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§1 September 5, 2024

[TODO — The first 20 minutes of this lecture are currently missing. They contain an introduction to
measure theory and integration, the definition of a c-algebra and measure, and an example where the
ground set E is countable (where we take the o-algebra to consist of all subsets of E, we have a weight
function m: E — R>g, and we define the measure of a set A C E as pu(A) = ., m(z).)]

§1.1 Generators for a o-algebra

As you can see here, if E is countable, then we can define a notion of size on every single subset; so countable
spaces are very nice, and appear in nature in a very natural way. But what if F is not countable anymore —
for example, what if £ = R? This is much more complicated, and is not countable. In that case, o-algebras
can be more complicated. That’s why we restrict our attention to simpler subsets of o-algebras, which we
call generators (which somehow encode all the properties of the o-algebra).

Definition 1.1. Suppose we fix a set E, and A is a collection of subsets of E (i.e., A C P(E)). Then
the o-algebra generated by A, denoted o(A), is the set of all subsets of E which are contained in every
o-algebra of E that contains A.

In other words, we’ve considered all the o-algebras we could define on E that contain 4, and we took their
intersection; and we call that the o-algebra generated by A.

Why do we consider this kind of object? The point is this object might be useful because as mentioned
earlier, if F is not countable anymore, the o-algebra might be very complicated; but somehow all the
information of the o-algebra is encoded in the generator. So instead of studying the o-algebra itself, we
study the generator, which might be much simpler (e.g., the set of intervals in R generates a very nice
o-algebra).

Example 1.2
Consider E = Z, and A = {{z} | z € E} (so we consider all the singletons). Then o(A) = P(E).

The point is that every subset of E can be expressed as a countable union of elements of A. So this is a
simple example.

In the same spirit:

Example 1.3

Let E = Z, and take A = {{z,z + 1,2+ 2,2+ 3,...} | z € Z}. So in other words, we consider all
subsets of the integers formed by letting x vary, and taking everything larger or equal to x. Then we
have o(A) = P(E).

We can do this in any countable set; it turns out that all the information in countable spaces is encoded by
the collection of singletons.

However, we might have much more complicated spaces, and then we need to be more careful when picking
generators. Here the singletons were the simplest example; let’s see a slightly more complicated example.

Example 1.4 (Borel o-algebra)
Let E =R, and consider A= {U C R | U open}. Then o(.A) is called the Borel o-algebra.
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The point is that here it’s nontrivial this o-algebra doesn’t contain every single subset. It’s known we can
construct a subset of R which is not in the Borel o-algebra.

An alternative way to describe this o-algebra is that it’s the one generated by intervals — i.e.,
o({(a,b) | a <beR}).

Intervals are nice, and we can study them; based on intervals, we can say lots of things about the Borel
o-algebra. And we will also see a few more complicated sets, but our main focus will be R and the Borel
o-algebra. We are going to somehow define notions of measure, integration, and so on; and construct the
Lebesgue measure, which is what assigns sizes to subsets of R.

§1.2 m-systems and d-systems

We'll need a few more definitions, because they give us the language to say some interesting things about
probability.

Another useful property of generators is we have some arbitrary o-algebras, and we want to prove certain
properties hold for them; and in many cases, it suffices to prove they hold for the generators, which is usually
much simpler.

But sometimes it’s not that easy to prove these properties hold for generators; so that’s why we restrict
ourselves to simpler collections of sets. One of those is the 7 system.

Definition 1.5. Let A be a collection of subsets of E. Then A is called a m-system if the following
conditions hold:

(1) 0 e A.
(2) A is closed under finite intersections — i.e., if A, B € A then AN B € A.

So a m-system is a collection of sets containing () closed under finite intersections. Most generating sets we’ll
see in this course are m-systems; so this is a nice property.

Another very nice collection of sets we’ll consider is d-systems.

Definition 1.6. Let A be a collection of subsets of ££. We say A is a d-system if the following conditions
hold:

(1) Ec A
(2) If A,Be Aand A C B, then B\ A € A. (So A is closed under differences of this form.)
(3) For any increasing sequence (A,) C A (i.e., Ay € Ay C ---), we have |, 4, € A.

So a d-system contains FE, if you take any two sets with one contained int eh other, then their difference is
there too; and it’s closed underunions of increasing sequences.

What’s the point for why we introduce these two notions of sets? The point is that a collection of sets is
a o-algebra if and only if it is both a d-system and a w-systsem — so we have broken into two pieces the
definition of a o-algebra. (We’ll write this as a result; we’re suggested to verify it on our own.)

Proposition 1.7

A collection A is a g-algebra if and only if it is both a m-system and a d-system.

That’s a nice way to somehow break into two pieces the definition of a o-algebra.

We’re being a bit bombarded with definitions right now, but these definitions are necessary because they
give us the language we need.
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§1.3 Dynkin’s 7-system lemma

Now that we have introduced certain notions, let’s proceed to the proof of the first result of the course,
which will be quite useful for various reasons.

Lemma 1.8 (Dynkin's 7-system lemma)
Let A be a m-system. Then any d-system which contains A also contains the o-algebra generated by A

(ie., o(A)).

So here we start with any 7-system A, and then we consider a d-system which contains .4; then we’re saying
it also contains the o-algebra generated by A.

Before we prove this, why is it important? If we are not familiar with proofs at the moment, you don’t
have to actually remember the proof; the statement is actually how to learn to use the lemma that’ll be
important in the course.

How is this used? The point is we have some o-algebra generated by A, and we want to show this o-algebra
satisfies some nice properties. This lemma is a key input — we want to show that all elements of o(A)
satisfy a certain property. For this, we first show the elements of A do, and that the things satisfying the
property form a d-system; then this lemma says that that collection contains o(.A).

Remark 1.9. When a set is uncountable, you can still consider the o-algebra with all subsets, but then
it’s not easy to define a notion of size; you can take this o-algebra, but it’s not a good one. You have
to restrict yourself. For example, in R there exist sets which are not Borel-measurable (we don’t have
time to go over it, but there’s a construction due to Vitali).

The method of how we prove this is more or less standard to how people in measure theory prove things.

Proof of Dynkin’s lemma. Let D be the intersection of all d-systems that contain A. In other words, this is
the smallest d-system which actually contains A. Someone might ask whether there are actually d-systems
containing 4; one such thing is the o-algebra generated by A.

The thing we want to show that D actually contains o(A); if we can show this, then we’re done.

Now how do we do this? It suffices to show that this collection D (the intersection of all d-systems containing
A) is a m-system.

Why is this the case (i.e., why does this suffice)? It’s easy to see intersections of d-systems are still d-systems.
So if we manage to show that ¢D is a m-system, then it’s a o-algebra (by the above proposition). So it’s a
o-algebra containing A, which by the definition of o(.A) means that D has to contain o(.A); and then we’re
done. (Since D is the intersection of all d-systems containing A, any such d-system has to contain o(.A).)

The proof consists of two steps (in order to show this is a 7-system).
Claim 1.10 — If Be D and A € A, then BN A € D.

This is not exactly what we want to show — we want to show that for all A,B € D we have BN A € D.
But here we’re first doing a simpler step where we only consider A € A. Then in the second step, we're
going to prove that D is indeed a m-system.

Claim 1.11 — For any B, A € D, we have BN A € D.

If we manage to show this, then we’re done, because that’s the definition of a m-system. (Obviously ) is
there because B is a d-system, and every d-system contains () — if we take A = B = E, then E\ E = (). So
d-systems contain {).)
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First we’ll prove the first claim. The standard way to prove this is — we have a property and want to show
it’s true for every element of D. So we first consider

D'={BeD|BnAeDforall Ac A}

to be the set of all B satisfying the desired property. Clearly D’ C D; the first claim is equivalent to showing
that D' = D. So that’s the main thing to show.

For this, let’s make some observations. The first is that A C D’. Why? This is because A is contained in
this family D, and it’s a m-system.

So then it suffices to show that D’ is a d-system (becasue D is the smallest d-system containing A, so if D’
is a d-system containing A, then it has to contain D; and since of course D' C D as well, this means they
have to be equal).

Here what we want to do is prove a property is ture for every element in D; so we consider the collection of
all the elements of D for which this property is satisfied, and we want to show this is indeed the collection
D.

We know that A C D’. So if we show that D’ is a d-system, then it’s a d-system containing A; and since
D is the smallest, this means it has to contain D. But D’ is a subset of D, so this means they have to be
equal. So that’s the reasoning in proving the first claim.

Now let’s see why D’ is really a d-system. The first thing is that clearly E € D’, because if you take any
element of A, then ANE =A € AC D. So the first condition in the definition of a d-system holds.

Now let’s see why the second condition is true, for D’. Here, suppose we take any two sets By, By € D’
such that By C Bs. Then for every set A € A, we have that (By\ Bi)NA = (ByNA)\ (BN A) (this
is easy to see, from set theory; you can also verify by yoursef that we have this equality). So by the
definition of D’, we have that that B1 N A and BoN A € D, so the fact that we have a d-system means that
(BiNA)\ (B2\ A) = 0. (by the definition of d-systems), so by the second property of d-systems, this is true
for all shifts, so By \ B2 C |By].

The last thing we need to shwo is that D’ is closed under increasing sequences. Here, suppose that (B, )n>0
is an increasing sequence in D’. Then for every set A € A, we have

(JBi)eapA = | J(Bin 4)
7 n>1

(by set theory). And all these sets B; N D belong to d (by the way we defined D). S owe have an increasing
sequence of sets belonging to D. And since D is a d-system, this means this set has to be in the union as
well. So this means D’ is a d-system containing A, as desired.

So we have shown the first claim is true for every element of D; that’s the first step.

(It’s quite standard that we want to prove a property is true for every element in a collection fo sets, and
we prove the collection satisfies some nice properties — like being a d-system or m-system.)

Now we need to show the second claim. Again, the reason is exactly the same — we consider the collection
of all B € D such that BN A € D for all A C D. We’ll show again that this is a d-system containing A, so
it has to contain all the d-systems cnotaining A.

We'll briefly sketch this (but not give the whole proof). For this, we let D" be the collection fo sets

D'={BeD|BNAeD forall AcD}.

So our goal is to prove that D” = D. Since we have already shown that D' = D, we have that A C D”;
similarlly D" is a d-system. (This is exactly the same arguemnt as before.) That completes the proof —
this shows D" is a d-system that cihtaains a, so it has to also contain D.

So condition (2) holds; this means D is a m-system, therefore a sigma-algebra; and we’re done. O
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We chose to prove this in a ddetailed way so that we could get familiar with some of the notions and concepts
of measure theory. But we’re mostly going to use the statement of the lemma, because it will be useful to
prove things, not the proof itself. But it would be nice to be familiar with he proof.

Now we’ve mentioned several definitions; at a first glance they’re not easy to absorb, but in time we’ll
hopefully start getting familiar with them.

Let’s also mention a few more definitions, which are again goig to be useful later; we’ll end this lecture with
those definitions, and also give time to discuss questions.

If you haven’t taken many pure math courses, you've dealt with functions defined on R (e.g., we have an
interval [0, 1], and then we consider functions defined on that interval). But w ecan define functions on sets
as well — we have a collection fo sets, and we can define a function ont hat collection of sets. That’s what
set functions are, and we’ll deal with many.

Definition 1.12 (Set function). Suppose that A is a collection of subsets of E containing (). Then a set
function is a function p: A — [0, 00] (we allow values of co) such that p(@) = 0.

We can imagine i as a way of assigning sizes to the elements of this family. But there are other types of
functions as well.

Recall that in R, we say a function is increasing if for any two numbers x < y, we have f(z) < f(y). This is
possible because in R there is a natural order of numbers; we can say whether one is greater than the other.
The point now is we can do something smilar with sets; we think of A < Bif A C B.

Definition 1.13. We say a set function is increasing if it has the property that p(A4) < p(B) for all
A, B € A such that A C B.

Definition 1.14. A set function is called additive if whenever A, B € A are such that AU B € A and
AN B =10, we have u(AU B) = u(A) + u(B).

This is very natural; it’s realted to what we said earlier where if you want to assign sizes to two different
collection sof sets, you should jus ttake the su m of their sizes.
But we can also do the same with countably many sets instead of just finitely many, and in that case the

function is called countably additive.

Definition 1.15. We say a set function p is countably additive if whenever we have a sequence (A,) C A
such that J,, 4, € A and the A,’s are pairwise disjoint (i.e., A, N Ay, = 0 for all n # m), then

#(UA) =S U

So now instead of having a finite collection of objects, we have an infinite one; adn we stil say tehri sizes is
just the sum of hte sies.

One last thing, before we complete today’s lecture, is what we mea by saying countably subadditive functions.
We’re going to define these things now, and refer to them from now on; it’s sometimes nice to define objects
snad then based on these definitions, start to rigorously construct theories.

Definition 1.16. A set function is countably subadditive if whenever we have a countable collection fo
sets (Ap)nen € A with |J,, An € A, we have

i (UJ4n) <3 m(4n).
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In this definition, we do not assume the A,’s are pairwise disjoint, and we have an inequality; this makes
sense, because if we took two sets which are not disjoint, we cannot have an equality because we cannot
count an element twice; so that’s why we need na inequality (when we consider the size of the union, we don’t
consider elements twice). If the sets are pairwise disjoint, then we could have equality. (Here we'’re giving
some intuition if you have a measure; a measure is both countably subadditive and countably additive, and
when these sets are disjoint you have equality.)

Next lecture we’ll mention Caratheodory’s extension theorem; we’ll see how we can construct more compli-
cated measures than the simple ones we’ve mentioned so far.

After each lecture, we will upload a summary of what we did so you can have a guide if you miss a lecture.
We’ve also uploaded some lecture notes online. These are quite compact but contain the main theorems; on
the board we’ll try to clarify some things and expand the proofs.

§2 September 10, 2024

The first pset will be uploaded by the end of this week. There will be 6 problem sets; most will be problems
of understanding, to help us understand the material. There’ll be one every two weeks; we’ll have around
4-5 problems. There will be office hours every Friday, 5:30-7:30.

§2.1 Overview

Last time we saw an introduction to the course, with some motivation for measure theory and probabiltiy.
Konstantinos also gave us several definitions, which might at first glance seem abstract nonsense, but are
important because they give us the vocabulary we need.

We also mentioned what a measure is — a countably additive set function — but we haven’t actually
constructed a measure. We gave some elementary examples of measures, but we didn’t give a more general
way to construct measures. This is what we’ll do today; we’ll state Caratheodory’s extension theorem, which
lets us construct measures, and then hopefully we can construct the Lebesgue measure on R.

§2.2 Two more definitions

Before we do this, we’ll need two more definitions. As usual, we fix a (very large) set E, and we consider a
collection of subsets A of E.

Definition 2.1 (Ring). A collection of subsets A is called a ring on F if:
o e A
e Forall A,B e A we have B\ A€ Aand AUB € A.
So a ring is a collection of subsets which contains () and is closed under finite unions and under differences
(in the sense that if we take any two elements in the family and take their difference, the result is still in
the family). We'll need this to state Caratheodory’s theorem in its full generality; this is all we need it for.
Definition 2.2 (Algebra). A collection of subsets A is called a algebra on E if:
e e A
e For every A, B € A, we have A° € A and AU B € A (where A°=FE \ A).
This is more or less the same thing as a o-algebra, but it’s not necessarily closed under countable unions,

just finite ones. We now have the basic definitions we're going to use; from now on we're going to use these
definitions extensively to do more interesting things.
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§2.3 Caratheodory’s extension theorem

Caratheodory’s extension theorem is a general way of constructing measures; we’ll only briefly sketch the
proof, but we’ll use it. Caratheodory was a mathematician who made major contributions in measure theory
and analysis at the beginning of last century.

Theorem 2.3 (Caratheodory's extension theorem)

Let A be a ring on E, and suppose u is a countably additive set function on A. Then the set function
w extends to a measure on o(A) (the o-algebra generated by A).

We will see there’s an algorithm for how to extend the function to the o-algebra.

This is a very powerful theorem. First, it’s very general — we have a set E and a ring on that set (a
collection of sets satisfying the earlier properties), and we know we can define a countably additive function
on that set. And this theorem says this extends to a measure. So to construct a measure, we just have to
define it on a simpler family of sets, where it’s much easier to define (it’s usually much easier to define it on
a ring than on the entire o-algebra). The construction of the Lebesgue measure is based on this.

Proof. We'll talk about how to construct the measure, but we won’t prove it satisfies the desired properties
(due to the lack of time).

First, for any B C E, we set

p*(B) = inf {Zu(An) | (A,) C Aand B C UAn} :

We call p* an outer measure (it’s some sort of generalized notion of a measure). What this means is we
fix B, and consider any sequence (A4,) in our ring that covers B, and take the sum of the values in that
sequence; and p* is intuitively just the smallest of those sums. (Of course there doesn’t necessarily need to
be a sequence (A,,) attaining equality, but that’s the intuition.) If no such sequence (A,) exists, then we
set u*(B) = oo. (It might not be possible to cover B by sets in .4; in that case we set its outer measure to
oo. In general, we define inf () = c0.)

Remark 2.4. If such a sequence does exist but for all of them the sum diverges, you still set u*(B) = oc.

Student Question. Do we take A, to be disjoint?

Answer. No; (4,) is any sequence in our ring which covers B, and we sum the measures of those sets.

We’ve defined a function on the entire space, but this is not enough, because we need to define a notion of
nice sets — unfortunately not every set is nice.

First, it’s clear that p*(0) = 0, because we can take A,, = ) for all n. And p* is an increasing function; this
is not hard to see (it’s just from the definition).

Now, what are the nice sets? We say that a set A C E is p*-measurable if
u*(B) = u*(B N A) + (B N A°)

for all B C E. In other words, this means A nicely divides any subset of our space. Why does this make
sense? If p* were a measure, then this condition would hold by the countable additivity of a measure; so it
makes sense to define nice sets in this way.

Then we define U as the collection of p*-measurable sets. And that’s our collection of nice sets.

There are two observations, which we’re not going to prove (we don’t have the time to go through all the
details):
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(1) The collection U is a o-algebra containing A (in particular, this means it contains o(A)).
(2) The function p* is a measure on the o-algebra U, and its restriction to A is .

So that’s exactly what our extension is — p* is defined on a larger o-algebra, but the fact that A C U
means that 0(A) C U. And Caratheodory proved that p* is a measure on this bigger o-algebra U. (And
we've got an explicit form of the extension.) O

We don’t have time, but this gives an idea of how we construct a measure starting with an arbitrary set
function on a ring. This is used extensively — it’s a very nice way to construct measures.

Student Question. If u* is a measure on U, it follows that it’s also a measure on o(A)?

Answer. Yes — if it’s countably additive on U, then it’s also countably additive on o(.A), for example.
In general, if you restrict a measure to a smaller o-algebra, then it’s still a measure there.

Remark 2.5. If the ring A is a o-algebra, then p* takes a simpler form — we have
w*(B) =inf{u(A) | A€ A, B C A}.

This is because in our definition p*(B) = > u(A,), the union | J 4,, will also be in A, and p is countably
additive; so in that case we get this simpler form.

§2.4 Uniqueness of extensions

A very natural question someone could ask: Caratheodory’s theorem says you can construct a measure, but
what about uniqueness? This is an extension of y, but can there be another? In general, uniqueness is not
true. But if F has finite measure, then in that case, the extension s unique; we’re going to prove that in
the next theorem. This uses the machinery we’ve developed so far — in particular, Dynkin’s lemma from
last class.

Theorem 2.6

Suppose that we have two measures p; and pg om (E,E) (where £ is some o-algebra on E) such that
w1 (E) = p2(E) and both are finite. Then if A is a m-system which generates € (i.e., 0(A) = &), and
and po agree on A, then p = puo.

What this says is that if we start with any two measures which give the same mass of the space and agree on
a m-system generating the o-algebra of the space, then they have to be the same; this gives a nice criterion
for Caratheodory’s extension theorem where the existence is unique (if we take A to be a m-system where
the function you start with has finite mass, then the extension is unique).

Proof. The proof is very similar to what we did last time. Here’s what we need to show — we consider
D={A€c&|m(A)=p(A)}

(i.e., the collection of sets on which the two measures agree). Our goal is to show that D is the entire
o-algebra. To do this, last time we showed that if you have a d-system containing A, then this will also
contain o(A). So what we actually have to prove, by Dynkin’s lemma, is that D is a d-system; if we can
prove this, then we’re done by Dynkin’s lemma (and this is why Dynkin’s lemma is useful).

First, we know that D indeed contains A (this is by our assumption that u; and ps agree on A). So by
Dynkin’s lemma, it suffices to show that D is indeed a d-system.
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To show this, recall that there are three conditions that we need to actually verify. The first condition is
that E € D. But this is obvious, by our assumption that the two measures give the same mass on the entire
space.

The second thing we have to show is that if we take any A, B € D with A C B, then B\ A € D (this is
the second condition for being a d-system). That’s quite easy in our case, for the following reason. By our
assumptions, we have that p11(B) = p1(A)+ (B \ A) (this is because p; is countably additive, because it’s
a measure); the right-hand side is something finite. Similarly we have

p2(B) = p2(B) + p2(B\ A) < oco.

And these two quantities are equal, because by definition they belong to £. Meanwhile, p1(A) = p2(A). So
when we subtract the first equation from the second, we get that

(B A) = (B \ 4),
which means that B\ A € D.

However, here we have hidden something — here you’re subtracting two numbers, so we need to know those
numbesr are finite. That’s hwere we're using that p;(E) is finite; we’ll see counterexamples otherwise.

So the second condition of a d-system is satisfied. The last condition is as follows: suppose we take an
increasing sequence (A,,) C D such that A =|J A,, € D. We then need tos how that A itself is also in D.

But this follows from a limit argument — we have

pi(A) = lim i (Ay)

n—oo
(we’ll prove this on the first problem set — that when we have a limit of increasing sets, the measure of the
limit is the limit of their measures). But this is lim,, o 2(Ay), which is p2(A). So we indeed have A € D;
this implies D is a d-system containing A.

And A is a w-system, so the fact that D contains A measn it contains a w-ystem generated by A. O

So under special conditions, we do have uniqueness of extension; we are going to use this for the Lebesgue
measure.

Student Question. Is there motivation for the definition of a d-system?

Answer. The notion of d-systems and m-systems somehow break into two pieces the notion of a o-
algebra, which make them easier to understand. In measure theory we study complicated objects by
restricting to something easier to understand, and then building from there. The notion of a d-system
is simpler than a o-algebra; so we design a d-system and 7-system, and combine them to get a standard
o-algebra. At a first glance this may seem like abstract nonsense, but it turns out to be very important.

Student Question. Are we assuming the two measures are increasing?

Answer. Any measure is necessarily increasing — if you have A, B € £ where A € B, then B\ A€ &
(because B\ A = BN A€), So this means p(B) = u(AU(B\ A)) = u(A) + u(B\ A). And measures are
always nonnegative, so this is always at least p(A). So measures are automatically increasing.
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Student Question. Are the definitions of rings and algebras related to the ones from algebra?

Answer. Yes, if you consider the set operations as operations — in algebra, you have sets closed under
standard operations (e.g., addition). And here we have something similar, where the algebra is closed
under unions. You can understand addition as union (very vaguely speaking); if you make this abstract
connection, then you have something analogous. (This is probably the reason for the name.)

§2.5 An example of non-uniqueness

Now that we’ve seen uniqueness, we’ll construct an example where uniqueness breaks down (where we’ll
take a set of infinite measure). Let F = Z, and consider the o-algebra & = P(E) (the set of all subsets of

Suppose we have a 7-system mentioned last time, specifically
A={{z,z+1,2+2,...} |z € E} U{0}.
As mentioned last time, this is a m-system which generates the entire o-algebra (this is not hard to see —

every subset of R ca be written using such sets).

Then we need to define our measures; we define 11 (A) = |A| (so this tracks the number of elements; note
that A might be infinite, in which case u1(A) = o0).

And we simply take pa(A) = 2u1(A), for every A € P(E).

So we have two very elementary measures; uyou can see that these two measures are off by a factor of 2.
But they conicide on A, because every element of A has infintie measure, and 200 = oco. So u; and e
coincide on our 7-system.

So in that case, the previous theorem breaks down because these two theorems give infinite mass in our
space, and our argument crucially uses finite measures.

§2.6 Borel measures

We’ll now give a few definitions that will be useful, and hopefully we’ll have time to go through the con-
struction of Lebesgue’s measure.

Definition 2.7 (Borel o-algebra). Let E be a topological space (a set with some topology). Then we
define the Borel o-algebra in E t obe the o-algebra generated by the open subsets of E. ()

(The notion of topology is not important if you’re not familiar with it; you can imagine F is just R;)

So we consider all the open sets, and the o-algebra generated by those sets. In our case, we’ll mostly b
interestedd in the case ' = R (with the usual topology).

We define the Borel o-algebra as B(E).

Definition 2.8. A measure y on the topological space (E, B(E)) is called a Borel measure. Furthermore
(in addition), if the measure of any finite set E € £ is finite, then we say u is a Radon measure.

If we don’t know what a compact set is in an arbitrary space, that’s fine; what we actually have to know is
we can imagine replacing K by intervals in R. So if our measure gives finite mass to every closed interval,
then it’s a Radon measure.
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§2.7 The Lebesgue measure

Now the main theorem, which we’ll try to finish the proof of today, is the following.

Theorem 2.9
There exists a unique Borel measure p on R with the property that p([a,b]) =b— a for all b > a.

Intuitively, we can understand this — we take any interval and set its measure to its length. But the point
is that this measure can be extended to a much larger o-algebra, and this extension is actually unique.

We’ll now go through the proof.

§2.7.1 Proof of uniqueness

As we might expect, for uniqueness we're going to use the previous thoerem we stated. But there’s one
problem — our measure p is not finite (it’s defined on the entire rela line, and it’s not necessarily finite,
because if you take the interval with length [0, 7], then its length is n). So we need a trick to apply our
previous uniqueness theorem.

The trick is as follows: for every n € Z, we restrict our measures to
n(A) = u(AN (0 + 1)),

and we do the same for a second measure fi,(A) (we assume for contradiction that we have two such
measures, and we want to eventually prove they’re the same) — so we define

fin(A) = F(AU (n,n + 1)).

Then we need a m-system — we consider all half-open intervals (a, b], where a < b < R. By the definitions
of our measures and the property we have, u,, and @ agree on our m-system — so A is a w-system with the
properties that it generates the entire algebra, meaning o(A) = B(R). And then by the previous lemma, we
have p, = iy

Now uniquness is easy — for every A € B(R), we have A = J,,(AN(n,n+1]). And these sets are pairwise
disjoint, so by countable additivity we have u(A) = {d n(AN (n,n+ 1)]}. But then we have

u(A) = ST uAN (nyn+ 1) = ST AN (n,n + 1)) = fi(A).

So the idea was to partition into finite intervals that cover the space, and then apply the previous theorem
(we were dealing with an infinite measure we couldn’t use the previous theorem directly, but dealing with
this wasn’t too hard).

§2.7.2 Proof of existence

The harder part is the proof of existence; for that we’ll use Caratheodory’s theorem, but for this we need a
ring that generates the entire Borel o-algebra, as well as a function restricted to that ring. So we need to be
a bit careful with this; and that’s the main goal for the rest of the lecture (we want to apply Caratheodory,
but we have to do something first).

We need to consider a ring which generates the entire Borel o-algebra. For that, we consider A to be the
set of finite unions of disjoint intervals (a;, b;] — i.e.,

A= {A = ((Il, bl] U (ag, bQ] U---u (an, bn]}
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(The reason for the half-closed intervals is so that it’s not hard to show this is a ring.)

Then A is a ring with the property that o(.A) = B(R); this is nontrivial, but not super hard to show. (It
may be one of the problems on the problem set, so that we can play around with definitions.)

Then we should define ;1(A) as the sum of lengths of those intervals — i.e.,

n

u(A) = (b — ai).

=1

Of course, here someone might say, if we express A in a different way, do we still get the same length? The
answer is yes, because we require the intervals be disjoint; so p is well-defined, and additive. (Additivity is
again not very hard to see, meaning that the union of two disjoint sets is also the sum of their measures;
it’s a nice exercise.)

But we need to actually show that u is countably additive. For this, let (A,) C A be a sequence of disjoint
sets, and let A = |JA,; we assume that A € A. (This is not true for every such sequence, but we only
restrict to such unions, because we need to just check that p is countably additive on our ring; so we only
care about countable unions that don’t leave the ring.)

We need to show countable additivity, meaning that
p(A) = p(An).

(That’s the definition of countable additivity, and it’s one of the prerequisites of Caratheodory’s extension
theorem.) First, by finite additivity (as we discussed earlier), we can break p(A) into two pieces as

u(A) = p(Ar) + p(A\ Ay).
Then we can further break the second part and write
1(A) = p(A1) + p(A2) + p(A\ (A1 U Ag)).

And we can iterate this; then we get

n

n(A) = 3" (A + p(A\ (A1 U= UA)).

=1
To complete the proof of countable additivity, we need to show that the last term tends to 0, i.e., that

WA\ (AU UA,)) — 0

as n — oo (then we will have shown g is countably additive on our ring, and then we are done by
Caratheodory’s extension theorem).

Now we're going to use some notation to make our lives easier — set B, = A\ (A; U---U A,). What we
want to show is that u(B,) — 0 as n — oo (this is exactly the same thing as before, we've just changed
notation). We are going to argue by contradiction — we are going to assume that u(B,,) does not converge
to 0, and then we’re going to reach a conclusion that contradicts a conclusion we had before.

So suppose for contradiction that u(B,) does not tend to 0 as n — co. What does it mean not to converge
to 07 Here, since the B,’s are also decreasing, this implies there exists € > 0 such that u(B,) > 2¢ for
every n. To explain this a bit more, a sequence converges to 0 if for every ¢, eventually the sequence goes
below €. So for a sequence to not converge to 0 means there exists € such that the sequence stays above
¢ for infinitely many values of n. (And here we can go from infinitely many to all using the fact that the
sequence is decreasing.)
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Now we need to somehow approximate elements of B),’s by elements of our ring A — B,, is not necessarily
an element of A because it can’t be written as a finite union of disjoint intervals. But it can be written as an
infinite union of intervals, which means elements of B,, can be approximated by elements of our ring. More
specifically, for every n we can find C,, € A such that C1(C,,) C B,, and u(B, \ Cy) is small — specifically,
w(By \ Cy) < /2" This is possible because each B,, is a union of finite intervals, and any such thing can
be approximated by unions of finitely many disjoint intervals.

So then we have
1(By) — p(CrN-+-NCp) = pu(Byp \ (CLO---NCy))

(because this intersection is contained in B, by construction). But we can write

p(Bn \ (C1N---NCy)) < U (Bm \ Cn).

m=1
And now by countable additivity, this is at most

n

S 4B\ Con).

m=1

And we chose Cp, such that this is very small — specifically, at most Y _,&/2™ < e (because > 1/2" =1
— that’s why we chose this sequence of error terms, because it’s summable).

Here what we’ve done is approximated our sets B,, by nice sets C,,, and then approximated p(By,) in terms
of the measures of these nice sets C,,.

But we also have u(B,) > 2¢, so this means u([)Cy,) > € (by the above inequality). And this is true for all
n.

Now consider K, = () _; CI(Cp,). The point is here that this sequence K, is a sequence of decreasing
compact sets, which have the property that u(K,) > €. In particular, the K, are nonempty for all n.
And we can use the ‘finite intersection property’ of R, which says that if we have a decreasing sequence of
compact sets in R which are nonempty, then their intersection is also nonempty. (We may not be familiar
with this and that’s fine, but we need it for this proof.)

Then the finite intersection property implies that (), K, is nonempty (because if we had a set with positive
measure, then it cannot be the empty set; and we’ve constructed a decreasing sequence of compact sets
which have positive measure, so must be nonempty; and then this property ensures their intersection is
nonempty).

But by construction, (), K, € ),, Br. And this intersection is the empty set, since A = J,, Ay, and so this
is A\ A=0.

And so that’s how we obtain the contradiction — by constructing this decreasing sequence of compact sets.
The whole idea of the proof was to get a contradiction in this way. Some of us might not be familiar with
these techniques, which is fine (we don’t have to come up with these proofs, some very smart people did);
but this is an idea of how these things sometimes work, and it’s very nice and elegant.

And now we use Caratheodory’s extension theorem — the function we defined on the ring satisfies the
assumptions of this theorem, so it extends (in the way described earlier).

Since we’ve also proved uniqueness, this tells us there is a unique measure where the measure of an interval

is the size of that interval. We define this measure as the Lebesgue measure.

Definition 2.10. The Lebesgue measure is the unique Borel measure p on R with the property that
w([a,b]) = b — a for all intervals [a, b].
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And that’s how we construct the Lebesgue measure. This procedure generalizes to higher dimensions too,
though we’re not going to do that (you can use the same method, but instead of intervals you use squares
or cubes or so on).

Student Question. Are the Lebesgue-measurable sets precisely the Borel ones?

Answer. No — there are actually sets which are Lebesgue-measurable but not Borel. In our setup,
what we called Lebesgue-measurable sets correspond to the o-algebra U from Caratheodory’s extension
theorem, while what we call Borel-measurable sets are o(A). These are not the same — you can
construct sets which are Lebesgue-measurable but not Borel-measurable. We won’t do this because
there’s not enough time.

8§83 September 12, 2024

The first problem set is uploaded, and the deadline is September 27. It has 7 problems, but you only
have to submit the first 6 for credit; Prof. K added a bonus problem for those of us who are interested in
solving more problems. He designed the problems to be problems of understanding; they shouldn’t require
deep mathematical background for the moment. If you feel you have mathematical gaps or want to ask
anything, you can come to the office hours; these will be Friday 5:30-7:30 at the math department (this is
also announced on Canvas). Now we also know our TA and grader; you can find their information on the
syllabus.

§3.1 The Lebesgue measure

Last time, we rigorously constructed the Lebesgue measure on the real line (or the Borel o-algebra); we also
proved it’s the unique Borel measure with the property that the measure of any interval was its length. The
proof was a bit technical and required some nontrivial steps.

§3.2 o-finiteness

One observation about the Lebesgue measure is it’s not finite — the mass it gives to R is infinite. However,
it is o-finite.

Definition 3.1 (o-finite). Let (E,£) be a measure space (so that E is a set together with a o-algebra
€), and p a measure on this space. Then we say p is o-finite if there exists a sequence (E,) C £ of
measurable sets with the property that E = (J,,cyy En and pu(E,) < oo for all n.

Here the space might have infinite measure, but in the case of o-finite measures, we can partition the space
into smaller pieces such that each piece has finite mass under our measure. Of course the Lebesgue measure
is o-finite — you can take E,, = [-n,n], for example (for n € N). Then (J,, E,, = R, but u(£,) = 2n, which
is a finite number (for each n).

Why do we use this definition? It’s important because most properties that are true for finite measures are
also true for o-finite ones, because of this nice partition. So it’ll often be useful to study o-finite measures.

§3.3 Translational invariance

Now that we have this definition, let’s prove another property of the Lebesgue measure. Intuitively, if we
have an interval with endpoints a and b, and then we translate that interval by x — so we take the interval
with endpoints @ + « and b + x — then these intervals have the same length. And the point is that for the
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Lebesgue measure, this is actually true for any Borel subset A — i.e., u(A + ) = u(A). We'll now prove
this; it’s intuitively clear, but proving it rigorously is nontrivial.

Proposition 3.2

The Lebesgue measure is translation invariant, meaning that u(A) = u(A + x) for every set A € B(R)
and for every x € R.

Recall that B(R) denotes the Borel o-algebra (defined last lecture); and A+ 2 ={a+ 2 | a € A}.

By now we have all the tools needed to prove this proposition. We’ll prove this by invoking uniqueness.

Proof. Fix any x € R, and consider the measure p, defined by

pa(A) = (A + 2)
for all Borel sets A (where u denotes the Lebesgue measure). This is well-defined, since if you take a Borel
set and add a fixed number, you still get a Borel set.

Then we have that p, is a Borel measure with the property that for every interval, we have
pz(la,b]) = p(la+x,b+z]) = (b+2) — (a+2) =b—a.

So the measure pu, is a Borel measure such that the measure of any interval is equal to its length. And
now we can invoke uniqueness — by uniqueness, u; has to be the Lebesgue measure, because the Lebesgue
measure is the unique Borel measure satisfying this property.

So by the uniqueness of the Lebesgue measure, we have that p, = p. But that’s exactly what we wanted to
prove (because x was arbitrary). O]

As we can see, the proof was almost straightforward, but it required as input the uniqueness of the Lebesgue
measure, which is nontrivial (we had to do some preparation in order to prove that, and of course the essence
behind that was Dynkin’s 7-system lemma from the first lecture).

