2(γd) = (f, Lg)L2(γd).

We’ll also have to use some other general facts about Markov processes — in particular, last time we
discussed that

∂tPtf = LPtf,

at least for f ∈ D(L). In integral form, this says

Ptf(x) = f(x) +

∫ t

0
LPsf(x) ds.

Now let’s integrate with respect to the measure γd; we have∫
dxγd(x)(Ptf)(x).

Eventually we want to show that this is just
∫
γd(x)f(x) — we want to take out the Pt. For that, if we

insert this formula, we get ∫
dxγd(x)f(x) +

∫
dxγd(x)

∫ t

0
(LPsf)(x) ds.

The first term is exactly what we want, so we have to somehow say the second term gives 0. Why? The
first thing you do is swap the order of integration (over space and time) and write this as∫ t

0
ds

∫
dxγd(x)(LPsf)(x) ds.

And you can interpret this as the L2 inner product of LPsf against the constant function 1, so this is∫ t

0
ds(LPsf,1)L2(γd).

And now you use Gaussian integration by parts. So using the symmetry (maybe we need slightly more than
symmetry; you need to know what the generator looks like, that it’s a differential operator). Using the
symmetr, you can move the L to the other side to get∫ t

0
ds(Psf, L1)L2(γd).

And we know L just involves taking derivatives of your function, and 1 is a constant, so its derivatives are
0; so this whole term is 0, and you get the claimed invariance.

Remark 23.16. In general your operator is going to be differential (you’ll always be taking derivatives),
so this statement about L1 = 0 is going to be true.
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§23.8 Reversibility

Now let’s talk about reversibility. Here’s one way you can say reversibility. All these things will be needed
later whne we talk about exponential convergence to equilibrium — this fact about generators, this integra-
tion by parts formula that we proved ((Lf, g)L2(γd) = −(∇f,∇g)L2(γd)).

Proposition 23.17

Let X0 ∼ γd. Then for all t, we have

(X0, Xt)
d
= (Xt, X0).

This says the joint law of X0 and Xt is the same as Xt and X0. One main consequence of this is that Pt
itself is symmetric —

(Ptf, g)L2(γd) = (f,Ptg)L2(γd).

Remark 23.18. We proved the earlier identity for everything in the domain of L, but you want it for
all bounded continuoous f . This is a general fact that the domain of L is going to be dense in the space
of bounded continuous functions. Here at least we know it contains C2

b (Rd). And this definitely would
be enough to characterize the law. You just need some large enough space of functions so that if you
know the expectation of every one of those functions against your measure, then you know the law of
the measure; but this is usually going to be true.

The way we’re going to prove this is a bit special to the Gaussian case (the way you’d prove it in general
is by Girsanov, and if we have time we’ll get to that, but for now we want to get to this rapid convergence
to equilibrium thing, so we’ll just prove it directly using some special facts about Gaussians and the OU
process).

Student Question. Proving it in general means for a different process with different invariant mea-
sure?

Answer. Yes. The OU process is a concrete example of a Longevin dynamic, where basically given
any measure you can write down an SDE which leaves it invariant, just like if I give you a measure
on a finite set I can find a Markov chain that leaves it invariant; in the continuous case you can find
a Markov process that does it. Such dynamics will also be reversible, and to prove that you have to
use Girsanov’s theorem. This thing, even the OU process, is something of modern interest, even in
diffusion models in CS (maybe).

Proof of proposition. From the explicit formula for Pt — let’s suppose we’re in one dimension (otherwise
it’s a bunch of iid things, so it extends directly; but in one dimension the notation is slightly simpler). First
of all, (X0, Xt) is jointly Gaussian. This is kind of a consequence of your explicit representation of

Xt = • ·X0 + independent Gaussian noise.

Any time you have that, your pair is going to be jointly Gaussian.

And this is in two dimensions, so if we compute the law of this joint Gaussian, the mean is just 0 because
they’re both standard normals. And the covariacne matrix; on the diagonals it’s 1, because they’re standard
normals. And what is the covariance? YOu see that

Xt = e−tX0 + independent Gaussian,
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so the covariance is just e−t. But then very manifestly, the joint law

N2

([
0
0

]
,

[
1 e−t

e−t 1

])
is exchangable, i.e., if (Y, Z) is distributed according to this thing, then (Y,Z) and (Z, Y ) have the same
distribution.

In d dimensions, it’s just a bunch of i.i.d. collections of this.

Now let’s prove the symmetry of the semigroup:

Proposition 23.19

We have (Ptf, g)L2(γd) = (f,Ptg)L2(γd).

Proof. Writing out what this means,

(Ptf, g)L2(γd) =

∫
dxγd(x)E[f(Xt) | X0 = x]g(x)

(just writing out what Pt is by definition). And you can write this as

E[f(Xt)g(X0)],

because x means we’re taking X0. But then using this reversibility of X0 and Xt, we can swap their roles
and say this is

E[f(X0)g(Xt)].

And by the same identity here, this is going to be equal to (f,Ptg)L2(γd). So this proves the symmetry of
this semigroup.

At a very formal level, if the generator is symmetric in this sense, you expect the semigroup to be — last
time we said that at least formally you should think of Pt as etL. And at least in finite dimensions, if you
have a symmetric matrix, then its matrix exponential is also going to be symmetric. So formally that’s why
you believe Pt should be symmetric if the generator is.

§23.9 Rates of convergence

That concludes the preliminaries, so now we can begin discussing rates of convergence.

The main result that we’re leading towards, at least one of the main intermediate ones (we’re going to
use this to prove rapid convergence to equilibrium, but it’s the main intermediate step and also of its own
interest):

Theorem 23.20 (Gaussian Poincaré inequality)

For any f such that ∇f ∈ L2(γd), we have

Varγd [f ] ≤ (∇f,∇f)L2(γd).
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By Varγd [f ], we mean Var[f(X)] for X ∼ γd.

So you’re bounding the second moment of a function by its gradient. You can also think of this as a spectral
gap statement (it should be equivalent to the MP having a spectral gap, and this should be why you get
exponentially fast convergence, though we won’t really talk about that).

So this is what we’re leading towards. We’ll probably prove it next time. This is some functional inequality.
For Sky the main reason it’s interesting is it will lead to rapid convergence to equilibrium, but there are also
other applications of this kind of thing.

To begin, one first step is the following commutation identity.

Lemma 23.21 (Commutation identity)

Let f ∈ C1
b (Rd). Then

∇Ptf = e−tPt∇f.

This means f and its first derivative are continuous and bounded.

So you can commute the gradient and your semigroup, and when you do that, you pickk up this exponentially
decreasing term. This is the source of your exponential convergence, as we will see.

The proof — and this inequality — is quite special to the Gaussian distribution.

Remark 23.22. Often measures which satisf this kind of inequality will have nice convexity properties.
For example, if the density of your measure is log-concave, that’s very good for sampling. More generally,
if you have log-concave density, you’d expect to have Poincare and rapid mixing. This is because you
can efficiently minimize a convex function; but if it’s not convex and has local minima that might be
hard. And this is related to sampling from densities with good convexity properties.

Proof. We can write out explicitly what (Ptf) is; we have

(Ptf)(x) = E[f(e−t +
√

1− e−2tZ)]

where Z ∼ Nd(0, id). Now if we take a gradient in x, at least formally — and this is maybe the source of
the regularity assumption — you should be able to put the gradient inside the expectation, so you get

(∇Ptf)(x) = E
[
∇f(e−tx+

√
1− e−2tZ)

]
.

But this is a function of x where you first multiply it by e−t, so by the chain rule this is

e−tE[(∇f)(e−t +
√
1− e−2tZ)] = e−tPt∇f.

The point is you’re differentiating in x, but x gets hit by this e−t, and when you differentiate you get this
extra e−t factor. (We’re not going to worry about the exchanging the expectation and gradient; we’ll just
assume that’s fine.)

Using this you can immediately prove the Gaussian Poincaré inequality. Next time we’ll do that and use
it to show rapid convergence to equilibrium with respect to a certain distance on measures. It’s the χ2

distance. It actually controls the TV distance, so this is quite strong. After we discuss that, we’ll talk about
entropy. There’s a notion of relative entropy which is also a distance between probability measures in some
sense (though it’s not symmetric). Surprisingly you actually get exponential decay in relative entropy with
respect to the standard Gaussian. This actually relates to this thing called log Sobolev inequalities, which
is also a topic of modern interest.
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§24 May 5, 2025

Last time we began discussing the OU process

dXt = −Xt +
√
2 dBt,

a very explicit SDE. The point is it’s very nicely behaved. One reason is the fact that it’s linear; but also,
you have this −Xt damping term. This basically says you have an autoregressive process — any time it
gets big, it tends to come back down to O(1) magnitude (if X is ever big, the −Xt term dominates your
dynamics). So the tendency is always to push you back to something O(1). That’s why this process not
only doesn’t explode in finite time, but is also quite nicely behaved.

There’s a meta thing about how any time you have a SDE solution, this should define a MP — infinitesimally
this tells you where I am next should only depend on where I am now, plus some noise. So we can calculate
its generator, using Itô’s formula, as

(Lf)(x) = ∆f(x)− x · ∇f(x).

Then we computed an integration by parts relation — L is symmetric with respect to the L2 inner product
(with respect to the standard Gaussian measure), i.e.,

(Lf, g)L2(γd) = −(∇f,∇g)L2(γd) = (f, Lg)L2(γd).

And finally, we ended by proving the commutation identity

∇Ptf = e−tPt∇f.

The point is you can explicitly write down how Pt acts — you’re adding in some explicit Gaussian noise —
so you can do this computation. This is also why you get rapid convergence to equilibrium — suppose f
is bounded and has bounded first derivative. Then Ptf is also going to be bounded. And you’re basically
saying its gradient decays exponentially in time. So as you apply this semigroup Pt, basically it converges to
a constant function, because the gradient decays exponentially (and if the gradient is 0, you’re a constant).
And also we know, what’s the constant you should be converging to? It’s

Ptf → Eγdf

(because last class, we proved that as t→∞, the process converges to the standard Gaussian). This is the
reason why you get rapid convergence — it’s basically saying as you apply this semigroup Pt to a function,
that function becomes basically constant exponentially quickly, in the sense that you’ll have an exponentially
decaying bound on its gradient.

So this is the key thing; and today we’ll see how we actually use it to get convergence to equilibrium, with
respect to two notions of distance.

§24.1 Poincare inequality

Theorem 24.1 (Poincare)

We have Varγd(f) ≤ (∇f,∇f)L2(γd).

(There are various conditions on f — at the very least, both sides have to be finite — but at least for nice
enough functions, this is the statement.)

This is actually just a statement about the standard Gaussian density — there’s no dynamical thing in here.
But the way we’ll prove this is by using the dynamics of the OU semigroup. The relation is that γd is the
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invariant measure for the dynamics. So we’ll introduce the dynamics, which will somehow let us prove this
inequality for the invariant measure.

Why introduce the dynamics? It’s very nicely behaved; in particular, rapid convergence in the form of this
commutation identity will be the key step.

Before we prove this, we’ll need a lemma.