Question 3.3. Are there other Borel translation-invariant measures?

The answer is no, in a certain sense; this gives another characterization of the Lebesgue measure in some
sense.

Proposition 3.4

Suppose that 1 is a Borel measure on R which is translation-invariant and such that ([0, 1]) = 1. Then
11 is the Lebesgue measure.

Here we had to require z(]0, 1]) = 1 to fix the scaling; otherwise we’d get that i is a multiple of the Lebesgue
measure.

Proof. Based on the characterization of the Lebesgue measure, it suffices to show that

jilla,b)) =b—a
for all a < b (because this actually characterizes the Lebesgue measure).

The idea behind this is that if we fix some a < b, then because Q is dense in R, we can find sequences
(Pn), (gn) € Q such that p, | a and ¢, T b as n — oo (this means (p,) is decreasing and converges to a, and
(gn) is increasing and converges to b). Then we have

ﬁ([% bD = nh_{go ﬁ([pna Qn])
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So this means it suffices to show the equality fi(]a,b]) = b — a when a,b € Q — because then we get that
i([Pns @nl) = Gn — pn, and ¢, — pp — b — a.

Now we’re going to use translational invariance to prove that this equality is true for rational numbers. For
rational p < ¢, we first have u({p}) = lim,,c o([p,p + %})

Claim 3.5 — We have f([p,p+ 1]) = 1.

n

Proof. First, by translational invariance, we have fi([p,p + ]) = ([0, 2]). But we can also partition [0, 1]

into the smaller intervals [0, 1], [L, 2], ..; and all these intervals have the same measure, by translational
invariance. So we actually have 1([0,1]) = n - ([0, 2]). And this is 1, giving ([0, 1]) = L. O

This immediately gives us u({p}) = % Furthermore, if we take any p = 7, then the same reasoning gives

~ N ~ 11y c . .. . . 1 1 2
that z2([0, *]) = m- ([0, +]) = . (The point is that we divide [0, 7F] into the smaller intervals [0, =], [, =],
..., and we know that each of these has measure 1.)

More generally, if we take any two rational numbers p < 0 < ¢, then we get u([p, q]) = n([p,0]) + ([0, 4q]) =
—p+gq.
Using this, we can get that this is true for any p,q € Q.

And then we use our above argument (approximating reals with rationals) to conclude i([a, b]) = b—a. And
then using the uniqueness of the Lebesgue measure, we get that jz has to be the Lebesgue measure. O

Student Question. Where did we use p({p}) =07

Answer. This is because when you take the limit, you actually need to say that p({a}) = u({b}) =0
— our equality with the limit actually should say that

ﬁ((av b)) = nh—>ngo ﬁ([pna Qn])'

And this argument shows that iz has no atoms, which means we can replace the open interval with a
closed one.

Student Question. How did we get to the limit fi({p}) = lim,_o0 f([p, p + 2]) ?

Answer. The point is that you can write {p} = (,[p,p+ 1]; and when you have a decreasing sequence
of sets, the measure of the limit (i.e., intersection) is the limit of the measures. (We’'ll prove this on the
problem set.)

Student Question. How do we conclude after having shown that ([0, ]) = ™7

Answer. If you fix any rational numbers p < 0 < ¢, then you can split [p, q] = [p,0)U]0, g], which means
w([p,q]) = p([p,0)) + ©([0, ¢]). And our arguments above show that the measure of the first interval is
—p and the second is q.

Remark 3.6. We mentioned last time that the o-algebra formed by Lebesgue measurable sets is actually
bigger than the Borel g-algebra. It’s highly nontrivial to construct a set that’s Lebesgue measurable
but not Borel; we won’t do it here, but they have been constructed.

There’s also the question of whether every subset of R is Lebesgue measurable; the answer is no, and
there’s a brief and clever construction (but we also don’t have time to discuss it in class; we can ask
about it in office hours). In other words, U (the o-algebra constructed in Caratheodory’s extension
theorem) is not P(R) — there’s a subset of R which is not here.
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§3.4 Probability — some definitions

Now we’ll talk a bit about probability and introduce some basic concepts we’ll use in this course; after all,
this course is called probability and not measure theory.

Definition 3.7 (Probability measure and space). Let (E, ) be a measure space with u(E) = 1. Then we
say p is a probability measure, and we say (E, &, p) is a probability space.

Probability theory focuses on this kind of space, where the mass of the entire space is 1. From now on, we're
going to denote our probability space by €2, our g-algebra by F, and our probability measure by P.

Definition 3.8 (Sample space). In a probability space (€2, F,P), we call 2 the sample space.
Intuitively, you think of €2 as the set of ‘all possible results.’
Definition 3.9 (Event). In a probability space (£2, F,P), we call the elements of F events.

Finally, the probability of an event will simply be its measure.
Definition 3.10 (Probability). For each event A € F, we call P[A] the probability of A.

These are standard definitions, but we should write them down once, and we’ll refer to them from now on.
From now on, we’ll only focus on probability spaces.

§3.5 Independence
One fundamental notion in probability is that of independence; let’s see what we mean by that.

Definition 3.11 (Independence of events). A sequence of events (A;) is called independent if for every
finite J C N, we have P[0, c; An] = [[,,c; PlAn].

In words, this means if we take any finite collection of our sets A,, then the probability of the intersection
of those events is the product of the individual probabilities.

Intuitively, two events are independent if the occurrence of the first event doesn’t affect the other, and vice
versa — if we have any two events A and B, the fact that A occurs doesn’t depend on whether or not B
occurs. That’s the intuitive interpretation of independence. For example, if we take a fair coin and flip
it twice, the two results are completely independent — the second time we toss the coin, it really doesn’t
matter what we had before.

But of course, we’ll see in this course much more complicated independent events.

And we can do the same with o-algebras — we can also talk about independent o-algebras.

Definition 3.12 (Independence of o-algebras). A sequence of o-algebras (A,,) such that A, C F for all
n is said to be independent if for any sequence (4,) such that A, € A, for all n, the sequence (A,) is
independent.

So a collection of g-algebras is independent if when we take any collection of events, each from the corre-
sponding o-algebra, then this collection of events is independent in the way described earlier. So we can
also talk about the independence of o-algebras.

The connection between these two definitions is the following (which is an easy exercise, which we’re rec-
ommended to do to get familiar with these notions).
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Proposition 3.13
The events (A,) are independent if and only if the o-algebras (o({Ay})) are independent.

It’s not too difficult to see why this is true; you just apply the definitions of independence of o-algebras and
collections of events.

In general, it’s nice to have some methods to prove whether two o-algebras are independent — because the
concept of independence is of fundamental importance in probability. As earlier, we often want to restrict
ourselves to simpler sets, e.g., m-systems — if you have two o-algebras generated by two m-systems, and
the m-systems are independent, we’d like to say the o-algebras are independent. And indeed, we have the
following theorem, which allows us to check independence between o-algebras.

Theorem 3.14
Suppose that A; and As are both 7-systems in F. If these are independent, in the sense that

P[A; N Ag] = P[A;]P[As]

for all A} € A; and Az € Ag, then we have that o(A;) and o(Az) are independent.

From now on, we always assume we’re living in our big o-algebra F.
)

Based on what we’ve done so far, this is not surprising; and you can start to see why m-systems are important
in general. So we have two o-algebras generated by two w-systems. These may be extremely weird and
complicated to work with, but if we know the m-systems that generate them are independent in this sense,
then we actually get to conclude that these o-algebras are independent.

The main idea of the proof is that if we have a finite measure, and if we know the measures on the m-system,
then we actually know it on the entire o-algebra generated by that m-system (we saw this last class).

Proof. Suppose we fix some A; € A;, and we consider the measures p and v defined by

(for all A € F). It’s easy to see these both satisfy the properties of measures, so they’re measures. And
they’re finite measures (though not necessarily probability measures) — in particular, we have p(Q2) =
P[A;] <1 < o0, and v(2) = P[A4;] < 0o as well; this in particular means p(2) = v(Q).

Furthermore, we have u|4,= v|4,, by our hypothesis. So we have two measures that agree on a m-system,
and this means they have to agree on the o-algebra generated by this m-system A, — in particular, what

this means is that
P[AN Ay] = P[A]P[A,]

for all A € o(Ag).

We’re not quite done, because we need this to hold for every A; € o(A;), and right now we only have it
for every A; € A;. But completing the proof is easy — to do so, fix any A € o(A;), and now consider the
measures
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for every B € F. Then the same story happens — g and v coincide on our w-system A, meaning that
f|.4,= V]a,, and this means they actually coincide on the o-algebra generated by .4;. And by definition,
this means

P[A N B] = P[A]P[B]

for every B € o(A;) (and this is true for every A € 0(Az), so we're done). O

What this means is it suffices to check independence only on the m-system, which might be much simpler
(e.g., for the Borel o-algebra on R, we can instead take the m-system consisting of unions of disjoint intervals,
which is much easier to deal with).

Student Question. Why is pu|4,= v|a,?
Answer. This is by our hypothesis that P[A; N Ag] = P[A;]|P[A2] for all Ay in our 7m-system As.

Student Question. Does it make sense to ask about independence for an uncountable family of events?

Answer. Yes, but you have to be careful. For example, you can take any finite collection of that
collection and say it’s independent — you use the exact same definition, just without the assumption
that the index set is countable.

Student Question. How did we get to ji|4,= V|4, ?

Answer. This comes from the previous part — we proved that P[A N A;] = P[A4] - P[A;] for every
A € o(Az), but this is true for every A; € A;. So now we're fixing A € o(Az), and letting A; vary
over Aj.

§3.6 The Borel-Cantelli lemmas

This is a very nice way to check whether two o-algebras are independent. Another thing that we’re interested
in in probability is to check other types of events. For example, you might have a collection of events, and
wonder what’s the probability this collection happens infinitely many times. For example, suppose you toss
a coin and ask the probability of the event you get heads infinitely many times. Intuitively, this should be
1, but how do we formalize that?

For that, we need a few notions — namely, the limsup and liminf of a collection of events (we’ll use them
extensively in our course, and they’re used extensively in statistics as well).

Definition 3.15. Suppose we have a sequence of events (A,). Then we define

limsupAn:ﬂ U A,, and linnl)ngn:U ﬂ A,

n—00
n m>n n m>n

What limsup A,, means is that for every n, there exists m larger than n such that A,, occurs. In other
words, limsup A,, is the event that infinitely many A,’s occur. Similarly, liminf A,, means there exists n
such that for every m > n, we have that A,, occurs — so this is the event that eventually all these events
occur.

We’ll be interested in computing the probabilities of events of this form as well, and for that we’ll need the
Borel-Cantelli lemmas.
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Example 3.16

For the coin example, we can define A,, as the event that the nth toss is heads; then lim sup A, is the
event that we get infinitely many heads.

Now we’ll state some results on these definitions; the first such result is the first Borel-Cantelli lemma,
which is used extensively in mathematics.

Lemma 3.17 (Borel-Cantelli I)
Let (Ay) be any collection of events. If ) P[A,] < oo, then P[limsup A,] = 0.

So if we take any collection of events and the sum of their probabilities is finite, then the probability that
infinitely many of them happen is 0.

Proof. Let A =limsup A,. Then by definition, we have

PA =P | U 4n

n m>n
But then we have
PA <P | ] Am
m>n

for all n. And by countable subadditivity, this is at most >_, -, P[A;;]. But this tends to 0 as n — oo,
because ), P[A,] is finite (which is true if and only if its tail sums go to 0).

And this means P[A] = 0, so we're done. O

This proof is only a few lines, but the lemma is indeed very important. We first applied the definition, then
the fact that measures are increasing functions ((,,U,,>,, Am is contained in J Ay, for any specific m);
and then we used countable subadditivity to get a sum that goes to 0.

m>n

Student Question. What does the limsup mean intuitively?

Answer. It’s the event that infinitely many of the A,’s happen; and lim inf represents that eventually
all of them happen.

Student Question. We didn’t use the fact that P is finite here, did we?

Answer. Yes, we didn’t — in fact, this holds for every measure. We don’t use the fact that PP is finite.
So if we replace P by an arbitrary measure u, we still have the same statement — that if > u(A,,) < oo,
then p(limsup 4,) = 0.

Now we’ll proceed with the second Borel-Cantelli lemma, which is also extremely important. Here we need
to make some further assumptions — specifically, that our events are independent.

Lemma 3.18 (Borel-Cantelli Il)
Let (A;,) be a sequence of independent events. Then if )" P[A,] = oo, then we have P[limsup A,] = 1.
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This is a way to rigorously prove that if we toss a fair coin infinitely many times, then with probability 1
we get heads infinitely many times (we can define A, to be the event that the nth toss is heads; clearly
the A,’s are independent, and this lemma says that then with probability 1 we get heads infinitely many
times). So this is something we know intuitively, and we can prove it rigorously using this lemma.

Proof. The first thing that we need is the following:

Claim 3.19 — The sequence (AS) is also independent.

We'll leave this as an exercise (it may be included in some problem set; but otherwise we can just accept
that it’s true, but we’re suggested to try to prove it).

Then we have that if we take the probability of the first N terms, we have

N N
M 45| = 11 Pr4s)

(this follows by the definition of independence). But we can rewrite this as

P

N

I -PlA.].

m=n

And now we somehow want to bound this term on the right. To do so, there’s a simple inequality 1+ x < e*
for all x € R (this is something from analysis, and you can easily see it by taking derivatives, to prove the
functino e* —x — 1 is decreasing up to z = 0 and then increasing). So we get that our probability is at most

N N

m=n

And this sum tends to oo (for any fixed n, as N — 00), which means the exponential tends to 0; and what
this means is that
o
() A5
m=n

for all n. And by countable subadditivity, this implies

Pl (A <D P () 45| =0

n>1m>n n>1 m>n

P

And if the probability of this event is 0, then the probability of its complement is 1; and the complement
of Up>1 MNisn A5, 18 just limsup Ay, giving that Pllimsup A,] = 1. And that’s exactly what we wanted to
prove. O

Here we did use the fact that the measure is finite — we used the fact that P[A] = 1 — P[A| several times,
and we need finiteness for that.

Student Question. Are there similar results for the liminf ¢

Answer. Usually there’s duality — you can write liminf A,, = (limsup AS)°. We state results for
lim sup because it’s easier to work with, but you can use this duality to get the corresponding results
for lim inf.

Page 26 of 196



Class by Konstantinos Kavvadias (Fall 2024) 18.675 — Theory of Probability

§3.7 Measurable functions

We'll now introduce measurable functions, which are a fundamental object in measure theory (and in
probability theory).

Recall that when we have a function f: E — F, where E and F' are some topological spaces, we say f is
continuous if f~1(U) is open in E whenever U is open in F. With measurable functions, we do the same;
we just replace the notion of an open set with the notion of a measurable set. So a function will be called
measurable if it inverts measurable sets to measurable sets (where we have o-algebras instead of topological
spaces). We’ll now write this down properly, but this is the main idea (coming from topology).

Definition 3.20 (Measurable functions). Let (E,£) and (G, G) be two measure spaces. Then we say a
map f: E — G is measurable if for every A € G, we have that f~1(A) € €.

Note that by f~1(A), we mean {z € E | f(z) € A}.

So this is the same definition as with continuous functions, but now we’re dealing with measurable sets
instead of open sets. From now on, we’re going to deal with such functions.

Definition 3.21. If F is a topological space with the Borel o-algebra (meaning that £ = B(FE)), then
we say f is a Borel function.

So a Borel function is a function that’s measurable with respect to the Borel o-algebra (on the first set).

Remark 3.22. Recall that the Borel o-algebra is the o-algebra generated by the open subsets of E (in
our topology).

Student Question.  How do you prove that if A and B are independent then o(A) and o(B) are
independent?

Answer. The o-algebra generated by A is simply o(A) = {0, A, A%, E'}, and likewise with o(B). Then
it’s just a matter of checking that if we take any elements from each of these, the probability of their
intersection is the product of probabilities.

Student Question. In topology, you have the notion of a basis (which you can generate the open sets
from). Is there something similar here?

Answer. Yes. The point is that in order to check that a function is measurable, it suffices to restrict to
m-systems. The role of open sets in a topology is played by w-systsems in a o-algebra — if you know
that f inverts into measurable sets for elements of a m-system, then it inverts any measurable set to a
measurable set.

8§84 September 17, 2024

84.1 Measurable functions

Last lecture, we proved several results in measure theory, such as the Borel-Cantelli lemmas. We also defined
the notion of a measurable function — this is analogous to the definition of a continuous function.

Question 4.1. In practice, how do we check whether a function is measurable?
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We said a function is measurable if it inverts measurable sets to measurable sets. It turns out we’re lucky
— if we have a m-system generating our o-algebra and the function inverts elements of that system to
measurable sets, then the function is measurable. In particular, we have the following lemma.

Lemma 4.2

Let (E,&) and (G,G) be measurable spaces such that G = o(A) for some A. If f~1(A4) € & for every
A € A, then f is measurable.

So we don’t actually have to check that the function inverts every element of G; we just have to check this
on a set of generators. This makes it much easier to check whether a function is measurable.

The proof has a similar flavor to things we’ve done so far.

Proof. Since G is generated by A, it suffices to show that
F={Aca|fl(Aee&

is a o-algebra. (This is because we know this is a collection of sets containing A, by our hypothesis; so then
it’s a o-algebra containing A, which means it has to contain o(A) = G; and then f~1(A) € & for every
A € G, which is what we want.)

This is fairly easy to see. First, we have f~!()) = 0, so () indeed belongs to this family F.

Also, if we take any A € F, then f~}(G\ A) = E \ f~1(A) (this is easy to check set-theoretically). And
since f~1(A) € € and c-algebras are closed under complements, this set also belongs to &, as desired.

Finally, we have f~1({, 4») = U, f 1(A,). And if (A4,) C F, then all the sests on the right-hand side are
in &, so their union is too; and then {J,, A, € F.

So we’ve shown F is a o-algebra, and it contains our generating set A; so it must contain o(.A4). O

Note that A doesn’t have to be a m-system — it can be any collection of sets generating the o-algebra. Most
of the time when we use it, we’ll take A to be a m-system; but this actually holds for any collection of sets.

§4.1.1 Some examples

Now let’s see a few applications of this lemma to prove that a given function is indeed measurable.

Example 4.3

Suppose f: E — R, and we want to check whether f is Borel measurable (i.e., measurable with respect
to the Borel o-algebra on R). The Borel o-algebra on R is generated by sets of the form (—oo, z] — i.e.,

B(R) =o({(—o0,z] | x € R}).

(This is because intervals generate B(R), and they can be written as intersections of such sets.) So to
check that f is B(R)-measurable, it suffices to check that

{reE| fx) <y} = f1((~o0,4))

is in & for all y.

So that’s how we check that a real-valued function is Borel measurable; this is usually much easier than
taking every single Borel set and checking that its inverse image is also measurable.
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Example 4.4

Suppose E and F are topological spaces, and f: E — F' is continuous. Then f is measurable (under
the Borel o-algebras on E and F).

Proof. First, for any open set U C F, we have that f~'(U) C E is open (by the definition of continuous
functions — a continuous function inverts open sets into open sets). But we have that the Borel o-algebra
on I is generated by all open subsets of F' — i.e.,

B(F)=0({G C F | G open}).

This means f is B(F')-measurable (because f inverts open sets to open and therefore measurable sets, and
the open sets generate the o-algebra on F). O

Example 4.5
For A C E, the indicator function of A is the function 14: F — R defined as

1 ifzeA
H
0 otherwise.
Then 14 is measurable if and only if A € £.

Example 4.6

Constant functions are measurable; the identity function is also measurable.

Example 4.7

The composition of measurable functions is also measurable. More precisely, if (E, ), (F,F), and (G, Q)
are measurable spaces and f: E — I and g: F' — G are measurable, then the composition go f: F — G
is also measurable.

Proof. The proof is just set theory — if we take any A € G, then since g is measurable, we have g~ 1(A) € F;
this then means f~1(g71(A)) € £. But (go f)~1(A) = f~1(g71(A)), so we are done. O

§4.2 o-algebras generated by functions

Before constructing other measurable spaces, let’s mention a few words about the o-algebra generated by a
function. So far we’ve seen g-algebras generated by collection of sets, but you can also generate a o-algebra
by a function. For that, we need the following definition.

Definition 4.8 (o-algebra generated by functions). Suppose we have a set E' and a family of real-valued
functions { f;}icr on E (for some index set I). Then we define the o-algebra generated by {f;}icr as

o({fitier) = o(f7'(A) | A€ B(R), i € I).

In other words, this is the smallest o-algebra on E that makes all the functions measurable (that’s the
intuition behind this).
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84.3 Product measure spaces

We’ll soon see a way to take a collection of measurable functions and construct new measurable functions.
For this, we’ll need the notion of a product of measurable spaces.

Definition 4.9 (Product measurable spaces). Let (E,£) and (G, G) be measure spaces. Then we define
the product measure space, as F X G with the o-algebra £ ® G generated by the following two functions:
e 7m: E X G — E is the projection onto £ — i.e., the map (z,y) — .

e m: E X G — G is the projection onto G — i.e., the map (z,y) — y.

In other words, the product o-algebra £ ® G is the o-algebra generated by rectangles — i.e.,
ERG=0({AxB|Ac& BegG})

(these are two ways of writing the same thing, in terms of functions vs. sets).

We can generalize this notion to allow products of an arbitrary number of sets as well.

Definition 4.10. If we have a collection of measure spaces {(E;, &) }ier, then the product measure space
has underlying set [[;.; E;, with the o-algebra generated by the projection maps 7;: ]| jer B — Ei.

So here we’re doing the same thing as before, but now we might have infinitely many terms we’re taking
the product of (the index set here is arbitrary; in the previous case the index set was I = {1,2}).

Student Question. How is the product set defined if I is uncountable?

Answer. The definition is a bit subtle — it’s actually in terms of sequences. When [ is countable, this
is simple; you can just take sequences indexed by the integers. When [ is R for example, this is more
complicated, but it can still be done.

This gives us another criterion for measurability.

Proposition 4.11

Let f;: E — F; be functions (indexed by a set I). Then the functions f; are all measurable if and only
if the function (f;): E — [[;¢; fj defined by z — (fi())ier is measurable.

So we fix x and then consider the elements of the product space with coordinates f;(x); and every one of
the functions is measurable if and only if this one function defined on the product space is measurable.

Remark 4.12. Note that (f;) is a single function.

Proof. First, if the map (f;) is measurable, then for each i, we can write f; = m; o (f;), which means
fi is indeed measurable (we proved that a composition of measurable functions is measurable). So one
direction is clear — if our function defined on the product space is measurable, then each of these functions
is measurable.

Conversely, suppose that all the f; are measurable. Then we know that the o-algebra of [ [, ; F; is generated
by inverse images of the projections — i.e., sets of the form 7rj_1(A) over A € Fjand j € I. And we also know

that (fi)_l(wj*l(A)) = [;(A) € € for any j (because f; is measurable). So this means (i)~ ! inverts elements

of our generating set to measurable sets; and then it has to be measurable by our previous result. O
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84.4 Operations with measurable functions

Now that we have this, we’ll see a nice way to prove that a whole lot more functions are measurable.

Proposition 4.13

Let (E, &) be a measurable space, and let (f,)nen be a sequence of nonnegative measurable functions
on E. Then the following functions are measurable:

fi+ foand f1- fo;
max{ f1, f2} and min{f1, fo};

infneN fn and SUPyeN fn§

liminf,,_,~ f, and limsup,, .. fn-

So if we start with a collection of measurable functions (f,,), then all these functions are measurable; this is
a nice way to prove lots of measurable functions.

We're going to prove the first two cases (the sum and product) using the previous propositions; Prof.
Kavvadias suggests we try to prove the remainder as a nice exercise.

Proof. To prove that fi + fo is measurable, we’re going to apply the previous proposition to an appropriate
function. Define (+): [0, 00) x [0,00) — [0,00) as (z,y) — = + y; this is a nice well-defined function. Then
we can write

fi+ fo=(+)o(f1, f2),

where (f1, f2) is defined in the same way as the above proposition — explicitly, (fi, f2):F — R x R is
the function = — (f1(x), f2(x)). By the previous proposition, we know (fi, f2) is measurable; and (+) is
measurable because it’s continuous. So f; 4+ fo is measurable, since it’s a composition of two measurable
functions.

The proof for f; - fo is exactly the same thing, except we replace the addition with multiplication (and
write fi f2 as the composition of the multiplication function with the product function). The rest of these
statements can be proven in a similar way. O

Student Question. Where are we using nonnegativity?

Answer. We're actually not using it here; we can replace [0,00) with R everywhere (so we shouldn’t
need this condition).

This gives us machinery for producing lots of measurable functions.

84.5 The monotone class theorem

We’ll now state and prove a very important theorem, the analog of Dynkin’s lemma. It sounds awkward,
but it’s very useful (as we’ll see when rigorously constructing the Lebesgue integral and so on).
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Theorem 4.14 (Monotone class theorem)

Let (E, &) be a measurable space, and let A be a m-system which generates &, i.e., with o(A) = €. Let
Y be a vector space of functions with the following properties:

(i) We have 1 € V (where 1 is the all-1’s function).
(ii) For any A € A, we have 14 € V.

(iii) V is closed under bounded monotone limits. More precisely, if we have a collection of functions
(fn) €V which are bounded and nonnegative and such that f,, 1 f pointwise, then f € V.

Then V contains all bounded measurable functions on FE.

The third assumption means that if we take any function f which is the pointwise limit of an increasing,
bounded, nonnegative collection of functions on V, then this function f also has to belong to V. (We use 1
to denote an increasing limit.)

To recap a bit, we have a measurable space (E, &), and we have a 7-system generating the o-algebra. Then
we consider a vector space of functions, meaning that if we take two functions and sum them or scale one
of them, the resulting function is still in our space. And we suppose that this vector space contains the
constant-1 function, and the indicator function of every A € A; and that it has the property that if we take
any collection of bounded nonnegative functions which converge increasingly (pointwise) to some f, then
f € V. And then we can conclude that V contains all bounded monotone sets.

Student Question. Doesn’t the first assumption follow from the second?

Answer. No — A is a m-system, not necessarily a o-algebra.

By ‘measurable’ we mean Borel measurable — in particular, all these functions map £ — R.

Student Question. Are Borel and Lebesgue measurable interchangeable?

Answer. Lebesgue measurable is with respect to the Lebesgue o-algebra, and Borel measurable is with
respect to the Borel g-algebra. There are functions which are Lebesgue-measurable but not Borel-
measurable — we’ve mentioned there are such sets, and you can take the indicator vector of one.

Student Question. Does bounded require the functions to be uniformly bounded?

Answer. No, we just need each function to be bounded separately.

Now we’ll prove this. This is pretty similar to things we’ve seen before — the idea is that the conditions on
V are similar to that of a d-system, and taking a monotone limit is similar to taking an increasing union.

Proof. First we're going to see that 14 € V for all A € £ (i.e., the indicator function of any measurable set
is in V). To do this, we consider

D={Ac€|1 €V}

We know by assumption that D O A. So by Dynkin’s 7-system lemma, it suffices to show D is a d-system
— if it contains our generating set, then it has to contain the o-algebra generated by that generating set by
Dynkin’s m-system lemma (since our generating set A is a m-system).

So we want to show D is a d-system. For this, we first know that 15 € V, which means F € D.
The next thing we need to prove (as in the definition of a d-system) is that D is closed under complements.

If we take some A such that 14 € V, then we have

lpa = 1p — 14.
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And this is where we use the assumption that we have a vector space — we know 14 € V by the definition
of D, and 1p € V as well; so their difference 15 — 14 is also in V (because V is a vector space). This implies
E\ A € D; so D is indeed closed under taking complements.

The third condition is that we need D to be closed under increasing unions of sets. In order to show this,
take some increasing sequence (A,) in D. Then the indicator functions 14, increasingly converge pointwise
to 14, as n — oo; this means we must have 1;j4, € V by the third property of V. And this means
UA, €D.

So D is a d-system (because it satisfies the three properties of a d-system), and therefore D is the entire
o-algebra o(A) = £ (by Dynkin’s m-system lemma).

(These ideas are pretty standard, and we’ve seen them before — how to use the 7-system lemma in this
way.)

Now we’ve shown V contains the indicator functions of measurable sets. We’re not done, though, because

we need to show that V contains arbitrary bounded measurable functions. The idea for how we’ll do this is
by approximating it by linear combinations of such indicator functions.

Suppose we have a function f: E — [0, 00) which is bounded and measurable. (We’re assuming nonnegativity
for now; we’ll relax this later.) We want to show that then f € V. And the idea is that we’re going to
approximate them.

To do so, we define f,, = 27" |2"f]. This is maybe a weird definition, but we can express it as a power
series as

fa= k27" Lpang pe(irrya—ny-
k=0

This is well-defined because f is bounded, so this summation will stop at some point (for each fixed n).
Explicitly, since f is bounded, there exists N such that

N-2™
fo=D k27" Lo ncpehin)any
k=0

(here we take N to be the bound on f; then this is because if k - 2" goes above N, this set is empty).

These sets {k-27" < f < (k+1)-27"} are measurable — this is because f is measurable, and this set can
be written in terms of inverse images of intervals under f, explicitly as

FHIk- 27" 00)) \ fH([(k + 1) - 277, 00)).

And by what we’ve proven, this means their indicator functions are in V. Then f, is a finite linear combi-
nation of such sets, so since V is a vector space, this means each f,, isin V. And f, T f pointwise, so by the
third property it follows that f € V.

Now we’ve shown that the claim is true for bounded nonnegative linear functions, by approximating them
by finite linear combinations of indicator functions of measurable sets.

Finally, if f is bounded and measurable (but not necessarily nonnegative), then we can write f = max{0, f}—
max{—f,0}. So f is the difference of two nonnegative bounded measurable functions. And both are in V
by the previous step, so their difference is also in V.

So we’ve finished the proof — we showed that an arbitrary bounded measurable function is in V. O

Unfortunately, we need to wait a few lectures to see applications of this theorem; we’ll see it when discussing
Lebesgue integration.
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84.6 Constructing new measures

Now we’ll see ways to construct new measures — starting with a measurable function and some measure.
The typical measure we construct is called the image measure, and we’re going to discus it extensively when
discussing integration.

Definition 4.15 (Image measure). Let (E,€) and (G,G) be measure spaces, and suppose that p is a
measure on £ and f is a measurable function £ — G. Then we define the image measure v on G by

for every A € G.

This is a well-defined measure — f is a measurable function, so the inverse image of any measurable set
is measurable, which means its measure with respect to u is well-defined. This is a quite standard way to
define measures, but it’ll be important in integration (specifically, when we integrate the composition of two
functions).

This is a simple way to construct a measure, but there are more complicated ones as well. Before we do
this, we’ll talk about functions with certain properties.

84.6.1 Generalized inverses

From real analysis, we know that if we have a strictly increasing and continuous function f (meaning that
f(z) < f(y) for all < y), then we can invert f. But you can define other notions of inverses for other
functions.

You can relax this condition by saying that f is nondecreasing, meaning that f(z) < f(y) for all z < y. We
also assume that f is right-continuous — meaning that for any sequence z,, | x, we have f(zy,) | f(x) as
n — 00. (So whenever we approximate x from the right, f(z,) — f(x). This doesn’t imply continuity —
for that we’d also need f to be left-continuous. So this is a relaxation of continuity.)

The point is that for functions with these two (more relaxed) properties, we still have a notion of inverses.

Lemma 4.16

Let g:R — R be nonconstant, nondecreasing, and right-continuous. Then there is a nondecreasing
left-continuous function f: I — R such that for all z € I and y € R, we have

x < g(y) if and only if f(z) <y.

We will call f the inverse of g. This is a generalization of the classical inverse — if you take a function which
is strictly increasing and continuous, then ¢ is just the inverse of f. Here we relax these conditions; then
you still have a notion of inverse, but not quite the same one; instead we have a notion with this inequality.

In fact, you can construct this inverse explicitly — we define

f(x) =inf{y e R [z < g(y)}.

We need to prove that this function has the required properties.

Proof. We define our interval I as the open interval with endpoints given by limg_, o g(x) and lim,_,~ g(z).
These two limits exist because g is nondecreasing (this follows from real analysis).

For x € I, we consider the set
Jo={yel|xz<gy}
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Then since g is nondecreasing, if we have some y € J,, then for every y' > y, we also have y' € J, (because
g(y') > g(y) > z). Since g is right-continuous, we have that if we take any sequence (y,) C J, such that
Yn | y, then we also have y € J,, — because g(y,) > x and g(y,) — g(y) (by right-continuity), so g(y) > =.
This means

(by the definition of f(xz)). This means for y € R, we have z < g(y) if and only if f(z) <.
Now we need to prove the remaining properties of f (that it’s nondecreasing and left-continuous). First, if

we take any x < 2/, then we have J, C J,. Then since J, = [f(z),00), this means f(x) < f(a); so [ is
nondecreasing.

Finally, if we take any sequence z,, 1 «, then we have J, =, Jy,; this implies f(z,) — f(z) (by the above

n?

formula J, = [f(x),00)), which means fis left-continuous. O

From now on, we’re going to interpret f as the generalized inverse of g.

We’ll finish by representing f and g graphically.

g

/

8§85 September 19, 2024

Last lecture, we stated and proved the monotone class theorem. It’s very important, but unfortunately we
can’t see its importance yet; it’ll be important later when we construct the Lebesgue integral.

§5.1 From right-continuous functions to Radon measures

We said one of our goals in measure theory is to construct new measures. One obvious measure we can
construct is the image measure (as defined last class). Then we said we’re looking for more elaborate ways
of constructing measures. That’s why we needed the generalized notion of the inverse of a function — we
started with a non-decreasing right-continuous function, and we said that for such a function, we can always
define a notion of inverse. We did this to construct new measures on R. We’ve earlier mentioned Radon
measures, and the Lebesgue measure is one of them; it’ll turn out that we can recover all of them using
nondecreasing right-continuous functions.
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Theorem 5.1

Let g: R — R be nonconstant, nondecreasing, and right-continuous. Then there exists a unique Radon
measure dg on B(R) such that for every half-closed interval (a, b], we have

dg((a,b]) = g(b) — g(a).

Moreover, we can obtain all nonzero Radon measures on R in this way.

So if we start with such a function, we can always produce a Radon measure (a Borel measure on R with
certain properties). But the point is we can do something stronger. In particular, we can recover every
Radon measure in this way. So this gives a mechanism for producing all the nonzero Radon measures on R
— they’re in corresopndence with nondecreasing right-continuous functions.

We’ve already seen an example of such a construction.

Example 5.2

If we take g to be the identity function, then we get the Lebesgue measure.

For the proof, we’ve already done most of the work in the construction of the Lebesgue measure.

Proof. First, recall that we can define an inverse f:I — R of g (in the generalized form discussed in
the previous lecture), where I = (g(—00),g(c0)) (where by g(—o0) we mean lim,,_ g(x), and likewise
g(00) = limy o0 g(z) — both limits exist but may be infinite, because g is nondecreasing). Recall that f is
left-continuous and nondecreasing (as proved last lecture).

Now we can just define the measure we’re looking for to be the pushforward of the Lebesgue measure with
respect to f — i.e., dg = po f~1. Now we’ll verify that this pushforward measure indeed satisfies the desired
property. In particular, we have

dg((a,b]) = p({z € I'| a < f(z) < b})

by the definition of the pushforward measure. But by the definition of f, this is also

p{z e I'lgla) <z <g(b)})

(this was the definition of the function f). But this is just u((g(a),g(b)]), which by the definition of the
Lebesgue measure is just g(b) — g(a). And this is true for all a and b.

(It’s obvious that this measure is a Radon measure because it’s a pushforward of the Lebesgue measure with
respect to a left-continuous measure.)

Note that there are no other Radon measures v satisfying v((a, b]) = ¢g(b) —g(a), by the same argument used
to prove the uniqueness of the Lebesgue measure (we just replace the identity function with the function
g). So the function g uniquely defines the Radon measure.

Now we need to show the other direction — that given a Radon measure, we can find a function g which
produces it in this way. We're going to explicitly construct g. Let v be a Radon measure on B(R). Now we
want to construct a function g such that dg = v. For this, we set

(o) <o
g(y)‘{v«o,y]) y>0.

Then by the definition of g, we have v((a,b]) = g(b) — g(a) (that’s why we defined ¢ in this way — so that
this condition holds). Also, v is nonzero, so the function g is not constant. Then we have v = dg, because
they agree on a w-system generating the Borel o-algebra (finite unions of such intervals). O
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So we have characterized all Radon measures on R — they’re of the form dg for some nonconstant nonde-
creasing right-continuous ¢ .This is a generalization of the construction of the Lebesgue measure, where we
took g to be the identity.

Student Question. How does the uniqueness of the Lebesque measure generalize to this?

Answer. We obtained two characterizations of the Lebesgue measure. The first characterization was
the unique Borel measure with pu((a,b]) = b — a, and the second was the unique Borel measure which
is translation-invariant. Here we’re referring to the proof of uniqueness from the first characterization.

Student Question. Why do we need v to be Radon?

Answer. This is because we’re defining g using v, so we need v to have finite values — one of the
conditions on Radon measures is that the measure of any compact set is finite. Here we need v((0,y])
to be finite — otherwise g wouldn’t be well-defined. (We also need it for the uniqueness argument.)

Student Question. Why is g right-continuous?
Answer. For example, we can write (a,b] =), (a,b+ %], which means v((a, b]) = lim, o v((a,b+ %])

And this gives

n—o0

o(0) = 9(0) = fim g (b+ ) = o(@).

§5.2 Random variables and distribution functions
We’ll now look at these ideas in the context of probability. First we’ll rigorously define random variables.

Definition 5.3 (Random variable). Let (£, F,P) be a probability space, and let (E,£) be a measurable
space. Then an F-valued random variable is a measurable function X: Q) — E.

So a random variable is a measurable function defined on a probability space. Usually we’ll be interested in
the case where (E, &) = (R, B(R)).

When we have a random variable X, we might ask questions like, what’s the probability X is in a set A7
In other words, we’re asking for the size of the things sent to A. This is also called the distribution or low
of our random variable. And it’s just given by the image (or pushforward) measure.

Definition 5.4 (Distribution). Given a random variable X:Q — FE, the distribution (or low) of X is

defined as the image measure
px =Po X L.

We usually write

P[X € A] = ux(4) = P[X "1 (A)].

In the special case where E = R (so X is a real-valued random variable), px is determined by its values on
the m-system

{(=o00,y] | y € R}.

So the distribution of a random variable is determined by the values of its low on this m-system (since
m-systems determine measures, as we've seen).

Definition 5.5. For a R-valued random variable, we define the distribution function of X as

Fy(z) = px((~o0,2]) = PX < a].
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So the distribution function of X determines the low of X (because ux is determined by its values on this
m-system).

We'll now state some properties of such distribution functions. (We’ll state this as a proposition, but Prof.
Kavvadias encourages us to do it as an exercise.)

Proposition 5.6
The distribution function F'x of a random variable X satisfies the following properties:
e We have Fx(z) —» 0 as ¢ — —oo, and Fx(z) — 1 as © — oo.

e Fx is nondecreasing and right-continuous.

So a distribution of a random variable on R is a nondecreasing right-continuous function with limits 0 and
1as x — —oo and z — co. And we call any function with these properties a distribution function.

Definition 5.7 (Distribution function). A distribution function is a nondecreasing right-continuous
function f:R — [0, 1] with the properties that f(z) — 0 as ¢ — —oo and f(z) — 1 as x — oo.

Then a natural question arises. We proved the distribution function of a random variable is a distribution
function (in the sense it satisfies these properties).

Question 5.8. Is every distribution function the distribution function of some random variable — i.e.,
given f, can we always find a random variable X with f = Fx?

The answer is yes, and the proof is elementary, though not necessarily easy to come up with.

Proposition 5.9

Let F' be any distribution function. Then there exists some probability space (€2, F,P) and a random
variable X such that Fx = F.

So we can recover any distribution function as the distribution function of some random variable. The proof
is constructive — we start with any distribution function F', and we need to construct our probability space
and a random variable defined on it. This might seem abstract, but the proof is quite simple.

Proof. We need a set, a o-algebra on that set, and a probability measure. What’s the simplest set to
think of? The unit interval. And the most natural o-algebra on the unit interval is the Borel measure,
and the most natural measure is the Lebesgue measure (restricted to that interval). So we simply take
(Q, F,P) = ([0,1],B(]0,1]), ) (note that this is a probability space because p([0,1]) = 1).

Then we take X:Q) — R to be given by
X(w)=inf{z e R|w < F(x)}
for all w € [0,1]. This is a well-defined function, and it’s easy to verify that it’s a measurable function. The
important thing is that we have X (w) < z if and only if w < F'(z). This means
Fx(z) =PIX < 2] =P[(0, f(2)]].

But the Lebesgue measure of an interval is just its length; and here the length is f(z), so we are done. (This
is true for all z.) O

So any distribution function is the distribution function of some random variable, and we can explicitly
construct that random variable. The proof is just a few lines, but this construction is very useful in practice
— this procedure is used to sample random variables using computer programs, for example.
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Student Question. Where in the proof are we using the fact that we’re using the Borel o-algebra?

Answer. We need this to justify that X is a measurable function. We could also take a o-algebra larger
than the Borel one; but the Borel one is just a natural choice.

§5.3 Independence of random variables

Now we’ll talk about independence of random variables. We’ve already talked implicitly about this when
talking about independence between o-algebras, but now we’ll write down explicitly what we mean.

Definition 5.10 (Independent random variables). A family (X,) of random variables is said to be
independent if the family of o-algebras generated by these random variables — i.e., (o(X,)) — is
independent.

(We'’ve already discussed what we mean by a sequence of independent o-algebras; so this is a fairly expected
definition.)

Now let’s see some characterizations of independence. In general, we’ll deal with independence a lot in this
course, so this will be very useful.

Proposition 5.11

Two R-valued random variables X and Y are independent if and only if
PX <z,Y <y| =PX <z|P[Y <y]
for all z,y € R. More generally, if (X,,) is a sequence of R-valued random variables, then they are
independent if and only if
]P)[Xl S 1, X2 S 2, ,Xn S Qj‘n] = H]P)[XJ S $j]
j=1
for every n € N and all z1,...,z, € R.

We'll only prove the first statement, since the essence of the proof is there (we can use induction to prove
the second statement). The proof is not hard, but the result is very important when checking independence.

Proof. The backwards direction (where we assume independence) is obvious from the definition of indepen-
dence. Now we’ll show the other direction. For this, consider the family of sets

{(—o00,z] | z € R}.

As mentioned earlier, this is a m-system generating the Borel o-algebra B(R). By our assumption, the
o-algebras generated by X and Y are independent when restricted to the special sets

{we| X(w) <z}

and likewise with Y. But these are m-systems generating our o-algebras. And we proved that if two o-
algebras are independent on a m-system, then they’re independent everywhere (we proved this last lecture).
O
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Remark 5.12. Here we have two functions X and Y, and we want to say that the o-algebra generated
by X is independent from the one generated by Y. By definition, ¢(X) is independent of o(Y") if and
only if

P[A N B] = P[A]|P[B]
for every A € 0(X) and B € o(Y). (This is by definition; and that’s what we want to show.) But
we’ve shown we don’t have to show this equality for every A and B in the two o-algebras — if we can
find two m-systems and prove this for A and B from those w-systems, then this is enough. And the
m-system for o(X) given by

{we | X(w) <z}

(this generates o(X) because (—oo, z] is a m-system generating B(R)). We can do the same for Y, and
the given assumption gives independence on these sets; so independence follows.

§5.4 Independent and identically distributed sequences

Lots of probability involves independent and identically distributed random variables. But it’s not actually
clear how to construct such sequences of random variables. We're now going to do this rigorously. We’ll
first consider the Bernoulli random variable with parameter % (which is in some sense the ‘simplest’ random
variable — taking 0 with probability % and 1 with probability %)

Proposition 5.13

Let (Q,F,P) = ((0,1),B(0,1), u) (where u is the Lebesgue measure). Then there exists a sequence of
independent random variables BER(%).

We’re going to construct this explicitly, and for that, we're going to use the binary expansion of a number
in (0,1).

Proof. Suppose we fix w € (0,1). Then we can expand w as

w:an-Z_”,

where w,, € {0,1}. It’s a theorem (from analysis or number theory) that every w € (0,1) can be written in
this way, which we’ll use. And this expansion is unique — if we take another w’ and consider the sequence
(w!), it’'ll be different.

Now that we have this, we define
Ry (w) = wp.

So for every w, we just look at the nth coeflicient of its binary expansion.

Claim 5.14 — The function R,, is measurable.

Proof. First, we can write Rj(w) = 1(1/2,1)(w) by definition. And we've seen that indicator functions of
measurable sets are measurable, so R; is measurable.

Similarly, we can write Ro as
Ro(w) = 1(1/4,1/21(w) + 1(3/4,1](w)-

This is still a measurable function, because it’s a sum of two measurable functions, and we saw such a sum
is also measurable.
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In general, to prove that R, is measurable, we can express

2n—1

Rp(w) = Z 1(2—"-(23'71),2—"-2]‘]((*})-

=1

(You can prove this using induction on n.) So R, is a sum of measurable functions (indicators of measurable
sets), and is therefore measurable. (The hard part is coming up with this expansion.) O

Claim 5.15 — Each R,, is a Bernoulli variable with parameter %

Proof. Using our formula for R,, above, we have

2n—1 2n—1
PRy =1]= 3 27(2)) (2 - 1) = 2" = ¢
i=1 i=

This also means P[R,, = 0] =1 —P[R, = 1] = 1. So R, is a Bernoulli random variable with parameter %,

as desired. N

So these functions are measurable and have the correct low. The last part is to check independence. For
this, if n # m, it’s easy to check (using the formula for R,,) that

P[R, = Ry = 0] = — = P[R,, = 0]P[R,,, = 0],

and likewise with some of the 0’s replaced by 1’s. So we’ve constructed a probability space and a sequence
of random variables which are independent, and which all have the low of BER(3).

(Here we only considered two of the random variables, but you actually have to do this for an arbitrary
finite collection; but you can do that in the same way; then i gets replaced by 2%) O

So we can construct a space of independent random variables which have the distribution function of a
Bernoulli random variable.

Question 5.16. Given an arbitrary collection of fixed distribution functions, can we find a collection of
independent variables with those distribution functions?

The answer is yes. (This is a generalization of the above result, and surprisingly, the proof is easier once we
have the above construction.)

Proposition 5.17

Let (Q,F,P) = ((0,1),8((0,1)), Lebesgue). Given any sequence (F,) of distribution functions, there
exists a sequence (X,,) of independent random variables with the property that Fx, = F, for all n.

In the previous result, all the F;,’s were the same, and were the distribution of a Bernoulli random variable
with parameter % This is a generalization — given an arbitrary sequence of distribution functions, we can
produce a sequence of independent random variables with those distributions.

Proof. Somehow we need to generate the appropriate random variables, and we're going to somehow use
the Bernoullis from earlier. So we first let (R;) be as above — so (R;) is a sequence of independent random
variables, each with the low of a Bernoulli random variable. The goal is to relate these somehow. For this,
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we consider some bijection m: N x N — N (it’s known from set theory that there is such a bijection, because
they have the same cardinality; a bijection is a function which is injective and surjective). Then we set

Yv(k,n) = Rm(k,n) .

So we take the sequence of Bernoullis constructed earlier, and we parametrize it with respect to N x N rather
than N.

Now we define the random variable Y,, = > k>1 Y(k,n)Q_k. This is a well-defined random variable. And we
know that the Y},’s are independent (because (R;) is independent, and if we take any two indices n, then all
the indices of the Y4, ,)’s in the sums differ). So (Y¥},) is an independent sequence of random variables. And
each is uniform — i.e., it has the uniform low on (0,1) (which means its distribution is just the Lebesgue
measure on (0, 1)).

Then we do a similar trick as from a couple of propositions before — we consider the function

Gn(y) = inf{z | y < F(x)},

and we set X,, = G,,(Y,,). Then by the proof that every distribution function is the distribution of a random
variable, we have that (X,,) is a sequence of random variables with the required property Fx, = F. O

So this proof combines the last two results mentioned in class.

Student Question. Why is Y,, measurable?

Answer. This is because it’s the pointwise limit of measurable functions — if we fix n, then Y,, =
S VY i 27k And each of these finite sums is measurable, and the limit of measurable
functions is a measurable function (this follows from the proposition from the previous lecture, with
lim sup).

Student Question. Why are the Y,,’s independent?

Answer. This is because the Y(;, ,) are independent, and the indices in Y, and Y,, are disjoint — we
always have (k1,m) # (k2,7n), because the second coordinates are always different. So then Y{;, ,,,) and
Y{(ky,n) Will correspond to different R;’s, and we know the R;’s are independent.

Student Question. Could we also say the Y, ’s are measurable by the monotone class sequence?

Answer. Yes (since we have an increasing sequence).

Student Question. This construction only lets us construct a countable family; can we construct an
uncountable one?

Answer. Yes, but then you have to use some more complicated results from set theory, and you have
to be careful (first you have to change the definition of independence; and the actual construction is
much more complicated, since here we’re summing and you have to be careful what you mean if you
sum over uncountable sets).

We’ll now highlight a result here which is connected to measure theory using probability theory. Suppose

we have the same setup, with the R;’s being Bernoullis with parameter % If we fix € > 0, we’ll learn later
that the weak law of large numbers (which we are going to talk about later — these limiting theorems are

one of the most important theorems in science, and appear everywhere) says that

1< 1
P nz;Rj—Q >e| =0
j:
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as n — oo (i.e., the probability that the average of the R;’s is ¢ away from % tends to 0 as n — o). We
also have another result, the strong law of large numbers (which we’ll also prove later in the course), which
is stronger than this one — it implies that

n

1 1
P 0,1)|=>» Rj— | =1
w € (0, )|n; i = 5

In words, almost every number in the unit interval has an equal number of 0’s and 1’s in its binary expansion.
This is called the normal number theorem; it’s a theorem in number theory, and it can be shown using the
strong law of large numbers.

§6 September 24, 2024

In the previous lecture, we showed how to rigorously construct a sequence of random variables which are
independent and all have some fixed distribution. We constructed both a probability space and random
variables defined there.

The next thing we’ll consider is the convergence of measurable functions. In analysis, you don’t just have
pointwise convergence, but also uniform convergence and various other notions. Here we’ll have analogous
notions, but this time involving some sort of measure.

§6.1 Convergence almost everywhere

The first notion is that of convergence almost everywhere; we’ve already mentioned the notion of convergence
Lebesgue-almost everywhere, and now we’ll generalize this.

Definition 6.1 (Convergence almost everywhere). Let (E,&, ) be a measure space. Suppose we have
a sequence of measurable functions (f,) and a fixed function f. Then we say that f, converges to f
almost everywhere as n — oo, written f, — f, if

1({z € B | ful@) 5 f(x) asn— o}) = 0.

If (E, €&, ) is actually a probability space, then this is also called almost sure convergence.

In other words, f,, converges to f pointwise outside of a set which is negligible (where ‘negligible’ means
that its measure is 0 under p).

It’s not obvious a priori that this set {x € E| f,(z) # f(x) as n — oo} is even measurable, but this is not
hard to see. To see this, we can write this as

{z € E [limsup |fu(z) — f(z)| > 0}.

And we know the function limsup,,_, ., | fn(z) — f(x)| is a measurable function. In other words, we can write
this as {z € E'| g(z) > 0}, where
g(x) = limsup |, (x) — f(z)].
n—oo
and we have shown that g is a measurable function. And this is by definition g~1((0, o)), which is measurable
because g is measurable. So this definition makes sense, since the set we’re trying to take a measure of is
indeed measurable.
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§6.2 Convergence in measure
The next notion of convergence we have is convergence in measure, which is slightly weaker.

Definition 6.2 (Convergence in measure). Let (E, &, u) be a measure space, and let (f,,) be a sequence of
measurable functions and f be a measurable function. Then we say that f,, converges to f in measure
as n — oo if for all € > 0, we have

p{z € E| [fu(z) — f(z)] 2 €}) =0

as n — oo. If (E,&, u) is a probability space, this is also called converges in probability.

So if we fix € and consider the set of points = in our space for which |f,(x) — f(x)| > €, this set becomes
smaller and smaller as n — oo.

§6.3 Relationships between types of convergence
Someone might wonder how these notions are related.

Question 6.3. Does convergence in measure imply almost everywhere convergence or vice versa?

We’ll show that these two results are related, at least under certain assumptions on our measure space.

Theorem 6.4
(i) If u(F) < oo and f, — f almost everywhere, then f, — f in measure.

(ii) For any E, if f, — f in measure, then there exists a subsequence ( fy,, ) such that f, — f almost
everywhere (as k — 00).

So if the measure space is finite, then almost everywhere convergence is stronger than convergence in measure.
But if the space is infinite, this is not the case anymore; we’re going to see a counterexample.

On the other hand, if f,, — f in measure, we don’t necessarily get that f,, — f almost everywhere; but we
do get a subsequence for which this is true. So we don’t actually have convergence almost everywhere of the
entire sequence, but we do have it along a subsequence.

The proof is not too complicated, but it’s a nice result.

Proof of (i). Fix € > 0, and set
An ={z € E|[fu(z) - f(2)] < e}

It’s a fact (which is on the first problem set) that we have

liminf p(A4,) > p(liminf A,)

n—o0 n—o0

(where the right-hand side is the liminf in the sense of sets). This means

linrgioréf p{z e E||fulx) — f(z)| <e}) > pu({z € E||fm(x) — f(z)| < e for all sufficiently large m})

(by the definition of the liminf of sets). But this is at least

p{z € E| fim(z) — f(2)})
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(by the definition of convergence). And we assumed almost everywhere convergence, so this is simply u(E).
This implies (reversing the order) that

limsup u({x € | |fa(x) = f(2)] > &}) = limsup(u(B) — p({a € B | |fule) - f(z)| < e})
= (E) ~limint u({z € B || fale) — f(2)] <))
<0

(by what we’ve shown). And the limsup of a nonnegative seequence is of course nonnegative, so it has to
be 0. This implies

0 <liminf u({w € B | |fa(a) = f(@)] > £}) < limsupp({a € B| |fule) = f(@)| > }) <0,

which means both must be 0. And this means the sequence has a limit, and the limit is 0; so u({z € E'|
|fu(z) — f(z)] > €}) — 0, as desired. O

Note that we assumed the measure of the space is finite for the finiteness of

u(E) — liminf u({z € B | |fu(z) - f(2)] < <}).
n—oo
Proof. Here we need to choose a subsequence. We choose our subsequence ( fy,, ) such that

u ({x € B | |fu (@) - [(2)] > ;}) <ot

(We can do this because for every fixed k, we know the left-hand side tends to 0 as n — 0o; so we can pick
ng sufficiently large to make the right-hand side arbitrarily small.)

And > 27" is summable, so we get

Su({eerlifue-rel> 1) <o -1

k>1

In particular, this is finite, so we can apply the first Borel-Cantelli lemma (which is true in any space, not
just a probability space); this tells us that

1
1 ({x € E||fo.(z)— f(x)] > % infinitely often}) = 0.
But this implies that f,, — f almost everywhere as k — oc. O

Now we’ll see a counterexample where (i) doesn’t hold for a measure space with u(E) = oo.

Example 6.5

Consider (E,&,u) = (R,B(R), Lebesgue), and take f,(z) = 1j, ) (for each n € N). Then clearly
fn. — 0 almost everywhere (for every fixed z, we can find n for which n > z, so f,,(z) becomes 0). But
for every n, we have

u({zer110@I> 5}) = nlinoo) o,

This means f,, does not converge to 0 in measure.

(Of course a counterexample has to have infinite measure, because if the space has finite measure, then our
theorem implies we have convergence in measure.)

Remark 6.6. This is one of those easy counterexamples in measure theory that’s actually quite frequent.
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§6.4 Convergence in distribution

So far we’ve mentioned two notions of convergence that hold in arbitrary measure spaces; we’ll now talk
about notions of convergence that hold in just probability spaces. Specifically, we’ll talk about convergence
in distribution, which is very important and commonly used.

Definition 6.7 (Convergence in distribution). Let X, and X be random variables with distribution
functions F'x, and Fx. Then we say that X,, — X in distribution as n — oo if Fx, (x) — Fx(z) for
all x € R at which Fx is continuous.

So we require pointwise convergence of the distribution functions, but not for all z € R — we only require
it for those points x at which F'x is continuous.

Why do we impose this notion of convergence? The idea is that if the resulting distribution has a jump at
X, it shouldn’t matter which side of the jump X, is at.

Another comment is that we’re just dealing with distribution functions; our random variables are not
necessarily defined on the same probability space.

Now we’ll see an example that illustrates convergence in distribution without having pointwise convergence
everywhere.

Example 6.8

Let X, is the uniform random variable on [0, %] Then X,, — 0 in distribution.

This intuitively makes sense, but to prove it rigorously, we can explicitly compute the distribution function
of X,, — we have

0 ifz <0
1
Fx, (z) = nx ingng
1
1 ifxz>—.
n

Meahwhile, the distribution function of 0 is of course

0 ifz<O
Frlz) =
() {1 ifz>0.

So Fx,(x) — Fy(z) at all z # 0. However, we do not have pointwise convergence at z = 0, because
Fx,(0) =0 and Fp(0) = 1. Still, this is fine according to our definition of convergence in distribution; and
we can still make sense of X,, being close to the 0 random variable.

These are more or less the main notions of convergence that we're going to deal with in this course —
convergence almost everywhere, convergence in measure, and convergence in distribution.
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§6.5 Tail events

Before rigorously constructing the Lebesgue integral, we’ll talk about tail events and tail o-algebras.

Very intuitively, tail events are events that depend only on the asymptotic behavior of a sequence of random
variables. We're going to see examples of such events soon. But before we do this, we’ll explain what we
mean by the tail o-algebra, the o-algebra generated by those events. This is very important because it lets
us study the asymptotic behavior of a sequence of random variables (which will be useful in proving things
like the central limit theorem and the strong law of large numbers and so on).

Definition 6.9 (Tail o-algebra). Let (X,,) be a sequence of random variables. Then we let 7, be the
o-algebra
Tn = U(Xn+17 Xnt+2, Xn+3, - - ')a

and we define 7 = (), Tn. We call T the tail o-algebra.

As we can see, T-measurable events are exactly those which only depend on the asymptotic behavior of the
X, ’s — i.e., they don’t depend on any finite collection.

Example 6.10

Consider the random variables lim sup,, , % S, X and liminf, o % >y X (the lim sup and lim inf
of the average of the first n terms). These random variables are T-measurable — this is because if we
fix any finite collection of X,’s, the limsup and liminf are independent of them.

Then knowing this, you can construct many events that belong to the tail o-algebras.

Example 6.11

The event {limy,oo(L Y7, X;) exists} can be written as
1 & 1 <
limsup — » X; =liminf — » X;
e S

so it is in 7 (because both random variables here are T-measurable).

We will be interested in this event, and we’ll later show that its probability is 1 (under some conditions).

§6.5.1 Kolgomorov’s 0-1 law

We’ll now see our second main theorem for this lecture.

Theorem 6.12 (Kolgomorov's 0-1 law)
Let (X,,) be a sequence of independent real-valued random variables, and let T be their tail o-algebra.

(i) Then any event A € T has probability either 0 or 1 — i.e., P[A] = 0 or P[A] = 1.

(ii) If X is a T-measuable random variable, then it is constant almost everywhere — there exists
¢ € R such that P[X =¢] = 1.

So events in the tail o-algebra have probability either 0 or 1; we’re going to use this many times in the
course to prove several limiting theorems.
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Proof. We're going to show that if we take any A € T, then A is independent of itself, i.e.,

P[AN A] = P[A] - P[A].
Of course AN A = A, so this immediately means P[A] € {0,1}. (The first time when you see the statement
‘A is independent of itself’ it seems weird, but it does make sense in this way.)

In fact, we are going to show that the o-algebra T is independent of itself (this immediately implies the first
claim).

Let F,, = 0(Xy,...,X,) be the o-algebra generated by the first n random variables. Then we’ve seen earlier
that F,, is generated by the m-system of events of the form

A={X1 <21, Xo<wy, ..., X, <2}
for z1,...,z, € R — the collection of sets A of this form is a m-system which generates F,, (we showed this
in a previous lecture).

Similarly, we consider the o-algebra T, = 0(X,+1, Xnt2, Xnts,...); this is generated by sets of the form

B ={Xy11 < @pt1, Xng2 < @pga, ooy Xk < Tpgr}

for every k € N and x41,...,2,+% € R. This is again another 7m-system which generates 7,,.

The first step is to show that F,, and 7, are independent. This is intuitively clear because if we take any
sets A and B of this form, we have
P[A N B] = P[A] - P[B].

Why? Here we're taking the first n indices and then the next k indices of the X;’s; and since the X;’s are
independent by assumption, that means these events are independent.

So far, we have considered the m-systems generating our o-algebras, and we have shown that they are
independent; this means J,, is independent of 7,, (since we’ve shown that if you have independence between
two m-systems generating your o-algebras, then you have independence between the entire o-algebras).

This also implies that F,, is independent of 7 for all n, because T = (), Tn.

But now if we consider | J,, Fy,, this is a m-system which generates Fo, = 0(X1, X2,...). And we have shown
T is independent of our 7-system generating Foo, which implies that T is independent of F.

And by definition T C Fo; so since T is independent of a bigger o-algebra than itself, this in particular
means it’s independent of itself.

So we’ve shown 7T is independent of itself, which by the definition of independence between o-algebras means
P[AN A] = P[4] = P[A)?,

proving the first part of Kolgomorov’s theorem.

Now we’ll prove the second part — that any 7-measurable X is constant almost everywhere (which means
we need to pick the constant ¢). To do so, first we know that for every x, we have {X < x} € T (because
X is T-measurable), so P[X < z] € {0,1}. For some x this probability has to be 1, so we can just take ¢ to
be the smallest such © — i.e., we define

c=inf{r e R |P[X < z] =1}.

Then for this choice of ¢, we have P[X = ¢] =1 — this is because P[X < ¢] = 0 by our choice of c.

So every random variable which is measurable with respect to 7 is constant almost everywhere, as desired.

O
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Student Question. Why is limsup,, . % > Xy, is measurable — doesn’t it depend on X1 %

Answer. It doesn’t actually depend on X7, because we’re taking n — oo; we have

il & i
lim sup — X = limsup — X,
n—>oop n Z F n—>oop n Z o

k=1 k=2
because %Xl — 0. In general, if you take two sequences (ay) and (b,) with a,, — 0 as n — oo, then
limsup,, ,~ an = limsup,, ,., an + b, (this is a result from real analysis), and that’s exactly what we
did here.

More generally, if you exclude from this sum any finite collection of X}’s, then the limsup is still
the same; that’s the main point (that the limsup doesn’t depend on any finite collection of random
variables).

§6.6 The Lebesgue integral

We’ve seen several main notions of convergence and stated and proven Kolgomorov’s 0—1 law; now it’s time
to talk about integration. We’re going to rigorously construct the integral of a measurable function.

How will we construct the integral in this abstract form? The idea is to first construct the integral for
functions which are simple to study (so-called ‘simple functions’). And then you can take any arbitrary
function and approrimate it by simple functions, and define the integral of your arbitrary function as the
limit of the integrals of these approximating simple functions.

§6.6.1 Simple functions
We'll start by defining the notion of a simple function that we’ll consider.

Definition 6.13 (Simple function). Let (E, &, u) be a measure space. A simple function is a measurable
function which can be written as a finite linear combination of nonnegative multiples of indicator
functions — i.e., a function of the form f =3, _; agla,, where a; > 0 and Ay, € & for each k.

So simple functions are just finite (nonnegative) linear combinations of indicator functions of measurable
events. The idea to construct the integral is to construct it for such functions; and then to take arbitrary
measurable functions and approximate them by functions of this form. We’ll see this makes sense in its
abstract form (here we have an abstract measure space, not necessarily something like R with the Borel
o-algebra).

Proposition 6.14

A function is simple if and only if it is measurable, nonnegative, and takes only finitely many values.

So this is another way to define a simple function (as any function which is measurable and nonnegative
and takes values in a finite set); this is left as an exercise.

Simple functions are much easier to study than arbitrary functions; we’ll start by defining the integral of
such functions, in the way you’d expect.
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Definition 6.15 (Integral of simple functions). The integral of a simple function f =)"}_; axla, is
p(f) = arp(Ap).
k=1

This makes sense — it’s the natural definition. We use the convention that 0 - co = 0 — because in this
expression you might have an event Aj with p(Ax) = oo, and then you multiply it by a coefficient a; = 0;
in that case, you get 0.

Student Question. Do we require the Ay ’s to be disjoint?

Answer. We don’t need to — if you take any two linear combinations which give you the same function,
then the integral (defined in this way) will be the same. This is not obvious, but it’s not difficult; mostly
it is a tedious exercise of just combining things.

§6.6.2 Integrals of general measurable functions

Now we have the integral of a simple function; the next step is to extend this to nonnegative measurable
functions (and then we can get to arbitrary measurable functions via a method described earlier). And this
definition will again be the one that it should be.

Definition 6.16 (Integral). Let f be a nonnegative measurable function. Then we define the integral of
f, denoted u(f), as
u(f) =sup{u(g) | g < f, g is simple} .

So we take all the simple functions that remain below f, and look at all their integrals; and we define the
integral of f as the maximum (or rather, supremum) of all these integrals. (We do something similar in
a Riemann integral, where we approximate the graph of a function from above and below; here we're just
approximating from below.)

Definition 6.17. For an arbitrary measurable function f, we write f = f* — f~ where f* = max{f,0}
and f~ = —min{f,0}, and we define |f| = fT + f~.

For an arbitrary function f (which may take positive and negative values), the integral is not necessarily
defined. The integral of a nonnegative function is always well-defined in the above way (though it may
be infinite), but the integral of an arbitrary function might not be defined — we’d like to define it by
pu(ft) — u(f), but this doesn’t make sense if one of these is infinite. However, it turns out that it does
make sense if | f| has finite integral, leading to the following definition.

Definition 6.18. We say f is integrable if u(|f|) < co. In this case, we write u(f) = u(f) — u(f).

If only one of f™ and f~ has infinite integral, we can still make sense of the integral, but it will be infinite.
(If both integrals were infinite, then we could not make sense of this.)

§6.6.3 Lebesgue integral vs. Riemann integral

In the case where we're integrating over a subset of R with respect to B(R) and the Lebesgue measure, we
call this the Lebesgue integral.

But we’ve also learned the Riemann integral; so it’s natural to ask for the relationship between the two. It
turns out that any function which is Riemann integrable is also Lebesgue integrable; we will state but not
prove this.
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Proposition 6.19
Let f:]0,1] — R be Riemann integrable. Then f is also Lebesgue integrable, and the integrals agree.

So if you have a function which is Riemann integrable, then it’ll also be Lebesgue integrable with the
same integral. But the point is that there are lots of other functions which are Lebesgue integrable but
not Riemann integrable. So the collection of Lebesgue integrable functions is much wider. There’s a very
typical example that you usually see in real analysis.

Example 6.20

Let f = 1jp1\@ be the indicator function of irrational numbers in [0,1]. Then f is not Riemann
integrable (if you approximate its graph from above and below, you’ll get different limits). But it is
Lebesgue integrable (since f is a simple function); in particular, by the definition of the integral of a
simple function, we have

p(f) = w((0,1J\ Q) =1 < o0,

§6.6.4 Some properties of the Lebesgue integral

We’ll now quickly mention a few important properties of the integral.

Proposition 6.21
If f and g are simple and a,b > 0, then p(af + bg) = ap(f) + dbu(g).

In other words, we have linearity — when we restrict to simple functions and nonnegative coefficients. We're
going to see that this is true even without these restrictions (probably next lecture).

Proposition 6.22
If f < g, then u(f) < u(g).

This holds for any integrable f and g, and follows by the definition of the integral.

Proposition 6.23

If f is a nonnegative measurable function, then f is 0 almost everywhere if and only if [ f = 0.

So if we have a nonnegative measurable function whose integral is 0, then this function has to be 0 almost
everywhere. This just follows from the definition of the integral. This is not true without the nonnegativity
restriction — you could have a function for which the set of points where it’s positive and negative cancel
out.

Next lecture we’re going to prove these properties, for arbitrary integrable functions.

§7 September 26, 2024

In the previous lecture, we proved Kolgomorov’s {0, 1}-law, which is a very important result (as we’ll see
later). We also started rigorously constructing the integral in an abstract measure space. The first step was
to construct the integral for simple functions; then we constructed it for nonnegative measurable functions

Page 51 of 196



18.675 — Theory of Probability Class by Konstantinos Kavvadias (Fall 2024)

by approximating them by simple functions and taking limits; and then we wrote arbitrary functions as
differences of nonnegative functions, and under certain conditions, the integral of the original is the difference
of their integrals.

§7.1 Some properties of the integral

Our next goal is to prove properties of the integral. One such property is linearity. This holds for free for
simple functions, but we want to show it’s true for arbitrary nonnegative functions.

To prove such properties, if we approximate a nonnegative measurable function by simple functions, we
want to somehow be able to interchange limits and integrals. For this, we will use some convergence results
from measure theory.

The first is the monotone convergence theorem; we won’t prove it (it’s standard and very useful).

Theorem 7.1 (Monotone convergence theorem)

Suppose that (f,) and f are nonnegative measurable functions with the property that f,,(z) 1 f(x) as
n — oo p-almost everywhere. Then u(f,) T u(f).

In other words, if we have any sequence of nonnegative measurable functions which converge increasingly
pointwise to some measurable function f, then their integrals converge as well. Here we assume everything is
nonnegative; this is not necessarily the case for arbitrary functions (we’ll see another theorem, the dominated
convergence theorem, to deal with that).

We’ll now see how this is applied to prove basic properties of the integral.

Theorem 7.2

Let f and g be nonnegative measurable functions, and fix a,b > 0. Then:

(i) Linearity: p(af + bg) = ap(f) + bu(g).
(ii) Monotonicity: If f < g, then u(f) < u(g).
(iii) We have f = 0 p-almost everywhere if and only if u(f) = 0.

Last lecture, we commented the last property is not true if f is an arbitrary measurable function (i.e.,
without the nonnegativity condition), if the positive and negative parts of f cancel each other.

The idea is to fix f and g and approximate them by simple functions; we know these properties are true
for simple functions, so combined with the monotone convergence theorem, we will get the properties for
arbitrary nonnegative measurable functions.

Proof of (i). As before, let f, = min{2™" |2"f]|,n}, and similarly define g, = min{2™" |2"g]|,n}. Then
both f and g are simple, and they converge pointwise to f and g, respectively (in an increasing way) — this
is immediate by the definitions of the functions f, and g,.

Now we can apply the monotone convergence theorem — this gives that u(f,) T w(f) and p(gn) T p(g) as
n — 00. And we also have u(af, + bg,) T u(af + bg), for the same reason.

But (i) is true for the simple functions f, and g, — this is actually clear by the definition of the integral of
simple functions. So we have

p(afn +bgn) = ap(fn) + bpu(gn)-
This is true for all n. And now we can just take limits — as n — oo, the left-hand side converges to u(af+bg)

by the monotone convergence theorem, while the right-hand side converges to au(f)+ bu(g). And since our
two terms are equal, their limits are also equal; this shows the linearity property (i) is true. O
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Proof of (ii). There are many ways to prove (ii); it can be done using the monotone convergence theorem,
but it can also be done directly from the definition. Recall that
1i(g) = sup{u(h) | b is simple, h < g}.
But this is at least
sup{u(h) | h is simple, h < f},

because any h < f also satisfies h < g (which means the second set is a subset of the first, and if we have
A C B, then sup A < sup B).

But the last term is just u(f) by definition. So we get u(g) > p(f). O

Proof of (i1i). We'll first prove the backwards direction — we assume p(f) = 0, and we want to show f =0
p-almost everywhere.

We’ll argue by contradiction — suppose that f is not 0 u-almost everywhere, meaning {z € E | f(z) # 0}
has positive measure under y. Then we can write

{re E| fx) #0} =] An,

where for each n € N, we define A, = {z € E | f(z) > 1}. Since we assumed {z € E | f(z) # 0} has
nonzero measure, we obtain that for some n, we have u(A,) > 0 (because if all the A,’s had measure 0,
then their union would also have to have measure 0 by the subadditivity property of the measure).

Now we will use the fact that (ii) holds and get a contradiction. For this, we consider the function h = %1 A,
Then we have f > h, because if A,, holds, then by the definition of A, we have f > % = h, while if A,
doesn’t hold then the right-hand side is 0, so this is always true.

And so f > h, which means u(f) > p(h) by (ii). But u(h) = %,u(An) > 0 by assumption. And that’s a
contradiction, since we assumed p(f) > 0.

So this implies u({z € E | f(z) #0}) =0, so f is 0 p-almost everywhere.

Now we’ll prove the other direction — this means we assume f is 0 py-almost everywhere, and we need to
prove u(f) = 0. Again, we're going to approximate f for this — let f,, = max{2~" |2"f|,n}. Then we have
fn T fasn — oo, and f,, = 0 p-almost everywhere (because f, < f, and this is true of f).