Lemma 24.2 (Variance decay)

For nice enough (e.g., smooth) f , we have

∂t(Ptf,Ptf)L2(γd) = −2(∇Ptf,Ptf)L2(γd).

So if you compute the time-derivative of the second moment of f , you get something that’s always decaying.

(We can always extend things by density arguments, so we might as well assume f is smooth and bounded
and so on.)

This is some sort of monotonicity formula — the second moment of Ptf with respect to γd is actually
decaying.

Proof. The proof is a calculation. We won’t keep writing L2(γd) in the notation; we’ll just make that
implicit. How do you compute

∂t(Ptf,Ptf)?

We use the product rule. The time derivative could fall on either of the Pt’s, so we get

(∂tPtf,Ptf) + (Ptf, ∂tPtf) = 2(∂tPtf,Ptf)

(using the symmetry of the inner product). And we have this equation that Ptf satisfies in t — when you
differentiate in t, you just get L. So this is actually

2(LPtf,Ptf)

(where L is the generator). And then you use integration by parts, and this becomes −2(∇Ptf,Ptf), which
is what we wanted.

Actually if you use this, you can prove the Poincare inequality. The proof Sky is presenting here is slightly
different from in the notes (there’s a supplement he’ll upload soon with this one), because this one is more
conceptual (and similar to how we’ll prove a later inequality called log Sobolev).

Proof. You use this monotonicity formula. First we can assume Eγdf = 0 (the formula doesn’t change if you
shift f by a constant, so we’re free to do that), so that Varγd(f) = (f, f). (Again, we’re not writing L2(γd),
but that’s what we mean by this inner product.) Now we can integrate this monotonicity formula to get

(P0f,P0f)− (Ptf,Ptf) = −
∫ t

0
∂s(Psf,Psf) ds.

So we view (Ptf,Ptf) as a function in t, and we just write this as an integral of its time derivative. And
the point is I have a formula for this time derivative, and if I substitute in this formula, I get

2

∫ t

0
(∇Psf,∇Psf) ds.
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But you also have that if you send t→∞, then Ptf → Eγdf , which we assumed is 0. So actually Ptf → 0
pointwise as t→∞. So if you take the limit as t→∞ of both sides, you’re basically going to get that

(P0f,P0f) = 2

∫ ∞

0
(∇Psf,∇Psf) ds.

And the left-hand side is just (f, f), because P0 is the identity operator. (You kind of have to justify why
if Ptf → 0 pointwise, its second moment goes to 0; but that’s part of the regularity assumptions — if you
assume f is C1 and bounded, then this should just be bounded convergence, so that’s fine.)

Now here’s the key step. You use the special property satisfied by the OU semigroup — that Ptf is
converging to a constant function exponentially quickly (in terms of the gradient), and that constant is
going to be 0 (because we assumed Eγdf = 0). So we use the commutation formula (swapping ∇Psf to
Ps∇f and picking up an exponential) to write this as

2

∫ ∞

0
e−2se−2s(Ps∇f,Ps∇f) ds.

Now you’re almost done; you just need to apply Cauchy–Schwarz in the right way. For fixed s, we want to
say that

(Ps∇f,Ps∇f) = ∥∇Ps∇f∥2L2(γd)
≤ ∥∇f∥2L2(γd)

.

What we want to claim is that Ps is a contraction on L2(γd) — it can’t increase the L2 norm. And why is
that true? This is somehow supposed to be Hölder’s inequality, in a way — if I take |(Psg)(x)|2, well, this
is least confusing if you think about it in terms of probability theory. (We’ll say g = ∇f , but we’ll prove it
in general.) The way to think about ∫

|(Psg)(x)|2 γd(x) dx

is that it’s
E[E[g(Xs) | X0]

2].

Because the way you think of this semigroup Ps is in terms of the stochastic process

(Psg)(x) = E[g(Xs) | X0 = x]

(that’s the interpretation of this semigroup in terms of the process). And now we’re also averaging over your
initial position, and we’re saying X0 has the standard Gaussian as its law; that’s why you can interpret the
L2 norm of Psg as the expectation of the square of the conditional expectation. And now you use Jensen’s
(for instance) to take the square inside the conditional expectation and get

E[E[g(Xs) | X0]
2] ≤ E[E[g(Xs)

2 | X0]].

And by tower, this is just E[g(Xs)
2]. But then here we started in stationarity — we were saying X0 has

standard Gaussian density — so Xs is also distributed as X0, which means we could also write this as
(g, g)L2(γd).

This may have been good to make a lemma — the key point is that as an operator, Ps is always a contraction
on L2. So if we use this contraction property, we’ll basically be done. The point is that ∇f on the right-hand
side doesn’t depend on s — we basically used stationarity to remove the s-dependence. So now we’re just
left with an explicit integral — we can bound everything by

2

∫ ∞

0
e−2s ds · (∇f,∇f)L2(γd).

And 2
∫∞
0 e−2s ds = 1, so that concludes the proof.
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Remark 24.3. Actually the only place you had an inequality in all this was basically when we used
this contraction. The commutation identity is actually an equality. More generally, you see you don’t
actually need an equality — if your semigroup satisfies the inequality

∥∇Ptf∥L2(γd)
≤ e−t ∥Pt∇f∥L2(γd)

,

then you can prove this in the same way. For OU it turns out to be an equality; but if for some
other semigroup you’re somehow able to verify this inequality, you’d also have Poincare for its invariant
measure. So if you had som eother general semigroup, in general its invariant measure wouldn’t be
Gaussian; but you’re basically saying if the dynamics mixes rapidly, then the measure itself also satisfies
a nice functional inequality (namely Poincare).

(You would replace all instances of γd with the invariant measure.)

§24.2 Evolution of densities

Now let’s talk about why this implies rapid mixing. Suppose that you start your OU process at an initial
distribution which has a density with respect to γd; let f0 be that density, which we’ll write as

f0 =
dLaw(X0)

dγd

(the Radon–Nikodym derivative of Law(X0) with respect to the standard Gaussian).

Claim 24.4 — The law of Xt also has a density with respect to γd (for all t), and moreover, this density
ft is given by

ft =
dLaw(Xt)

dγt
= Ptf0.

You can put some sort of distances on probability measures (e.g., total variation distance; the one we’ll use is
χ2, which actually controls TV). We’ll show that under some notions, this distance converges exponentially
quickly under Pt. The first step is saying that if you have a density at time 0, you’ll also have a density at
later times (because the distance will be defined out of the densities).

Proof. We need to be able to compute E[g(Xt)] for some bounded measurable g; and if we’re saying we have
a density with respect to γd, I should be able to express this as an integral with respect to γd, times this
density. So how are we going to do that?

The first thing to note is that you can write this in integral form as∫
γd(x)f0(x)(Ptg)(x)

(when we have γd(x)f0(x), we’re basically integrating with respect to the original law of X0).

(An intermediate step would have been to first write E[g(Xt)] = E[E[g(Xt) | X0]], which is then equal to
this integral.)

And the reason you write it llike this is now we can view this as

(f0,Ptg)L2(γd).

And last time we proved a statement about the symmetry of Pt as an operator — you can actualy move Pt
to the LHS, so this becomes

(Ptf0, g)L2(γd),
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which you can now interpret as ∫
γd(x)g(x)(Ptf0)(x).

So we’ve been able to express expectations with respect to Xt as integrals with respect to γd times this extra
thing. This is a way of showing the law of Xt is absolutely continuous with respect to γd, and the density
is precisely this extra term Ptf0.

All of this is just so that we can put this into the framework we currently have. We’re going to be using the
variance decay proposition, which tells us that if you apply Pt to some f , its variance decays. In our setup,
we’re eventually going to take f to be f0; that’s what we’re working towards.

§24.3 More about variance decay

This is kind of going slightly out of order, but maybe we should’ve said this before: A corollary of variance
decay and the Poincare inequality is that actually the variance decays exponentially.

Corollary 24.5

If Eγdf = 0, we have (Ptf,Ptf)L2(γd) ≤ e−2t(f, f)L2(γd).

If you combine the variance decay inequality with the Poincare inequality, you get this.

Proof. Combining variance decay and Poincare, we have

∂t(Ptf,Ptf) = −2(−Ptf,∇Ptf)L2(γd) ≤ −2(Ptf,Ptf)L2(γd).

And this exactly implies exponential decay — for example, assuming everything is well-defined, this implies
that

∂t log(Ptf,Ptf) ≤ −2.

But then if you integrate this and then exponentiate, you get precisely what we wanted. Again, this is kind
of under the assumption that (Ptf,Ptf) never becomes 0; but this is an instance of Gronwall’s lemma more
generally, that if you have a function in time satisfying this ordinary differential inequality, then you can
integrate it to get this sort of exponential decay.

Again, the key point about this variance decay is — and we’ll see this again when talking about entropy
and log-Sobolev — is that variance decay is an actual identity, so to get exponential decay you only need a
lower bound on the right-hand side by the thing you’re differentiating. And such a lower bound is precisely
the statement of Poincare.

§24.4 Chi squared distance between distributions

Now we’ll come back to our question:

Question 24.6. How close in distribution are you getting to the standard Gaussian?

So let’s define a notion of distance.
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Definition 24.7. Given probability measures µ and ν on Rd such that ν is absolutely continuous with
respect to µ (written ν ≪ µ), we define

χ2(ν | µ) = Varµ

(
dν

dµ

)
.

You can write this more explicitly as ∫
dµ(x)

(
dν

dµ
(x)− 1

)2

.

Why? The variance of a random variable is E[(X − E[X])2]. And we have

Eµ

[
dν

dµ

]
=

∫
dµ · dν

dµ
=

∫
dν(x) = 1

(by the definition of density). So that’s why you have this formula.

And with this formula, you can kind of see that this is actually going to control total variation: we have

dTV(ν, µ) =

∫ ∣∣∣∣dνdµ − 1

∣∣∣∣ dµ(x)
(this is one way to define it; the more common way is to assume both µ and ν have a density with respect
to Lebesgue).

The main point is not to talk about the details of TV; but it’s a common notion of distance between
two probability measures which is quite strong (if TV is small, the two distributions are quite close in a
quantitative sense). And if you just apply Cauchy–Schwarz, this is bounded by(∫ ∣∣∣∣dνdµ − 1

∣∣∣∣2 dµ(x)

)1/2

= χ2(ν | µ)1/2.

So the point is that the χ2 distance (which you may or may not have seen before) controls TV distance.
(But that’s the main point of this computation; otherwise we won’t directly use it.)

§24.5 Convergence in chi squared

But now the point is that if we combine all this discussion, we get that

χ2(Law(Xt) | γd) = χ2(Ptf0 | γd),

since we’re in the setting where we assumed X0 has a density, and derived that the density exactly evolves
as Pt so the density of Xt is Pt of the original.

And by the definition of the χ2 distance, this is exactly

Varγd(Ptf0).

And now you can apply Corollary 24.5, though we need to be a bit careful. In the end, what we want to
say is that this is at most e−2tVarγd(f0) = e−2tχ2(Law(X0) | γd). And the reason why this will be true is,
we want to reduce to Corollary 24.5. The variance is not the second moment if you don’t have zero mean,
but the point is we could have written

Varγd(f0) = (f0, f0)− 1
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(the variance is the second moment minus the first; and you have a density, so its first ,oment will always
be 1). Similarly, we always have

Varγd(Ptf0) = (Ptf0,Ptf0)− 1.

And the identity we want to claim follows from these identities (the fact that this −1 is the same in both
cases) and Corollary 24.5.

The main point is that Poincare basically leads to rapid decay of this type of distance between probability
measures — in a very quantiative form, you converge to stationarity exponentially quickly. To summarize,
this really follows from Poincare, which really follows from this commutation identity, which is why the OU
process is quite nice.

Student Question. Doesn’t Corollary 24.5 only hold if Ef = 0? How are we applying it to f0?

Answer. We want to apply it to f̃0 = f0 − 1, which does have mean 0. Then you get

Varγd(Ptf0) = Varγd(Ptf̃0) ≤ e−2t(f̃0, f̃0) = e−2tχ2(Law(X0) | γd)

(in the definition of the χ2 distance, you always subtract 1).

§24.6 Entropy and log-Sobolev

Now we’ll talk about another notion of distance for which you have this exponential decay.

This notion of entropy is quite important — it shows up in many areas of math. For instance, anything
related to physics (it came from thermodynamics). In particular, it shows up in analysis, if you talk about
PDEs which model the evolution of fluids, basically there are natural notions of entropy which come out. It
also shows up in statistics and probability because it’s a notion of a measure of randomness. Interestingly,
it actually shows up in geometry as well — if you look at Perelman’s proof of the Poincare conjecture, he
had a sequence of papers, and in the first his main breakthrough was that he identifies a new controlled
quantity. Ricci flow is some nonlinear evolution equation in geometry, and because it’s nonlinear, it’s very
complicated. But his first breakthrough is that even though this is super nonlinear, you can identify certain
controlled quantities — along this flow, there are certain statistics that are decreasing. And this controlled
quantity he identified has to do with entropy. So he identified something in terms of entropy that got
monotonicity and allowed him to prove the conjecture.

So entropy is quite important in many areas of math. Let’s define it.

Definition 24.8 (Relative entropy). Let µ and ν be probability measures on Rd such that ν is absolutely
continuous with respect to µ. Define the relative entropy

D(ν | µ) =
∫

f log f dµ,

where f = dν
dµ .

Remark 24.9. This is also called Kullblack–Leibler divergence.

Remark 24.10. At a discrete level, if µ is a discrete measure, this can also be called Shannon entropy,
which shows up in information theory.
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Notation 24.11. For nonnegative f ≥ 0, define

Entγd(f) = Eγd [f log f ]− Eγdf logEγdf.

The point is in general f doesn’t have to be a density — it doesn’t have to integrate to 1 — which is why
you have the extra term. If f does integrate to 1 (i.e., Eγdf = 1), then log 1 = 0, so the second term drops
out and

Entγd(f) = D(fγd | γd).

(By fγd, we mean the measure which has density f with respect to γd.)

Goal 24.12. Understand how the entropy evolves along the OU process — how the function t 7→
Entγd(Ptf0) behaves.

The previous stuff was basically understanding the evolution of the variance — variance decay and Poincare
let us understand the evolution of the variance. Now we have a different statistic, the entropy; and we want
to understand its evolution as well.

The punchline is that this also decays exponentially as well (with a statement very similar to the one we
had for variance).

To prove that exponential decay, we proved two things — a variance decay lemma, and Poincare. To get
this, we need an entropy decay lemma, and some replacement for Poincare, which is called log Sobolev.

§24.7 Preliminaries

Before we get into this, we’ll make a preliminary scaling observation about entropy — if you scale f by a
constant, how does that change things? This should just scale the entropy by a constant, i.e.,

Eγd(cf) = cEntγd(f).

THe reason is if we compute this out, we get

Eγd(cf log(cf))− Eγd(cf) logEγd(cf)

(just writing out the definition of the entropy of the scaled function). We can expand out log of a product
as a sum of logs, so the first term becomes the two terms

cEγd [f log f ] + cEγd [f log c].

Similarly, the second term expands out to

−(cEγdf logEγdf + cEγdf log c).

Two of these cancel, and we just get cEγdf .

This means we can without loss of generality assume that f has mean 1 (scaling it to have mean 1 just picks
up a constant, which you can track).

§24.8 An entropy evolution identity

We want to understand how the entropy behaves as a function of t.
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Lemma 24.13

We have

∂tEnt(Ptf) = −Eγd

[
|∇Ptf |2

Ptf

]
.

Remark 24.14. (We only ever apply entropy to nonnegative functions, or else log doesn’t make sense.)

This maybe looks complicated, but note that the right-hand side (without the −) is always nonnegative.
So Ent(Ptf) does decay along Pt! This is not obvious at all.

The next question is how rapidly it decays, but that’s for later. The fact that the time derivative is
always nonpositive tells you that the entropy is always non-increasing — so if you measure distance
from stationarity using entropy, it never increases (only decreases). That’s not obvious at all, but this
calculation will tell you that indeed it’s decaying.

Remark 24.15. If Eγdf = 1, then Ptf → 1 as t→∞, and thus we actually get

Ent(Ptf)→ 0

as t → ∞. Again you have to justify this using some sort of convergence theorem, but Ent(1) = 0
(because you’re comparing the standard Gaussian density to itself; and if the entropy is any reasonable
notion of distance and you compare something to itself, you should just get 0).

So this is telling you (modulo some sort of convergence theorem) that entropy converges to 0 as time
goes to∞. This is reasonable because we expect to converge to stationarity. The more surprising thing
is the first thing — that it’s monotone (it never increases, only decreases).

Proof. The proof is actually not that involved — you again use integration by parts. In this example, we
can assume Eγdf = 1, because if we scale f so that it has mean 1, we pick up a constant on the LHS and
the same constant on the RHS (if we scale f by c, we get a c2 in the numerator and a c on the bottom). So
we can without loss of generality scale so that f has mean 1 (and the general case follows by multiplying by
a constant). This is convenient because in Entγd(f) you lose the second term (which is 0).

Mow we can compute
∂tEntγd(Ptf) = ∂tEγd(Ptf logPtf).

Now we again use the product formula — the time-derivative can hit either Ptf (in which case you get L,
since that’s the time derivative of Pt) or logPtf , in which case you have to differentiate log; so you get

Eγd [LPtf logPtf ] + Eγd

[
Ptf ·

LPtf
Ptf

]
(because log gives you a 1

x , and then the time derivative of Ptf is again LPtf).

But we claim the second term is just 0. Why? The Ptf ’s cancel, so this is

Eγd [LPtf ] = (1, LPtf)L2(γd).

But you can integrate by parts to get that this is

−(∇1,∇Ptf)L2(γd) = 0

(the gradient of 1 is 0).
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Now with the first term, we want to view this as an inner product and integrate by parts; so we write this
as

(LPtf, logPtf) = −
(
∇Ptf,

∇Ptf
Ptf

)
(again using the gradient of log).

And this is another way to write the expression we wanted on the RHS, so we’re done.

Remark 24.16. You see that ignoring questions of interchanging derivatives and integrals, the com-
putation is quite simple — you basically apply the same thing (integration by parts) over and over
again.

Now how are we going to get exponential decay of the entropy? You want to lower-bound the expectation
on the right (without the − sign) by the thing on the left:

Goal 24.17. To get exponential decay of Entγd(Ptf), we want an inequality that looks like

Eγd

[
|∇Ptf |2

Ptf

]
≤ CEntγd(Ptf).

If you had an inequality like this for all f (where C is a constant not dependingon f), you could substitute
this in and get

∂tEnt(Ptf) ≤ −CEntγd(Ptf),

and as soon as you get this, you get exponential decay.

So the only question now is, do you have an inequality of this form? This is precisely log-Sobolev, which
basically says indeed you do. So this is one way you can motivate log-Sobolev (and it’s how Sky prefers to
think about it).

Remark 24.18. In statistics, the RHS of the lemma is often called the Fisher information.

§24.9 Log-Sobolev inequality

So this log-Sobolev is what we’re going to proceed to prove next.

Theorem 24.19 (Log-Sobolev inequality)

For any f ≥ 0, we have

Entγd(f) ≤
1

2
Eγd

[
|∇f |2

f

]
≤

Remark 24.20. Why is it called log-Sobolev? In Sobolev inequalities, you’re bounding Lp norms of
your function by Lp norms of the gradient (or derivative). Here you’re bounding the L1 norm of f log f
by the gradient.
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Remark 24.21. A key thing is that the constant does not depend on your dimension — it’s just 1
2

(though everything is in Rd). This is in sharp contrast to the usual Sobolev inequalities. Usually their
precise statements heavily depend on the dimension. For instance, in two dimensions you might have

∥f∥Lp(R2) ≲ ∥f∥H1(R2) ,

where ∥f∥H1 = ∥f∥L2 + ∥∇f∥L2 . So you can bound higher Lp norms by the L2 norm and the L2 norm
of a gradient, for any p <∞. But this is only true in 2 dimensions — in 3 dimensions this only works
for p ≤ 6, and in 4 dimensions for p ≤ 4.

But for log-Sobolev, this is true in any dimension. This is important — log-Sobolev originally arose
in quantum field theory, which in some sense is analysis in infinite dimensions. So while Sobolev
inequalities are about functions on finite-dimensional space, QFT arises out of physics and is supposed
to describe protons and neutrons and electrons and quarks and somehow when you try to make this
mathematically rigorous, you need some sort of analysis; and log-Sobolev was originally discovered in
that context.

And it’s very important because this 1
2 doesn’t depend on dimension.

In particular, Perelman’s first paper cites Len Gross (1970’s); this may be the first place log-Sobolev
inequalities were introduced, and he motivated them because he was motivated by QFT. Perelman cited
this because found some entropy-like quantity that’s decaying.

(Len Gross is a mathematician at Cornell.)

To prove this, you kind of just want to mimic the proof of Poincare.

Proof. By the entropy decay lemma, you can write

Entγd(f)− Entγd(P∞f)

(we know the latter is 0, because at time ∞ you converge to 0) as an integral of the time-derivative, which
we computed; so this is ∫ ∞

0
dtEγd

[
|∇Ptf |2

Ptf

]
(in the proof of Poincare we first said this for finite t and took t→∞; here we’re just skipping that step).
So again you’re using special properties of your dynamics of the OU process to prove a statement about
the measure, which has nothing to do with OU — you’re just introducing this process to help you prove
the inequality. And the reason it’s helpful is that the process satisfies this commutation relation; we can
commute the gradient and semigroup and pick up an e−2t. So this becomes∫ ∞

0
dte−2tEγd

[
|Pt∇f |2

Ptf

]
.

Like in Poincare, we want to find some inequality which completely removes the dependence on t, using a
clever application of Cauchy–Schwarz. For this, we use that

|Pt∇f | =
∣∣∣∣Pt(∇f√f ,√f

)∣∣∣∣ .
The point of all of this is that Pt is an expectation with respect to a probability measure, so you can apply
Cauchy–Schwarz at that level to get that this is at most∣∣∣∣∣Pt

(
|∇f |2

f

)∣∣∣∣∣
1/2

(Ptf)1/2.
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A more expliict way to write this is that

|Pt∇f | = E[∇f(Xt) | X0 = x] = E

[
∇f(Xt)√
f(Xt)

√
f(Xt) | X0 = x

]
.