This implies p(fn) = 0, because (iii) is true for simple functions. Combined with the monotone convergence
theorem, this implies

p(f) = lim p(fn) = 0. O

So as we can see, this was an immediate application of the monotone convergence theorem combined with
the fact that these properties are true for simple functions. So the integral satisfies the expected properties
for nonnegative measurable functions.

We will see that the monotone convergence theorem is applied many times in measure theory, and also in
this course.

The next step is to prove the analogous properties for arbitrary measurable functions; we’ll see (i) and (ii)
are identical, but (iii) doesn’t hold (as stated earlier).

Theorem 7.3
Let f and g be integrable, and let a,b > 0. Then:
(i) pulaf +bg) = ap(f) + bu(g)-
(i) If f < g, then u(f) < u(g).
(iii) If f =0 p-almost everywhere, then u(f) = 0.
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So one direction of (iii) is true, but the other one is not — if u(f) = 0, this does not imply f = 0 almost
everywhere.

We’ll prove this by applying the previous theorem.

Proof of (i). We're first going to show that this is true when b = 0, so that the integral satisfies a scaling
property.

As before, we write f = fT — f~. Then for any a > 0, we have p(af) = u(af*) — pu(af~™). But f* and f~
are both nonnegative measurable functions, and for such functions we know the integral satisfies the scaling
property. So this is just au(fT) —au(f~) = au(f). So indeed the integral satisfies the scaling property.

We’re not quite done; we’ve proved the integral satisfies the scaling condition, but now we need to show
that it’s additive, meaning that pu(f + g) = pu(f) + p(g). We know this is true for nonnegative measurable
functions; now we need a little trick to make the same statement in general.

If we let h = f + ¢, then we can write
WY =h™ =" =)+ (" —97)
And by rearranging, we have
W+ f~+g =h"+f"+g"
And now the advantage is that all these functions are nonnegative, and we know the integral satisfies the

linearity property. So the integral of the left-hand side and right-hand side are equal and now we have
linearity, meaning that

p(hF) + p(f7) + p(g™) = wh™) + u(fF) + pulg™).

Now we're in a position to rearrange — everything here is finite (we assumed f and g are integrable), so
this means

p(h™) = u(h™) = p(f7) = u(f7) +plg™) — plg™)
but now we are done, because the first term is just pu(h) = pu(f + g) by definition; and the right-and side is
p(f) + u(g), again by the definition of the integral.

So we have shown
u(f +9) = p(f) + pg)-

So we have additivity and scaling, and combining these gives (i).

(There was one trick here, to express f + ¢ in this way and rearrange to somehow use nonnegativity.) [
Now that we’ve shown (i), the remaining properties are quite easy.

Proof of (ii). If f < g, then g — f > 0. And then by the previous theorem, we have u(g — f) > 0. But by
(i) this is pu(g) — p(f), which implies u(g) > p(f). O

Proof of (iii). Suppose that f = 0 p-almost everywhere; this means both f* and f~ have to be 0 p-almost
everywhere. This implies u(f) = pu(f~) =0, so u(f) = p(fT) —p(f~) =0. O

As a counterexample for the reverse direction of (iii) from before:
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Example 7.4

Consider the coordinate axis, and take the function

1 if-1<z2<0
fl@)=<{1 ifo<z<l1

0 otherwise

(i.e., the sign function restricted to [—1, 1]). This has integral 0, but is not zero almost everywhere.

These are the basic properties of the integral; they are what you’d expect.

Student Question. After defining h™ and h™, why did we have to rearrange, take the measure, and
rearrange back — why couldn’t we just take the measure immediately?

Answer. Because we don’t yet know additivity — we know u(ht™ —h™) = u(ft — f~ +gt —g7). But
we don’t yet know that u(f™ — f~ + gt — ¢g7) is the appropriate sum of individual integrals, because
we don’t yet know additivity — that’s what we want to show. (The problem is that these functions are
not nonnegative.)

The rearrangement solves this problem because now everything is nonnegative, so we do have additivity.

Student Question. In the proof of (iii) using (i), aren’t we using a negative scalar — we’re saying
u(ft —f7)=p(fT) — u(f), but here this corresponds to a = —12

Answer. We only showed (i) for a,b > 0, but it’s actually true for arbitrary a and b — because you can
write af = (—a)(—f), for example.

As mentioned, the converse to (iii) in the general case is not true. But we do have a partial converse —
under certain directions, we do have a converse.

Proposition 7.5

If A is a m-system with the property that £ € A and o(A) = &, and f is an integrable function with
the property that u(f-14) =0 for all A € A, then f =0 p-almost everywhere.

So to show f = 0 almost everywhere, we need to assume some further things; and what we assume is that
the integral of f is 0 even restricted to any element of a 7m-system (which generates the o-algebra).

Proof. This will essentially follow by Dynkin’s m-system lemma. The first observation is that it suffices to
show that p(f -1p) = 0 for all B € £ — if we can show this is true, then we’re done. This is because we
can write

f=1"1alr@=o0r + 1 Lalr@<op-
Both of these sets are measurable, so we get that the integral of the first function is zero; but it’s nonnegative,
so that function must be zero almost everywhere (and the same is true for the second term).

As we usually do in such cases, we use Dynkin’s 7-system lemma. So here we’re going to let
D={Ac&|uf 14) =0}

Our goal is to show that D is the entire o-algebra. And the way we do this is using Dynkin’s m-system
lemma, as usual; so what we want to do is show D is a d-system. (It contains the m-system A, so by
Dynkin’s, if we can show that it’s a d-system then it contains o(A) = £.)
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The fact that D is a d-system follows by the properties of the integral from the previous theorem (this is
immediate to check); and A C D. So this implies D = 0(A) = £ by Dynkin’s lemma, and we'’re done.  [J

This means if we make the further assumption that the integral of f is 0 on every element of a generating
m-system, then we do get that f is 0 p-almost everywhere.

§7.2 Exchanging summation and integration
In analysis, there’s a fundamental question:

Question 7.6. If you have a sum of functions, under which conditions is the integral of the sum the
sum of integrals?

If the functions are nonnegative and measurable, you can always interchange the sum and integral — in
particular, we have the following proposition.

Proposition 7.7

Suppose that (g,) is a sequence of nonnegative measurable functions. Then we have u(} ., gn) =

> o H(gn)-

So if we have nonnegative measurable functions, then we can always interchange summation and integration.
This is not true if you have arbitrary measurable functions — the sum might not even converge.

The proof follows directly from the monotone convergence theorem and the linearity property of the integral.

Proof. If we consider just the sum of the first N terms, we have Egzl gn T En21 Jgn p-almost everywhere

as N — oo. Now linearity tells us that ,u(zgzl gn) = 25:1 1(gn), and the monotone convergence theorem
tells us that this converges to p(3",~1 gn)-

But we also have that 25:1 #(gn) T2 2p>1 #(gn) as n — oo (by definition of an infinite sum).

This implies ©(3,,~1 9n) = Y _n>1 #(gn), since they’re limits of the same sequence. And that’s exactly what
we wanted to prove. O

So for nonnegative measurable functions, we can always switch the order of integration and summation.

Student Question. Why did we need ‘almost everywhere’ when saying 227:1 Gn = D 9n?

Answer. We don’t; they actually converge for every point. (We only need almost everywhere conver-
gence to apply the monotone convergence theorem; but in this setting we actually have convergence for
every .)

§7.3 Fatou’s lemma

It’s really nice to be able to exchange imits and integrals — this will be extremely useful in the future. And
the monotone convergence theorem is one very useful tool that helps us do so.

We'll now see another important theorem that also helps with this.
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Theorem 7.8 (Fatou's lemma)

Let (f,) be a sequence of nonnegative measurable functions. Then

p(liminf f,) < lini)inf,u(fn).

n—o0

In one of the problem sets, we proved the same statement, but when f, is the indicator function of some
event (i.e., set); so this is a more generalized version.

Proof. Here we start with the following observation: if we take any k > n, then we always have inf,, >, (fm) <
fr (by the definition of the infimum).

Now by the monotonicity of the integral (as shown in the previous theorems), this means
p(inf (fm)) < p(fr)-
m>n

And this is true for every k > n.

This is true for all k > n, so this means p(inf,, >, (fm)) < infg>, p(fr). And the infimum on the right is at
most liminfy_,~ p(fn), by the definition of the liminf.

So to complete the proof of Fatou’s lemma, it suffices to show that p(inf,,>, f) — p(liminf, o fp).
To see this, note that inf,,>, fr, T liminf,, o fm as n — oo (this is the definition of a liminf). By the
monotone convergence theorem, this implies that p(inf,,>n(fm)) T p(liminf, - fy) as n — co. And that’s
the end of the proof; so p(liminf f,) < liminf u(f,) (becaues the right-hand side bounds every term of our
sequence). O

That’s another very useful result. Something to note here is that the inequality here might be strict — we
don’t always have equality. We’ll write down a counterexample.

Example 7.9

Let (E,&, 1) = (R, B(R), Lebesgue). Let f,, = 1j;, ny1)- Then we have liminf,, o fn = 0, because these
intervals are disjoint; this means p(liminf, ,~ fn) = 0. But we have u(f,) = 1 for all n. This implies
liminf, o p(fn) = 1 as well, which is not 0.

So in Fatou’s lemma, it’s possible to have a strict inequality; it’s not necessarily an equality.

Fatou’s lemma helps us prove quite a lot of results about convergence.

§7.4 Dominated convergence theorem

We’ve already seen two main theorems so far which help us change the order of integration and taking limits.
One was the monotone convergence theorem (which we didn’t prove, but will take for granted); the other
was Fatou’s lemma.

Question 7.10. What happens to e.g. the monotone convergence theorem if the functions aren’t
nonnegative?

In that case, the theorem is not true. But with slightly different assumptions, it turns out we can still
interchange the order of limits and integrals.
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Theorem 7.11 (Dominated convergence theorem)

Let (f,) and f be measurable functions such that f,(z) — f(z) as n — oo for p-almost every x (i.e.,
we have pointwise convergence p-almost everywhere). Suppose that there is an integrable function g
which dominates all the f,’s, in the sense that |f,| < g for all n. Then u(f,) — u(f) as n — oc.

So here we have a slightly different assumption — we use a dominant function g which dominates all the
fn’s in this sense. And under this assumption, the limit of the integral is the integral of the limit.

Proof. First, we'll check that f is integrable. By definition, we have |f| = lim, ,~ |fn] < ¢; so by the
monotonicity of the integral, we have u(|f|) < p(g). And the latter is finite, because we know ¢ is integrable.
So all the f,,’s and f are integrable, so it does make sense to talk about their integrals.

Also note that g + f,, is nonnegative, because — f,, < g; and similarly g — f,, is also nonnegative.

Now we’re going to apply Fatou’s lemma for these two sequences of functions, and somehow extract the
statement that we want.

First, by the linearity of the integral we have

w(g) +u(f)=pulg+f)=un (Q{g{g_gfg + fn) :

And now we can apply Fatou’s lemma, because we have a sequence of nonnegative measurable functions;
so this is at most liminf,, o (g + f,). But now we can apply linearity again, and say that this is
liminf, o0 p(g) + p(frn). And u(g) is a constant, so we can take it out of the liminf; this gives us

p(g) + u(f) < plg) +liminf u(f).

And pu(g) cancels from both sides, so we obtain

u(f) < liminf p(fn).

n-oo
And now we can do the same for the function g — f (which is still nonnegative); we have

w(9) —u(f) = pulg—f) = p(liminf(g—fn)) < liminf p(g—fn) = liminf(u(g) —p(fa)) = p(g) +liminf —pu(fy).
But the lim inf of the negative of a sequence is the negative of the lim sup, so we get

p(g) — p(f) < p(g) — limsup p(fn),

n—00

which tells us
limsup p(fr) < p(f).

n—o0

But now putthing these together, we have

p(f) < liminf p(f) <limsup p(fn) < p(f).

n—oo

This means all these terms have to be equal; in particular, since the lim sup and liminf coincide, this means
lim,, 00 11 fr) exists and equals p(f). O

So if we have a dominant function g, then we can interchange between integrals and limits.
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Student Question. Did we assume f was integrable?

Answer. We don’t need to assume it, we can prove it from the hypotheses of the theorem — we have
|f| < g, and we know p(g) is finite, so u(|f|) is also finite; this means f is integrable.

§7.5 Constructing measures

The next thing we’ll mention is how to construct new measures from old measures. This is something we’ve
already done in previous lectures, but now we’ll see a few more ways to do so — not in this lecture, but in
the next.

One obvious way is the restriction measure, where we just take the original measure and restrict it to a
smaller o-algebra.

Definition 7.12 (Restriction of a measure space). Let (E, &, u) be a measure space, and fix a measurable
set A € €. Then the restriction of the measure space to A is (A, 4, pa), where

Es={Bec&|BCA}

and pa(B) = pu(B) for all B € £4.

So we just take the original measure space, take any measurable set, and restrict everything to that set.
This is a very naive way to construct a measure; we will soon see more elaborate ways.

It is an easy exercise to check that (A,€4,u4) is indeed a measure space. And we also have that the
restriction of any measurable function on the original space is still measurable; we’ll write this down as a
proposition.

Proposition 7.13

Let (E, &, pu) and (F, F, ') be measure spaces, and fix any A € £. Suppose we have a function f: E — F
which is measurable. Then f|4 is £4-measurable.

Proof. If we fix any B € F, then we have (f|4)"'(B) = f~}(B) N A, and by definition this set is in €4
(because f~1(B) is a measurable set in the original o-algebra). O

So measurable functions restricted to a smaller g-algebra are still measurable. The same is true for integrable
functions — if we start with an integrable function and restrict, then f|4 is still integrable in the smaller
space. (This is an easy exercise.)

§8 October 1, 2024

In the previous lecture, we saw some important limit theorems, like Fatou’s lemma, the monotone conver-
gence theorem, and the dominated convergence theorem. We said we’ll use these extensively to interchange
between limits and integrations. Last time we finished the lecture by defining the restriction measure, an
obvious way to define a new measure given a starting measure. In this lecture, the main focus will be on
product spaces; we’ll construct a product measure on the product g-algebra. This immediately gives the
construction of the Lebesgue measure in higher dimensions as well.
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§8.1 The pushforward measure

We'll start by recalling the definition of the pushforward (or image) measure (which we saw earlier, but will
now state in a more abstract way).

Definition 8.1 (Pushforward measure). Let (E, &) and (G,G) be measure spaces, and suppose we have
a function f: F — G which is measurable. Then if y is a measure on F, we define the pushforward (or
image) measure of y as v = po f~L.

So in this way, if we have a measure p and a measurable function f, we can always consider the pushforward
measure, and this will always be a measure. So this is another naive way of constructing a new measure.

We mention this again because it has some applications to integration. In particular, we have the following
result.

Proposition 8.2

If g is a nonnegative measurable function on G, then v(g) = u(go f).

This is an application of the pushforward measure — if we have two measurable functions f and g and we
want to compute the integral with respect to p, this is the same as the integral of g with respect to the
pushforward.

To prove this for every nonnegative measurable function, we approximate by simple functions — we show
this is true for nonnegative simple functions, and then take limits to get arbitrary g. To justify why we can
take limits, we use the monotone convergence theorem.

§8.2 Density
Finally, another way to specify a measure is by specifying a density. We’ll use this many times in the course.

Definition 8.3 (Density). Let (E,£) be a measure space with measure u, and suppose that f is a
nonnegative measurable function on E. Then we define v(A) = u(f - 14) for every A € €.

So we start with an original measure p and nonnegative function f; and we define the measure of a set A
with respect to v as just the integral of f restricted to A.

Proposition 8.4

The function v (as above) is indeed a measure.

Proof. First, we have v(0)) = u(f - 1p) = 0 (since 1y is the indicator function of the empty set, which is 0).

The second thing we need to check is countable additivity. Suppose that we take (A,) to be a disjoint
sequence in our o-algebra; then u(lJ, An) = 1(f14,). But because the A, are disjoint, we have 14, =
>~ 14, . And because we have nonnegative functions, we can interchange between summation and integration
(this is an immediate convergence of the monotone convergence theorem). So this is just > u(fla,) =

S v(Ay). O

So this is another way to construct new measures.

What’s the importance of this in the context of probability? Here v plays the role of the low of a random
variable, and p plays the role of a Lebesgue measure. If a function f exists with these properties, then we
say the random variable X has density f.
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Definition 8.5 (Density of a random variable). Let X be a random variable. We say that X has a density
if ux has a density with respect to the Lebesgue measure — in other words, there exists a nonnegative
measurable function fx such that

P[X € A] = /Afx(x) dx.

We call fx the density of X.

Recall that px is the low of X (which is a Borel measure). This is the special case of the earlier definition
where v is px (recall that we write ux(A) = P[X € A], and [ denotes the Lebesgue integral).

Most random variables we’re familiar with have this property — e.g., the exponential or gamma distribution
all have densities — and we’ll see some of them later in this course.

Student Question. Does every random variable have a density?

Answer. No — there are random variables which cannot be expressed in this way. But most of the
random variables we’re interested in — e.g., the Gaussian, exponential, and gamma distribution —
have lows of this form.

For instance, if the random variable takes discrete values, then this can’t happen — if you integrate any
function with respect to the Lebesgue measure, on a discrete set you will get 0 — because the Lebesgue
measure of a discrete set is 0.

§8.3 Product measures

We’ve now seen a few ways to construct new measures. The next one we’ll see is the product measure,
defined on the product o-algebra. We’ll start by defining the product o-algebra.

Definition 8.6 (Product o-algebra). Let (E1, &1, 11) and (Ea, &2, u2) be finite measure spaces. Let
.A:{Al XAQ‘Al 651, A2€€2}

be the m-system consisting of rectangles. Then the product o-algebra is defined as € = o(A).

It’s easy to see that A is a m-system on Fy X Es, and the product o-algebra is just the o-algebra generated
by this m-system. This is an abstract generalization of what we’re doing in two dimensions (with R x R).

What we’d like to do is use p; and p9 to construct a new measure on the product o-algebra.

First, we have powerful tools like Caratheodory’s extension theorem; why can’t we use that here? We could,
but we’d like an explicit description of this measure, so we’ll do it in a different way (Caratheodory doesn’t
give us a very explicit form — the definition involves complicated things like infimums and outer measures).

The idea is to define p (on the product o-algebra) such that

w) = [ (f 2 LaCar,an)paldrs) ) i (o).

So we have an inside integral with respect to the second measure, and then an outside integral with respect
to the first. This is our candidate for the measure extending p; and ps.

Before we do that, we need to make sure that this statement makes sense — in particular, that the function
fE2 1a(x1, x2)pe(dzs) is measurable and can be integrated and so on. That’s the purpose of the second
lemma — to make sure that this thing we’ve defined is really a well-defined set function.
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Lemma 8.7

Let E = E; x Ey, and suppose that f: E — R is £-measurable (i.e., measurable with respect to the
product o-algebra). Then the following conditions hold:

(i) For every x9 € Es, the function on F; given by x1 — f(z1,z2) is &;-measurable.

(ii) If f is bounded or nonnegative, then the function on Es given by fa(z2) = [, f 7 (z1,22)p1(dzr)
is Es-measurable.

Once we have this lemma, it’s easy to see our definition of u from earlier makes sense — (ii) says that the
function we have on the inside is measurable in £, and therefore it makes sense to integrate it. So (i) shows
that the function on the inside is measurable in Ey (which allows us to integrate it over Es); and (ii) says
that the resulting integral is measurable in F;. So p is a well-defined set function; and after we prove this
lemma, we’ll show it’s the measure we’re actually looking for.

Proof of (i). For (i), note that for fixed xz9 € Fy, if we consider the map i1: £y — E given by 1 — (z1, z2),
then this map is measurable. So then f o4, which is exactly the function in (i), is £&-measurable — so (i)
follows because 47 is a measurable function and the composition of measurable functions is measurable.

For (ii), we need to show this property is true for any bounded or nonnegative measurable function. For
that, we’ll invoke a theorem which when we stated it was not clear why it was useful — the monotone class
theorem, which stated that if you have a linear space of functions, then under certain conditions, it contains
everything. Here we're trying to prove a property for all nonnegative measurable functions, so it’s enough
to show that the set of functions for which it’s true satisfies these conditions.

So we define the set

V ={f:E — Rs.t. fis measurable and 3 — f(z1,x2)p1(dxy) is Eo-measurable}.
£y

We want to show this satisfies the conditions of the monotone class theorem.

We first need to show that 1z € V, and 14 € V for all A in a generating w-system, here A. First 1g is the
constant number 1; then for each xo, we just get a constant function, and constant functions are measurable.
When f =14, we still get the measure with respect to p; of A; (where A = A; x Ag). So this is clear.

The second thing is we want V' to be a vector space. But this is clear by the linearity of the integral (which
we have already shown).

So V satisfies the first two conditions for the monotone class theorem. The last condition of the theorem is
that V should be closed under increasing limits of nonnegative sequences. So we consider a sequence (fy,)
of nonnegative functions such that f,, 1T f pointwise as n — oo; then (z9 — fE1 oz, 22)p1(dzy)) T (22 —
f B, (1, x2)p1(dz1)) by the monotone convergence theorem. But all the functions on the left-hand side
are measurable, and pointwise limits of measurable functions are also measurable. So the right-hand side is
&1-measurable, which means f € V.

Now by the monotone class theorem, we have that V' contains all bounded measurable functions.

This proves (ii) is true for all bounded measurable functions. We also wanted to prove it for all nonnegative
measurable functions, but this is not too hard to see. If f is a general nonnegative measurable function (but
not necessarily bounded), then f A n (defined as min{f,n}, where n is some positive integer) is bounded
and measurable, which means f An € V. And then by the monotone convergence theorem (the increasing
limit statement from above), we also have f € V. O

So this means p is indeed a well-defined set function.
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Student Question. Why do we need bounded or nonnegative?

Answer. The two conditions aren’t comparable — a bounded function might be negative, and a
nonnegative function might be unbounded.

The place we’re using boundedness is in the statement of the monotone class theorem, which only gives
that V contains all the bounded measurable functions. The monotone class theorem does not itself talk
about nonnegative measurable functions; but we get it by again applying the monotone convergence
theorem writing f as the limit of f A n.

Now that we know p is well-defined, we’re ready to prove our theorem — that p is the unique function
extending p1 and ps in our product space.

Theorem 8.8

Suppose that @y and pg are finite measures. Then there exists a unique measurable set function p with
the property that pu(A4; x Ag) = u1(A1)pe(Asg) for every A; x Ay € A.

Definition 8.9. We call this measure p the product measure, and denote it by u = p1 ® psa.

Again, it’s tempting to apply Caratheodory’s extension theorem; but we can do something better because
we have an explicit description of u.

Proof. As before, we define

wa = [ (f 2 LaCar, o)) ) jo(de).

This is a well-defined set function by the previous lemma. We need to check two things — that this
is a measure, and that it satisfies the required property. (We also need to check a third thing, namely
uniqueness.)

For the first condition of being a measure, we have p(f)) = 0 because 1y = 0. Next, we need to check
countable additivity. Suppose that (A,) is a disjoint sequence in £, and A = |J,, A». Then writing down
the definition of p(A), we have

w) = [ (f 2 LaCas,ax)padrs) ) (dor),

And because the A,,’s are disjoint events, we can write 14(z1,22) =Y, 14, (1, 22); then we get a summation
inside the second integral, so

pa = | ( / ZlAn@lv@)M(d@)) p(d).

2 n

Now we’re going to use the limit theorems — we have nonnegative functions, so we can interchange the
summation and integral twice; and then we obtain

WA =3 /. (f s, (o1 r2ha(dea) ) () = > i)

So this means p is countably additive, and therefore it is a measure.
Next, it remains to check that (A x As) = puq(A1)u2(As2). This is clear — we have

p(Ar x Ag) = /

Ey

(/152 1A1><A2(ZU1,33‘2),U2(dx2)) pa(day).
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Then we have 14,x4,(21,22) = 14,(21)14,(x2), so we can pull out a factor of us(Asz) and get
[ LA (den) = (A1 )pa(42).
Ey

For uniqueness, ;4 must be finite (since p1 and pg are), so it’s determined by its values on a 7-system.  []

If the space is infinite, we don’t have uniqueness anymore — for example, you can take any constant multiple
of the Lebesgue measure in two dimensions.

Here we have a product measure. If we first integrated with respect to F; and then FEs, we’d still get a
measure; and the point is this measure will still factorize, and by uniqueness they have to be the same. So
this means if we swapped the order of integration — integrating over E; on the inside and E5 on the outside
— then we’d still get a set function with the given properties, which means by uniqueness that it must be
the same. So you can interchange the order of integration.

And this can be generalized, with nonnegative measurable functions vs. bounded measurable functions.
This is called Fubini’s theorem; we're going to state but not prove it, but the proof is the same (using the
theorems we’ve seen so far, such as the monotone and dominated convergence theorems).

Theorem 8.10 (Fubini's theorem)

(i) If f is a nonnegative measurable function on E = E; X Es, then

p(f) = /El < EZf(ﬂfl,wz)m(dl‘z)) pa(dwy).

In particular, we have

/El ( . f(m,xg)ﬂz(dm)) pi(dzy) = /EQ ( . f(xl,xg)ul(dx1)> pi2(das).

(ii) If f is integrable and A = {x; € F | ng |f(z1, 22)| pa(dze) < oo}, then pi(Eq \ A) = 0. If we
define

otherwise,

ey = { S ntte) o 4

then we have u1(f1) = n(f).

So (i) generalizes what we just did — we integrate with respect to the second coordinate and then the
first coordinate. And it doesn’t matter the order in which we integrate; we should still get the same thing
(namely, p(f)). This is also sometimes known as Tonneli’s theorem.

Then (ii) considers what happens if f is integrable (rather than nonnegative). Here the same interchange
is still valid, but we have to be slightly more careful. We have the same thing as before, but the inside
integral is not necessarily well-defined everywhere. But Fubini’s theorem says that it’s well-defined almost
everywhere (A is the set on which it’s well-defined); and if we integrate this, we still get the same result.

The proof is in the same spirit of the previous theorem, modulo some more limiting arguments (the monotone
or dominated convergence theorems).

§8.4 Product spaces and independence

Now that we have the product measures, we’ll see their applications in probability. Their applications
usually lie in independence — somehow independence can be characterized using product spaces.
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Proposition 8.11

Let X;, Xo, ..., X, be random variables on some probability space (2, F,P), which take values in some
measure spaces (E1,&1), (E2,&2), ..., (En,&y). We define E = Ey X --- x E, and £ as the product
o-algebra £ ®E @ -+ - ®E,. Also define X = (X1,...,X,,). Then X is E-measurable, and the following
conditions are equivalent:

(i) X1, ..., X, are independent.
(i) px =px; ® - Q px,.

(iii) For any bounded measurable functions f1, ..., fn, we have

n

E([] (X5 | = [TEUH X))
j=1

J=1

Remark 8.12. We’ve only defined the product o-algebra of two spaces, but this can be iterated, and
we can define the product o-algebra of n spaces in the same way (by induction). Similarly, the product
measure is defined by generalizing what we did in two dimensions, using induction.

So these are some nice conditions for random variables to be independent. Their values could be in abstract
measure spaces; they’'re not necessarily taking real values. The third condition states that the expectation
of products of any measurable images of these is the same as the product of the expectations.

Proof. First we’ll go from (i) to (ii). To do this, we let v = px, ® --- ® ux, be the product measure of the
lows of the X;’s. We want to show that v = puy. To do this, what we actually need to do is show that
these two measures agree on a m-system generating the o-algebra (they’re certainly finite measures, since
they have total mass 1). We define the obvious 7-system

A:{AI><---xAn]Ale&,...,Aneé’n}.

Then A is a m-system generating the product o-algebra. Moreover, if we take any A = A; x --- x A, € A,

then we have
NX(A) = ]P)[X € A} = ]P’[Xl S Al,...,Xn € An]

by definition. And now we use independence: we know the probability of the intersection of these events is
the product of probabilities, so we get

px(A) = px, (A1) px,(A2) - px, (An).

But this is just #(A). So this means the two measures agree on a m-system which generates £, and therefore
px = v. This means independence gives us this nice expression for the low of X = (Xy,...,X,,) — it’s the
product measure of the individual lows.

Now we’ll go from (ii) to (ili) — now we know px has this nice form, and we want to show the expectation
of a product is the product of expectations.

By our assumption, we have

E j];[lfj(Xj) :/E‘fl(xl)fZ(fEQ)-..fn(xn)dﬂx(;ljl"_"xn)

(by the definition of the low of a random variable). But now we know this measure here is just the product
measure — so we obtain that this is

[ A ) Bl 0 o)
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And now we can apply Fubini’s theorem; so this can also be written as

/ 11 fi(zp)px, (day).
B

And Fubini’s theorem lets us interchange the order of integration and multiplication, to write this as

i | 5@ ns, d).

And this is exactly []7_; E[f;(X;)], which is what we wanted.

To complete the proof, we need to show (iii) implies (i). This is easy — we can apply the classical definition
of independence of random variables. So we’ll apply (iii) with the indicator function of measurable sets —
we take fr = 14, for arbitrary A € &. Then we have

P[X1 € Ay,...,Xn € Ay =E !H lAk(xk)] .
k=1

But by our assumption, this is equal to

n n

[T Elta, (@] = [T PlAK-

k=1 k=1

So this means we have independence, since the A’s were arbitrary measurable sets. This completes the
proof, because it shows these random variables X}, are indeed independent. O

This is a very useful proposition because it gives some nice equivalent conditions for a collection of random
variables to be independent. And it’s a nice application of all this theory about product measures in the
context of probability. We're going to use it multiple times in this course when we try to verify whether a
collection of random variables is independent.

Student Question. For independence, we know X1, ..., X, are independent if and only if an
expectation of a product is a product of expectations for all measurable functions. But do we really need
to check this for all measurable functions, or is it enough to check it for some smaller subset?

Answer. It suffices to check it for indicator functions — we can see this from the above proof. (In fact,
the statement that it holds for indicator functions implies it holds for all measurable functions, by the
above proof; this is not a priori obvious.)

§8.5 L? spaces

We’ll now define LP spaces, since we're going to talk about them when we talk about pth moments of random
variables later on.

Definition 8.13 (L” spaces). Let (E, &, 1) be a measurable space. Then for any 1 < p < 0o, we define
LP(E, &, 1) to be the set of all measurable functions f such that

1/p
1, = ( L du) < 0.
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We’ll be interestsed in this kind of integral where p is the low of a random variable; then this will be the
pth moment.

We can also make sense of this when p = co. Here of course we have 1/00 = 0, so we can’t use this definition,
but we can modify it.

Definition 8.14 (L*>°). We define L>*(FE, £, 1) as the space of measurable functions f such that

| fllo = inf{A >0 |f|] < A p-almost everywhere} < oco.

So if the infimum is a finite number, then we say f is in L*>°. Next lecture, we’ll talk about some important
inequalities like Markov and Chebyshev involving these spaces.

(We write LP and L when the measure space is clear from context.)

8§89 October 3, 2024

The previous lecture, we finished proving the basic properties of integration, including some useful limit
theorems. We also mentioned Fubini’s theorem, which is very useful; we’re going to use it a few times
throughout the course. We finished the previous lecture by defining LP spaces. We’re going to use LP
spaces quite often when talking about the convergence of random variables. This lecture, we’ll mention a
few important inequalities (e.g., Markov, Chebyshev, and so on); we’ll state them without proof (since we
don’t have time), and we’ll use them throughout the course (we can also use them on problem sets and
the exam). Then we’ll talk about some properties of LP and Hilbert spaces (especially about orthogonal
decompositions).

§9.1 Some inequalities
§9.1.1 Markov’s inequality

The first inequality is Markov’s, which is used very often in probability and statistics; its proof is elementary,
but it’s still very useful. We’ll state it for an arbitrary measure space.

Proposition 9.1 (Markov's inequality)

Let f be a nonnegative measurable function on some measure space (E, &, i), and fix any A > 0. Then

wiz e Bl jz) 2 ) < 10,

When g is a probability measure, this will bound the probability that our random variable is large — if we
take X\ to be large.

Proof. The proof is elementary — we just make the simple observation that
VI ER oSN YIS

And now we can integrate — by the monotonicity of the integral, we have

p(f) = n(Ayay) = Ma(gp=ay) = Au({f | A})

(by the linearity of the integral, and the fact that the integral of an indicator function is just the measure
of the space). So then
n(f)

M({f > )‘}) < T O
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The proof is simple, but if we imagine u to be a probability measure and f a random variable, then this
inequality bounds the probability that the random variable is large. So that’s why this is useful.

§9.1.2 Jensen’s inequality

This is the first very useful inequality of the course, but there are other types of inequalities which might
be a bit more complicated. Another inequality is Jensen’s inequality, which is about convex functions.

Proposition 9.2 (Jensen’s inequality)

Let X be an integrable random variable (in a probability space) with values in some interval I C R.
Then for any conver function f:I — R, we have

Elf(X)] = f(E[X]).

This is a very useful way to get lower bounds on E[f(X)]. For instance, if f is the function x + 22, then
we get E[X?] > E[X]?, which is a very standard and useful inequality.

Definition 9.3 (Convex function). We say a function f:I — R (for an interval I) is convex if for any
t €10,1] and z,y € I, we have

[z + (1 —t)y) <tf(x)+ 1 —1)f(y)

We can interpret this graphically:

If we take any two points (z, f(x)) and (y, f(y)) on the graph of the function, then graphically convexity
means that if we draw the segment connecting them, this segment lies above the graph of the function.

§9.1.3 Héolder's inequality

The third inequality, which is quite useful and which we’ve probably seen in real analysis, is Holder’s
inequality. This involves conjugate exponents; we’ll first define what this means.

Definition 9.4 (Conjugate). Let p,q € [1,00]. We say p and ¢ are conjugate if % + é = I,
As usual, we use the convention + = 0.

oo

Proposition 9.5 (Holder's inequality)

Let p,q € (1,00) be conjugates. Then for any measurable functions f and g, we have

I£glly < I £1l, lgllg -
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(We're using the notation from last class.)
A special case of this is the Cauchy—Schwarz inequality — if p = ¢ = 2, then you get the Cauchy—Schwarz
inequality.

Student Question. Don’t we need to require f and g to be integrable, rather than measurable?

Answer. No, because we’re taking absolute values; the integral of a nonnegative measurable function
is always defined, though it might be oo.

§9.1.4 Minkowski’s inequality

The last inequality we’re going to use is Minkowski’s inequality.

Theorem 9.6 (Minkowski's inequality)
Let p € [1,00], and suppose that f and g are measurable. Then | f + g||, < || fll, + [lgll,,-

This is a very useful inequality which comes from Holder’s inequality plus a clever trick.

In this course, we’re not interested in the proofs of these inequalities, but they’re very useful to know and
be able to use.

Student Question. How is E[X]| defined?

Answer. When we take the expectation of a random variable, you always live in a probability space
(Q, F,P), and you take the integral with respect to P. So we actually define E[X] = [, X (w)dP(w).
We have X defined on some abstract measure space, and we’re taking the integral with respect to that.
(This is the advantage of the general notion of the integral from previous lectures, that we can take an
integral in any abstract space.) This integral is the same as fR ydux (y) (this is equivalent by definition,
since px is the pushforward measure).

§9.2 Facts about L” spaces

We'll now briefly review some facts about LP spaces, without proof (these are typically discussed in functional
analysis).

§9.2.1 Normed spaces

(We'll assume familiarity with vector spaces; we also briefly mentioned that when stating the monotone
class theorem.)

Definition 9.7 (Norm on a vector space). Let V be a vector space. A norm on V is a function
||lo]| : V' — R such that:

(i) (Triangle inequality) |ju + v|| < |Jul| + ||v]| for all u,v € V.

(ii) (Scaling) ||au|| = |a|||u|| for all a € R and uw € V.

(iii) (Positive definiteness) If ||u|| = 0, then u = 0.

1/p
11, = ( L du) .
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Is this a norm? It satisfies (i) by Minkowsi’s inequality, and it clearly satisfies (ii) (by the scaling properties
of the integral). But it does not satisfy (iii). It is true that [|0], = 0, but if [|f]|, = 0, this does not
necessarily imply f = 0. What it does imply is that f = 0 py-almost everywhere.

So in order to make this be a norm, we need to modify the space we're considering. We modify it in the
following way.

Definition 9.8. For f,g € LP, we say that f ~ g (i.e., f is equivalent to g) if f — g = 0 p-almost
everywhere. For every f € LP, we define

[f]={9 € LP|g— f=0 pu-almost everywhere}

as the equivalence class of f under this equivalence relation.