And now I use Cauchy–Schwarz for this conditional expectation, so this becomes

E

[
|∇f(Xt)|2

f(Xt)
| X0 = x

]1/2
· E[f(Xt) | X0 = x]1/2.

So actually this inequality holds for all x.

Now if you use this in our integral, the Ptf ’s cancel out, and our integral is bounded by∫ ∞

0
dt e−2tEγd

[∣∣∣∣∣Pt
(
|∇f |2

f

)∣∣∣∣∣
]
.

And you don’t need the absolute value because everything is positive.

Now you use stationarity — Pt is stationary with respect to γd, so the expectation of Pt is actually just the
expectation, and this is

Eγd

[
|∇f |2

f

]
.

And
∫∞
0 e−2t dt = 1

2 .

Remark 24.22. The original proof of log-Sobolev was not this; later on people found clever proofs like
this.

Next time we will wrap up log-Sobolev, and then discuss a different consequence — ‘hypercontractivity’ —
and then we’ll begin discussing more general dynamics.

§25 May 7, 2025

§25.1 Review

Last time, we defined this notion of entropy with respect to the standard Gaussian, as

Entγd(f) = Eγd [f log f ]− Eγdf logEγdf.

We computed that along the OU semigroup, the entropy is monotone decreasing, with

∂tEntγd(Ptf) = −Eγd

[
|∇Ptf |2

Ptf

]2
.

Then we wanted to say it decays exponentially quickly. To conclude that, we want a bound on the RHS in
terms of the entropy itself. That’s what log-Sobolev is — we proved that

Entγd(f) ≤
1

2
Eγd

[
|∇f |2

f

]
.
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This was by combining the above identity with the commutation identity ∇Ptf = e−tPt∇f . This is really
what makes the OU process special — when you apply your semigroup to a Lipschitz function, its Lipschitz
constant decreases exponentially, which is what lets you get all these rapid mixing results.

As a consequence, we get that
∂tEntγd(Ptf) ≤ −2Entγd(Ptf).

And this is precisely the differential inequality which gives you exponential decay

Entγd(Ptf) ≤ e−2tEntγd(f).

And now that we have this exponential decay, if you start the OU process atX0 ∼ f0, we saw thatXt ∼ Ptf0.
So then you can apply this entropy decay to say that the law of Xt converges to γd exponentially quickly
(at least, when measured in terms of this relative entropy distance). That’s something very nice about the
OU process.

Let’s also stress that interestingly, this log-Sobolev inequality is just a fact about the Gaussian measure,
but the way you proved it was introducing a dynamic process (the OU flow). The reason you want to use
the dynamics is because you’re able to directly prove it’s rapidly mixing, basically, through the gradient
commutation identity.

§25.2 Hypercontractivity

That kind of wraps up the foray into log-Sobolev inequalities. Well. . . we won’t say wraps up. There’s
another consequence of log-Sobolev we’ll talk about today, called hypercontractivity.

To set the stage, recall that (Pt) is a semigroup of contractions on Lp(γd). We stated it for L2 (we needed
this somewhere in the proof of the log-Sobolev inequality), but more generally it’s true for all p. The way
you see this is it ultimately comes from the fact that Pt applied to a function can be interpreted as averaging
that function with respect to a probability measure.

Fact 25.1 — For any t, Pt is a contraction on Lp (for any 1 ≤ p ≤ ∞).

Proof. We can write

∥Ptf∥pLp(γd)
=

∫
γd(x) |Ptf(x)|p dx =

∫
γd(x)E[f(Xt) | X0 = x] dx.

And if you use Hölder for expectations, you can get an upper bound on this by taking the pth power inside,
getting that this is at most ∫

γd(x)Pt(|f |p)(x) dx.

And then you use invariance — (Pt) is the OU semigroup and γd is its invariant measure, so this is the same
as just

∫
γd |f(x)|p dx = ∥f∥pLp(γd)

.

This is true not just of the OU semigroup, but any Markov semigroup — a Markov semigroup is basically
a thing where applying the semigroup corresponds to integrating f along some probability measure.

The interesting thing about OU is that it satisfies something even stronger, called hypercontractivity — it
turns out you can bound a higher Lp norm of Ptf in terms of the Lp norm of f . Specifically, you can show

∥Ptf∥Lq(γd)
≲ ∥f∥Lp(γd)

for q > p. This is very non-obvious, and not true in general — it’s really using something special about the
OU semigroup (and really, the thing you use is rapid decay, in the sense of log-Sobolev).

The precise statement of this result:
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Theorem 25.2 (Gaussian hypercontractivity)

For all 1 ≤ p <∞, for all t > 0, there exists qt(p) > p such that

∥Ptf∥Lqt(p)(γd)
≤ ∥f∥Lp(γd)

.

(If p =∞, then you can bound everything by L∞, so that case is not interesting.)

We’ll define qt(p) in the proof; it’ll be greater than p for all t > 0 (for t = 0, it’ll be exactly p). You’ll see it
increases with t — if you run the OU longer and longer times, you get better and better integrability. You
should think this because the semigroup has a regularizing effect — both interms of derivatives (you see the
derivative decays exponentially quickly) and also integrability (the integrability part is what this is saying
— when you smooth out using the semigroup, you gain more additional integrability than you started with).

Remark 25.3. We won’t see many applications of hypercontractivity in this class, but it’s also of
modern interest and comes up in many contexts.

Proof. Define h(t) = ∥Ptf∥qt(p)Lqt(p)(γd)
. As we’ve done many times by now, we want to understand the evolution

of this quantity, which we’ll write as ḣ(t). So let’s compute that. Eventually, we’ll show that — once we
understand the evolution of ḣ(t), we’ll really care more about

d

dt
h(t)1/qt(p).

The magical thing is that this will be negative (so that this is monotone), which will automatically give the
thing we want.

What is ḣ(t)? Let’s first write out the q-norm of Ptf ; so this is

ḣ(t) =
d

dt

∫
dxγd(x) |Ptf(x)|qt(p) .

Now the derivative can hit two parts — the Ptf or the exponent — so you get two terms. Also, let’s just
assume f is nonnegative in this proof; we might use that at certain points. You can always upper-bound
∥Ptf∥ by ∥Pt |f |∥, while ∥f∥ doesn’t change if you replace f by |f |, so we can do this.

When it hits |Ptf |, we have to bring one exponent down; so we get

qt(p)

∫
dxγd(x)Ptf(x)qt(p)−1∂tPtf(x).

This is the first term, when you differentiate the Ptf part.

The second term is when the derivative hits the exponent. Here the way you should think about this thing
is as exp((logPtf(x))qt(p)); and right now we’re thinking about logPtf(x) as a constant and differentiating
the following term. (Also we’ll stop writing x.) When you differentiate, you get∫

dxγd logPtf · (Ptf)qt · q̇t

(we’re also going to stop writing p). Let’s call these terms I1 + I2.

The first thing, which is a priori not obvious, is that — you somehow want to use log-Sobolev, so you want
to find some term that looks like the entropy. And that’ll come from this second term, since it has a log.
As a side calculation, let’s compute

Entγd((Ptf)
qt).
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By definition, this is ∫
dxγd(Ptf)qt log(Ptf)qt −

∫
dxγd(Ptf)qt log

∫
dxγd(Ptf)qt .

For the first term, we can put the qt in the front. The first term basically looks like the one we wanted,
except for the q̇t vs. qt. And the second term you recognize — it’s actually just h log h, based on how we
defined h. So what does this tell us? We want to write the second term in terms of the entropy and h log h;
so if we do the algebra correctly, we should get that

I2 =
q̇t
qt
· (Entγd((Ptf)

qt) + h log h).

So we’ve successfully introduced this entropy term (eventually we’re going to apply log-Sobolev). When we
look at log-Sobolev, we’re eventually going to upper-bound the entropy by the RHS of log-Sobolev, so we
also have to identify that. And it turns out you can actually identify I1 as basically something like this.
Why is that? Well, we have to integrate by parts. As usual, this thing ∂tPtf(x) is going to be LPtf . And
as usual, it’s better in these things, whenever you see an L you want to integrate by parts. So you could
have thought of I1 as

qt
(
Ptf qt−1, LPtf

)
(we’re writing it in this inner product way to apply integration by parts; the inner product is with respect
to L2(γd)). After integration by parts, we get that this is

−qt
(
∇(Ptf)qt−1,∇Ptf

)
.

When you compute the gradient of this power, you get

−qt(qt − 1)((Ptf)qt−2∇Ptf,∇Ptf)

(using the chain rule). Eventually, we’re going to want to think of this as an expectation with respect to
the standard Gaussian. So we get that this is

−qt(qt − 1)Eγd

[
(Ptf)qt−2 · |∇Ptf |2

]
.

So that’s what we get for I1; we’re probably going to need this later.

So that’s I1. But we wanted to identify something of the form on the RHS of log-Sobolev. We have (Ptf)qt ,
so let’s try to compute

Eγd

[
|∇(Ptf)qt |2

(Ptf)qt

]
(this is what will appear in log-Sobolev). When we use the chain rule, you get

q2tEγd

[∣∣(Ptf)qt−1∇Ptf
∣∣2

(Ptf)qt

]
.

Now I’m going to have 2(qt − 1) powers of Ptf on the top, and qt on the bottom; so in the end, I get

q2tEγd

[
(Ptf)qt−2 |∇Ptf |2

]
.

This looks exactly like what we got for I1, ignoring the pre-factors.

So now if we apply log-Sobolev to the entropy term in I2, we get an upper bound

I2 ≤
q̇t
qt

(
1

2
q2tEγd [(Ptf)

qt−2 |∇Ptf |2] + h log h

)
.
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So we’ve upper-bounded I2 and introduced this term here, and naturally we want to match it up with the
term coming from I1.

So in summary, what have we found so far? We’ve found that the time evolution of h is upper-bounded by
I1 + I2, which we have this bound on. Now if I group this first term in the bound with I1, I should get

ḣ(g) ≤
(
q̇tqt
2
− qt(qt − 1)

)
E
[
(Ptf)qt−2 |∇Ptf |2

]
+

q̇t
qt
h(t) log h(t).

Now let’s look at the first term
q̇tqt
2
− qt(qt − 1).

We’re going to choose q so that this thing is 0 — that’s where the choice of q comes in. We can write this as

q2t

(
q̇t
2qt
− qt − 1

qt

)
.

And we want qt such that this yellow thing is just 0; that will help us greatly in understanding the evolution
of h.

So we have to solve this kind of ODE — you basically want q̇t = 2(qt − 1). It’s also natural to impose that
q0 = p — because when t = 0, you just have f on the LHS, and you cannot hope to control a higher Lq

norm of f by the Lp norm of f . So it’s natural to impose that q0 = p, so that initially you’re controlling the
Lp norm of f by itself, which is of course true.

So you can solve this ODE, and it turns out the explicit form of q is

qt(p) = e2t(p− 1) + 1.

You see it is true that this is strictly greater than p (for t > 0), because e2t > 1.

And if you plug in this choice for qt and compute the time-derivative, we get

q̇t = 2e2t(p− 1) = 2(e2t(p− 1) + 1)− 2 = 2(qt − 1).

So indeed, with this choice of qt, this thing is 0.

The point is that you want a nice formula for the evolution of h; so it’s natural to choose q so that this
complicated-looking term is 0. The other reason is we want to control the RHS in terms of h itself, but it’s
unclear how the first term relates to h (the one with Ptf). But the second term clearly relates to h — you
want to control the evolution of h in terms of h itself when you do these things.

So in summary, we have that

ḣ(t) ≤ q̇

q
· h(t) log h(t).

So this is the thing we’ve arrived at. And now we can go about understanding the evolution of h1/q, which
is the Lq norm of Ptf — for

d

dt
h(t)1/qt ,

you again use the product rule. Either the derivative hits h, or it hits the exponent; so you get

1

qt
h(t)1/qt−1ḣ(t) + log h(t)h(t)1/qt

(
− q̇t
q2t

)
(again, you think about this as exp( 1

qt
log h(t)), and you’re thinking of log h(t) as a constant for the second

term).

And now if we plug in what we found for ḣ(t), we get

q̇t
q2t

h(t)1/qt log h(t)− q̇t
q2t

h(t)1/qt log h(t).

But this is just 0! And thus we’ve shown what we wanted — that the evolution of the q-norm of Ptf is
actually monotone decreasing! So integrating this gives the desiredresult.
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Student Question. Do we have to assume p > 1?

Answer. Yeah, otherwise q = 1. The result is true if p = 1, but it’s not really telling you anything; you
only really gain if p > 1.

This computation is magical — somehow you use log-Sobolev in the right place and the rest is a bunch of
computation, but the computation is quite simple (you just compute a bunch of derivatives and magically
a bunch cancel out, partly due to your choice of q, but finally you get this cancellation which is quite nice
and gives you monotonicity).

What did we use about the Gaussian measure? You can try to generalize the statement of hypercontractivity
to cases where you have a measure and the associated semigroup, for which you satisfy this log-Sobolev
inequality. As long as you have that pair, you’re going to have that the semigroup satisfies some sort of
hypercontractivity condition — because really all you used was log-Sobolev.

So that’s that for hypercontractivity. We’re probably not going to talk about any applications of this, but
if you continue with this part of probability, eventually you will run into it; so it is nice to now know about
it.

Remark 25.4. Actually, hypercontractivity and log-Sobolev are equivalent — if you assume you have
a hypercontractivity statement, that’ll actually imply a log-Sobolev inequality for your measure. This
is again not super obvious.

§25.3 Fokker–Planck equation

We’ll have one more topic on OU processes, and then we’ll move on to Langevin dynamics, which are more
general versions of OU. This is again something we won’t directly use in this class, but it’s good to know.

Recall that if X0 has some density f0 with respect to γd (we write this as ‘X0 ∼ f0 with respect to γd’),
then Xt ∼ Ptf0 with respect to γd. The way you derive this is using the reversibility of Pt — you want to
compute the expectation of some function of Xt, and use the fact that ∂tPtf = LPtf .
This means ∂tft = Lft = ∆ft−x ·∇ft — basically, the density of x solves this equation. But if you look on
Wikipedia for the evolution equation of the probability density, it’s not this one. Why? Here we’re looking
at the density with respect to the standard Gaussian; usually you talk about the density with respect to
Lebesgue. If X has a density with respect to the standard Gaussian then it also has one with respect to
Lebesgue; for us it was convenient to use the standard Gaussian (so we could use integration by parts and
stuff), but if you actually want to understand the evolution with respect to Lebesgue, that’s a different
equation; and that’ll be Fokker–Planck.

Now let X0 ∼ g0 with respect to the Lebesgue measure. Then Xt will also have a density gt with respect to
the Lebesgue measure (Xt is obtained from X0 by adding some Gaussian noise, so you can explicitly write
down the density given the initial one — so the existence of density is not an issue).

Question 25.5. How does gt evolve in time?

It has to satisfy some sort of equation, so let’s derive that.

First, what will the form of gt look like? We have

Xt = e−tX0 +
√
1− e−2tZ

(where Z is some independent Gaussian noise). When you add two independent random variables, the
density of their sum is the convolution of their densities; so you get

gt = g0 ∗ ρ1−e−2t ,
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where the second thing is the Gaussian density with variance 1− e−2t.

So we can explicitly write down the density in this case. In principle you can start differentiating in t and
seeing what kind of equation it’ll satisfy. But there’s a more general way you can go about finding the
evolution of gt, which is — well, we know that if we integrate some function times gt(x) with respect to the
Lebesgue measure, by the definition of gt as the density, we should get E[f(Xt)], i.e.,∫

gt(x) f(x) dx = E[f(Xt)]

(where X0 ∼ g0). The RHS is just (Ptf) — or more precisely, it’s

E[(Ptf)(X0)].

So thus if we differentiate in time on both sides, we get

∂t

∫
gt(x)f(x) dx = ∂t

∫
g0(x)(Ptf)(x) dx

(writing out E[(Ptf)(X0)] more explicitly).

I’m doing this because I want to use the fact that I know the time-derivative of Ptf . This is in short going
to be a duality argument — somehow the evolution of the density is going to be dual to that of Ptf .

Now if we continue and compute, the RHS is∫
g0(x)(LPtf)(x) dx.

Now, it’s actually better in this case to not write it as LPtf , but as PtLf (we proved much earlier that
these are the same — you can commute Pt and L). The point of this is you could’ve written this as

E [(PtLf)(X0)]

(the same reason we could go from E[(Ptf)(X0)] to an integral). And now I can go back to thinking about
this as an expectation

E[Lf(Xt)]

(because Pt is a Markov process, so PtLf has an interpretation as a conditional expectation given X0).

And I did all this so that I get an integral with respect to gt — this is

E[Lf(Xt)] =

∫
gt(x)(∆f − x · ∇f(x)) dx.

So in the end, we get a long chain of equalities saying∫
∂tgt(x) f(x) dx =

∫
gt(x)(∇f − x ·∆f(x)) dx.

Now, we want to integrate by parts to move all the derivatives onto gt — we want to write the RHS as∫
(· · · gt)f(x) dx

(where · · · is some differential operator). The point is once you have this identity that testing ∂tgt against
f is equal to some differential operator tested against f , by some density argument you’re going to get that
∂tgt has to be whatever’s in the · · · gt term. So that’s what we’re working towards.

Okay, so what is this going to look like? The Laplacian we can move over with no problem — when you
take (g,∆f), that’s just (∆g, f). So you get a ∆gt term.

Page 252 of 267



Class by Sky Cao (Spring 2025) 18.676 — Stochastic Calculus

What about the second? We claim that in the end you should get∫
(∆gt + div(xgt))f(x) dx,

i.e., when you integrate by parts the gradient term, you get this div(xgt) term.

So let’s write this out; we get ∫
gt(x)xj∂

jf(x) dx

(using the notation where repeated indices are summed over). Nwo you can move the derivative over and
get that this is ∫

∂j(gt(x)xj)f(x) dx

(we don’t worry about boundary terms because we’re assuming f is compactly supported). And this is
precisely ∫

div(gt(x)x)f(x) dx.

So the final identity we get is ∫
(∂tgt)f(x) dx =

∫
(∆gt + div(xgt))fdx.

There’s an additional step where you can write this as a pure divergence term, since the Laplacian is the
divergence of the gradient; so you could write this as∫

div(∇gt + xgt) dx

(this is just a cosmetic thing, but often Fokker–Planck will be written in this form).

So assuming you have some sort of density argument or pairing argument, you should basically be getting
that

∂tgt = ∆gt +∇(xgt) = div(∇gt + xgt).

This is the Fokker–Planck equation, and this is the one that’s usually used when you talk about the evolution
of the density of the OU process (or a more general solution to a SDE) — they usually talk about it as the
evolution of the density with respect to Lebesgue, and in that case you get this type of divergence equation.

For calculations it is more convenient to use the density with respect to your invariant measure, because
then you can do integration by parts.

There’s a very good reason why the divergence has to be here. Why should the evolution of a probability
density be given by something with a divergence? If you take f = 1, well, you know that

0 = ∂t

∫
gt(x) dx.

Now, if you use the equation satisfied by g, you get that this is∫
div(∇gt + xgt) dt.

But this is a pure divergence; you can think of it as 1 · div(∇gt + xgt), and you can imagine integrating by
parts so that this becomes (∇1) · (∇gt + xgt), which is just 0. So that’s basically why it has to be some
divergence thing — you have to satisfy this condition that when you test against 1, you just get 1.
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§25.4 Langevin dynamics

We’ve finished the OU section, so we’ll now start on a more general topic of Langevin dynamics, which are
a generalization of the OU process. They’re given by SDEs of the form

dXt = −∇V (Xt) dt+
√
2 dBt.

As usual, we keep the
√
2 normalization, but you can also take it out if you want; it just affects what exactly

is the invariant measure, as we saw in the OU case.

Associated to SDEs of this form, you should have some measure, which is basically supposed to be given as
follows. We’ll define it as a density with respect to the Lebesgue measure, and

dµV (x) =
1

ZV
e−V (x) dx,

where ZV =
∫
e−V (x) dx is just some normalizing constant so that this is a probability measure. (You need

some conditions on V so that this is finite, but let’s assume you have those.)

The point is that this measure should be invariant for the dynamics, at least under some regularity assump-
tions on V . So the point is you write down this measure, and then you write down the dynamics which
leave this measure invariant, and that’s where the Langevin dynamics come from.

Remark 25.6. They’re named after Paul Langevin; if you’re in Paris you can go to the place where all
the famous French people are buried (like Marie Curie), and he’s also buried there.

You should think of this as the continuous time continuous state space analog of Markov chains. There, you
have a measure on some finite discrete state space, and you want to write down a dynamic that samples
from that measure — a Markov chain with that as your invariant measure — and then run ten billion steps
of your MC to get samples. This is the continuous analog — you start with a measure and you can try to
study it using the dynamics. If you can prove rapid mixing about the dynamics, you can then prove things
about the measure. We saw this with OU — we easily showed the dynamics are rapidly mixing, and that
got us Poincare and log-Sobolev for the measure.

The main example we’ve seen is when V (x) = |x|2
2 . When you do that, µV is precisely γd, and the Langevin

dynamics are the OU process (because ∇V becomes x).

Remark 25.7. We’re usually always working in Rd; when you replace Rd by an infinite dimensional
space, such as a function space — you can try to make all this work on an infinite-dimensional space
of functions — usually this measure µV is called a Euclidean quantum field theory. This arises in
mathematical physics, which is a topic of contemporary interest — basically you want to define measures
of this form on infinite dimensional spaces. Even defining such a measure is a huge problem, because
the space is infinite.