Now we'’re ready to make LP a normed space, by defining a slightly modified space.
Definition 9.9. We define £P(E) = {[f] | f € LP}.

In this modified space, the pth norm as defined last lecture is a norm — because if an element of L? has 0
norm, then it belongs to the equivalence class of 0 in LP.

In this class, we won’t really distinguish between £? and L?, because from a measure theoretic point of view
they’re the same (but from a set-theoretic point of view, they’re not the same).

§9.2.2 Banach spaces

One important property of LP is that it’s complete — this means if we take any Cauchy sequence, it
converges. We're going to review this quickly for reference. Specifically, complete vector spaces are also
called Banach spaces. These are studied in functional analysis, but we won’t go deeply into them here.

Definition 9.10 (Banach space). A normed vector space (V/ ||e||) is called complete (or a Banach space)
if every Cauchy sequence converges — in other words, if (v,,) is a sequence in V' with the property
that ||vp, — vm|| — 0 as m,n — oo (i.e., (vy) is a Cauchy sequence), then there exists v € V' with the

property that ||v, —v|| — 0 as n — oo (i.e., v, converges go v with respect to |/e]|).

So if every Cauchy sequence has a limit, then our space is called complete.

Example 9.11
The space R is complete.

Example 9.12
The space (0, 1) is not complete — the sequence % is Cauchy, but it doesn’t converge in this space (it
tends to 0, which is not in (0, 1)).

We mention this because LP is a Banach space, which is our next theorem; we’ll state this without proof.

Theorem 9.13
Let 1 < p < oo. Then LP is a Banach space.

There’s been lots of research into these spaces, especially in the previous century (e.g., in functional analysis).
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8§9.3 The case p = 2 and Hilbert spaces

We’ll now consider the case p = 2. Here the space has an exceptionally nice structure, because you can
define an inner product (just as in R?), which is induced by the 2-norm.

Definition 9.14. For p = 2, we define the inner product for f,g € L? as
(f.9)= / f-gdp.
E

First, we might ask, is this a well-defined number? Does this actually make sense? The answer is yes, by
the useful inequalities we’ve learned so far, e.g., Holder’s inequality — Holder’s inequality says that [ |fg]
is finite, because | f||, and ||g||, are finite.

And this inner product induces the 2-norm, because | f||, = (f, f)!/2. This means in the special case p = 2,

our norm is induced by an inner product; this does not happen when p # 2 (this is not obvious), which is
why p = 2 is special. And this gives a very nice structure to £2 — in particular, it makes it a Hilbert space.

Definition 9.15 (Hilbert space). A Hilbert space is a vector space with a complete inner product.

What we mean by a complete inner product is that you have your inner product, and it induces a norm by
£l = (f, £)*/2, and the space under this norm is complete.

So £? is not just a Banach space, but also a Hilbert space.

§9.3.1 Orthogonal decomposition

Hilbert spaces are somehow nicer than Banach spaces because of the inner product. One very nice thing
you can do there is orthogonal complements. First we’ll define orthogonality, and then we’ll talk about
orthogonal complements.

Definition 9.16. Two functions f, g € £? are orthogonal if (f, g) = 0.

This is a generalization of the Euclidean geometry fact that states that if we have two vectors with angle
90°, then their inner product is 0. In math, people always start studying simple cases, and from there they
build entire theories; that’s the base of the theory behind Hilbert spaces.

Definition 9.17 (Orthogonal complements). For any V C £2, the orthogonal complement of V is

VE={fe | {fv)=0forall ve V}.

So we can talk about orthogonal complements of entire sets of functions. Of course, this definition makes
sense for any vector space with an inner product; you can also define this in spaces that aren’t complete.
But the point is that if you have completeness, then you have some very nice properties of orthogonal
complements — in particular, we’ll see that if you start with a closed subspace, then you can decompose
your original space as a direct sum of the closed space and its orthogonal complement.

First, we’ll define what we mean by a closed space.
Definition 9.18 (Closed subspace). Let V C L? be a (vector) subspace. Then we say V is closed if

whenever we take a sequence (f,,) C V with the property that f, — f for some f € L? (with respect
to ||e||5), then there exists v € V with v ~ f.
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This is consistent with the topological notion of closedness.

The main theorem we’re going to prove is orthogonal decomposition.

Theorem 9.19

Let V be a closed subspace of L?. Then each f € L? has an orthogonal decomposition f = u+ v, where
v €V and u € VL. Moreover, ||f —v|l, < ||f —gll, for all g € V.

So every element of L? can be decomposed in the form u 4 v, and v is actually the element of V with
minimum distance from f (in particular, this minimum distance is attained).

To prove this, we’ll use two nice, simple identities — the Pythagoras identity and the parallelogram law
(which can be generalized to abstract Hilbert spaces).

Lemma 9.20 (Pythagoras identity)
We have || f + gll3 = |lf15 + llgll3 + 27, 9)-

This is a generalization of the simple facts that we have in two dimensions.

Lemma 9.21 (Parallelogram law)
2 2 2 2
We have [|f + gll3 + [If — gl = 2 [lf]lz + 2 llgll2-

We’ve probably seen the analogous identities if we imagine f and g as vectors in R?; but they hold for an
arbitrary Hilbert space.

Now that we have these nice lemmas, we’re going to prove the theorem.

Proof of Theorem. Fix f € £2; now we're looking for v € V such that f has this decomposition. How do we
look for this element? If we didn’t have the second property we’d get lost, but this second property suggests
which value of v we need.

First, we can take (g,) C V such that

1f = gnlly — dist(f, V),

where by dist(f, V) we mean infyey || f — g||,. This is because we want v to be the element at which this
infimum is attained; so we take such a sequence, and we're going to show that this sequence converges and
define v as its limit (which will mean the infimum is attained).

In order to show that (g,) converges, since we’re in a complete vector space, it suffices to show that it is
Cauchy. And we are going to do this using the lemmas above.

To do so, set u, = f — g, for all n € N. We're going to show that (u,) is Cauchy using the parallelogram
law. By the parallelogram law, we have

2 2 2 2
[un + wmlly + llun = umlly = 2(unll” + lum[[%)-

By the particular choice of u,, this implies

H2 <f_gn'i2‘gm)

Our goal was to bound ||gm, — gn||3, so we'll rearrange this to get

2
2 2 2
+llgm = gnllz = 201 = gnllz + I — gmll2)-
2

In + 9gm 2

lom = gl =2 (15 =l + 15 = ) =4 £~ 5

2
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We wanted to show the left-hand side tends to 0, so it’s enough to show that the right-hand side does. And
to do this, the first two terms converge to dist(f, V). Meanwhile, the third term satisfies

In + gm

5 > dist(f, V).

2

I~

This is because V' is a vector space, so g, + gm is too, and therefore so is W%. So we get that

gn = gmll3 < 201f = gnll3 + 1f = gmll3) — 4(dist(£, V).

And finally, || f — gnl5 and ||f — gml3 both tend to dist(f, V)? as m,n — oo, which means this entire term
tends to 0; and since || g, — gm||§ is nonnegative, this means it must also tend to 0. So we get ||gn — gm|ly = 0
as n,m — 00.

And since we’ve found a Cauchy sequence in a closed subspace, we obtain that there exists v € V' such that
gn — v. So now we have our candidate v. Moreover, we also know that ||f — gn|l, = ||f — v||,, because
gn — v 80 f — g, — f —v. So this means

1f = vlly = dist(f, V).

In particular, we have found v such that the second statement is true. It remains to show that we get an
orthogonal decomposition — i.e., that if we take u = f — v, then v € V+. (Note that we crucially used
completeness in going from the fact that (g,) is complete to saying that it converges.)

So we set u = f — v; and we need to show that v € V+ (and then we’ll be done). In order to show this, we
need to show that for any fixed h € V, we have (u,h) = 0. For that, we use the following trick: consider
some t € R. Then we have

dist(f,V)* < |If = (v + th)]3.

This is true for every t, by the definition of the distance (because v + th is also in V, by the fact that V is
a vector space). Now we can use the Pythagoras identity to expand this — this gives

dist(f,V)* = |f = vllz + 2 Al — 26(f — v, h).

Now we have a nice quadratic, because we’ve shown that this inequality holds for all t € R. And a quadratic
can be minimized — it’s minimized when we set

— <f ) h‘) )
115

But we also know that this quadratic is minimized only when ¢ = 0, by the property that v is the element
of V that minimizes ||f — v|| (specifically, dist(f, V) = ||f —v||3). So it follows that

<f - Ua h>
B

)

and therefore (f — v, h) = 0.
And this is true for all h € V, so f —v € V1, and that’s the end of the proof. O

Student Question. What does it mean when we write n,m — co?

Answer. Here when we write ||gn — gm| — 0 as m,n — oo (in the definition of a Cauchy sequence),
we mean that for every € > 0, we can find N € N such that ||g, — gm|| < € for every m,n > N. (So we
want this distance to be small for all m and n which are sufficiently large.)

Page 73 of 196



18.675 — Theory of Probability Class by Konstantinos Kavvadias (Fall 2024)

Why do we care about p = 27 This will be useful later when we study conditional expectations — conditional
expectations has a nice geometric meaning using orthogonal decomposition, which we’re going to elaborate
on when we learn more about conditional expectations of random variables. All this stuff comes from
functional analysis, and we don’t have to know all of it; but it’s nice to have a rough idea of what’s going
on.

Student Question. Are we working in L? or £??

Answer. Probably £2. Measure-theoretically it doesn’t make a difference, because from our point of
view, if two functions differ in a set of measure 0 then they’re the same for our purposes. But to be
completely precise (e.g., when talking about completeness) we need to talk about the space with the
norm.

§9.4 The L'-convergence of random variables
We'll now talk about convergence of random variables in the space L'.

Question 9.22. Suppose we have a sequence of random variables (X,,) such that X,, — X in probability
as n — oo. Under what assumptions do we have X,, — X in £}, i.e., E[|X,, — X|] — 0?

(We defined convergence in probability earlier; this means P[|X,, — X| > ¢] — 0 as n — oo, for every fixed
e>0.)

Clearly if we have L' convergence, then we have convergence in probability by Markov’s inequality —

because Bl X
CEIX, - X|)

Pl Xy — X| > €] 0

3

as n — oo (if we assume L' convergence). So L' convergence is stronger than convergence in probability.

One might ask whether the converse is true. The answer is no, as seen by the following example.

Example 9.23
Take (Q, F,P) = ((0,1),B((0,1)), Lebesgue), and consider

Xn =n- 1(071/,”).

Then clearly X,, — 0 almost surely as n — oo (because if we fix any = € (0, 1), for all sufficiently large
n we have z ¢ (0,1/n)). In particular, this means X,, converges to 0 in probability.

But we do not have L' convergence — we have
E[X,] = npu((0,1/n)) = 1 4 0.

So X,, does not converge to 0 in L.

This means L' convergence is stronger than convergence in probability in general — convergence in proba-
bility does not imply convergence in L'. But under what conditions does it imply this?

One reasonable assumption one can use is if all the variables X,, are uniformly bounded (by some constant).
If that’s the case and you have convergence in probability, then you do have convergence in L!. (In the
above example, clearly they’re not bounded, because n — c.)
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Theorem 9.24 (Bounded convergence theorem)

Suppose that X and (X,,) are random variables. Suppose that there exists some (fixed, finite) constant

C > 0 with the property that | X,| < C for all n. If X,, — X in probability as n — oo, then X, L—1> X.

So if our random variables are bounded uniformly, then we do have L' convergence. In the previous example,
we didn’t have a uniform bound on the random variables — they could take arbitrarily big values as n grew.

Proof. The first step is to show that X satisfies the same bound | X| < C. This is not very hard — fix ¢ > 0.
Then
PX|>C+¢e| <P)|X — X,| + | Xyn| > C + €]

by the triangle inequality (which states |X| < |X — X,,| + | X,|). And by the subadditivity of the measure,
this is at most
P[|X — X,| > ¢] + P[| X,,| > C].

But the second term is 0, and the first term tends to 0 as n — oo (because we have convergence in
probability). In particular, this means P[|X| > C + ¢] = 0. And this is true for all ¢ > 0, so this implies
| X| < C almost surely (i.e., with probability 1). So X is also bounded by C.

Now to complete the proof, we can somehow apply the dominated convergence theorem in order to extract
L' convergence (that’s why we needed this bound). So we fix ¢ > 0. Then we have

EHXTL - X” = E[’Xn - X| : 1|Xn—X|2£] + EHXTL - X| : 1{\Xn—X\<8}]'

The first term is bounded by 2CP[|X,, — X| > ¢], and the second term is bounded by ¢ (because this term
is only nonzero in which case |X,, — X| < ¢, and in that case it’s something at most ¢ multiplied by 1). So

we get the bound
2CP[| X, — X| > €] +¢,

which tends to € as n — oo.

In particular, what we have shown is that

limsup E[|X,, — X|] <,

n—o0

for every ¢ > 0. This implies that the limsup is 0; and since this is a nonnegative random variable, the
lim sup equals the liminf equals 0. So we get E[|X,, — X|] — 0, as desired. O

So under the condition of having a uniform bound, convergence in probability and in L' are equivalent; but
this is not true in general.

Next lecture, we’re going to study uniformly integrable random variables.

Remark 9.25. In this proof, we only need |X,,| < C almost surely (but they’re essentially the same for
our purposes).

§10 October 8, 2024

Last lecture, we mentioned some basic definitions and facts about LP spaces and Hilbert spaces. At the end
of the lecture, we discussed the relationship between convergence in probability and in L'. We mentioned
convergence in L' implies convergence in probability, but the converse is not true; we gave a counterexample
last time. Then we tried to come up with certain conditions that guarantee convergence in probability and
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convergence in L! are independent. We saw that if we assume all the random variables are bounded
uniformly, then this is true.

But we can do better than that. We don’t need the functions to be bounded, we can instead say that they’re
not concentrated in arbitrarily small regions of our probability space. To make this rigorous, we need the
notion of uniform integrability.

§10.1 Uniform integrability
Definition 10.1 (Uniform integrability). Let X be a family of random variables. Given § > 0, define
Ix(0) =sup{E[X -14] | X € X, A € F with P[4] < d}.

We say that X is uniformly integrable if X is L'-bounded (meaning ||X ||, is bounded over all X € X)
and Ixy(0) — 0 as 6 — 0.

To explain the intuition behind the definition of Ix(d), we need a uniform bound over all elements of X', of
the expectation of our random variable when restricted to sets of small probability — we don’t want our
random variables to be concentrated on small-probability sets. We’ll see this plays a role for the equivalence
of convergence of probability and in L.

More explicitly, here’s what we mean by L' (or more generally LP) bounded random variables.

Definition 10.2 (LP-bounded). We say a family X of random variables is LP-bounded if

sup{[| X||, | X € X} < oo.

In some sense, uniform integrability is the analogous of uniform continuity but for integration.
A simple result is the following (it’s almost immediate from the definition, and is left as an exercise).

Definition 10.3. Finite unions of uniformly integrable families of random variables are also uniformly
integrable (i.e., if X1, ..., X, are all uniformly integrable, then so is X1 U--- U X,,).

So if we take any finite collection of families of random variables, then their union will also be uniformly
integrable. For instance, if you have a random variable by itself and it is L'-bounded, then it’s uniformly
integrable; so if you take finitely many L'-bounded random variables, then it’ll also be uniformly integrable.
But we can also construct more elaborate families.

Proposition 10.4

Let X be a LP-bounded family of random variables, for some p > 1. Then X is uniformly integrable.

So any family which is LP-bounded will also be uniformly integrable; this lets us construct infinite families
of random variables which are uniformly bounded.

Proof. The proof is Holder’s inequality, and in the spirit of the proof we’ve done so far. We define C =
sup{[| X[, | X € X} < oo (by the assumption X is LP-bounded). We need to show Ix(5) — 0. To do so,
suppose we fix some X € X and some A € F. Then we have

B[X|- 14] < B[ X/]/7(PL4)) /2

where ¢ is the conjugate of p, by Hélder’s inequality; and this is at most C/(P[A])'/4.

Page 76 of 196



Class by Konstantinos Kavvadias (Fall 2024) 18.675 — Theory of Probability

This is a uniform bound depending only on P[A]. And this means
Ix(5) < €M1,

which tends to 0 as § — 0. O

So this shows that LP-bounded families of random variables are indeed uniformly integrable. But here it is
crucial that p > 1; this wouldn’t be true if p = 1.

Example 10.5

Consider the family of random variables X,, = n - 1(g1/n). Then (X,) is clearly L'-bounded, because
E[|X,|] =1 for all n. But (X,,) is not uniformly integrable. To see this, we have

1
Iy <n) > E[|Xn| - 1,1/n)] = 1,
which doesn’t go to 0 as § — 0.

So it is crucial that p > 1 in the previous proposition.

Student Question. LP bounds are monotonic, right — if a function is LP bounded, then is it also L4
bounded for all g < p?

Answer. Yes.

The main topic for today will be studying uniformly integrable families of random variables, which will help
us get conditions for the equivalence of convergence in probability and in L!.

For many purposes, it’ll be useful to rephrase the definition of uniform integrability; the following lemma
lets us do so.

Lemma 10.6

The family of random variables X" is uniformly integrable if and only if
sup{E[|X| - 1{x>ky] | X € X} =0

as k — oo.

Proof. For the forwards direction, we assume uniform integrability, and we want a bound on this supremum.
For that, we use Markov’s inequality: fix X € X and k € N. Then we have

E[X]]

P||X]| > k] <
1X) > 4 < =L

by Markov’s inequality. And this is at most

sup{E[[Y]] | Y € X'}
p :

(This supremum exists because X is L'-bounded.) In particular, this tends to 0 as k — oo.

Now gien any ¢j choose § small enough such that

E[|X]|-14] <e
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for all X € X and A € F with P[A] < §. Then pick k € N sufficiently large that

ko > sup{E[|X]|] | X € X}.
This implies P[|X| > k] < ¢ (by the above bound). And then E[|X]-1,x|5;] < € (for every X € &X). This is
exactly a rephrase of what we wanted to show.

(The crucial thing here is that we can first bound P[|X| > k] uniformly in X, and then we use the definition
of uniform integrability.)

Now for the other direction, we assume that the stated condition holds, and somehow we need to extract
uniform integrability. Here, we want to show two things: that X is L'-bounded, and that I,(J) — 0 as
0 — 0.

Let’s first check that it’s L'-bounded. This is not hard to see — by the linearity of the integral, we can
write
E[IX]] = E[|X| - 1xj<] + E[IX] - 1jx /5]

The first term is at most k; we’ll leave the second term as it is. We know this term is always finite, because
k is some number and the second term tends to 0 as k — oo, so in particular it is some finite number.
Specifically, we have a uniform bound

E[X[] <k + Su%{E[|Y| Liy|>m]} < oo.
me

Now for the second condition, we can perform a similar trick — we write
E[|X]14] = E[|X| Lanqx>k)) + E[X| Langai<ry)-

The first term is at most E[|X| 1;x|>x}], and the second term is at most kP[A]. So for given € > 0, we can
pick k such that the first term is at most /2 (since this sequence converges to 0 uniformly as k — oo). And
then we can pick 0 > 0 such that ké < ¢/2. If we take any event A with P[A] < ¢, then this choice of §
ensures the second term is also less than /2, and so overall we get E[|X|-14] < € for all X € X and A
witih P[A] < §. And since ¢ was arbitrary, this completes the proof. O

As a corollary, we have the following.

Corollary 10.7

Let X = {X} be a family consisting of a single random variable X € L'. Then X’ is uniformly integrable.
Hence, any finite collection of L' random variables is uniformly integrable.

(The second statement follows from the first, because of the proposition that finite unions of uniformly
integrable families are still uniformly integrable.)

Proof. We’ll prove the first statement using the previous lemma. Here we have

EllX|1x>n] = Z E[| X 1< x|<mt1]-
m>N

The point is that this tends to 0 as N — oo, because

E[X] = ZEHX\ Lin<|X|<n+1}])-

n>1

(So this series converges because X € L', which means its tail has to tend to 0 as n — 0o.) This means the
condition of the previous lemma is satisfied, so a single random variable is uniformly integrable. O
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§10.2 Convergence in probability vs. L'

Now we know that a collection of finitely many L' random variables is a uniformly integrable family. And
we're ready to characterize when convergence in probability and in L' are equivalent — we’ll show that this
is the case if and only if we have uniform integrability. (This is the next theorem; we’ll see applications
when we study martingales in a few weeks.)

Theorem 10.8

Leet X and (X,,) be random variables. Then the following are equivalent:
(i) We have X, X,, € L! and X,, — X as n — oo in L'
(ii) (X)) is uniformly integrable and X,, — X in probability.

So if we have a collection of random variables and we know they’re uniformly integrable, then convergence in
probability and L! are equivalent. This generalizes what we proved last time — we proved the equivalence
when all X,,’s are uniformly bounded, but any such family is also LP-bounded and therefore uniformly
integrable.

Proof. The forwards direction is a standard manipulation. The backwards direction is more tricky — we
use uniform integrability to cut off X,, and X at a large value k, and then use the dominated convergence
theroem.

For (i) to (ii), we’ll first show convergence in probability. Here we’ll apply the definition and Markov’s
inequality — if we fix any € > 0, then we have

E|X,-X
<g—>0

Pl X, — X| > €] -
as n — oo. So this implies P[|X,, — X| > ¢] — 0 as n — oo, which implies the convergence in probability.
(As you can see, we've extensively used Markov’s and Holder’s inequality and several others.)

Now we need to prove uniform integrability. For this, we again fix some € > 0. Then we take NN sufficiently
large such that E[|X,, — X|] < ¢e/2 for all n > N. (We can always do this because this sequence converges
to 0 as n — oo, by assumption.)

Now we have that {X, X1, Xo,..., Xny_1,Xn} is a family of finitely many random variables, so we have
uniform integrability. And since this family is uniformly integrable, we can pick some small number § > 0
with the property that for any A € F with P[A] < §, we have E[Y - 14] < ¢ for all Y in the family. In
particular, this means E|X|-14,E|X,,|14 <eg/2forall1 <n < N.

Now we need to handle the case n > N. For this, by the triangle inequality
E[|Xn|1a] < E[Xn — X|14] + E[| X 14].
The first term is at most E[|X,, — X|] < /2 (by how we chose N), and the second is at most £/2, so this is
overall at most ¢.
So this implies uniform integrability, that Iy(§) — 0.

Now we’ll try to prove the other direction. So far, this argument is standard; we’ve used it a lot of times.
But the argument for the other direction is less standard; but eventually we will also become familiar with
that kind of argument.

The first step is to show that X isin L' — we’ve only assumed that X, is uniformly integrable and X,, — X
in probability, so it’s not obvious that X is in L'. If we had almost sure convergence we could use Fatou’s
lemma, but we don’t have this.
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But if you have convergence in probability, then you do have almost sure convergence along a subsequence.
So we will work along that subsequence to prove that X € L'. In particular, we know there exists a
subsequence of (X,,), which we call (X, ), with the property that X,,, — X almost surely as k — co. (We
can always do this — it’s not true in general that the entire sequence converges almost surely, but it is true
along a subsequence.)

And now we can apply Fatou’s lemma for that sequence. By Fatou’s lemma, we have

E[|X|] = E[liminf | X,,, |] < liminf E[|X,, |].
k—o0 k—oo

But this is finite, because we have assumed that X,, is uniformly integrable and therefore L'-bounded. So
this number is finite; this means X indeed is in L!.

Now the second thing is to actually show that we have L'-convergence. We fix ¢ > 0; we want to show that
E|X, — X| < ¢ for large n.

For that, first by uniform integrability, there exists k such that

E[[ X[ 1 1x5k3) Bl Xnl 1x,sky] <

| ™

for all n € N (by the fact that (X,,) is uniformly integrable, and an earlier lemma).

It’s tempting to use the bounded convergence theorem, but it’s unclear how to do this — we don’t have a
function which dominates everything which is in L'. So this is a time when we need to perform a trick. And
the trick is that we’re going to cut off X,, at the value k. In particular, we define X* = (X,, vV (—k)) Ak, and
likewise for X (where V and A denote the maximum and minimum). Then we have X* — X* in probability
for all k, because X,, — X in probability.

So now we have a sequence of variables which are bounded uniformly and converge in probability, and this
implies X,’j — Xk in L! (by the theorem we proved last lecture, that if we have a family of functions which
is bounded uniformly and converge in probability, then they converge in L!).

Now we need to combine this with the observation from earlier to complete the proof. First, this convergence
says we can find N € N such that E|Xﬁ — Xk‘ < ¢/3 for all n > N. This implies that for all n > N, we
have

E[| X0 — X[ < Bl|Xo — XA+ EX] 1xj54] + E[Xal 15, 54]

by the triangle inequality. And now we’re done — the first term is at most £/3, and the second and third
terms are also at most £/3. So overall, this is less than ¢, for all n > N. And that’s the end of the proof. [

So we’ve characterized the equivalence of convergence in probability and L!.

Student Question. Why does X¥ — X* in probability?
Answer. We have | XF — X*| < |X,, — X|, so

PI|XE - X¥| 2 ¢] < PlIX, — X 2 ¢
for any e.

This will be especially useful when discussing martingales.

§10.3 The Fourier transform

There’s two questions: does a Fourier transform exist? And when can we recover a function from its Fourier
transform? The Fourier transform sort of encodes a function, and when the function is nasty, its Fourier
transform is often much nicer (e.g., continuous). So that’s why Fourier transforms are useful.
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When proving things about the Fourier transform, it’s useful to think about convolution — intuitively this
lets you make a function more smooth.

We'll see that the theory of Fourier analysis will help us prove some very nice properties of random variables.

Definition 10.9 (Fourier transform). The Fourier transform of a function f: L'(R?), denoted FiR? - C,
is given by

o~

fw = | fle)e da,
Rd
where (u,z) = uyz1 + -+ + ugzq.
This is always well-defined, because the function on the inside is in L'; so this integral will always give you

some number (here a complex number).

Why introduce this concept? The point is that many computations are easier for ]?than f — f itself might
be very nasty, while f is better. In particular, it usually behaves much better under differentiation; and
there’s also convolution, which will be relevant to sums of random variables.

More generally, you can also define the Fourier transform of a measure, not just a function.

Definition 10.10 (Fourier transform of a measure). For a finite measure y on R?, its Fourier transform
is the function fi: R¢ — C given by

fiw = [ e (i),
]Rd

So we're taking the analogous integral, but integrating with respect to u instead of the Lebesgue measure.
This still makes sense because p is finite, so it gives a finite mass on the entire space, which means the
function on the inside is L'. So this gives a well-defined function.

§10.3.1 Characteristic functions
Now let’s see what this means in the context of probability. You can relate them by characteristic functions.

Definition 10.11 (Characteristic functions). Let X be a random variable. Then the characteristic
function of X is the Fourier transform of its law ux, i.e.,

6x(u) = Ee) = X (w).

This is the first connection between Fourier analysis and probability — we’re going to see all the information
about the law of X is encoded into this characteristic function. This characteristic function is always well-
defined, because the absolute value of this exponential is always 1 (even if X is not at all integrable, this
characteristic function is well-defined). And studying the characteristic function of X allows us to prove
some very nice properties.

§10.3.2 Some properties of the Fourier transform
Now we’ll prove some easy but important properties of the Fourier transform.

Proposition 10.12
We have || flloo < ||f]l;- Similarly, ||l < p(RY).
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This is immediate from the definition (if we move the absolute values inside the integral). This is good news
because we can apply e.g. the dominated convergence theorem.

Another nice property is that the Fourier transform is always continuous — even if you start with a nasty
function, you end up with a continuous one.

Proposition 10.13

The Fourier transforms f and j& are continuous.

Proof. If we have a sequence u, — u as n — oo, then we also have f(z)e!“n?) — f(x)e'™?) for every
2 € R, In other words, the functions inside the integral converge pointwise.

And now we can apply teh dominated convergence theorem, because we also have that | f (:L‘)e<“"’x>| < |f(x)],
and we know |f(z)| is in L'. So we have a collection of functions f(x)e*"=*) all dominated by the L' function
|£(z)|, and they converge pointwise to f(z)e*{®); this means the integrals (over z € R%) also converge, and

therefore f(u,) — f(u). O

You can imagine f is a function encoding f, but with more regularity — for example, you start with an
arbitrary function in L' and get a continuous function that encodes it.

§10.3.3 Convolutions

To do something useful with Fourier transforms, we also need to talk about convolutions. These will play a
crucial role in discussing Fourier analysis, as well as when proving theorems about independence.

Definition 10.14 (Convolution of random variables). Let p and v be probability measures. Then their
convolution, denoted p * v, is defined as the law of X +Y where X has law p and Y has law v, and X
and Y are independent.

Explicitly, we have
(e n)() =PX +Y € A= [ [ 1ate+ putdn)n(ay).

You can see convolution relies naturally because it’s related to the law of sums of independent random
variables; and we often want to study the long-range behavior of sums of independent random variables, so
convolutions arise naturally. Surprisingly they also arise naturally in Fourier analysis, so they're a bridge
between them.

8§11 October 10, 2024

Last lecture, we started discussing Fourier transforms. Surprisingly, if you know the characteristic function
of a random variable, then you can actually recover its law.

§11.1 Convolutions

We ended the previous lecture by defining the convolution of two measures — it corresponds to the law of
the sum of two independent random variables. That’s one reason we care about convolutions, because one
purpose of this course is to study the sum of independent random variables.

Of course, we can also define a convolution between functions, or a convolution between measures and
functions.
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Definition 11.1 (Convolution of function with measure). Let f € LP (for p > 1), and let v be a probability
measure. Then the convolution of f with v is the function f * v defined by

(f*v) / flx —y)v(dy).
By Hélder’s inequality, this function (f * v) is also in LP.
And of course we can define the convolution between functions in a similar way.

Definition 11.2. We define the convolution of two ‘nice’ functions f and g as
(f xg)(x) = L flx—y)g(y) dy

for each z € RY.

Let’s actually check that f * v is actually in LP. In fact, we’ll prove the following stronger statement.

Proposition 11.3
For any f € L? and v a probability measure, we have || f * v||, < || f]],.

Proof. We have || f xv|} = Jgal Jga f(x — y)v(dy)|P dz. We can move the absolute value inside the integral

to get ,
irevip= [ ([ - wan)”

Now because v is a probability measure, we can use Holder’s inequality to bring the pth norm inside — this

L |1 = vy da

And then we can apply Fubini’s theorem (or even Tonelli’s theorem, since this is a nonnegative function) to
swap the order of integration. If we do so, then we obtain

/Rd /Rd |f(x — )P dzv(dy).

But the pth norm is translation invariant (so the translation of y doesn’t affect it), which means we get

IS - v(@®E) = I £1l5-

This means f * v is indeed a LP function, and its pth norm is bounded by that of f. O

is at most

§11.2 Fourier transform of a convolution

The point is that when we take a Fourier transform of the convolution, some very nice things happen.

Proposition 11.4

We have (ﬁ)(u) = f(u)v(u) for all u € RY.

So the Fourier transform of a convolution is just the product of Fourier transforms. The proof comes from
just following the definitions, but the property is quite important.

Page 83 of 196



18.675 — Theory of Probability Class by Konstantinos Kavvadias (Fall 2024)

Proof. By definition, we have

Pt = [ ([ 1= nwtan) e as

Now again we can apply Fubini’s theorem to change the order of integration — so that we first integrate
with respect to z, and then y. Then we get

/Rd < » fla — y)eltn) d:c> v(dy).

And now let’s analyze what we have inside; we can rewrite this as

L ([ fa= et y)) - oy
Rd R4

(by adding and subtracting y from the inner product). (We can go from dx to d(x — y) by the translational
invariance of the Lebesgue measure.)

~

The first term on the inside is, by definition, just f(u) (because the Fourier transform is translation-
invariant); so we get

f(u) et{wy) v(dy).
Rd

~ ~

But the f(u) term is constant, and we end up with f(u)v(u) (by the definition of v). O

So the Fourier transform has very nice behavior on convolutions.

This property also holds when we replace f by another probability measure; that’s important for studying
sums of independent random variables. We'll state it as a proposition (the proof is quite easy).

Proposition 11.5

Let p and v be probability measures, and let X and Y be independent random variables with laws g
and v, respectively. Then we have

— o — o~

pxv = px+y (u) = fi(w)v(w).

Proof. Again, we just apply the definitions combined with independence. First, last lecture we saw that
(T77)(u) = B[X+Y)] = E[eiwX) . gilu)],
And since X and Y are independent random variables, this is just the product of expectations
E[e“XNE[e! )],
But by definition, these tow terms are ji(u) and v(u), respectively. O

So this boils down to just the definition of the Fourier transform and the independence of X and Y.

So now we can see why convolutions play an important role in probability and Fourier analysis — because
they behave very nicely under Fourier transforms.
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§11.3 Fourier inversion

These are the link between convolutions and Fourier analysis. The next topic we’ll try to address is the
Fourier inversion formula — one of the purposes of Fourier analysis is to start with a nasty function and
encode it using a simpler function. That’s the Fourier transform, but it’s nontrivial to see that the Fourier
transform determines the function — that if we have two functions with the same Fourier transform, they
have to be the same Lebesgue-almost everywhere. In fact, we have something stronger — we have an explicit
formula for how to recover the function.

Theorem 11.6 (Fourier inversion formula)
Let f € L', and suppose that fe L' as well. Then we have

_ 1 Y —i(u,z)
f(z) = 7(27r)d i flue du

for Lebesgue-almost every .

(We only care about functions up to a set of Lebesgue measure 0.)
You can see that this means whenever we have a Fourier transform, we can recover the full function.

To prove this, we need several steps. We'll follow the same method we used with the Lebesgue integral —
we first prove it for simpler functions, then approximate more complicated functions by simpler ones (using
the convergence theorems from earlier to justify the change of integrals).

The first step is to show that this formula is true for Gaussian random variables. Then we’ll show this holds
for Gaussian convolutions. And the third thing is to show that any function is approximated by Gaussian
convolutions. So it’s a similar approach to integration, but the things we use to approximate are different.

§11.3.1 Gaussian densities
Definition 11.7 (Gaussian density). The Gaussian density with variance ¢ (for any ¢ > 0) is the function

1 —|z|% /2t
(@) = g <

(for every z € RY).

When t =1 and d = 1, we get the density of the standard normal distribution; so this is a generalization to
higher dimensions. This is equivalently the density of v/t Z, where Z is the d-dimensional vector consisting
of d independent normal Gaussians — i.e., Z = (71, ..., Zg) where Z; ~ N(0,1) are independent. (So that’s
another way to interpret this function g;.)

The idea is to first prove 11.6 holds for Gaussian densities. Then we’ll show it holds for convolutions of
such Gaussian densities. And then we’ll approximate arbitrary functions by convolutions of functions of this
type, and that’ll finish the proof.

§11.3.2 Characteristic function of Gaussians

To prove the first step, we actually need to compute the Fourier transform of g;; so that’s the first step. We're
first going to compute the characteristic function corresponding to a standard normal in one dimension.
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Proposition 11.8
Let Z ~ N(0,1). Then its characteristic function is given by ¢z(u) = e~%"/2.

Proof. By definition, we have ‘
¢z (u) = E[e"7]

(in one dimension, the inner product is just the standard multiplication of real numbers). By the definition

of the density, this is
1 iur  —x2/2
— [ e dx.
2T /R

How can we compute this? We know ¢z has this form. One thing we can do is actually compute the integral
(e.g., applying Cauchy’s residue theorem or other tools from complex analysis). But there’s another way —
to prove that ¢ is the unique solution to a differential equation, and then use theory from ODEs to find
the exact form of that solution.

One observation is that we can differentiate with respect to u (because we have a bounded function inside
the expectation, so we can apply the dominated convergence theorem). If we differentiate with respect to
u, then we get

; 1 , )
Py (u) = Eliue?] = — [ ize'®e™® /2 4o
V2T Jr

But this is just —u - ¢z(u) (this comes from integration by parts). This means ¢ satisfies the nice and
simple differential equation

Pyp(u) = —u- ¢z(u).

But we know what the solutions to this ODE are — if this is true, then we know

U2
log(wz(u)) = -5 +C

(where C € C is some constant, and log refers to the complex logarithm). This implies (taking the expo-
nential of both sides) that ¢z(u) = Ae=*/2 where A € C is some constant.

Now in order to complete the proof, it suffices to find the constant A. But for this, we can just set u = 0;
we have

A=¢z(0)=E[e"] = 1.
And this implies ¢ (u) = e~*/2, as desired. O
So we know the exact form of the characteristic function of a Gaussian. There are many other ways to do

this proof; for example, you can also compute the integral directly using complex analysis (but this solution
is cleaner).

Student Question. How do we know ¢z is differentiable?

Answer. You can show this using the bounded convergence theorem.

Now that we have this form, we can actually compute the Fourier transform of g;.
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Proposition 11.9
Let Z = (Z1,...,Zq) where Z; ~ N'(0,1) and Z1, ..., Z4 are independent. Then /¢ - Z has density

1 2
ol /2t

ge(w) = W

and the Fourier transform of g; is given by

for all w € R% and ¢t > 0.

So the Fourier transform again has this nice form. We’re going to do this by combining the previous result
with independence.

Proof. By definition, we have

where Z is as given. And this is just
d
H eiuJ- \/EZ]
j=1
And since the Z;’s are independent, the expectation of the product is the product of expectations; this
means
d A d
gi(u) = H]E[ewﬂ'ﬁz H \[uj
j=1 j=1

But we know this, since the Z;’s are all standard Gaussians; so this is

d
H o312 _ ulft/2 ]
j=1
Remark 11.10. By definition g;(u f]Rd gi(w e{w®) dx. But we also know g, is the density of Z. So

this is just E[e** iz )] by the deﬁnltlon of the expectation.

Now let’s prove the Fourier inversion theorem in the case of g;; we can do this because we have an explicit
description of the Fourier transform.

Proof. First, we can write g; as
Gilu) = 2m) 272 - gy (w),

just by rearranging the picture with teh explicit form of th Fourier tranfsorm of ¢g;. If we take the Fourier
transform on both sides, this implies that

gi(u) = (2m)%g(u)

(just by doing some manipulation). This is not exactly the same as saying the Fourier inversion formula
works, because there we're integrating against e~ (“%) and not e“* . But this is fine — tbe Gaussian
distribution has symmetry.
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Writing down the above equality as an integral (so that we can see more clearly that it’s almost the Fourier
inversion formula), we have

I = 1 ~ i(u,x) dz
gi(u) = Wﬂt(u) = W/Rdgt(x)e< ) da

This is almost the Fourier inversion formula, except that the Fourier inversion formula has —i instead of
+i. But for that, we can just use symmetry — we have g;(u) = g;(—u), and if we replace u with —u in t his
formula, then we just get

1 n —i{u,x
gr(u) = gi(—u) = )t /Rd fi(@)e ) dg. O
Writing down this as a lemma (which we just showed):

Lemma 11.11

The Fourier inversion formula holds for the Gaussian density function.

So that’s the first step of our proof of the Fourier inversion formula for arbitrary L! functions.

§11.4 Theorem 11.6 for Gaussian convolutions

The next step is to show theinversion formula holds for f * g;; then we’ll prove the general case by approxi-
mating with functions of this form.

Definition 11.12 (Gaussian convolution). Let f € L'. Then a Gaussian convolution of f is a function
of the form f * g; for some ¢t > 0.

So we're taking any g¢; (as above) and convolving it with f. The point is that we're going to prove the
Fourier inversion formula holds for functions of this form; and that any function f can be approximated by
functions of this form.

Before we do this, we’ll need some nice bounds on the L' and L norms of this function. First, we have

LF* gelly < I f11y

by definition. So f * g; is L'-bounded. We also have pointwise bounds, in the sense that
- /2, 1
[(f * g)(z)| = Rdf(:r—y)e :

—=d
(2mt)d/2 Y
But the right-hand side is at mot
2nt) % [ |f@ )l dy.
Rd

And by the translational invariance Of the Lebesgue measure, this is just (27t)~'/2| f||,. This in particular
implies

1F * gilloe < 2mt)=“2If]],

As t — 0, this bound gets worse and worse, as we can see from the formula. Why? As ¢t — 0, we’ll se that
this approximates the function f; so if f is unbounded, you cannot expect the upper bound on |f * g;| to
go to 0 uniformly.

We have bounds for the convolution now, but we can also have similar bounds for the Fourier transform for
the convolution — we have

[7xal, =172, < cme- 4]
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In an analogous way, we also have the same bound on the L* norm.

Now we can actually prove that the Fourier iinversion formula holds for f % g;. That’s the second step we
mentioned earlier.

Lemma 11.13

The Fourier inversion formula holds for Gaussian convolutions f * g;.

(Again,t he strategy was to first show that the Fourier inversion formula holds for g¢;, the density of a
d-dimensional Gaussian with variance ¢. The second step is what we’re doing now, to prove it for this
convolution. And the third step is to take ¢ — 0, and say that this approximates f.)

Proof. This will be done by a direct computation. We have
(f*ge)( / flx—y)ge(y) dy.
But now we know the Fourier inversion formula holds for g;, so we can replace g; with its Fourier transform;

then we get
1 .
—_ [ 1 _7/<u7y>
=0 (G [ w0 ) an

Now we do the usual thing where we use Fubini’s theorem to swap the order of integration; then we end up

with 1
(@n)? /Rd /Rd f(@ = 9)gi(w)e™ ") dy du.

And on the inside integral we can separate the random variables — we multiply and divide by e~ “%%) and
then this is just equal to

(271r)d/Rd ( i fx —y)etwe) dy> - gi(w)eiu, z) du.

And now by the trnaslational invariance of the Lebesgue eausre, the first term is just the Fourier transform

of f at u, so we get that this is
1 Yy i{u,x
a7 L, Fdee)

But the first two terms are just the Fourier transform of the convolution, so this is

1 —i(u,x)
) du.
(271') / (f gt)( ) , AU
So we’ve proved that the Fourier inversion formula indeed holds for Gaussian convolutions. O

(We're using the bounds on magnitudes from earlier to justify Fubini’s theorem — if we put absolute values
on everything then we’d have a finite integral.)

§11.4.1 Approximating functions by Gaussian convolutions

To complete the proof, we're going to see that in a certain nice way, f is approximated by ¢g; ast — 0. We're
not going to prove this because the proof is quite techncial and out of scope, but we’ll state the result and
see how it’s used to deduce the Fourier inversion formula. (The proof is probably in the notes on Canvas.)
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Lemma 11.14
Suppose that f € LP for 1 < p < co. Then

I(f * g¢) = fll, =0

ast — 0.

So Gaussian convolutions are an extremely useful tool because they help us approximate functions in a
certain nice way. Now we’re going to somehow extract the Fourier inversion formula in general form, by just
taking limits.

Proof of Fourier inversion formula. Set f; = f * g;. Then we first have that

~

~ R S
Fi(w) = Fu)gi(u) = fu)e 12,
We also know that || f; — f||; = 0 as t — 0 (by the above statement).

This holds without making any assuptions on j/t\ But at this point, we use the assumption that fe Lt —
we’ll see that this is useful to apply the dominated convergence theorem and change the order of integration
and summation.

So now we apply the Fourier inversion formula on f; to write
fi(x) = (2m)0 | Flupe 2ol gy,
Rd

(We saw that the Fourier inversion formula is true for f;, and we know the explicit form of the Fourier
transform of f;.)

We want to get exactly the same thing, but with f; replaced by f. We need to justify this by taking limits
as t — 0; and this is where we use the fact that f € L' (to see that this integral converges to the same
integral with ¢ = 0). For this, we know this is dominated by the L' function

)

So we can apply the dominated convergence theorem, which tells us that

‘ ~

f(u)e—\u\2t/2€i(u,ac>

fulz) — (2m)~ / Flw)e o) du,

So fi(x) converges to the integral on the right-hand side as t — 0.

Now, we know that f; converges to f in L!, but we don’t know it converges almost everywhere. But we do
know that it converges almost everywhere along a subsequence. In words, because || f; — f||; — 0, we can
find a subsequence (t,) such that ¢, — 0 as n — oo and f;, — f as n — oo Lebesgue-almost everywhere.
But we also know that f; converges Lebesgue-almost everywhere to the above function. So f has to be
equal to that function Lebesgue-almost everywhere — i.e.,

flay = 2m) [ Fle ) d
R4
for Lebesgue-almost every z € R?. And that’s exactly what we wanted to prove. O

So we’ve proven the Fourier inversion formula; this is very useful because if you know the Fourier transform,
then you can recover the function.
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Student Question. We know this holds for L' functions, but is there a version of this for measures
— a notion of recovering a measure from its Fourier transform?

Answer. Yes. This is more or less equivalent to saying that the characteristic function determines the
law.

Student Question. When this equality fails, does it fail because of divergence?

Answer. It could, but really the function could be whatever you imagine on a set of measure 0, and
you’d still get the same Fourier transform.

Next lecture, as we can imagine, we’re going to focus on the Fourier transform in L?. There, there are some
nice things going on — we’ll see that the Fourier transform for L? functions behaves very nicely.

8§12 October 17, 2024

In the previous lecture, we completed the Fourier inversion formula. This is a very important theorem
because it gives a way of recovering the original function — we start with a function that can be very nasty
(but is in L'), and as long as its Fourier transform is in L' as well, we can recover the function. And the
Fourier transform may satisfy much better properties (e.g., continuity or even differentiability).

We’re not going to go very deep into Fourier analysis, but we will use the Fourier inversion formula to deduce
properties of random variables.

§12.1 Fourier transforms in L?

Before we do this, we’ll talk a bit about L? — L? spaces are special because there’s a notion of inner
products. And there we’ll see that the Fourier transform extends to a Hilbert space automorphism.

Theorem 12.1

There exists a Hilbert space automorphism F:L? — L2 such that F(f) = (2r)~%2f for every f €
L'nrL?

(Here we're working in R?.)
So if you take the Fourier transform in L? and evaluate it at functions f which are in both L! and L? (the
Fourier transform only makes sense for functions in L'), then this extends into a Hilbert space isomorphism.

Student Question. Isn’t L? contained in L' ?

Answer. No, because here we’re not in a finite measure space. If the space is finite, you can apply
Hélder’s inequality to show L? C L!, but in general (in infinite-measure spaces) this is not the case.
(Here we're working with R? with the Lebesgue measure.)

Proof. (This uses some basic knowledge from topology and functional analysis, but we will just state the
results we need.)

We define a function fo: L' N L? — L? by f — (27?)_d/2f; this is a well-defined function.

The Plancherel identity states that fo preserves L?-norm — we have ||fo(f)|l2 = ||f|l2 for all f € L' N L2
(We'll take this for granted — the L? norm is somehow preserved under Fourier transforms, modulo some
constant.) This means fj is an isometry, in the sense that it preserves norm.
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We also know that L' N L? is dense in L?. This can be taken as a black box, but it can also be proven using
what we know — any function in L? can be approximated by simple functions, and simple functions are in
both L' and L?.

So by a result from functional analysis, this means fy extends uniquely to an isometry F: L? — L?, which is
the isometry we want. In general, if you're in a Hilbert space and you have an isometry defined on a dense
space, it can be extended to an isometry of the entire space. More generally, this also works with complete
metric spaces.

So this is our function F; to complete the proof, we need to show that F' is onto, meaning that for every
g € L?, we can find f € L? such that F(f) = g.

For this, we apply Fourier inversion — by the Fourier inversion formula, we have that F (V) =V where
V={fer’|ffel'}.

So this space V is invariant under F. More specifically, we have that if f € V, then F*(f) = f. (Note that
applying it twice gives the function F?(f)(x) = f(—x) by the definition of the Fourier transform and the
Fourier inversion formula (where you swap signs in the exponential), so doing it four times gets f.)

This gives that V C F(L?). And since V is dense in L? (this can be shown by showing that V contains
all Gaussian convolutions, and we have shown that Gaussian convolutions are dense in L?), we deduce that
V = L2 is contained in F(L?) as well. And since F' is an isometry, this is just F((L?). So we get that
F(L?) = L%, which completes the proof (our transformation is also a bijection). O

Here we have crucially used the structure of L? to say we have an isometry (the Plancherel identity is only
true in L2, not for other values of p). So we have a very nice identity that lets us extend the Fourier
transform to the entire space, even though it’s not originally defined on the whole space.

§12.2 Characteristic functions

We'll now see a first application in probability theory. The main applications lie in characteristic functions
of random variables.

Theorem 12.2

The characteristic function ¢x of a distribution px of a random variable X determines pux — i.e., if X
and X’ are random variables and ¢x = ¢x/, then pux = pux.

So this says that if you know the characteristic function, then you know the distribution. This will follow
from Fourier analysis. (We don’t need to know the proof, only the result, but we’ll briefly sketch the proof.)

Proof sketch. First, if we want to determine px, we want to determine px(A) = P[X € A] for all A € B(R)
(we can also work in RY, it doesn’t matter). One way to write this is as E, [14]. It suffices to do this in the
case where A is an interval, since if you have two Borel measures on R that agree on intervals, they have to
agree everywhere (it’s a m-system generating the Borel o-algebra).

So everything boils down to how to approximate the indicator variable of an interval. And you can do that
using continuous functions. Suppose we have an interval [a, b]; the indicator function looks like a straight
line here, and 0 everywhere else.

To approximate this function, we can just add a very small continuous function close to a and b — we can
take the points (¢ — 1/n,0) and (b + 1/n,0), and draw a straight line from (a — 1/n,0) to (a,1) and so
on. Now this picture is the graph of a continuous function — it’s 0 outside the interval [a — 1/n,b+ 1/n],
it’s linear on the first segment, constant on the middle segment, and linear on the last. So this is some
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continuous function g,; and we have g, — 1(4) almost everywhere as n — oo. And everything is bounded
uniformly, so by the dominated convergence theorem we obtain

:U’X((av b)) = lim EMX [gn]

n—o0

This means if we know E, [gn] (the integral with respect to px, which is the same as E[g,(X)]), then we
know this measure px.

And how can we obtain this value? We can just apply Fourier inversion. If we do this, we get that ¢x
determines E[g,, (X )] — if two characteristic functions are equal, then these quantities E[g, (X )] will be equal
(for the two random variables). Why? One way to write E[g,(X)] is as

E[gn(X)] = /R In(y) dpx ().

If you apply Fourier inversion, you can recover this quantity by the characteristic function. The point is
that the Fourier inversion formula also works for measures as well. And that’s the idea of the proof. You
apply Fourier inversion to determine the values E[g,(X)], and this also determines px((a,b)). And since
the set of intervals is a w-system, if two measures agree on a 7-system they have to agree everywhere.

We’ve hidden some details, specifically how exactly the Fourier transform of the measure determines the
measure, which is not obvious. But it’s exactly the same thing we’ve done so far — in the same way that
the Fourier transform encodes the function, the Fourier transform of a measure encodes the measure. So
saying the characteristic functions are the same means that the Fourier transforms of the measures are the
same. O

Another application of Fourier analysis is the following.

Theorem 12.3

If ¢x is integrable (where X is a random variable in Rd), then px has a bounded, continuous density
function, given by

Fxw) = @n | ox(we ) du

In general, we mentioned in some previous lecture that it’s not true in general that distributions of random
variables have a density function; in general it’s not true. But if you assume the characteristic function is
integrable, then there is a density function, it’s continuous, and it has this form.

Proof sketch. We start with a random variable X, and the idea is to approximate it. To do so, we consider
the random variable X + v/tZ, where Z ~ N'(0,1). As t — 0, this will converge to X. And we commented
in the previous lecture that adding Z is the same as modifying the density of X, if it exists (but we don’t
yet know it exists). So what we're going to do is the following.

First, we know X + v/tZ has a bounded, continuous density function. Then if we apply Fourier inversion to
the density function of X + v/1Z, it’s given by

folx) = (2m) ™ . dx (w)e Tl t/2e=itwa) gy,
R

Here we’ve just applied the Fourier inversion formula. And now we can take limits. We know we can bound
the function on the inside by |¢x|, and we know this is integrable (because we assumed ¢x is integrable).
So that means this quantity has a limit. The integral pointwise converges to ¢ X(u)e_i<u’x>, so this implies
fi(z) — f(x) pointwise, where

f@) = @r | ox(we ) du
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So what we’ve done is we don’t know the density of X exists, but we know the density of X + /tZ exists
and is very nice. And we can apply Fourier inversion and get this expression. And then we prove that this
has a limit, and deduce that the limit exists. And the limit has to be the density function of X. O

So we have a criterion that ensures a random variable actually has a density function, which in general is
not true (if ¢x is not integrable, there are examples where you cannot find the density function).

Student Question. How do we know X + \/tZ has this density?

Answer. They’re independent. And the law of the sum of independent random variables is the convo-
lution of the measures; so we convolve the law of v/tZ (which is very explicit) with the law of X. The
convolution of a function (here v/tZ) with a measure (here py) has a density, and you can compute it
explicitly.

(We’ve also skipped some of the details, which we can study on our own; we won’t be asked for the proofs,
but it’s nice to have a rough idea.)

§12.3 Weak convergence
Weak convergence is another notion of convergence that also arises naturally.

Definition 12.4 (Weak convergence of measures). Let p and (u,) be Borel probability measures. We
say that u, — p weakly as n — oo if p,(g) — u(g) as n — oo for all bounded continuous functions g.

So we have weak convergence if and only if the integrals of bounded continuous functions converge. Imme-
diately, you get the analogous definition for weak convergence of random variables (the random variables
converge weakly if and only if their distributions converge weakly).

Definition 12.5 (Weak convergence of random variables). Let X and (X,) be random variables taking
values in R?. We say that X,, — X weakly as n — oo if and only if pux, — px weakly.

So this is the notion of weak convergence for random variables — they converge weakly if and only if their
distributions do. So far we’ve seen almost sure convergence, LP convergence, and convergence in distribution;
and now we have weak convergence.

It’s tempting to ask for the relationship between convergence in distribution and weak convergence. In one
dimension they’re actually equivalent (this is not obvious, and may be on a problem set). But the advantage
of weak convergence is that it makes sense in higher dimensions as well; that’s why sometimes we prefer to
work with weak convergence of random variables, because often the random variables we’re dealing with are
multidimensional (e.g., we might have a multidimensional Gaussian vector).

In general, it’s quite useful theoretically. One reason is it’s related to convergence of characteristic functions
— somehow weak convergence of random variables is encoded into the behaviour of the characteristic
functions. We'll state this and briefly sketch the proof (we don’t have to know the proof, but it’ll be useful
if we want to get more familiar with the techniques).

Theorem 12.6

Let X and (X,,) be random variables in R?. If ¢x, (u) — ¢x(u) for all u € R? (i.e., the characteristic
functions converge pointwise), then px, — px weakly.

So if we have pointwise convergence of the characteristic functions, then we have weak convergence. This is
important, because it’ll be important later when we prove the central limit theorem — we’re going to use
this characterization.
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Proof sketch. We'll apply the same method as before: it suffices to prove that E[g(X,,)] — E[g(X)] asn — oo
in the case where g is a smooth and compactly supported function in C*°. (Here we want our function to be
smooth, which means it can be differentiated infinitely many times; and we want it to be 0 outside a large
cube.) This is not exactly obvious, but we can see a picture in one dimension: if you again take an interval
and your indicator function 1, ), and you again write down a — 1 /n and b+ 1/n, before we just considered
linear segments. But we can always make them smooth (by drawing a smooth curve instead of a straight
line). (This is an approximation in L!.)

To do this, we again use the same random variable X + tv/Z from before (where t > 0) to approximate X,
where Z ~ N(0,1) is independent from X. Then if we apply Fourier inversion for this new random variable
and the convergence of the characteristic functions ¢x, to ¢x, we get E[g(X,, + VtZ)] — E[g(X + VtZ)].
So you have this convergence for all t.

Finally, you check that

Elg(Xy +V12)] — E[g(X,)]
is small (uniformly in n), using the fact that ¢ is smooth — specifically, we get a bound that only depends
on t and that tends to 0 as t — 0.

So the idea is to first prove the convergence with tv/Z added, adn then show that these things are very close
to the one without ¢ (uniformly in n, as t — 0). O

(This property will be useful when we’ll prove the central limit theorem, about sums of independent random
variables.)

Remark 12.7. The reverse is also true (and is fairly obvious), because the characteristic function is the
integral of a bounded function.

§12.4 Gaussian random variables

Gaussian random variables are very important in probability, so we’ll now look at them more carefully. They
appear in central limit theorems and generally whenever you have sums of independent random variables
— that’s why they’re quite important and they appear in nature everywhere.

Definition 12.8 (Gaussian random variable). A random variable X (in one dimension) is Gaussian if
there exists some pu € R and o € (0,00) such that the density of X is given by

1

2mo?

o—(@—1)?/202

fz) =

We write this as X ~ N (u,0?).

Proposition 12.9
If X ~ N(u,0?), then E[X] = p and Var[X] = E[X?] — E[X]? = 0. Moreover, for all a,b € R, we have
that aX + b ~ N(ap + b,a%0?). Finally, we have

bx (l’) — eiuu—u202/2‘

So we have some kind of linearity, and we have explicit formulas for its mean, variance, and characteristic
function.

The first two statements are fairly standard manipulations with integrals (you can find them on Wikipedia
or in the lecture notes); we’re only going to prove the last statement, which is less obvious.
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Proof. The main observation is that if X ~ A(u, 0%), then by the linearity property, we can write X = oZ+pu
where Z ~ N(0,1). And we know the characteristic function for Z — we computed earlier that

bz (u) = e /2,
This implies that
dx (u) = B[] = (UrE[eTWZ) = it . ¢/ (o) = MHuio"/2,
which is exactly what we need. -

(This is straightforward because we already did the hard work of computing ¢z in some previous lecture.)

§12.5 Multidimensional Gaussians

We're going to state and prove similar properties for Gaussians in higher dimensions, because we’ll need
those. Before we do that, we should define them.

Definition 12.10 (Gaussian random variable). We say that X is a Gaussian on R™ if (u, X) is a Gaussian
on R for all u € R™.

Now we'’re going to actually compute the expectation and variance and characteristic function for an arbi-
trary Gaussian in many dimensions.

Theorem 12.11

Let X be a Gaussian in R"™, and let A be an m x n matrix and b € R™. Then:
(i) AX +bis a Gaussian on R".

(ii) X € L?, and its law puyx is determined by its mean y = E[X] and its covariance matrix

V = Var[X] = (Cov(X;, Xj))i,je[n]-

(iii) We have
dx(u) = i) —(u,Vu) /2.

(iv) If V is invertible, then X has a density, given by
1
fix() = 2m) 2 den(V) 2 exp (~ 50 = 0 Vo - ).
(v) If X = (X1, X2), then X; and X, are independent if and only if Cov(X1, X2) = 0.

For (i), linearity in one dimensions means we multiply by a number and add a number; in many dimensions
we multiply by a matriz (and add a vector). For (ii), in one dimension the covariance matrix consisted of a
single number, namely, the variance; here you replace that by the covariances of pairs of entries.

And (v) is a really important property of Gaussians — they’re independent if and only if their covariance
is 0.

Here we have a bunch of properties; we're going to prove them, and we’re going to use most of them in this
course.
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Proof of (i). If we fix u € R™, then we have
(AX 4+ b,u) = (AX,u) + (b,u) = (X, ATu) + (b, u).

And this is Gaussian — ATw is just a vector, so we know by assumption that the first term is a Gaussian,
and the second is a constant; if we add a constant to a Gaussian, then we still get a Gaussian. So (AX +b, u)
is indeed a Gaussian. O

Proof of (ii). If we write X = (X1,...,X,), then we have |X|* = |X1|> 4+ --- + |X,|* by definition of the
norm. This means

E[IX["] =) E[X;|’].

But this is always finite, because we know one-dimensional Gaussians are in L? (and the finite sum of finite
quantities is also a finite quantity.) O

Proof of (ii). Let p = E[X] = (E[X1],...,E[X,]) and V = Var(X) = (Cov(X;, X;)). Then for v € R", we
have
E[(u, X)] = (u, ),
Var({u, X)) = (u, Vu).

(This is not hard to check, and follows by definition of the covariance matrix.) By the one-dimensional case,
this implies (u,2) ~ N({u, u), (u, Vu)). And this means we know xx(u) = E[e/{*®)], because (u, X) is a
one-dimensional Gaussian and we know the characteristic function of such a thing; so we get

XX (u) _ ei(u,wf(u,Vu)/Q.

And since this is true for every u, we get that u and V determine the characteristic function of X, so they
determine the law of X as well. d

8§13 October 22, 2024

§13.1 Gaussian random variables

Last class, we stated a theorem about several important properties of the Gaussian random variable. Impor-
tantly, it’s closed under linear transformations — if X is Gaussian, then AX + b is also a Gaussian random
variable, though with a different variance and mean. We also saw that if you have a Gaussian random
variable and you know its mean and variance, then you can recover its law.

Theorem 13.1

Let X = (Xi,...,X,) be a Gaussian random variable on R"™. Let y = E[X] be the mean of X and V'
be the covariance matrix of X, defined as V;; = Cov[X;, Xj].

(iv) If V is invertible, then X has a density, given by
1
) = @) "2 det(V)2exp (~5o - Vo - ).

(v) If X = (X1,X2) (i-e., n =2), then Cov[X;, Xo] = 0 if and only if X; and X5 are independent.
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If X is Gaussian, then all its components X; are also Gaussian, but they’re not necessarily independent
— there could be correlations between them. In general, it’s not easy to find the density of X — it has a
complicated form. But when V is invertible, it does have a nice form.

The last property is really important — if you want to check whether two Gaussians are independent, it’s
enough to just check their covariance. One direction is obvious — if they’re independent, then the covariance
has to be 0, because E[X;X3] = E[X;]E[X3]. But the point is that the converse is true as well.

Remark 13.2. This is true only for Gaussians — it’s not true for other random variables.

Proof of (iv). The idea is to start with a boring Gaussian vector — one whose components are independent
Gaussians — and somehow construct X as an appropriate linear combination. In particular, let ¥ =
(Y1,...,Y,) where Y; ~ N(0,1) are all independent. Then we know the density of Y — we’ve seen how to
do this in previous lectures — and it’s given by

r(o) = )" 2exp (3 )

for every x € R™. (This is something we’ve shown.) Now we need to somehow construct X given Y, as an
appropriate linear combination. For this, we define the random variable

X =V"2y 4+

(note that V'/2 makes sense because V is nonnegative definite); this is some random variable in R”. We’ve
seen that linear combinations of Gaussians are Gaussian, so X is a Gaussian. And we also gave an explicit
description of the mean and variance of linear combinations of a Gaussian vector; we have E[Y] = 0, so
E[X] = p, while Var(X) = V. So this means X has the same mean and same covariance matrix as X; and
this means X has the same law as X.

Student Question. Why can we take V/??2

Answer. It’s a nonnegative definite matrix. You don’t need invertibility here; we’ll see where invert-
ibility comes in later.

So this means X has the same distribution as X. In particular, this means fx = fy.

Now we have to compute integrals — we have a transformation Y — VY2Y + 1, so we have to change
coordinates using this linear transformation and apply the Jacobian and stuff. If you do this, you end up
with the formula we have (it’s the Jacobian which is where you get the determinant). Eventually, what you
do is get that

P[X € A =P[Y € V_/2(A - )],

and this probability is explicit — it’s
(277)_”/2/ fy(z)dz.
V=2 (A—p)

And now you change variables here, because you have a linear transformation, and apply the Jacobian. If
you change coordinates here, then you obtain that this probability is the integral of the original function
over A.

Student Question. Could you also use the pushforward measure?

Answer. Yes; that’s exactly what’s going on (when you change variables) But there’s also a formula in
n dimensions for how to transform integrals using the Jacobian and something like that.
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(We will omit the computations, but the point is that the main idea of the proof is to start with a normal
Gaussian vector and take linear combinations to obtain a Gaussian with the same law as X.) O

Proof of (v). One direction is immediate — if X; and X5 are independent, then E[X;X5] = E[X;]E[X3], so
Cov[ X1, Xa] = 0.

What’s less obvious is the other direction — that if Cov[X7, X3] = 0 then they’re independent. The main
point is that covariance 0 means the non-diagonal entries of the covariance matrix are 0, so

. V11 0
V= |: 0 ’022.:|

This implies if we take u = (u1,u2) € R?, then we have
<u, Vu> = UIV11U1 + U2V22US.

And here v;; = Var[X;] (by the definition of the covariance matrix, since Cov[X1, X2] = Var[X}]), and
v9g = Var[Xs]. So we can also write this inner product as

(u, Vu) = u? Var[X1] + u3 Var[Xy).

And this shows the characteristic functions factorize; if you manage to prove that ¢x = ¢x, ¢x,, then you
have independence. (There are many different ways to characterize independence, and one is to prove the
characteristic function factorizes; this is what we’re going to use.)

We’ve shown in a previous lecture that

dx (u) = etlwm =gV

And then we can just expand using this, and we get

. 1 .
ezul,ul—iu% Var[Xl]ezuzug—%u% Var[Xs] )

But the two terms here are just ¢x, (u1) and ¢x, (uz2); so we get

ox(u) = ¢x, (u1)Px, (uz).

So we’ve shown the characteristic function factorizes, and this implies X; and X5 are independent. O

We’re going to use these properties later when proving the central limit theorem, which states the long-range
behavior of sums of independent random variables roughly behaves like a Gaussian.

§13.2 Ergodic theory

This concludes the chapter on Fourier analysis and Gaussians. Now we’re moving towards the proofs of the
main limit theorems. But we’re not exactly done, because we need a few more other tools. These tools come
from ergodic theory. We shouldn’t be terrified by this phrase, because we won’t do much with it; we’ll only
focus on the tools we need. Ergodic theory is an entire branch of math with lots of interaction with other
things (number theory, analysis, combinatorics, probability), but we’ll focus on things.

Intuitively, ergodic theory is the study of long-run behavior of a system under the application of a map (so
you have a map and apply it multiple times and see what happens). For example, you might look at the
evolution of the position or velocity of a particle.

We’re going to state and prove some ergodic theorems which will be very useful when proving the strong
law of large numbers.
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§13.3 The setup

In this setup, we have a measure space (E, £, i) (where E is a set, £ a o-algebra on F, and p a (not necessarily
probability) measure). And we also have a measurable map 0: E — E which is measure-preserving.

Definition 13.3. A map 6 is measure-preserving if u(A) = u(6=1(A)) for all A € €.

We’re going to study particular systems of this form, and we’re going to see how and why they’re useful.

Example 13.4

Take (E, &, ) = ([0,1),B(]0,1)), Lebesgue) (in this case, the measure is a probability measure). Then
for every a € [0,1), we can define the map

Op:x—x+a (mod1).

(What we mean by mod 1 is  + a — |z + a].) By the translation invariance of the Lebesgue measure,
0, is indeed measure-preserving.

In general, the goal of ergodic theory is to understand long-run averages of the system when we apply 6
many times. In particular, we’ll be interested in the following case. Suppose we have a function f: £ — R
which is measurable, and let

Sn(f):f+(fo@)—|—(fo€2)+..._|_(f09n—1).
The main goal of ergodic theory is to know the following thing:

Question 13.5. How does the ergodic average %Sn(f) behave as n — oo?

In this course, we’ll be interested in a particular choice of f and  — you can see that this looks like averages
of random variables, and that’s what we’re interested in, so that’s how ergodic theory comes into play.

We're going to see that under certain conditions, this quantity converges in some sense.

§13.4 Invariance

Before trying to analyze the objects we’re interested in, we’ll talk about some notions of invariance in such
a space.

Definition 13.6 (Invariant function). A measurable function f: E — R is invariant if f = f o 6.
(This is an analogous notion of the notion that u(A) = u(=1(A)).)
Definition 13.7 (Invariant subsets). We say that a set A € £ is invariant for 6 if A = 0~1(A).

We'll see that these concepts are quite important in ergodic theory, because we’ll analyze ergodic averages
of this kind of functions.

One might wonder what kinds of structure the space of invariant subsets has. It turns out that it’s a
o-algebra.

Definition 13.8. We write & = {A € £ | A is invariant}.

Page 100 of 196



Class by Konstantinos Kavvadias (Fall 2024) 18.675 — Theory of Probability

Fact 13.9 — The collection & is a o-algebra, and a function f: F — R is invariant if and only if it is
Ep-measurable.

(This is fairly easy to see, so we can try to do it as an exercise.)

The most important definition is the following.
Definition 13.10 (Ergodicity). We say 0 is ergodic if for every A € &y, we have u(A) = 0or u(E\A) = 0.

In probability spaces, this is equivalent to saying that u(A) € {0,1}.

Example 13.11
Let (E, &, ) be [0,1) with the Lebesgue measure, as before. Then 6, is ergodic if and only if a € R\ Q.

This is a nice exercise; it’s not super difficult, but it’s not obvious.

§13.5 Integrals

Now let’s see how integrals behave under invariant functions.

Proposition 13.12
If f is integrable and 6 is measure-preserving, then f o 6 is also integrable, and fE fdu= fE(f 0 0)du.

So integrals are preserved under measure-preserving mappings; that makes intuitive sense. The way you
prove this is you want to prove a property for a general class of functions, so you first prove it for simple
functions, then nonnegative measurable functions (by approximating them with simple functions, using e.g.,
the monotone convergence theorem to change between integration and taking limits); and finally you prove
it for arbitrary integrable functions by writing them as the difference of two nonnegative ones. We won’t go
through the details because we’ve seen this argument several times, and the method is quite standard.

Question 13.13. If we start with an ergodic transformation 6, how many invariant functions are there?

The answer is that there are very, very few such functions. In particular, we have the following (which will
probably be an exercise on the problem set — it’s nice to try to do it on your own):

Proposition 13.14

If a measure-preserving map 6 is ergodic and f is invariant under 6, then there exists a constant ¢ € R
such that f = ¢ p-almost everywhere.

So the only mappings which are invariant under ergodic transformations are constant. This is important
— if you want to show the ergodic average %Sn( f) is constant, then you show that its limit exists and is
invariant for some ergodic map, and then you deduce that it has to be constant.

These are the general concepts from ergodic theory, and for the rest of the lecture we’re going to spend some
time studying a particular example of a measure space and ergodic mapping.

§13.6 The Bernoulli shift

Now we’ll spend some time studying the Bernoulli shift, because we’re going to use it to prove the strong
law of large numbers — we’re going to apply all the theorems we’ll hopefully state today to this particular
example of an Ergodic system.
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Let m be a Borel probability measure on R. Then we know there exists an independent and identically
distributed sequence of random variables Y7, Y, ...with law m. We proved this an earlier lecture (we
constructed it in a funny way). Now we’re going to work with these more naturally, using Bernoulli shifts.

First, we need a space E. This space will be a bit fancy — it’ll be E = RN. This is a weird-looking symbol,
but it’s just the set of all real-valued sequences.

Definition 13.15. We define RY as the collection of all sequences (z,,) C R.

This might look a bit weird, but the idea behind the notation is that a sequence is just a function z: N — R
(we just take a positive integer n, and then output z,). So we’re considering the set of all functions N — R,
and we denote it by RY.

But we need a o-algebra on this space. The natural one is the o-algebra generated by projections.

Definition 13.16. For each n, let m,: RN — R be the projection map x — z,, which takes in every
sequence (Z,,)men and outputs its nth element.

We’ve seen we can define o-algebras as the o-algebra generated by a collection of functions; the one we’ll
define on this space is the smallest o-algebra which makes all these 7,’s measurable. (We’ve seen similar
o-algebras before.)

Definition 13.17. We define £ to be the o-algebra on RY generated by all the maps 7,,.

(Recall that this is the intersection of all the o-algebras with respect to which 7, is measurable for all n.)

So now we have our space and o-algebra; what’s missing is a measure. For this, we’re going to use the
construction of i.i.d. random variables (Y},) from before. But before we do this, there’s another way to
define the o-algebra, as the o-algebra generated by a certain w-system: let A be the product of all cylinders,
ie.,

A= {H A, | Ap € B(R) for all n and A,, = R for all sufficiently large n} .
neN

This is a m-system, where elements have the form A; x Ao X --- x Ay X RX R X R X ---. So in other words,
this is the set of all sequences such that the first n elemnets belong to the sets A;, and after that we don’t
care (they can be whatever they want).

Remark 13.18. Here we're abusing notation a bit — we’re really looking at all sequences x such that
xz; € Aj for all 1 < j < n, and after that we can have anything we want.
Then we have £ = 0(.A) — so this is an equivalent description of this o-algebra.

Now we have our space, and we have our o-algebra; so now we need to construct a measure. To construct a
measure, we'll consider a random variable taking values in E. Specifically, we let Y: (2, F,P) — RN be the
random variable (i.e., map w — Y (w)) which maps n — Y, (w). In other words, we just have

Y =(W,Ya,..)).

(This makes sense because the Yjs all live in the same probability space (€2, F,[P), so we can define this.)

Now the natural measure is just the pushforward:

Definition 13.19. We define y =Po Y 1.
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In other words, p is just the law of Y (from the original probability space). Recall that this means p(A) =
PlY € A] for all A€ €.

This is maybe a bit abstract, but it’s not counterintuitive. What’s maybe hard to digest is that so far
we’ve been considering random variables in 1 dimension or maybe n dimensions; it’s somehow a bit weird to
consider random variables taking values in some infinite-dimensional space. But apart from that, we haven’t
done anything too complicated.