Then the associated Langevin dynamics (LD) is a stochastic PDE. This is also a quite active field of
research (it’s actually one Sky works in). Even showing why solutions to these dynamics exist is highly
nontrivial. Actually, until even 11 years ago, there were many situations in infinite dimensions where
you have some Langevin dynamics, and you can’t even show you have local-in-time existence. Often
you have initial data x0 and want to say I can at least run my dynamics for a short time starting from
x0. But we didn’t really know how to do this in many interesting examples until 11 or 12 years ago,
and the breakthrough won a Fields medal — he was studying stochastic PDEs and gave a very general
way to prove local existence to these types of Langevin dynamics in infinite dimensions, and it was a
huge breakthrough.

All this is to say is that instances of Langevin dynamics are quite active fields of research, especially
when you go to infinite dimensions. In finite dimensions it also appears in other areas, more to do with
applications.

Page 254 of 267



Class by Sky Cao (Spring 2025) 18.676 — Stochastic Calculus

§25.5 Existence of solutions

The first thing we hinted at wanting to be able to say is why you have local solutions to this SDE:

Question 25.8. Why do solutions exist?

In the case of OU, you were just able to write down a solution. That’s very special to that case, because
the SDE was linear, and if it’s linear in X you can just write down an explicit solution and show it’s unique.
But in general, that’s not the case.

Let’s start in a simplified setting.

Proposition 25.9

Let b : Rd → Rd be Lipschitz. Then for all Y which are F0-measurable (and |Y | < ∞), there exists a
unique solution to the SDE

dXt = b(Xt) +
√
2 dBt and X0 = Y,

on the entire time-interval [0,∞). Also, X is adapted.

It is nice to have adapted processes; that’ll come from our assumption that Y is F0-measurable. If you
didn’t assume that, you could still have done all this, but then X would not be adapted.

Here you think of b as −∇V ; so if that’s Lipschitz, you get a global solution. In the OU case it was
−∇V (x) = x, which is Lipschitz with constant 1; so you can apply it to the OU case if you wanted.

We’ll get started on (but may not finish) the proof.

Proof. As usual, what does it mean to solve a SDE? It means you satisfy the corresponding integral equation
— so we want a stochastic process which satisfies

Xt = Y +

∫ t

0
b(Xs) ds+

√
2Bt.

The way you usually do this is you define a map G which takes in a continuous function on some time
interval [0, T ] (here T is a fixed time we’ll choose later, not a stopping time) and outputs another — so we
define G : C([0, T ])→ C([0, T ]) by the following formula, inspired by this integral equation —

(Gf)(t) = Y +

∫ t

0
b(f(s)) ds+

√
2Bt.

So the above integral equation is the same as finding a fixed point of G — we want X = G(X).

You want to view these integral equations as fixed-point equations — if you took ODE theory, the way you
solve an ordinary differential equation locally in time is to set up a fixed point argument.

Remark 25.10. Here we’re not going to use any distributional properties of B, only that it’s a continuous
function. In some sense there’s not any probability in this statement; it’s really an analytic thing.

How do you find fixed points to functions of this form? That’s where the contraction mapping principle
comes in. We’ll state it slightly abstractly:
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Theorem 25.11 (Contraction mapping principle)

Suppose (M,d) is a complete metric space and G : M → M is a strict contraction, i.e., there exists
some 0 ≤ α < 1 such that

d(G(x), G(y)) ≤ αd(x, y)

for all x, y ∈ M . Then there exists a unique x∗ ∈ M such that G(x∗) = x∗. Moreover, x∗ =
limn→∞G(n)(x) for any x ∈M .

So there is a unique fixed point, and the way you find it is by starting at any point in your metric space
and applying G a bunch of times.

This gives you a way to find fixed points. We won’t prove this, but the main idea is, why should you expect
limn→∞G(n)(x) to be a fixed point? At least formally, we have

G(G(∞)(x)) = G(∞+1)(x) = G(∞)(x),

which is why you’d intuitively expect this limit to be a fixed point. So what we want to show is if you start
at any x ∈ X and apply G many times, you get a Cauchy sequence; and then you can use completeness to
show it converges. And then that limit is going to be a fixed point. And to show uniqueness, you just use
the contraction map — if you had x∗ and y∗ which were fixed points, then you’re saying

d(x∗, y∗) ≤ αd(x∗, y∗),

which means this distance has to be 0.

So let’s try to set up a situation where we can apply this — let’s try to prove the contraction inequality.
Looking at the sup norm on C([0, T ]), we have

∥Gf −Gg∥C[0,T ] ≤ sup
t∈[0,T ]

∣∣∣∣∫ t

0
b(f(s))− b(g(s)) ds

∣∣∣∣ ≤ ∫ T

0
|b(f(s))− b(g(s))| ds.

(This integral definitely bounds each of the above integrals for any t ∈ [0, T ], using the triangle inequality.)
And the point is you want to say this is controlled by |f − g|. To do that, we need a Lipschitz assumption
on b. But that’s exactly what we assumed. So if b is Lipschitz with constant k, you get the bound

K

∫ T

0
|f(s)− g(s)| ds.

I wanted to bound this by a sup norm, but this is a L1 norm; but I can just bound this by

KT ∥f − g∥C[0,T ] .

And we’re free to choose T on our own, so we can just choose it so that KT is much smaller than 1 (e.g.,
1
2).

So if we set T = 1/2K, then indeed G is going to be a contraction, with

∥Gf −Gg∥C([0,1]) ≤
1

2
∥f − g∥C([0,1]) .

So that’s the first step.

But we’re not done yet, because we need to identify a metric space M for which G maps M to itself. So
basically, what we need to do is show there exists some R ≥ 0 such that if I look at the radius-R ball in the
space of continuous functions — i.e.,

BR = {∥f∥C([0,T ]) ≤ R | f ∈ C([0, T ])}
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(note that the way we defined T is completely uniform in f , g, and the initial data Y ), then G maps this
ball to itself. If we can show this, then we can take M = BR.

So this is the last thing we need to show; once we have that, we can apply the contraction mapping principle
to get a unique fixed point in this ball. And that fixed point, by construction, will satisfy this integral
equation, which is the thing we’re trying to construct.

Probably we don’t have enough time for this (though it’s not too long), so we’ll leave that for next time.
And once you’ve shown this, you’ll be able to make the statement that for any value of Y , a solution exists
on the interval [0, 1/2K]. But that was uniform in your initial data, so you can keep doing this to∞. That’s
why in this case you’ll automatically get global existence — the time of existence you get from the local
theory doesn’t depend on the initial data (at all). That’s heavily due to the Lipschitz assumption. Later
we’re going to remove the Lipschitz assumption and just assume you’re locally Lipschitz. This will let us
deal with a much wider class of V (assuming ∇V is Lipschitz is very strong; but if we assume V is C2, then
∇V will be continuous and therefore at least locally Lipschitz).

Student Question. What is the exam going to be like?

Answer. Sky doesn’t intend it to be super tricky; more like just if you know the concepts. We can
discuss more on Monday. He’ll think about whether it’s open/closed book.

§26 May 12, 2025 — Langevin dynamics

Today is the last day of class; we’ll talk about some properties of the Langevin dynamics, which are SDEs
of the general form

dXt = −∇V (Xt) +
√
2 dBt.

You should think of it as a stochastic gradient flow — if you take out the Brownian term, it’s really the
(negative) gradient flow of V . So without that, the ODE would be trying to minimize V . (You might
converge to a local minimum if V has multiple wells. But generally if you have some function V you want to
minimize, you could run gradient flow to drive you to at least a local minimum.) You start with a gradient
flow and then add in this stochastic Brownian forcing term.

We’ll see today that LDs are naturally associated to measures of the form

dµV (x) = Z−1
V · exp(−V (x)) dx

(where Z is just a normalizing constant); this is the invariant measure. After we talk about existence
questions, we’ll talk about what the generator of the LD is; and after we compute it, we’ll be able to show
that indeed the invariant measure of this dynamic will be given precisely by µV .

You can imagine you’re doing Markov chain Monte Carlo where you start with a measure and want to take
samples from it, so you want to write down a Markov process for it; and this is the natural one.

§26.1 Existence

But before we get to this, we want to talk about existence of solutions to this SDE. We can’t write down
an explicit one in general (like we did with OU), so we have to prove existence.
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§26.1.1 The Lipschitz case

Lsat time we started talking about existence when your drift term b (which you should think about as −∆V )
is globally Lipschitz — we said that then you have global existence (and it’ll be adapted if your initial data
is F0-measurable).

Proposition 26.1

Let b : Rd → Rd be Lipschitz. For Y ∈ F0 with |Y | <∞, there is a unique solution to

dXt = b(Xt) +
√
2 dBt

with X0 = Y on [0,∞).

The way you prove existence of solutions to SDEs is by following the proof for ODEs. You want to write
this as an integral equation, so you define G : C([0, T ])→ C([0, T ]) by

(Gf)(t) = Y +

∫
−
0tb(f(s)) ds+

√
2Bt.

We want to find a fixed point GX = X, and that’ll be your solution X.

To do so, we need to find T > 0 and R > 0 such that writing BR = {f ∈ C([0, T ]) | ∥f∥ ≤ R} (here the
norm is the norm with respect to C([0, T ]), which is the sup norm) — to find a fixed point, you want to
show it’s a contraction on a suitable space. So the suitable space is going to be some BR. So we just need to
show G maps BR to itself, and for two functions f and g in this ball, we have the strict contraction property

d(G(f), G(g)) ≤ 1

2
d(f, g).

(The 1
2 is arbitrary; it just has to be a constant less than 1.)

When we do this, by the contraction mapping principle we’ll get a fixed point at least to the time T .

Last time we showed that for all f, g ∈ C([0, T ]) (we don’t even need the assumption that f, g ∈ BR), we
have

d(Gf,Gg) ≤ KTd(f, g),

where K is the Lipschitz constant of b. This gives a natural choice of what T should be, e.g., T = 1/2K.
Then definitely the second property (contraction) is true.

Now we just need to find some radius R for which the first property is true. For this, if I want to bound
∥Gf∥ on [0, T ], I can bound it by

∥Gf∥ ≤ sup
t∈[0,T ]

(
|Y |+

∫ t

0
|b(f(s))− b(0)| ds+

∫ t

0
|b(0)| ds+

√
2 |Bt|

)
(this is just the definition of G, where we added and subtracted b(0)). Why did we insert b(0)? I want to
use the fact that b is Lipschitz, so we’ll essentially compare f(s) to 0. Now we can bound this whole thing
by

|Y |+K

∫ t

0
|f(s)| ds+ T |b(0)|+

√
2 ∥B∥

(these are all integrals of nonnegative things, so I can bound them by the endpoint integral; I use the
Lipschitz assumption to bound |b(f(s))− b(0)|, and ∥B∥ is again on [0, T ]).

And I’m trying to say if I assume ∥f∥ is controlled, so is ∥Gf∥; so I want to bound the RHS by ∥f∥ plus
my inputs (which are |Y |, ∥B∥, and whatever |b(0)| is). So in the end, I should be able to bound this by

∥Gf∥ ≤ |Y |+KT ∥f∥+ T |b(0)|+
√
2 ∥B∥ .
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This is true for any continuous function f on [0, T ]. And now, if you kind of play around with what R
should be — it definitely has to be greater than |Y | and all the other terms. So let’s say we define

R = 2

(
|Y |+

√
2 ∥B∥C([0,T ]) +

|b(0)|
2K

)
.

Where does this come from? If I define my radius like this, then I’ll see that if ∥f∥ ≤ R (where the norm is
in C([0, T ])), then

∥Gf∥C([0,T ]) ≤
1

2
∥f∥C([0,T ]) + the contribution from the other three terms,

and by how I chose R, those contributions are at most 1
2R. And so if I impose ∥f∥C([0,T ]) ≤ R, I get

1
2R+ 1

2R = R.

So with this choice of R — which again, only depends on the input data — you can find a radius on which
G is a self-map on the ball of that radius.

So in summary, we’ve succeeded at finding a time T and radius R for which these two properties are true
(so that G is a contraction on this complete metric space). This means there exists a unique X ∈ BR such
that GX = X.

This gives some fixed point. What does unique mean? If you had another element in this ball which was a
fixed point, that element has to be X. But there’s a slightly stronger notion of uniqueness:

Exercise 26.2. Show that the fixed point is unique even in C([0, T ]).

Here the statement is just that if I have a continuous function on this interval which solves the integral
equation — not assuming a priori that it’s bounded by R — it still has to be X.

The way you do this is that in the contraction mapping principle, if you’re willing to adjust your existence
time T , you can take your value of R to be anything strictly greater than the initial data; but then you have
to take T to depend on R (and be sufficiently small). If it’s a continuous function, on a tiny time-interval, its
norm cannot be too far from Y — so on some small-enough time, you’ll have a bound on its norm by some
R, which means you can make this contraction argument work; and you show on that tiny time-interval it
has to be X. And then you can iterate and patch all these together.

And then also, you have that — we need to say why X is going to be adapted. Right now it’s just some
abstract fixed point thing. But — how do you find the fixed point X in the contraction mapping theorem?
You just start from an arbitrary point in the ball and repeatedly find G. So you could have written

X = lim
n→∞

G(n)(0)

(since the 0 function is definitely an elemnet of BR; you could’ve started from anything in the ball). This
convergence is in the L∞ norm; so that implies it also has to be true for any fixed time t. And one checks
inductively that for all n and all t, the thing on the right-hand side is measurable with respect to Ft, i.e.,

(G(n)(0))(t) ∈ Ft.

Looking at the definition of G, if f is adapted to the filtration, why is Gf adapted? Well, Y ∈ F0 so
that’s fine;

∫ t
0 b(f(s)) ds is adapted (it’s the integral of a continuous function, so it’s Ft-measurable); and

you’re assuming you have a Ft-Brownian motion, so that’s fine. So by induction you get this adaptedness
statement.

Finally, we showed existence on this time-interval 1
2K ; but we’re claiming it actually exists on the entire

real line. So for global existence, you just use that T = 1
2K does not depend on your initial data |Y | — no

matter how large your initial data is, you can take a step of size 1/2K. Then you patch these local solutions
to ∞; and you never run into trouble because this time doesn’t depend on how large you are.
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Remark 26.3. In general nonlinear problems you’re worried that this time might depend like 1/|Y |2,
for example, which would be very problematic for showing global existence — if

T ∼ 1

|Y |2

(think of Y as very large), then you cannot just do this thing, because you might be worried that as
you get super large your time-interval gets really tiny, so that in the limit your time of existence just
converges to a finite time.

Student Question. Why do you need the ball of radius R? Why can’t we just apply the contraction
mapping principle on C([0, T ]) itself, since that’s complete?

Answer. Actually you’re right, we probably don’t; if you assume globally Lipschitz, R can be ∞.

§26.1.2 Local existence

Now we’ll state a result that’s slightly more general than this — the globally Lipschitz assumption is kind
of restrictive. So let’s state a result that works for locally Lipschitz functions b (i.e., on any bounded subset
of Rd, you’re Lipschitz).

Theorem 26.4

Let b : Rd → Rd be locally Lipschitz, and let B be an (Ft)-Brownian motion. Then for all Y ∈ F0 with
|Y | <∞, the SDE

dXt = b(Xt) +
√
2 dBt, X0 = Y

has a unique continuous adapted solution X defined on some maximal time-interval [0, T ], where T is
a stopping time. Moreover, if T <∞, then limt↑T |Xt| =∞.

So you’re looking at the maximal time for which you have a solution to this equation. And you’re saying if
that time is finite, that has to mean your solution blows up as you approach that time.

So now if b is locally Lipschitz you may not have global solutions — basically because of this problem with
T ∼ 1/|Y |2 where it could be that your time of existence depends quite badly on the initial data, so you
can’t iterate to ∞. But at least you have this characterization of what this maximal time should be —
precisely the time you blow up.

We won’t spend the time going into all the details on this, so we’ll give a proof sketch.

Proof sketch. At least for local existence — forget about the maximal time of existence, how do you show
you just have a solution on some tiny time-interval T? You can for instance take R > |Y | (you again want
to make a contraction mapping argument by finding some radius and time; here you probably do actually
need the finite radius, you can’t just do this on C([0, T ]) because you’re not globally Lipschitz). Then you’re
locally Lipschitz, so you can at least hope to make the contraction mapping principle work on small time,
if you impose some bound on the norm. If your function is in BR, then you can act as if b is Lipschitz
(because if f is bounded by R, then you’re applying b to some bounded subset, and you have some local
Lipschitz constant there). So for the question of local existence on some time-interval, you can basically
pretend you’re globally Lipschitz.

Then to characterize the maximal time of existence, we can imagine drawing a picture with your x-axis
representing time and y-axis |Xt|. You start at Y , and you can imagine you’re tracking the size of your
solution as a function in time. If it happens that at some later time T0 you converge to some finite value,
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or at least you don’t blow up, then you can always improve your time-interval and get a solution on this
expanded time interval to T0+ ε. So if for some T0 you don’t blow up as you converge to that time, you can
always expand a little bit. That’s by applying the local result. So if you consider the left limit approaching
T0, if it doesn’t blow up you can extend. The only way you can not extend past a time is if you blow up at
that time.

That’s in words what you want to write in this argument. But that’s why we’re sketching it; you kind of
have to write out all the details, which we don’t want to do today.

§26.1.3 Conditions for global existence

Let’s assume we now have this result where for any locally Lipschitz b, you get a local solution whose
maximal time of existence is characterized by this kind of stopping time. Let’s investigate conditions on V
for which you actually get global existence. For us V will always be such that b is locally Lipschitz — it’ll
always be smooth, so ∇V is also smooth.

Before stating this, we’ll use a lemma:

Lemma 26.5 (Gronwall)

Suppose α(t), β(t), and f(t) are such that α is nondecreasing and f(t) ≤ α(t) +
∫ t
0 β(s)f(s) ds for all

t ∈ [0, T ]. Then for all t ∈ [0, T ], we have

f(t) ≤ α(t) exp

(∫ t

0
β(s) ds

)
.

As a consistency check, when t = 0 you’re saying f(0) ≤ α(0), which is consistent with plugging t = 0 into
this. Basically this is saying if you have some self-bounding inequality like this, you automatically get a
bound on f in terms of α and β (you want to turn this thing into a bound on f that doesn’t depend on f ,
only the inputs, and that’s what Gronwall does).

We’re going to apply this to get global existence.

Theorem 26.6

Let V be such that ∇V is locally Lipschitz and such that one of the following conditions is satisfied:

(a) V (x)→∞ as x→∞, and |∇V |2 −∆V is bounded below.

(b) There exist constants a, b ∈ R such that x · ∇V (x) ≥ −a |x|2 − b.

Then for any x0 ∈ Rd, almost surely the Langevin dynamics has a unique solution on R+ with initial
data X0 = x0.

The condition (b) is kind of saying on some level that you approximate a quadratic function — if you took
V = x2/2 (the thing that gives you the OU process), then ∇V is x itself, and x · x = x2, so you satisfy
this with b = 0 and a = −1. So this is saying you approximate a quadratic in some sense. And then ∇V
is linear, and linear things are manageable — when you have something linear you should be able to prove
whatever you want.

Basically if you assume the local existence theorem, all you need to show is that the stopping time T is ∞
almost surely — because if you prove P[T < ∞] = 0, that basically means you have a global solution. So
that’s what you want to show.

Proof of (a). Let’s assume (a) first. If you assume (a), it turns out the right thing to do is you apply Ito’s
formula to V (X). You want to understand the evolution of V (X), and you want to say why V (X) will not
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get large; because the assumption V (X)→∞ as X →∞ means that if V stays controlled, then X will also
stay controlled (that’s the contrapositive — if X → ∞ then V → ∞, so if V stays bounded then X stays
bounded). So we want to study the evolution of V and show it doesn’t blow up. Applying Ito’s formula, we
get

dV (Xt) = ∇V (Xt) · dXt +
1

2
∂ijV (Xt) d⟨Xi, Xj⟩t.

Then you substitute in your equation for X. We specified what dX is, and when you plug that in you get

dV (Xt) = − |∇V (Xt)|2 dt+
√
2∇V (Xt) · dBt +∆V (Xt) dt

(we’re not going to care about the ∇V (Xt) · dBt term soon — it’s just a (local) martingale term — and
when you compute the QV term, the 1

2 gets cancelled by the two factors of
√
2).

You can kind of see where the assumption is coming from — you want to assume something about your
drift, because you’re saying if we track the evolution of V , we have some drift term which is hopefully a
restoring term so you never get too large, and maybe some Brownian fluctuations on top of it. But you
want the drift term to generally take you back down to 0 or 1 or something, rather than down to ∞.

The right way to group these terms is

dV (Xt) =
√
2∇V (Xt) dBt − (|∇V |2 −∆V )(Xt) dt.

Now let’s add in a localization — let Tn = inf{t ≥ 0 | |Xt| > n}. Now if you localize everything (so you stop
at time Tn), the local martingale term is an actual martingale term (X becomes bounded and V is regular
enough). And once you have a martingale you can take expectations; this guy is mean-0, so we’re not going
to worry about it. So we have that

E[V (Xt∧Tn)] = V (X0) + E
[∫ t∧Tn

0
(∆V (Xs)− |∇V (Xs)|2) ds

]
(here we’re writing the integral version of this evolution equation and taking expectations).

Now by our assumption (a), we’re saying that thing up there is bounded below, which is the same as saying
its negative is bounded above; and I exactly have the negative of that in my drift term. So I get that there
exists some constant C (which is the lower bound of the thing from (a)) such that

E[V (Xt∧Tn)] ≤ V (X0) + Ct.

From here, now the intuition is that you can remove the localization and say E[V (Xt)] is bounded by
something, and this is basically saying V (X) is not going to blow up at any finite time (which also means
X should not). But the way to make this a bit formal is that by (a), we can say V is bounded below by
some α ∈ R; so if your truncation level n is larger than |x0| (which will be true because we’ll be sending
n→∞), then we get

E[V (Xt∧Tn)] ≥ α+ V (n)P[Tn ≤ t]

(the first term corresponds to the case Tn ≥ t; the second case corresponds to the case Tn ≤ t, in which case
at Tn you have to be exactly n).