Student Question. How do we know the pre-image of any measurable set in RN is measurable in the
original space?

Answer. You can consider sets A € A, for which this is true; and then it’s a m-system, so you get
everything in £ as well.

Now we’ll make a few observations about this measure. First, what’s the form of p when restricted to our
m-system A?

Fact 13.20 — For A € A, we have u(A) = m(A;)---m(Ay,) (where A= A; x -+ x Ay x Rx--+).

This is by the independence of the Y;. (Note that we're abusing notation here — by this we really mean
A={z|xz; € Ajfor 1 <j<n}. We may abuse notation further by simply writing A; x --- x A, and
omitting the R’s.)

Now we’re ready to define the shift map.

Definition 13.21. We define the shift map 6: E — E as (z1, 22, z3,...) — (z2,23,Z4,. . .).

In other words, 0 takes in a sequence and shifts its elements one to the left. If you think of x as a function
N — R (written n — x(n)), then (z) is the sequence N — R which maps n — z(n + 1). So we’ve just
shifted the sequence one position to the left.

So now we have our system — we have our space, our o-algebra, a measure, and a map. What we’re going
to do from now on in order to prove some of the nice theorems of the course is to apply ergodic theory to
this particular example.

Why is this system important? Suppose we take the function f:RY — R defined by (2, )nen — o1 (the
projection onto the first coordinate). Then we can write

Sn(f)(x) =a1+x2+ a3+ + 20

So this means we can express the sum of z;’s in the form S,(f). And eventually we’re going to study
quantities of this form, because we want to study averages in general — we want to study expressions

T+ -+ Ty
n

for i.i.d. random variables (because we'’re interested in averages of random variables), and this can be
expressed as the ergodic average %Sn( f)(z). So that’s the reason we want to study this particular Bernoulli
shift — because then we can express averages of random variables as ergodic averages.

We’ll now come back to something mentioned earlier, a relationship between ergodicity and Kolgomorov’s
{0,1} law.

Theorem 13.22

The shift map 0 is an ergodic measure-preserving transformation.
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First, the fact that 0 is measure-preserving is quite easy — you can first show that it preserves measures of
sets A € A (which is quite easy to see). And then this means it preserves everything.

What’s nontrivial is ergodicity, and we’ll see that its proof is very similar to Kolgomorov’s {0,1} law from
the beginning of the course.

Proof. To prove 0 is ergodic, we’ll consider the tail o-algebra (as we did in the proof of Kolgomorov’s {0, 1}
law). For each n € N, we define
Tn=0(Tm|m>n+1),

and the tail o-algebra is T = (), Tn-

We're going to focus on elements in the 7-system A, as before. Suppose that we fix some A =[], .y Arn € A.
Then if we consider its inverse under 6 n times, we get

07" (A) = {z € RY | m, () € Ay, for all k}

(just by definition, because we’ve shifted everything by n positions). In particular, this means =" (4) € Ty,
because it only depends on the values of m,, with m > n + 1.

So 6~"(A) € Ty

This implies that if A € & is invariant under #, meaning that A = §~1(A), then we have A € T, for all n
(because if A = 60~1(A), then we also have A = §7"(A) € T,), and therefore A € T. In particular, we have
that & C T (the o-algebra consisting of invariant sets is contained in the tail o-algebra).

And what we wanted to show was that every element of & has measure 0 or 1. But we know this by
Kolgomorov’s {0,1}-law — we know every A € T has u(A) € {0,1} by Kolgomorov’s {0,1} law, which
implies the same is true for every invariant set A € &. But that’s exactly the definition of ergodicity. O

So we have a nice ergodic system, and the purpose of proving the limit theorems is to apply the ergodic
theorems to this ergodic system.

Student Question. We’re only considering sets in the mw-system; how do we know this holds even if
your invariant set isn’t in the w-system?

Answer. We want to prove a property is true for every set in the o-algebra, and to do so it suffices
to show that for a m-system (by something like Dynkin’s 7-system lemma). What we’ve shown is that
any set in the m-system which is invariant under # has measure 0 or 1; and then you use e.g. Dynkin’s
lemma to generalize that this property is true for every element of the o-algebra.

The next step is to state and prove some ergodic theorems, and then we’re going to apply them to prove
nice laws.

§14 October 24, 2024

Last class, we discussed a bit about ergodic theory and some basic notions from general ergodic theory. We
also constructed the Bernoulli shift ergodic system and the shift map. We’re going to use ergodic theory
applied to this specific ergodic system in order to prove some important limit theorems of the course, like
the strong law of large numbers. We also proved that this system is ergodic.

In this lecture, we’ll first state Birkhoff’s ergodic theorem, which we don’t have time to prove. But we’ll
prove von Neumann’s ergodic theorem, which comes from it. And we’ll see how to apply these to the
Bernoulli shift ergodic system in order to prove the first basic theorems of the course.
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§14.1 Two ergodic theorems

Theorem 14.1 (Birkhoff's ergodic theorem)

Let (E,&,u) be a o-finite measure space and ¢: B — E a p-preserving map, and let f:E — R be
integrable. Then there exists an invariant function f with the property that u(|f|) < u(]f]), and

Sn(f)

— f p-almost everywhere.

In our case, we’ll actually have a probability space, so our space will be o-finite. We’ll also always have a
map 6, and when we say f is invariant, we mean with respect to 6. So if you have a general o-finite measure
space and a measure-preserving function 6, and you take any integrable function f, then its ergodic average
will always converge to some invariant function f.

Here we don’t need the assumption that 6 is ergodic. But if we do make that assumption, then in particular

f is constant p-almost everywhere.

We’re going to apply this theorem in the case where 0 is ergodic; it’ll just be the shift map in the Bernoulli
ergodic system.

This is very important because we can express the average of the sum of independent random variables as

the ergodic averages in the Bernoulli shift system (for an appropriate function f).

This is a very strong theorem. We don’t have enough time to go to its proof, but the main point is that the
ergodic average converges to some function, and that function is invariant.

One question one can ask is:

Question 14.2. How can we identify the function f. For example, if € is ergodic, then f is a constant
function, but can we identify it?

If we could apply the dominated convergence theorem, then we could say f = u(f) — if we also have L'-
convergence, then this has to be true. But it’s not always clear if we can apply the dominated convergence;
a bit of work is needed to get L'-convergence. And that’s the content of the next ergodic theorem, which
we’re going to prove.

Student Question. Without assuming 6 is ergodic (where we just show that the averages converge to
f), is the proof constructive?

Answer. No, the proof is unfortunately more abstract. In general it’s not easy to identify this function
f. When you have ergodicity and L' convergence, then it’ll just be the integral of f; but in general it’s
not easy to identify. But for our purposes it really will just be the integral of f.

Theorem 14.3 (Von Neumann's ergodic theorem)

Let (E,&, 1) be a o-finite measure space, and 6 a measure-reserving map. Let p € [1,00), and assume
further that f € LP and that p(E) < oo. Then there is some invariant function f € LP such that
18,.(f) = fin LP.

So if we make the further assumption that f is in LP, then we actually have LP-convergence.
We're going to prove this, and this will use Birkhoff’s ergodic theorem (to guarantee the existence of f).

In particular, if 6 is ergodic (so f is constant), in a probability space, if we have LP convergence with p > 1,
then we also have L'-convergence, which means E[S,,(f)/n] — E[f]. But the expectation of the left is [ f,
and the integral of the right is a constant.
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Proof. First note that ||f o 0|} = Jg|f 0P du. And because 6 is measure-preserving, this integral has to
be equal to [, |f[” du = [|f|[}. So this means ||f o 0|7 = || f||?, which implies that

£l + 1 0Ol + -+ [[f 0 0" Iy

n

1 e
=—llf+fof+-+fot" <
p

|2 = 11,

(the middle step is Minkowski’s inequality). Somehow we need to apply the dominated convergence theorem,
but it’s not entirely clear how to apply it, because here we don’t have a function that dominates all terms
%Sn( f). We have a sequence that’s LP-bounded, but we don’t have a function that dominates the ergodic
averages. So we need to somehow truncate this function.

To do so, we fix some ¢ € (0,1) and take M > 0 large, such that if we define
g=(VvV(=M)AM

(so that g is f cut off to be between —M and M), then we have ||f — g||p < 5. We can always do this,
because if we take this function and let M — oo, then this function converges increasingly (in absolute value)
to |f|; so here we can apply the monotone convergence theorem. So we can always find such a function g
with this property.

Now we can apply Birkhoff’s theorem — g is also in L' (because it’s a bounded function in a finite measure
space — here we’re using the fact that p(F) < oo). This means we can apply Birkhoff’s theorem to g, and
this implies there exists some g € L' which is invariant, and with the property that

Sn(g)

— g p-almost everywhere.

The point is that here we can apply the dominated convergence theorem, because all the functions on the
left are dominated by M — we have
’Sn (9)

n

B

for all n € N, so we can apply the dominated convergence theorem to get that

n
as n — 0o. This means you can find N € N such that

—0
p

S
‘ n(9) -7l < € for alln > N.
n » 3
That was the whole point of introducing ¢ — to apply the dominated convergence theorem (f is not

necessarily bounded, so you can’t necessarily dominate all the ergodic averages).

Now this means we can write H? — ng (where f is the function coming from Birkhoff’s ergodic theorem) as

I7 - 3]” = /E it 2/ =9)

And now we can apply Fatou’s lemma to get that this is at most

7 - S, (f —
Hf—ﬂﬁsggg<AJ£an

And this then implies that
H Sn(f)

n

P
du.

p
du) <liminf || f — g[f} -
n—oo

Sn(g) 5

—f) = + {17 - ll,

p

< HSn(f—g)

iy

p p

Page 106 of 196



Class by Konstantinos Kavvadias (Fall 2024) 18.675 — Theory of Probability

by the triangle inequality. But the first term is at most /3 (by the choice of g, so that ||f —gl|, < €/3);
the second term is again at most /3 by the choice of N; and the third is again at most /3 by what we did
above. So this is at most ¢ for all n > N.

And this shows what we wanted — we showed that

‘ Sn(f)

which means that %Sn( f) — fin LP as n — oo. So we in fact have convergence with respect to the pth
norm if we assume that f € LP. O

-f

<e foralln> N,
P

And this is the main theorem we’re going to use in order to prove the first main limit theorems of the course.

Student Question. Are we using the fact that S, (f —g) = Sn(f) — Sn(g)?

Answer. Yes, this is true by linearity. Even if 0 is nonlinear, this doesn’t matter — we have (f —g)of =
(fob)—(g00).
Student Question. Why is H? — EHZ equal to this liminf?

Answer. Because f is the pointwise limit of the ergodic average of f, and likewise with g and g. So
you have %Sn(f) — f pointwise, and %Sn(g) — ¢; this implies that

Sulf)  Sulg)

n n

P T p
—|f-9| .

So the function on the right is the limit of the function on the left, which is the same as the liminf.
(Here we actually have a limit, not just a liminf; we just wrote it with a liminf to make it clear how
we’re applying Fatou’s lemma.)

These are the main ergodic theorems we're going to use (ergodic theory is of course much deeper, but these
are just the essentials). The lecture notes may give a proof of Birkhoff’s ergodic theorem (it’s also in the
textbooks), but it’s a bit technical, so out of the scope of this course.

§14.2 Weak and strong law of large numbers

Now we’ll try to prove some big theorems of this course. We’ll first prove the strong law of numbers. We’ll
first do this assuming the fourth moments are bounded from above and finite, and then we’ll do the general
case.

The setup is that we have a sequence of independent identically distributed random variables (X,,)nen, and
the’re in L! with some common mean E[X;] = . And we let S, = X; + -+ + X,,.

Here we have two things. The first is the weak law of large numbers. (This is a consequence of the strong
law, but we will also state it separately.)

Theorem 14.4 (Weak law of large numbers)
We have S—Tf — u in probability, provided that E[X?] < oo.

The strong law of large numbers is stronger than this statement, and we’re going to prove it.
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Theorem 14.5 (Strong law of large numbers)
We have 52 —  almost surely, providedthat E[|X;]] < oo (i.e., that the random variables are in L).

n

(Note that this is a weaker assumption than that E[X?] < co.) This is stronger than the weak law of large
numbers, because convergence in probability is implied by almost sure convergence.

We’re going to prove two versions with different assumptions, but this is the one we care about. We're going
to use Birkhoff’s ergodic theorem to extract the existence of the limit, and then use von Neumann’s ergodic
theorem to say that the limit has to be the mean.

§14.2.1 Strong LLN with finite fourth moments

We'll first prove a version of the strong law of large numbers assuming finite fourth moments.

Theorem 14.6 (Strong LLN with finite fourth moments)

Let (X,,) be a sequence of independent random variables with the property that there exists u € R and
M > 0 such that E[X,] = p and E[X}] < M for all n € N. Then letting S, = X1 + --- + X,,, we have
that % — p almost surely as n — oo.

Here we have to be a bit careful — the assumption is not the same as before, and neither is stronger than
the other. Here we assumed we have independence, but not necessarily identical laws. In the strong LLN,
we assume the law is the same (the random variables are i.i.d.). Here we don’t assume the laws are the
same (just that they’re independent and have the same mean), but we also assume a uniform bound on the
fourth moments.

The proof is actually completely elementary — we’re not going to use tools from ergodic theory here, it’s
more or less a combinatorial argument.

Proof. First, we can reduce the problem to the case that p = 0 by defining Y,, = X, — i (so we’re centering
the random variables) — if we do this, then the Y,s are still independent, and E[Y,] = E[X,,] — u = 0 by
linearity of expectation; and we have

E[Y,)] < 2'E[X; + u*] < 16(u* + M)

for all n. So the Y,s satisfy our assumptions, which means if we know the claim in the case p = 0, then we
can extract the claim in general (it’d say that X,, — u — 0 almost surely, so X,, — u.)

So from now, we assume that = 0. Now we just expand S2; if we do this expansion, we get

4

> Xk
k

(for some constants). And now the point is that the last two terms are 0 — this is because we can factorize

them out as E[XZ-X?] = E[Xi]E[X]a], and E[X;] = 0. The same is true for the final term — we have
E[X;X;X?] = E[X;)E[X;]E[X?] = 0. So it remains to estimate the first two terms.

E[SY =FE +6Y EX?XI+AY EXX)]+B ) E[X;X;X]]

1<j 1<J 1<j<k

The first term is bounded by our assumption — by linearity of expectation we have E[>_, X}[| = 3", E[X}}] <
nM (because we assumed E[X}] < M for all k).

Now for the second term, we can apply Hoélder’s inequality or Jensen’s inequality to say that for ¢ #£ j, we

have
E[X?X?] = EIX7|E[X}] < \/EX}E[X}] < M
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by Jensen’s inequality. So we have some nice bounds on the first and second terms, and this implies the
expectation of the second term is

—1
E |6 X2x? 36-”(”2)

i<j

-M =3n(n—1)M.

So overall, we have
E[S3] < nM + 3n(n — 1)M < 3n*M,

<Sn>4] 3M
n ~ n?

)] -E

which implies that
E

And this implies that we have

n=1 n=1
And if the expectation of a random variable is finite, that random variable has to be finite almost surely;
so this means Z(%)4 < oo almost surely. And if the sum of a sequence is finite, then the sequence has to
converge to 0; so we get that % — 0 almost surely, which is exactly what we wanted. O

The advantage of this proof is that here we haven’t assumed the variables have the same law, because
that’s not necessary. We just assumed independence and equal means, and a uniform bound on the fourth
moments. That’s the first version of the strong law of large numbers, and it’s not the same as the first
version (which assumes they have the same law and doesn’t have the fourth moments assumption).

This is the first main limit theorem of the course.

Student Question. [s there something special about the fourth moment?

Answer. If you used second moments instead, then the bound that you would get on the second
moment would give you a sum of the form > 1 or > %; and this wouldn’t converge. The point of
the 4th moments is to get a finite sum. You can also use higher moments, but if higher moments are
bounded, then so are the 4th moments.

§14.2.2 The strong law of large numbers

Now we’ll prove the first form of the strong law of large numbers. Here we don’t have the assumption on
the fourth moments, so we’re going to need Birkhoff. This is the second main limit theorem of the course;
the third is the central limit theorem, which we’ll prove either this lecture or the next.

Theorem 14.7 (Strong law of large numbers)

Let (Y,,) be an i.i.d. sequence of integrable random variables with mean v € R. Then letting S, =
Y1 +---+Y,, we have

n
— — v almost surely.
n

We're going to use ergodic theory to prove this (there are other proofs in the textbook, but ergodic theory
gives a clean one; the main thing is to just set things up in the right way that we can apply ergodic theory,
and we’ve already described how to do the setup using Bernoulli shifts).
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Proof. Let m be the law of Y7 (which is the same as the law of Y,, for all n), and consider the random
variable Y = (Y7, Ys,...), which is a random variable Q — RY = E (as defined last class — the space of all
sequences of real numbers). We then let (E, £, 1) be the canonical space associated with m, as defined last
class (the space corresponding to the Bernoulli shift — the canonical space is another name of the space
we constructed last time), where g = P o Y ! is the pushforward of the original probability space where
everything lives, with respect to the random variable Y.

Last time, we defined the function 6 that shifts the sequence one place to the right, and we defined f: E — R
as (zp) — x1. This is the sequence we're going to apply ergodic theorems to. (Recall that the shift map is
the map 6: E — E defined by (x1,x2,x3,...) — (z2,23,24,...) — it just shifts the sequence one place to
the right.)

Then as we said earlier, we can write Y, = (f o 0*~1)(Y); this means we have S,(f)(Y) = Y1 + -+ + Y.
(That’s the key point here.) This implies that

as n — oo, for p-almost every Y in E. This is by Birkhoff’s theorem — so we have the existence of the limit
(almost everywhere).

Now what remains is to identify f. And for that, we apply von Neumann’s ergodic theorem to say that here
the convergence is also in L'. Specifically, we also have that

Sn(f)

- f

in L'(E), by von Neumann’s ergodic theorem. So now we need to argue that f is just v. To do this, we use
ergodicity to say that f is constant.

Since f is f-invariant (by Birkhoff’s ergodic theorem) and ¢ is ergodic (we proved this last lecture), this
implies that there exists a constant ¢ € R such that f = ¢ p-almost everywhere (this follows by the fact
that our system is ergodic). And this implies that ¢ = p(f) (because f = ¢ almost everywhere). But by

L'-convergence, we also have
- . Sn(f
p(f) = lim p <()> :

n—00 n

Sn(f)

n

But we always have pu( ) =v.

And that’s exaclty what we wanted to prove. O

This proof is clean, in the sense that it’s not very technical; it just uses the things ew’ve learned from ergodic
theory. And once you have the right setup (with Bernoulli shifts), everything is straightforward.

That’s the second main theorem of the course; intuitively, it says that the average of i.i.d. integrable random
variables behaves roughly like the mean of those variables (in the long run).

The next main theorem is the central limit theorem, which we’ll do next lecture.

Student Question. How did we use von Neumann?

Answer. To obtain L' convergence. We needed that because we're using it in the last line to say that

wu(f) = lim, 00 M(S”T(f)) We know f is some constant, and we want to identify that constant. If we

have L' convergence, then this constant has to be E[f] and that has to be the limit of the expectation
of the left-hand side. But we always have E[Y;] = v, so E[}_Y;] = nv, which means E[Zyj] =v —so

. n
this is the same for all n, which means the limit of that integral is v. So we get E[f] = v, and because
f is constant, we get that f itself is v.
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Student Question. Do we have a measure of how fast the average converges to the mean?

Answer. There are some estimates in certain cases — stronger versions that keep track of the rate of
convergence. But of course the rate is dependent on the distribution.

Student Question. Is the f we get from von Neumann the same as from Birkoff?

Answer. Yes — because whenever you have L' convergence, you also have almost sure convergence
along a subsequence. So along a subsequence, you have almost sure convergence to f; but you also have
convergence almost surely to the f coming from Birkhoff, so the two functions have to be the same
(almost surely).

Next time we’ll prove the central limit theorem and also move to the second part of the course, on conditional
expectations and martingales and Brownian motion.

§15 October 29, 2024

Last class, we proved the strong law of large numbers under a fourth moment assumption, where we had
independent but not necessarily identically distributed variables, and we knew their means were the same
and we had a uniform bound on their fourth moments. We also proved the strong law of large numbers (in
the most commonly used version), which only requires that you have an i.i.d. sequence in L'. For that, we
used ergodic theory. Prof. Kavvadias presented the ergodic theory proof for two reasons — it motivates us
to learn more about ergodic theory, and the proof is clean. There are other proofs in the references, which
are more elementary but more tedious.

§15.1 Central limit theorem

Today we’ll state and prove the third main limit theorem, the central limit theorem. With this, we’ll
complete the first part of the course.

Theorem 15.1 (Central limit theorem)

Let (X,,)nen be a sequence of i.i.d. random variables such that E[X;] = 0 and E[X?] = 1 (for each 7).
Then if we set S;, = X1 + - -+ + X,,, then we have
Sn

d

d e .
We use — to denote convergence in distribution; this means for every fixed x, we have

< — -
|:\/ﬁ N x:| —o0 V2T Y

(the integral on the right is the distribution function of a standard Gaussian with mean 0 and variance 1).

The central limit theorem states that it doesn’t matter what distribution X, has (we just require that
they’re independent and have the same distribution, with mean 0 and variance 1); the long-range behavior
of their sums behaves like a Gaussian.

Proof. We need to prove convergence in distribution, and there are several ways to do this. One is to
directly compute the probability, but that’s tedious, so we won’t. Recall that a sequence of random variables
converges in distribution if and only if the characteristic functions converge pointwise. So that’s what we’re
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going to show — that the characteristic function of n=/28,, converges pointwise to the characteristic function
of Z, a standard normal variable.

Let ¢ be the characteristic function of X; (for example) — i.e.,
¢(u) = E[e™1].

Since E[X?] = 1 < 0o, we can differentiate under the expectation twice (by applying the dominated conver-
gence theorem) to obtain that

¢ (u) = E[iX1™*] and ¢ (u) = E[-X?e™X1]

for all u € R. (We can differentiate inside the expectation because of the second moment assumption — in
general, it’s not true that we can differentiate inside the expectation, and here we’re using the assumption
to use the dominated convergence theorem — the dominating function the first time we differentiate is | X1,
and the second time it’s X?). Taking u = 0, we get that

¢(0) = 1> ¢/(u) = 07 QZ)H(U) =—-1L
Then we can apply Taylor expansion (because ¢” is twice differentiable,and its second derivative is continuous
— again by the dominated convergence theorem). If we Taylor expand ¢ at 0, then we get
2

Ou) = 1=+ ofu?)

as u — 0. (By o(u?) we mean that if we take this term and divide it by u? and let u — 0, then this term
tends to 0.)

Now we want to show that the characteristic function of n=/2S,, converges pointwise to that of a standard
normal variable. We'll let ¢,, denote the characteristic function of n~'/2S,,; this is by definition

On(u) = B[SV,
Because S, is a sum, this is a product; and for independent random variables, the expectation of a sum is

the product of expectations. So

n

dn(u) = [ [ E[™/V] = p(u/v/n)™.

J=1

And as n — oo, we'll have u/y/n — 0 (for any fixed u), so we can take advantage of the Taylor expansion

— so we can write this as
u? u? "
=(1-— all ‘
ot = (155 +0(%))

And now you could take the limit directly, but a more convenient way is to take the logarithm of both sides
and show log ¢,,(u) converges to log ¢z(u). We have

2 2
log ¢ (u) = n - log <1— ;Ln +0(Q;>) .

And using the behavior of log near 1, this means

2

log ¢, (1) = = + o(1)

log (1
as n — oo (we knoww

we have

— 1 as ¢ — 0, for example by L’Hopital’s rule), which implies that as n — oo,

2
log ¢ (1) = — -
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This implies that
2
On(u) = e /2
asn — oo. But e is precisely the characteristic function of a standard normal random variable (we’ve

proved this earlier). So we have pointwise convergence of characteristic functions, which means we have
convergence in distribution (since we showed earlier that these are equivalent). O

—u?/2

Student Question. This proof kind of feels like magic, and it feels like there’s something deep going
on with the characteristic functions; is there any intuition for this?

Answer. The intuition probably comes from the computation that

Pn(u) = <1—gz+o<f>>n.

It’s known that (1+ 7)™ — e®. And you know that the characteristic function has the form on the left
as n — 00, so it should converge to some exponential. And what random variable has a characteristic
function that looks like an exponential? The most natural answer is the standard normal Gaussian,
which has a characteristic function of this form.

That’s the first part of the course. We did all this preparation to prove these three limit theorems, which
were the really important theorems of the course. Now the second part is a bit more advanced, but we’ve
become more experienced (we’ve seen the basics and rigorous construction of probability, and we’ve been
exposed to proofs).

§15.2 Conditioning on an event

The next thing we’ll talk about is conditional expectation. We’ve probably seen this — what’s the conditional
probability of B given A7 But we’re going to generalize this — instead of just conditioning on an event A,
we’ll condition on an entire o-algebra (and obtain a random variable).

As usual, we’ll work in a probability space (2, F,P). We'll briefly review what the conditional probability
of one event with respect to another is.

Definition 15.2. Let A, B € F be events such that P[B] > 0. Then the conditional probability of A

given B is defined as
P[AN B]
P[B]

P[A | B] =

Somehow we want to generalize this to what happens if we replace B by a o-algebra.

Student Question. Can this be thought of as the restriction measure (where we’re restricting the space
to B)?

Answer. Yes — this is exactly the restriction measure, normalized by P[B] to be a probability measure.

Similarly, we can define the conditional expectation of a random variable (replacing A by a random variable).
For this, we’ll need the assumption that X € L'.

Definition 15.3. Let X be a random variable with the property that E[|X|] < oo, and let A be an
event with P[A] > 0. Then the conditional expectation of X given A is defined by

E[X - 14]

EIX | 4] = =57
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(So E[X | A] is a number; and since we're dividing by a real number P[A], we of course need this number to
be nonzero.)

The goal of today’s lecture is to make sense of the situation where we’re starting with X being a L' random
variable, but we have a g-algebra instead of an event.

§15.3 Motivation — the discrete case

As usual, we’ll start with a simpler case — the discrete case (for intuition). Assume that 2 can be partitioned
into a countable collection of disjoint events — so € = (,.; B; where I is countable and the B; are disjoint
(and B; € F for all 7). For now we’ll study spaces with this particular structure. Not all spaces have this
structure (but for instsance, any finite or countable space does have this structure).

And we'll consider G = {J;c; B;j | J C I}. It’s not hard to show that this is a o-algebra — specifically, it’s
G=o(B;jliel).

What we’re going to compute now is the conditional expectation of x given this o-algebra G. What’s the
natural thing to do? We’ll define X’ as our candidate for the conditional expectation of X given G, as

X'=> "E[X|Bi] 1g,.
i€l

Here, the convention we use is that E[X | B;] = 0 if P[B;] = 0 (because it might be the case that some of
the B;’s have 0 probability; but we only care about the events in the partition with positive probability).
This is a very natural candidate for the conditional expectation.

This X’ satisfies several properties:

o It’s G-measurable — that’s because 1p, is G-measurable, and the sum of measurable functions is still
measurable. (Note that this is stronger than saying it’s measurable with respect to F.)

e It’s integrable — this is because
Bl X|] < SE[X] - 15,] = B[X]] < oo
el
(here we're using the fact that the events are disjoint).

o If we take any G € G, then we have
E[X -1¢] = E[X/ -1¢].
(This is not hard to see — it follows by the definition.) So the integrals of X’ agree with those of X

when restricted to events in this smaller o-algebra.

Our goal is to take any probability space and sub-o-algebra, and always construct some X’ with these three
properties. That’s the main goal of today’s lecture — to prove the existence of such an X’ in a general
setting.

In general, it’s not easy to get an explicit form; but in this case, we do. The theorem we’re going to prove
is just one of existence (and we’ll also prove uniqueness, up to a set of measure 0).
Student Question. Where did we use discreteness?

Answer. We used discreteness to say that o(B; | i € I) has the form {{J; B; | J C I'} — for this, we use
the fact that I is countable. We also write ) ,_; E[X | B;]1p, — if you want to sum over uncountable
sets, you need a different definition of the sum.

Page 114 of 196



Class by Konstantinos Kavvadias (Fall 2024) 18.675 — Theory of Probability

§15.4 Conditional expectation

First we’ll state the main theorem.

Theorem 15.4

Let X be an integrable random variable, and let G C F be a sub-c-algebra of F. Then there exists a
random variable Y such that the following properties hold:

(a) Y is G-measurable.
(b) Y is integrable, and for every G € G, we have E[Y - 15] = E[X - 1¢].
Furthermore, if Y’ also satisfies (a) and (b), then Y = Y” almost surely (i.e., with probability 1).

So we can always find such a random variable Y which satisfies the properties mentioned earlier, and it’s
unique — any other random variable with these properties agrees with Y with probability 1.

Definition 15.5. We call Y the conditional expectation of X given G, denoted by E[X | G].

In general, it’s not easy to construct the conditional expectation explicitly (except in special cases, like the
one we saw earlier).

We'll start with uniqueness, which is the easier part.
Proof of uniqueness. Suppose that both Y and Y” satisfy (a) and (b). Then if we define A = {Y > Y'}, we

have A € G (because Y and Y’ both belong to G — this was probably in the first or second problem set).
Then by (b), we have that

E[(Y —Y’) 14] =E[Y - 14] —E[Y’ - 14] = E[X - 14] — E[X - 1] = 0.

And the random variable (Y — Y’) - 14 is nonnegative; and if the expectation of a nonnegative random
variable is 0, then it has to be 0 almost surely. So this implies (Y —Y’)14 = 0 almost surely, and therefore
P[A] = 0. This means Y <Y’ almost surely.

Similarly, we can show that Y > Y’ almost surely (by replacing A with the event that Y < Y”). These two
inequalities together imply Y = Y’ almost surely, giving uniqueness. O

Now what’s less easy is proving existence. We're going to prove this in three different steps. In the first
step, we'll assume X € L? (which is not necessarily the case in general). In the second, we’ll prove the claim
when X is nonnegative. Finally, we’ll conclude the general case, using limiting arguments as usual.

§15.4.1 Existence when X ¢ L2

We'll now prove existence starting with the first step, where we assume that X € L?. Recall that L? has
the structure of a Hilbert space — specifically, the space £2(Q, F,P) is equipped with the inner product

({U,V)=E[U-V].

We've shown that it’s a Hilbert space. We’ve also shown that if we consider £2(€2, G, P) instead, then this
is a closed subspace of £2(Q,F,P). (We'll use £2(F) and £2(G) as shorthand.) And from the theory of

Hilbert spaces, this means we can write

L2(F) = LX) + L2(9) ",
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i.e., we can decompose £L2(F) into £2(G) and its orthogonal complement. This means we can write X = Y +2
where Y € £2(G) and Z € £2(G)*. (This follows by the theory of Hilbert spaces that we briefly mentioned
in a previous chapter.)

Now we have a candidate Y — we define E[X | G] as Y. Clearly (a) is satisfied, because we chose Y € £2(G),
which means it’s G-measurable. So now we want to show that (b) is also satisfied.

For this, fix any A € G. Then we have that E[X - 14] = (X,14). But we can write X =Y + Z, so
EIX -14] = (X, 14) = (Y, 14) + (Z,14).

But recall that A € G, so 14 € £2(G); and Z € £L2(G)*, so their inner product has to be 0 by the definition
of the orthogonal complement. This means (Z,14) = 0, while (Y,14) = E[Y - 14]. So (b) is satisfied.

Student Question. When did we show that Y is integrable?

Answer. It’s in L2, and for a finite measure space, any random variable in L? is also in L'. (We're always
assuming we’re in a probability space, which has finite measure; but this proof shows the statement
would hold in any space with finite measure.)

§15.4.2 Existence for nonnegative random variables

The next step is to prove the same statement for nonnegative random variables, using the fact that we can
construct the conditional expectation in L?.

Here, suppose that X > 0 (it’s not necessarily in L2, but of course it’s still in L'). We want to somehow
apply a limit theorem, so we need to cut off X so that it doesn’t get too large. For this, we consider
Xn =X An (so that X,, <n is bounded and nonnegative for each n).

Since X, is bounded, it’s certainly in L?; this means that from the first step, we can define
Y, =E[X, | G]

(and this is well-defined, because X,, € L? and the conditional expectation is well-defined for L? random
variables).

Now we need to somehow take a limit, and we need to justify why the limit exists. This is for the following
reason — X, is nondecreasing, so Y,, also has to be nondecreasing by the way it’s constructed. Specifically,
in the special case that X > 0 and X € L?, we also have that Y > 0 almost surely (so nonnegativity is
preserved); this follows from the definition of Y.

So this implies Y,, is also nondecreasing, since X,, is nondecreasing. In particular, this means if we define
Y = lim,, 00 Y to be the pointwise limit of the Y,, this limit exists almost surely. And all the Y,, are
G-measurable, so the same is true for Y. (We're permitting Y to be infinite here; but we're going to show
it’s in L', so the measure of the set where it’s infinite is 0. Whenever you have a nondecreasing sequence,
the limit always exists — it might be infinite, but it exists. The good thing about the monotone convergence
theorem is that it doesn’t mind if the function is infinite.)

This is our candidate; what remains to show is that it satisfies (b). For this, we're going to apply the
monotone convergence theorem. If we fix an event A € G, then we have E[Y,, - 14] = E[X,, - 14] for all n,
because of the first step. And now we can take limits — the left-hand side converges pointwise increasingly
to Y -14. Similarly, X,, - 14 converges pointwise increasingly to X -14. This means E[Y,, - 14] — E[Y - 14],
and E[X,, - 14] — E[X - 14] (by the monotone convergence theorem). But since the terms of the sequences
are equal, this means E[Y - 14] = E[X - 14].

Finally, if we take A to be the whole space 2 (which is in G because it’s a o-algebra), then we have
E[Y] =E[|Y]|] = E[X] < 0 (because Y is finite, and X € L!). So Y is indeed integrable. (In particular, this
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means Y has to be finite almost surely; so if you want to get it to be finite everywhere, you can just take
the parts where it’s infinite and reset them to 0.)

This gives the conditional expectation in the case of nonnegative random variables.

Student Question. How does it follow from the definition that the Y, are nonnegative and increasing,
and that the limit exists almost everywhere?

Answer. The construction for L? means that if X > 0 then Y > 0 almost surely. And if we apply this
statement to X, 1 — X, (so the random variable we get out is Y, 41 — Y3,), we get the result.

For how we get the first statement (that if X > 0, then Y > 0), one way to show this is to consider
E[Y -1y <p). Then this has to be equal to E[X - 1y o] by definition. But since X is always nonnegative,
then X - 1y is always nonnegative. On the other hand, Y - 1y ¢ is nonpositive; so we’ve shown the
expectation of a nonpositive random variable is nonnegative. So it has to be 0 almost everywhere.

§15.5 Existence for the general case

Finally, the last part is to conclude the proof. For this, things are quite simple — as usual, we just write
X as the difference of two nonnegative random variables, and consider the difference of their conditional
expectations.

Here, X is a general random variable in L!(F). Then we can write X = X+ — X~ where X+ = max{X,0}
and X~ = max{—X,0} (we’ve done this many times so far). Then we set Y (our candidate for E[X | G]) as

Y =E[X*| 6] - E[X™ |g).

Then it’s easy to see (by the linearity of the integral) that (a) and (b) are satisfied. This concludes the proof
of the theorem.

§15.6 Properties of conditional expectations

To finish the lecture, we’ll write down some basic properties of conditional expectations (they’re immediate
from the definition, so we won’t prove them).

Proposition 15.6
Let X,Y € LY(Q, F,P), and fix a o-algebra G C F. Then we have the following properties:

(1) We have E[E[X | G]] = E[X].

(2) If X is G-measurable, then E[X | G] = X almost surely.

(3) If X is independent of G, then E[X | G] = E[X] almost surely.
(4) If X > 0 almost surely, then E[X | G] > 0 almost surely.

(5)

5) Conditional expectation is linear — for any «, 5 € R, we have

ElaX +8Y | G] = oE[X | G] + BE[Y | G]
(almost surely).

(6) We have |E[X | G]| < E[|X] | G] almost surely.

(1) follows from applying property (b) where A is the entire space 2. For (2), it’s straightforward to see that
if X is G-measurable, then X itself satisfies (a) and (b), and then we can use uniqueness. (In the definition
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of conditional expectation, the only thing preventing us from just taking ¥ = X is that X may not be
G-measurable.) In (3), it’s clear that E[X] (which is a constant) is in L'; and (b) is satisfied because of the
definition of independence. We proved (4) a few minutes ago. (5) is fairly straightforward. And (6) is true
because if we integrate these random variables over any A € G, we’ll see that the integral of the left is at
most the integral of the right (by taking absolute values in E[Y - 1¢] = E[X - 1¢], and putting the absolute
values inside).