And now we’re basically done — we combine this lower bound of the left-hand side with whatever’s on the
right-hand side, and we get that

α+ n · P[Tn ≤ t] ≤ V (X0) + Ct.

Thus we have
P[T ≤ t] ≤ lim sup

n→∞
P[Tn ≤ t] = 0
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(where T is the maximal existence time appearing in the local theory). (The first inequality is because if
you blow up, then you definitely have to have reached n for arbitrary n.) The RHS goes to 0 because we
showed

P[Tn ≤ t] ≤ stuff that don’t depend on n

n
.

So we’ve shown that P[T <∞] = 0, which means your maximal existence time is infinite, and so you have
a global solution.

That’s the proof under (a). Under (b) you want to do something slightly different — basically you want to
track a different statistic instead of V .

Proof for (b). Now let’s assume (b). In this case, it turns out the right thing to look at is the evolution of
|X|2 (if this doesn’t blow up, neither does X). By Ito’s formula, we have

1

2
d(|Xt|2) = Xt · dXt + ∂ijd⟨Xi, Xj⟩t.

When you input what you have fr dX, what you get in the end is

√
2Xt · dBt −Xt · ∇V (Xt) + (2d) dt

(the first two terms come out of the first term, and the 2d from the QV term; the d is because you have a
contribution of 2 from each index i = j).

Now let’s write an inequality for this. Using our assumption (b), which is saying that X · ∇V (X) is lower-
bounded, now we have a minus so we get a lower bound; so we can say

1

2
d(|Xt|2) ≤

√
2Xt · dBt + (a |Xt|2 + b+ 2d) dt.

Now we’re almost in position to apply Gronwall — you’re saying the evolution of X2 is bounded in terms
of itself plus some additional input, and you see when you take expectations, the martingale drops out. So
we get that for all t and truncation levels n, we get

1

2
E
[∣∣X2

t∧Tn

∣∣] ≤ 1

2
|X0|2 +

∫ t

0
aE[|Xs∧Tn |

2] ds+ (b+ 2d)+t

(the reason you localize is so that the local martingale term is an actual martingale and its expectation
drops out). (We’re interpreting the above equation in integral form, and then integrating it.)

Now we apply Gronwall to the fucntion f(t) = E[|Xt∧Tn |
2], and we obtain that

E[
∣∣X2

t∧Tn

∣∣] ≤ (|X0|2 + 2(b+ 2d)+t)e2at

(where (b+ 2d)+ is the positive part of the thing).

And once you get this, you’re basically done — now you can send n→∞ and you get a bound on E[|Xt|2].
Sending n→∞, we obtain that E[|Xt|2] <∞ (in fact you have some explicit bound in terms of your initial
data and two input parameters, but at least for global existence you just need this to be finite), which means

P[T > t] = 1,

which implies that P[T =∞] = 1. And that basically finishes the proof in this case.
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Student Question. How do we define T?

Answer. Using the local existence thing — the time at which your solution blows up.

Student Question. For (a), why is V bounded below?

Answer. We assumed V goes to ∞ when x → ∞, and we’re also assuming V is continuous (if ∇V is
locally Lipschitz, that should imply V is at the least continuous). Then there exists R such that for
all |x| ≥ R you have V (x) ≥ 1 (this is a consequence of V → ∞ as x → ∞). (By x → ∞ we mean
|x| → ∞.) And you combine this with the fact that V is continuous, so it’s bounded on the ball of
radius R.

§26.2 The Markov semigroup of Langevin dynamics

That’s the proof of global existence under these assumptions. Now let’s discuss some general facts about
these Langevin dynamics.

Remark 26.7. Last time we talked about how Langevin dynamics when you do things in infinite
dimensions is an active research field. In fact, later today Sky is giving a talk in the probability
seminar at 3pm (in the room next to ours) about a case where you have some function V on an infinite
dimensional space and try talking about global existence of the stochastic PDE. So this is still a topic
of modern interest. If you are interested you can come; but unlike in classes, in seminars you don’t go
in expecting to understand everything.

Let (Pt) be the Markov semigroup corresponding to the Langevin dynamic. In the same way we saw that
the OU process is always a Markov process, so are these more general solutions to SDEs, so you have its
semigroup.

We’re going to assume (Pt) is Feller. In general you have to prove this; you can look at the definition
of Feller and prove each point, and somehow you have to prove these dynamics behave as nicely as you’d
expect. There’s some discussion in the notes, but we’ll skip it.

Question 26.8. What’s its generator?

You compute this the same way we did for the OU process, and it turns out

L = ∆f −∇V · ∇f.

The reason is when you compute the generator, you want to compute for some smooth function f , you want
to use Ito to compute df(Xt). W basically did this computation when f was V , but basically you’ll get a
martingale part and some drift term, and you want to figure out what it is; adn it’s

df(Xt) = MG+ (∆f −∇V · ∇f)(Xt) dt.

And there’s this general result that the generator is the right thing to subtract from f(Xt) to get a martingale
term; so that’s the generator.

Remark 26.9. To see why this generalizes OU, if V = |x|2 /2 then ∇V (x) = x, and this is precisely the
generator we found for OU. So that’s at least consistent.

Interestingly, there’s still the exact same integration by parts relation between the generator and the L2

space.
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Proposition 26.10 (Integration by parts)

Letting µV be the probability measure defined before, we have

(Lf, g)L2(µV ) = −(∇f,∇g)L2(µV ) = (f, Lg)L2(µV ).

Proof. This is by calculation, basically the same as in the OU process. You want to do integration by parts;
you can go back to the one for the OU process, replace every instance of x by ∇V , and you prove this more
general formula.

A consequence of this is that:

Corollary 26.11

The measure µV is an invariant measure for (Pt).

The way you prove this is again the same as how you prove the corresponding statement for OU. We’ll write
this one out: To see this, recall that you have this integral formula

Ptf = f +

∫ t

0
LPsf ds.

Now if I want to compute the expectation under my measure of Ptf , I can write it as∫
Ptf dµV =

∫
f dµV +

∫ ∫ t

0
LPsf ds dµV .

So I want to say that the last thing is 0. Why? I can switch the integral and it becomes∫ t

0
ds

∫
LPsf dµV .

And the thing on the inside, you want to think of it as a L2 inner product (LPsf, 1)L2(µV ). Then you use
integration by parts to say this is −(∇Psf,∇1)L2(µV ). And 1 is a constant function, so this is 0.

§26.3 Variance decay and entropy decay

We’ll also say that — because you have this integration by parts identity, the formulas for variance decay
and entropy decay also look the same as for the Langevin dynamics.

Definition 26.12. We define EntµV (f) = EµV [f log f ]− EµV [f ] logEµV [f ].

If you go through the proof of the entropy evolution proposition for OU, you do the exact same calculations
and see that

∂tEntµV (Ptf) = −EµV

[
|∇Ptf |2

Ptf

]
.

When µV = γd this is what we computed before; if you look at the proof, all we needed was the integration
by parts identity; so you get the same entropy evolution here. You also get the same variance evolution —
if we look at the second moment,

∂t(Ptf,Ptf)L2(µV ) = −2(∇Ptf,Ptf)L2(µV ).

The calculation is again the same.
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§26.4 Poincare and log-Sobolev

All this is to say is, now you can ask:

Question 26.13. When does the Poincare or log-Sobolev inequality hold for µV ?

(You basically want to understand, when is the dynamics rapidly mixing?)

What does it mean for a measure to satisfy a Poincare or log-Sobolev inequality?

Definition 26.14. We say that µV satisfies the Poincare inequality with constant α if for all f ıC1
b (Rd),

we have
VarµV (f) ≤ α(∇f,∇f)L2(µV ).

We say µV satisfies the log-Sobolev inequality with constant α if

EntµV (f) ≤ αEµV

[
|∇f |2

f

]
.

(This means bounded and bounded first derivative.)

The motivation is we want to understand when variance or entropy decays exponentially over time. And
with these conditions, you’d be saying the evolution of the entropy is −α times the entropy itself, and then
by Gronwall you get it’s decaying exponentially.

If Poincare or log-Sobolev holds, then you have rapid convergence to equilibrium — all the discussion in the
Gaussian case exactly carries over. (You use Gronwall on this thing.)

So basically, we want to understand, when does a measure satisfy these nice functional inequalities? One
sufficient condition is if it has enough convexity or concavity — if ∇2V (x) ≥ γ id for all x (the Hessian of
V , which is a matrix, is uniformly lower-bounded by some constant times the identity), then it turns out
you have a sub-commutation relation

|∇Ptf | ≤ e−γt |Pt∇f | ,

and this will imply Poincare and log-Sobolev with α = 1/γ and 1/2γ, respectively (but the exact values
don’t matter). The way you use this to prove Poincare or log-Sobolev is the same as in the Gaussian case
— the key part is to use this commutation identity (in the Gaussian case it was equality, but we remarked
in class that all you need was an inequality, and then you still get these functional inequalities; the reason is
basically that this is saying you converge rapidly to equilibrium, because your gradient after you apply Pt
is tiny so you’re quickly approaching a constant function). The proof is applying Ito’s formula to the right
thing.

The point we’re trying to make is all the things in the Gaussian case generalize, though you have to make
assumptions, such as convexity. Nowadays the problems of modern interest are when you don’t have these
assumptions — V might have many local minima and not be convex, and you still want to know if you have
rapid mixing and so on.

§26.5 The final

Sky made the announcement that you can make 1 cheat sheet (front and back). He doesn’t intend it to be
a cleverness test; he treats this class more like skill-building, so he wants to see we know the basic concepts
(can you apply Ito’s formula? do you know what a stopping time is?). So hopefully the problems should
just be applications of concepts; they shouldn’t require a bunch of clever tricks.

Page 266 of 267



Class by Sky Cao (Spring 2025) 18.676 — Stochastic Calculus

Student Question. Can we type the cheat sheet?

Answer. Sure, but let’s limit the font; let’s say 8pt font. Which is small enough, he thinks. The cheat
sheet will mostly help with review — his expectation is when you understand a concept deeply, you
can kind of just immediately recall it. It definitely helps you to study to put in some time recalling
everything; but math is not about memorization, but also often when you’ve really worked on something
you can kind of do things very quickly. So that’s also kind of why he wants to limit how much of a
cheat sheet you have; even though math isn’t about memorization, it still helps to at least know some
concepts.

Student Question. What do you mean by clever tricks; does the homework use clever tricks?

Answer. His intention is with homework you have way more time so the problems are allowed to
be more involved. He doesn’t think the average problem should be as hard as the average homework
problem. Usually with tests there’s some meta-thinking where you see a problem and want to figure
out which concept they’re trying to test you on; sometimes that helps you because there’s only finitely
many things you shoudl be using. With research it’s different; but on a test if you don’t know how to
do a problem, you can ask yourself this.

Student Question. Is the exam going to be 3 hours?

Answer. Yes. It might be a longer exam but maybe each problem shouldn’t be too involved. But he
hasn’t actually written it; he’ll write it this week and then they’ll figure out how long it should be.
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