And all the stuff we’ve learned, like Fatou’s lemma, pass into conditional expectations as well; we're going
to talk about that next lecture.

§16 October 31, 2024

Last lecture, we completed the first part of the course, which was about proving the main limit theorems in
probability. For that, we had to do a lot of preparation — we had to rigorously construct probability and
Lebesgue integration and prove a lot of stuff about Hilbert spaces and ergodic theory and Fourier analysis.
Last lecture, we also proved the existence and uniqueness of the conditional expectation of a random variable
with respect to a fixed o-algebra, which generalizes the conditional probability of an event given another.

At the end of the class, we reviewed some basic properties of the conditional expectation, which come
directly from the definitions.

§16.1 Convergence theorems for conditional expectations

We’ve seen some convergence theorems (e.g., Fatou’s lemma, dominated convergence, monotone convergence,
and so on); these theorems have analogs in conditional expectation, which we’ll prove today.

In all the following statements, we let G C F be a o-algebra.

Proposition 16.1 (Conditional monotone convergence theorem)

Suppose that (X,) is an increasing sequence of (real-valued) random variables and X,, > 0 for all n,
and lim,_,o, X, = X almost surely. Then we have E[X,, | G] / E[X | G] almost surely.

Note that E[X,, | G] are random variables; and the conclusion says they converge increasingly to the random
variable E[X | G].

This is the same as the monotone convergence theorem, but with conditional expectations rather than
expectations. Note that this implies the usual monotone convergence theorem, if we take G to be the trivial
o-algebra.

Proposition 16.2 (Conditional Fatou's lemma)
If X,, > 0 for all n, then E[liminf, ,~ X, | G] < liminf, . E[X,, | G] almost surely.

This is the same as Fatou’s lemma; we’ve just replaced the expectations with conditional expectations.
Proposition 16.3 (Conditional dominated convergence theorem)
If X, — X as n — oo almost surely, and |X,,| < Y (for all n) for some random variable Y € L(F),

then E[X,, | G] — E[X | G] almost surely.

(Saying Y € L!(F) is the same as saying Y is integrable.)

Finally, we also have an analog of Jensen’s inequality.
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Proposition 16.4 (Conditional Jensen's inequality)

If X € £(F) and ¢:R — (—00,+00] is any convex function, such that either ¢(X) € L1(F) or ¢ is
nonnegative, then

Elp(X) | 6] = »(E[X | G])

almost surely.

Note that we allow ¢ to take values in +o00, but not —ooc.

In particular, taking ¢(z) = P (this function is convex as long as p > 1), we get the following statement:

Corollary 16.5
For all 1 <p < oo, we have [[E[X | G]||, < [|X],,.

So these are the analogous statements to our usual convergence theorems, just with expectations replaced
with conditional expectations. The proofs are similar in spirit to what we’ve did in the unconditional case.

Proof of 16.1. Let Y,, = E[X,, | G]. In the previous lecture, we showed that since the X,, are nonnegative
and increase pointwise to X (almost surely), we have that the Y,, are also nonnegative and increasing (almost
surely). We can then set Y = lim,,_,o Y}, (the pointwise limit — this exists because the Y,, are increasing,
though it might take infinite values). To complete the proof, it suffices to show that Y = E[X | G] (almost
surely); and by uniqueness, to do this, it suffices to show that Y satisfies the two properties that characterize
the conditional expectation.

First, Y is clearly G-measurable, since each Y, is G-measurable and the pointwise limit of G-measurable
functions is also G-measurable.

Also, if we fix any set A € G, then by the monotone convergence theorem we have that

E[X -14] = 1inl>inf]E[Xn < 14]

(since X, - 14 converges increasingly pointwise to X - 14). But for all n we have E[X,, - 14] = E[Y,, - 1 4],
by the definition of the conditional expectation. And now we can apply the monotone convergence theorem
again — Y, - 14 converges pointwise increasingly to Y - 14, so we have

E[X - 14] = lim E[X, - 14] = lim E[Y; - 14] = E[Y - 14].

So we’ve shown Y satisfies both the conditions in the definition of conditional expectation, which by unique-
ness means Y = E[X | G]. O

(Here we're using the unconditional monotone convergence theorem in our proof.)

Proof of conditional Fatou. As in the proof of Fatou’s lemma, we consider the sequence infg~, X;. This
sequence is increasing in n (by definition), and

lim (inf X3%) = liminf X,

n—oo k>n n—00

by definition. Now we can just apply Proposition 16.1 to this sequence; this gives

lim E[inf (X}) | G] = E[linl}iann | G]

n—00 k>n

almost surely. Now note that E[infx~, Xy | G] < infg~, E[X) | G] almost surely. This is because if we fix
any k > n, then infp~,, X < Xk, so the same is true if we take conditional expectations.

Page 119 of 196



18.675 — Theory of Probability Class by Konstantinos Kavvadias (Fall 2024)

And now we take limits as n — oo; this implies that
E[liminf X,, | G] < lim inf E[X} | G] = liminf E[X,, | G]
n—o00 n—oo k>n n—o0
(almost surely). And that’s exactly what we wanted to prove. O

So this has two inputs — the first is the conditional monotone convergence theorem, and the second is that
conditional expectations preserve ordering (if X <Y, then E[X | G] < E[Y | G]), which gives E[inf X}, | G] <
inf E[ X}, | G]. (To see why again, fix any k > n. Then infy~, X; < X} almost surely, so Elinfg~, X | G] <
E[X} | G]. But this is true for every k, so if you take the infimum over & you will still have this inequality.)

Proof of conditional DCT. In the unconditional case, we proved the DCT by creating some nonnegative
random variables and applying Fatou’s lemma. That’s exactly what we're going to do now, with conditional
Fatou’s lemma.

Consider the random variables Y + X, and Y — X,,. These are both nonnegative random variables (by
the hypothesis | X,,| < Y). So we have sequences of nonnegative random variables, which lets us apply
conditional Fatou’s; this gives that

EY + X | ] = Efliminf(Y' + X,,) | G] < liminf E[Y" + X, | G].
And by linearity, we have
EY + X [ G] = liminf E[X,, + V" | G] = E[Y" | §] + lim inf E[X,, | §].
If we do the same for Y — X, we get

ElY - X | G] = E[lirginf(Y - X)) | G] < linr_1>infE[Y — X, | G] =E[Y | G] —limsupE[X,, | G]

n—oo
(here we're using that liminf(—x,) = — limsup x,).

Now we just combine these — by linearity, we have E[Y + X | G] = E[Y | G] + E[X | G], which means the
E[Y | G] term cancels, and we get
E[X |G] < lirginfE[Xn | G].

Similarly, for the second equality we can write E)Y — X | G] = E[Y | G] — E[X | G], and again the Y cancels
and we get
E[X | G] > limsupE[X,, | G].

n—o0

Combining these, we get that

E[X | ] <liminfE[X,, | G] <limsupE[X, | G] <E[X | G]
n—00 n—00
(since we always have liminf < limsup by definition). This means all the terms in this chain have to be
equal; in particular, since the liminf and limsup are equal, lim,, o E[X,, | G] exists and equals E[X | G].
(This is the same thing as in our proof of unconditional dominated convergence theorem, just using the
conditional instead of unconditional Fatou’s lemma.) O

Finally, it remains to prove conditional Jensen. For this, we're going to invoke something which is nontrivial
— given any convex function, you can express it as a supremum of countably many affine (linear) functions.
(This is nontrivial but not extremely hard to see.)
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Fact 16.6 — For any convex function ¢, we can write ¢(z) = sup;cr(a;x + b;) for all z € R (for some
set I).

We’ll accept this, and use this nice representation to prove our claim.

Proof of conditional Jensen. Write ¢ in the above form. This means for all ¢ € I, we have
Elp(X) | 6] <E[a; X +b; | G] = a;E[X | G] + b;

(since conditional expectation satisfies linearity).

This is true for all 7; now taking the supremum over ¢, we have

Elp(X) 6] = Silelg)(aiE[X | G] + bi).

But the right-hand side is just ¢(E[X | G]) almost surely (by the same fact). O

This is another way to see the unconditional case of Jensen’s inequality.

And that’s the end of the proof — the final statement [[E[X | G]||, < [|X||, is just the special case with
¢(x) = P, which is convex for p > 1.

Student Question. Where did we use that ¢ is in L' or nonnegative?

Answer. We need this so that we can make sense of E[p(X) | G]. If ¢ is nonnegative, then you can
always make sense of this, even if ¢(X) is not in £! (and if it’s in £!, then this makes sense by the
construction of conditional expectation from last class).

So these are the analogs of the limit theorems we learned in the unconditional case. Apart from conditional
Jensen, the proofs are the same as before.

Student Question. What’s the intuition behind conditioning on a o-algebra — why are we doing this?

Answer. We'll see this later when talking about martingales — you can imagine you perform an
experiment in different steps, F is the possible space of all the outcomes of the experiment, and G
represents all the information you’ve gained after the first n steps. You can imagine X as the next
result, and you want to keep track of how useful the information you have so far is; that corresponds
exactly to the conditional expectation. So this captures, given that we know the first n results, how
much you know about the next result. In general, o-algebras are information — they’re a collection of
events.

§16.2 More properties of conditional expectation

We’ll now prove a few more properties of conditional expectation.

Proposition 16.7 (Tower property)
Let H C G C F be o-algebras, and let X € £!(F). Then we have

E[E[X | G]| H] = E[X | #]

almost surely.
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In other words, if I condition on a smaller o-algebra, it doesn’t matter whether I start with X itself, or X
conditioned on a bigger o-algebra. In other words, this means if we know all the information encoded by H,
then this gives us the same information for the entire random variable X and for the conditional random
variable E[X | G]. In other words, this says that if H C G, then you can just forget the conditioning on G.

Proof. The proof is just by definition — clearly, we have that E[X | H] is H-measurable (by the definition
of the conditional expectation), and for all A € H, we have

E[E[X [ G]-1a] = E[X - 14] = E[E[X | G] - 14]

(the first equality is because any event in H is also in G). And so by the definition of the conditional
expectation, this means E[X | H] satisfies the properties that the conditional expectation E[E[X | G] | H] is
supposed to have. So this implies the left-hand side is the same as the right-hand side (by uniqueness). [

The next property, roughly speaking, says that we can always take out what is known.

Proposition 16.8
Let X € L!(F), and let G C F be a g-algebra. If Y is bounded and G-measurable, then

E[XY | G] =YE[X | G]

almost surely.

We need Y to be bounded in order to say that XY is in £! (that’s what we use it for). What this says is
that we can always take out what is known — if you know G then you know Y, because Y is G-measurable;
and what this means is that you can always take it out of the expectation.

Proof. Again, we’ll just prove that the random variable Y - E[X | G] satisfies the properies of the conditional
expectation that E[XY | G] is supposed to satisfy; then they have to be the same by uniqueness.

Suppose we fix any A € G. Then we have
E[YE[X | G]-14] = E[E[X [G]- (14-Y)].

Now, if Y were an indicator function, then the expectations of these two random variables would be the
same. In general, Y might not be an indicator function. But that’s fine, because we can always approximate
it by a linear combination of indicator functions. So we still do have that this is equal to E[X - (14Y)]. (To
repeat, this would be true by the definition of E[X | G] if Y were an indicator function of an element of G.
But it’s still true for any Y € £ — this property is satisfied when Y is an indicator function, and it’s also
satisfied by linear combinations; so by taking limits, it’s also satisfied for all Y € £1(G).)

In particular, this is equal to E[(XY)1 4], so we get
E[(Y - E[X | G)1a] = E[(XY)14].
By the uniqueness of conditional expectation, this means
Y- -E[X|G]=E[XY |G|

almost surely, which completes the proof. O

(When we approximate Y by indicator functions, we're implicitly using e.g. the dominating convergence
theorem.)

We'll see one more property, and then we’ll study conditional expectations of Gaussian random variables
(in this special case, we can actually identify the conditional expectations).
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Proposition 16.9
Let X € £L1(F), and fix two o-algebras G, H C F. If 0(X,G) is independent of #H, then

E[X [ o(G,H)] =E[X | G]

(almost surely).

Here we’re conditioning on more information — a larger o-algebra (the one generated by G and H). But if
the g-algebra generated by X and G is independent of H, then we can actually just forget H. The intuition
is that H doesn’t give us any further information about X.

Remark 16.10. If we weaken the assumption of independence and just say that o(X) is independent
of H and that G is independent of H, then this is not true anymore; it is a nice exercise to construct
a counterexample. Here the assumption is stronger — that o(X,G) is independent of H (which is not
equivalent to just saying each of X and G individually is independent of H — the first implies the
second, but not the other way).

Proof. Here, it suffices to prove this in the case where X is nonnegative, since for general X € £! we can
always write X as a difference of nonnegative functions.

Suppose we fix some A € G and B € H. Then we have that
EE[X | o(G,H)] - 1anp] = E[X - 14n5]

(by the definition of conditional expectation). But we also have 1 4np = 1415, so this is equal to E[X141p].
And the random variable X1, is measurable with respect to o(X,G), while 15 is measurable with respect
to H. And since H is independent of ¢(X,G), we can split this up as E[X14] - P[B]. Further, we have
E[X14] = E[E[X | G] - 14]P[B]. And again, we can put B inside, because E[X | G]14 is also measurable
with respect to o(X,G). So we can also write this as

E[E[X | G]1ans]-
So for all A and B, we have that
E[E[X | o(H,G)|1anB] = E[E[X | G]1anp].

So our expectations agree on sets of the form AN B. And the idea from now is that o(H,G) is generated
by sets of this form A N B; so this equality has to hold for all C' € o(G,H). But to make this more precise,
we need to construct some measures and say two measures agree on a w-system generating the o-algebra,
so they agree everywhere. We’ll do this precisely, since this is a bit delicate.

Set Y =E[X | o(H,H)], so that Y > 0 almost surely (since we assumed X is). Then we define the measures
p(F)=E[E[X | G]-1p] and v(F) = E[Y'1F] (for all F € 0(G,H)). If we know that these two measures are
the same, then we're done — it’ll mean this equality is true for all F' € o(G, H), so by uniqueness we’d have
to have this equality.

For this, the point is we’ve already shown p and v agree on the w-system {ANB | A € G, B € H}. And this
m-system generates o(G,H). Also, these two measures agree on the entire space — we have u(2) = E[X],
and similarly v(2) = E[X]. So we have two finite measures which agree on a generating m-system, which
means they agree everywhere.

So we’ve shown that y = v on o(#,G), which implies by uniqueness that E[X | o(G, H)] = E[X | G] almost
surely. O

As we can see in these proofs, when we want to prove certain conditional expectations are the same, we
often invoke uniqueness.
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Student Question. Why did we need nonnegativity here?

Answer. The point is just so that p and v are actually measures (we need them to be nonnegative for
this). For the general case, we can just write X = max{X,0} — max{—X,0}, and just apply the claim
to these two functions.

§16.3 Conditional expectations of Gaussians

In general, it’s not easy to compute conditional expectations — usually it’s not easy to get an explicit form
for E[X | G], unless the space is nice (e.g., if it can be partitioned into countably many measurable sets).
However, there are some cases where we can actually have an explicit form, and one is that of Gaussians —
if you have a Gaussian vector (X,Y’), then there is an explicit form for E[X | Y]. This is one way in which
Gaussians are very nice.

Let (X,Y) be a Gaussian vector on R?, and set G = o(Y). What we want to do is compute X’ = E[X | G].
If X and Y are independent, then knowing the information in G gives us nothing (they’re independent, so
this doesn’t add any information); so in that case we’d have X’ = E[X]. In general they might not be
independent, but it turns out we can still get an explicit form.

The first thing to note is the following (which is nontrivial but not extremely hard to see) — there exists a
Borel f:R — R such that X’ = f(Y). So if you have a random variable which is measurable with respect
to the o-algebra generated by another, then this random variable has to be some (Borel) function of that
other. (This is always true, not just for Gaussians — it’d be true for any random variables X and Y.) The
idea now is to actually compute f. And the way we’ll do this is by guessing — we’ll guess what the right
form of X’ should be.

Recall Gaussians satisfy some nice linearity properties — linear combinations of Gaussians are still Gaussians.
So we’d expect that X’ is still a Gaussian. This means it’s natural to try taking f to be linear; then what
should its value be?

So as a guess, we'll try X’ = aY +b for some a,b € R (because Gaussian random variables respect linearity).
Suppose that f has this form. What should the values of a and b be? If X’ has this form, then we would
have

E[X'] = E[X] = aE[Y] + b.

This means a and b would be determined in terms of each other, but we need another equality to be able to
determine both. Another thing we’d have is that

E[(X - X)Y] =0,
by the definition of X’. This implies that Cov[X — X’ Y] = 0, which implies that
Cov[X,Y] = Cov[X"Y] = aVar(Y).
So we would expect these two things to be true. In particular, if we set

~ Cov[X,Y]
~ Var(Y)

_ Cov(X,Y)

and b= E[X] Var(Y)

E[Y]
(so a and b depend only on X and Y'), then we would have Cov(X — X’ Y) = 0. And since (X — X', Y) is a

Gaussian (if we assume X' is a Gaussian and has this form), then we get that X — X’ and Y are independent
(for this choice of X').

Now what we do is we've guessed, if X’ had this form, what a and b would be. And for this choice of a
and b, we just set X’ to that random variable. Then we have that X — X’ and Y are independent (because
their covariance is 0). This implies that if Z is o(Y)-measurable, then we also have E[(X — X")Z] =0 —
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in other words, this means E[X14] = E[X'14] for all A € o(Y). So this means that X’ indeed satisfies the
properties of the conditional expectation.

So the conditional expectation has to be X’ = aY + b. This means it has an explicit form (since a and b
only depend on X and Y).

Again, the idea is that we try to guess f — we ask, what if f were a linear function? Then we figure out
what the values of a and b would be, to end up with a particular choice — if the conditional expectation
had a linear form, then a and b would have to be these values. Then we set X’ to be the corresponding
random variable, and we prove that X’ does satisfy the necessary properties; so it has to actually be the
conditional expectation.

Student Question. How do we know E[(X — X')Z] =0 for o(Y)-measurable?

Answer. Because X — X’ and Y are independent, so X — X’ has to be independent of any function of
Y.

The main idea is we set a and b such that Cov(X — X', Y') = 0, which ensures X — X’ and Y are independent;
and that means E[(X — X')Z] = 0 for all Z measurable with respect to Y. And taking Z = 14 for A € o(Y),
we get that indeed X’ satisfies the properties that E[X | o(Y")] is supposed to.

8§17 November 5, 2024

Last lecture, we finished by explicitly computing the conditional expectation of a Gaussian random variable
given another Gaussian, provided that the vector (X,Y) is also Gaussian — it might be the case that X
and Y are both one-dimensional Gaussians but (X,Y) is not, in which case we can’t do this. But if (X,Y")
is indeed Gaussian, then we can compute E[X | Y], and we did this in the previous lecture.

§17.1 Conditional density functions

Suppose X and Y are random variables in R with joint density function f(x yy(z,y) (for (z,y) € R?). In
general, a random variable doesn’t necessarily have a density function; but here we’re assuming the vector
(X,Y) does. Given this, we're going to compute the conditional law of X given Y, if we know this density
function.

More generally, let h:R — R be a Borel function (i.e., a Borel-measurable function) such that h(X) is
integrable. Our goal is to compute E[h(X) | Y]. This is slightly more general than what we did last class
— we computed this conditional expectation where (X,Y’) is Gaussian, in which case the density function
is known.

Recall that if we know (X, Y") has a probability density function, then we also know Y has a density function,
and this is given by integrating the joint density with respect to X — i.e.,

fY(y):/Rf(Xy)(fL‘,y)dx.

In order to find the conditional expectation, we need to compute the expectation of h(X) restricted to sets
which are measurable with respect to Y. For that, suppose we fix g:R — R to be a bounded measurable
function. Then we have

BIX) - 9(V)] = [ @)ao)foxy w.0) do dy

(this is just by the definition of the joint density function). And the point is that by applying Fubini’s
theorem, we can rewrite this in a convenient way, by integrating with respect to z first; then we get

A </R M) w dw) 9) Sy (v) dy.
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Here what we’ve done is just divided and multiplied by fy(y), and applied Fubini’s theorem. And now we
have our candidate for the conditional expectation — it’s the thing inside the integral (at least, whenever
it makes sense, which means the denominator is positive). So we consider the function

Foxor (@ _
sty — LI @) T de i f () > 0
0 otherwise.

With this definition of ¢, we have

Emwmwn—émmy@thy

But this integral on the right, by the definition of the density function of Y, is just E[¢(Y)g(y)]. (And this
is true for every bounded measurable function g.)

This implies that
E[h(X)14] = E[¢(Y)14]

for all A € o(Y). And by the uniqueness of the conditional expectation, this means
E[R(X) [ Y] = o(Y)

almost surely, where ¢ is the explicit function we defined.

What this tells us is that if you know the joint density function, then all information about conditional
expectations is encoded in it — in that case we can compute conditional expectations in this way. Of
course, f(x,y)(z,y) does not necessarily exist, and in that case we don’t necessarily have a closed form for
the conditional expectation. But this lets us find conditional expectations for a large number of pairs of
random variables. And what we did with Gaussians is a special case of this, because for Gaussians we do
know the joint density (and if we plugged that in, we’d get the same thing as last lecture).

Student Question. How do we know the set of points with fy(y) = 0 doesn’t affect our integral — if
f vanishes on a set that’s not of measure 0, why do we still have E[h(z)g(y)] = E[¢(Y)g(Y)]?
Answer. By the definition of fy, if fy(y) =0, then [ fixy)y(x,y) dz = 0. So if we define

A={yeR]| fy(y) =0},

then we have

fxy)(z,y) dedy = 0.
RxA

This means we can neglect this set in our integral.

§17.2 Stochastic processes and filtrations
This completes the chapter on conditional expectations; now we’ll move on to the next chapter, which is
discrete-time martingales. This is the most important part for the remainder of the course.

Here the setup is as follows. As usual, we always have a probability space (2, F,P). And we also have a
measurable space (E, £) where our random variables take values.

We’re going to be interested in a sequence of random variables X = (X},),>0, defined in the same probability
space (2, F,P) (we say that they’re coupled in the same probability space), which take values in E.
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Definition 17.1. We call such a sequence X = (X,,) a stochastic process on E.

So that’s the setup — we have a bunch of random variables defined in the same probability space. And
given that we have such a sequence, we’ll be interested in filtrations.

Definition 17.2. A filtration (F,),>0 is an increasing family of sub-c-algebras of F (meaning that
Fn C F for all n, and F,, C F,4; for all n).

Intuitively, we can interpret a filtration as information that we keep track of. Suppose that we perform an
experiment at different times, and X, is the result of the experiment during the nth time. (For instance, we
can flip a coin, or observe the velocity of a particle at time n.) Intuitively, F,, corresponds to the information
of the first n results of the experiment. That’s the best way to understand intuitively what a filtration is
— it’s very abstract at first glance, but really it just corresponds to keeping track of information.

Of course, someone might ask whether such a filtration exists. It does exist. In fact, a stochastic process
always induces a filtration.

Definition 17.3. For a stochastic process (X,,), we define its natural filtration, denoted (F.X),>0, by

FX =0(X,|1<k<n).
This corresponds to the above intuition (it’s what the filtration should be if we think of it as tracking the

information from the first n experiments).

As another natural question:
Question 17.4. If we start with a filtration and a stochastic process, how are they related?

We saw a stochastic process induces a filtration, but the converse is not necessarily true. But somehow these
two concepts might be related.

Definition 17.5. We say a stochastic process X is adapted to (F,)n>0 if X, is Fp-measurable for all n.

In this case, clearly we have F.X C F, for all n (because by the definition of a filtration, if X is adapted
with respect to F,, then Xy, ..., X, are all F,,-measurable).

The point of martingale theory is to analyze such stochastic processes, and their relationships with such
filtrations. They have applications, but are also important mathematically.

§17.3 Martingales, supermartingales, and submartingales

Now it’s time to define martingales and some related objects. We’ll assume the same setup as above, with
E = R with the Borel o-algebra.

Definition 17.6. Suppose that X = (X,,),>0 is adapted with respect to some filtration (F,)n>0, such
that X,, € R. Then:

(1) X is a martingale if E[X,, | Fp,,] = Xy, for all m < n.

(2) X is a supermartingale if E[X,, | ] < X, almost surely for all m < n.

(3) X is a submartingale if E[X,, | F] > X, almost surely for all m < n.

This is the main concept of the chapter. We’re going to prove lots of properties and theorems related to
martingales, submartingales, and supermartingales.
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As mentioned earlier, E[X,, | F,,] can be interpreted as the expected profit someone can have, given that
we know the results of the first m rounds. In particular, you can imagine that in every single round, there
is some kind of a game, where you either lose or gain with a certain rule. And X,, will represent the total
profit that you have made up until the mth step. Here, E[X,, | F;,,] represents the amount of money you
expect to have accumulated after the next n — m rounds, given that you know what has happened up until
the mth round. If we have equality, as in a martingale, then the game is considered to be fair. If you have a
supermartingale, then the game is not fair — you expect your total profit to drop from your profit at time
m. If you have a submartingale, then the game is in your favor — the amount that you expect to gain after
n —m rounds is at least the amount of money that you have at the mth round. So this is another intuitive
way to somehow understand these definitions — they come from real-life scenarios. We’re studying this in
an abstract way, but we’ll see some examples to understand more intuitively what these concepts represent.

Fact 17.7 — Every process which is a martingale with respect to a given filtration (F,) is also a
martingale with respect to its natural filtration (F.X).

This follows by the tower property from the previous lecture (and the fact that FX C F,).

(The same holds for supermartingales and submartingales.)

Remark 17.8. It doesn’t matter whether we start our indexing at 0 or 1. In experiments, you usually
have a starting condition, and then the system evolves; that’s why we usually start at 0. But it’s just
a matter of preference.

§17.3.1 Some examples of martingales

Now that we’ve introduced a new concept, we should check that it actually exists, by seeing some examples.

Example 17.9 (One-dimensional simple random walk)

Let (&)i>1 be a sequence of i.i.d. random variables with E[¢;] = 0. Then if we take X,, = > | &, it’s
easy to check that X, is a martingale.

(This is with respect to the natural filtration — we usually assume this when the filtration is not mentioned.)

Example 17.10

Let (&)ien be an i.i.d. sequence with E[¢;] = 1. Then X,, =[]}, & is a martingale (again, with respect
to the natural filtration).

Here we need expectation 1 because we’re taking products.

So we now have two families of examples of martingales; throughout the course, we're going to see more
examples.

§17.4 Stopping time
When you have a martingale, it’s interesting to ask:
Question 17.11. What happens to the martingale if we stop it at a random time?

So N is a random variable taking values in N. And we want to see how the martingale behaves when we
take X, where IV is random. This leads to the notion of stopping times.
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Definition 17.12. A stopping time 7' is a random variable T:Q — N U {oo} such that {T' < n} € F,
for all n.

In other words, to decide whether the stopping time is at most n, it’s enough to observe the first n terms
of the experiment. So a stopping time is a random variable taking integer values (possibly co) such that if
we want to know whether it’s at most n, it suffices to observe just the first n terms of our sequence — we
don’t have to observe subsequent terms.

Equivalently, we have the following (this is an easy exercise).
Fact 17.13 — A random variable T is a stopping time if and only if {T' = n} € F, for all n.

To see this, we can write
{Ty=n} ={Ta <n}\{Th <n-—1}
The first term on the right belongs to F,,, and the second to F,,_1 C F,,; so their difference is in F,.

The point of the chapter is to prove properties for martingales, submartingales, supermartingales, and
stopping times — random variables of this form.

§17.4.1 Examples

Again, since we introduced a new concept, let’s give some examples of such stopping times.

The first example is the trivial one.

Example 17.14

Any constant time is trivially a stopping time.
But we can also have more complicated stopping times.

Example 17.15
Fix any Borel A € B(R). Then if we define

Ty = inf{n | X, € A}

as the first time our sequence enters A, then T4 is a stopping time.

This might take infinite values — we use the convention that inf () = oo, so if the sequence never enters A,
then Ty will take value co.

To see that Ty is a stopping time, we can just apply the definition — we can write

{TA < TL} = O{Xk € A}
k=1

But X}, is Fi-measurable, so { X} € A} € Fj. And since we have a filtration, this means {X; € A} € Fj, C
Fn. So {Ty <n} e F,.

Student Question. What do you mean by ‘observing’?

Answer. This means if we want to decide whether the stopping time is at most n, this is F,-measurable.
And intuitively, F;, can be understood as all the information you’ve gathered in the first n steps. So
to decide whether the stopping time has occured by time n, we just need to have observed the first n
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random variables (in the case F,, = F.X).

§17.5 Some properties of stopping times

We’ll now mention some properties of stopping times. We won’t prove them — they’re an easy exercise —
but it’s nice to have them written down.

Proposition 17.16

Let S, T, and (1,)n>0 be stopping times, on the filtered probability space (2, F, (Fpn)n>0,P). Then
min{S, T}, max{S, T}, inf T,,, sup T},, liminf,_,~ T},, and limsup,,_, . T, are all stopping times.

(By a filtered probability space, we just mean a probability space endowed with some filtration (F,).)

This is analogous to how when we discussed random variables, we said that if we had two measurable
random variables, then their minimum and maximum are measurable; and if we have a sequence, then their
infimum, supremum, liminf, and limsup are all measurable. Next chapter we’ll prove similar things for
continuous-time martingales, but there you need additional conditions, and things are more complicated.

§17.6 Stopping times and stopped processes

We have a filtration and stopping time, and we can wonder if we can define a o-algebra representing the
information we’ve gained up to time 7. What F,, means is that we perform an experiment for a deterministic
number of times n, and record all the information we gained up to this time. But what if we run it for a
random number of times? This leads to the following definition.

Definition 17.17. Let T be a stopping time on the filtered probability space (2, F, (Fn)n>0,P). Then
we define
Fr={Ae F|An{T <n} € F, for all n}.

Intuitively, we can interpret Fr as all the information available up to time 7. In other words, it’s the
collection of all possible outcomes such that if we restrict to the event that our stopping time is at most n,
then A only depends on the first n terms of the experiment.

Student Question. When we have a filtration, do we require \J,, Fr, = F ¢

Answer. No, not necessarily — it just has to be an increasing collection of o-algebras.

So this can be intuitively interpreted as the information up to time T" — if we restrict ourselves to the event
that the stopping time 7" has occurred by time n, then this outcome should only depend on the first n terms
of the experiment.

We can also define a stopped process, as mentioned earlier.
Definition 17.18. We define the random variable X7 as
Xr(w) = X (W)

for all w € Q, whenever T'(w) < co. We also define the stopped process X7 as the sequence X/ = Xpa;
for all ¢ > 0.

This means you take the random time 7', and observe all outcomes of the experiment up to time 7" and then
just stop it at that time.

(We write T' At = min{T, t}.)
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§17.6.1 Some properties

Proposition 17.19
Let S and T be stopping times, and suppose we have an adapted process X = (X,)n>0-

(i) If S < T, then Fg C Fr.
(ii

(ii

The random variable X7 - 17. is Fpr-measurable.

The stopped process X7 is adapted.

)
)
)
(iv) If X is integrable (meaning that X,, € L' for all n), then X7 is also integrable.

What (1) says is that if S < T, then all the information we get up to time S is contained in the information
we get up to time 7'. (This is obvious from the definitions.)

For (2), we restrict to the event T' < oo because for now it doesn’t make sense to define X7 when T' = oc.
Then this makes sense, because intuitively Fr is all the information that you get up to time 7.

The proofs of these properties are not that complicated; they’re almost immediate from the definitions. As
mentioned earlier, (1) is straightforward (it immediately follows from the definition of Fr).

Proof of (2). For this, we need to show measurability. So suppose that we fix some A € B(R). Then we
want to consider the event {X71lr.oo € A}. We need to show

{XT1T<oo € A} N {T < n} € Fn

for all n; then by the definition of Fr, this means {Xrlr<o € A} is in Fr, which means our random
variable is measurable.
For this, we can write the above event as

n

U {Xm € A} n{T =m}.

m=1
We know T is an integer random variable, so we just take the union over all its possible values.

But we know T is a stopping time, and that X is adapted. This means {T' = m} € F,, (for example, since
{T'=m} ={T <m}\ {T <m— 1}, and these lie in F;,, and F,,—1). And we also know {X,,, € A} € Fy,,
because X is an adaptive process. So their intersection is also in F,, and therefore in F,, (because (F,) is
increasing). Therefore, the entire union also belongs to F,.

So the above event { X717 € A} N {T < n} belongs to F, for all n.

So since this is true for all n, this implies {X717<o € A} is Fr-measurable for all A € B(R). And by the
definition of measurability, that means X717 is indeed Fp-measurable. [l

Then (3) follows immediately from (2); let’s see why this is true.

Proof of (3). For every n, the random variable X7, (X stopped at the minimum of 7" and n) can also be
written as

XT/\n : 1T/\n<oo

(since T'An = min{T,n} is always finite). And by (2), we’ve shown that this is Fra,-measurable — here
we’re using the fact that T'A n is a stopping time.

And we also have Fpp, C F,. So this means Xpp, is F,-measurable for all n, which shows (3), that
the stopped process X7 is adapted (with respect to the same filtration — by the definition of an adapted
process). O
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Proof of (4). For (4), we want to show the stopped process is also an integrable process. For this, we have

)
Z ‘Xm/\n]-Tm‘]
m=0

(we're just summing over all possible values of T'). And this can be written as

E[|Xranl] = E

E +E | X 1rom

m>n

n—1
Z |Xm| ]-T:m
m=0

(In the second term, this is because if T' > n then we always have T' A n = n; so we have X,, instead of n.)
But the first term here is at most Zzz;loEHXm”- And the secod term is at most E[|X,,|] (because it’s the
expectation of | X,,| restricted to the event T' > n, which is at most E[|X,,|]). So in total, we get that this is
> o E[| X ], which is finite (since the sequence is integrable).

So this is finite, which means the stopped process is indeed integrable. O

8§18 November 7, 2024

Last time we started our chapter on discrete-time martingales; this chapter contains the most important
results of the course, together with the limit theorems. It’ll also be useful if we take stochastic calculus
later.

In the previous lecture, we gave rigorous definitions of martingales, filtrations, and all the important concepts
we’ll use. We also introduced stopping times, and gave a bit of intuition behind these definitions.

At the end, we proved some simple properties of stopping times and stopped martingale processes. This
lecture, we’ll start by stating and proving the optional stopping theorem, which is quite useful.

§18.1 The optional stopping theorem

Theorem 18.1 (Optional stopping)
Let X = (X,,)n>0 be a martingale. Then:

. . . T . . .
9 * 9y
(1) If T is a stopping time, then the stopped process X' is also a martingale. In particular

E[X7at] = E[Xp].

(2) If S < T are bounded stopping times, then E[X7 | Fs] = Xg almost surely.
(3) If S < T are bounded stopping times, then E[X 7] = E[Xg].

(4) If there exists an integrable random variable Y which dominates all the X,, (i.e., |X,| <Y for
all n) and T is a stopping time which is finite almost surely (but not necessarily bounded), then
E[X7] = E[X)).

(5) If X has bounded increments (i.e., there exists M € (0,00) such that |X,+1 — X,| < M almost
surely for all n) and T is a stopping time such that E[T] < oo, then E[X7]| = E[X].

The second part of (1) follows immediately from the fact that X7 is a martingale.

For (2), recall that Fg intuitively is all the information that’s encoded by our martingale up to the stopping
time S (we defined it rigorously last lecture).
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The point of the optional stopping theorem is that you have a martingale X and stop it at some random time
T, and you want to compute the expectation of that random observable. The optional stopping theorem
gives you conditions under which this is computable, and not just computable but actually equal to E[X()].
Condition (3) is the first such condition (where we take S = 0). Condition (4) is another sufficient condition
to have this equality, which is more general. We don’t assume anymore that 7" is bounded, only that it’s finite
almost surely — so boundedness has been replaced with a random variable Y that dominates everything
(we're going to apply the dominated convergence theorem).

Note that E[T] < oo is a stronger assumption than 7" being finite almost surely (as we have in (4)).

What someone should take from the OST is that it gives you conditions under which you have E[X7] = E[Xj].
We have (4) and (5). In (4), we're assuming something more general on 7', but we have to pay a price —
that we have a uniform integrable bound on the X,. In (5) we don’t assume that, but we assume the
increments are bounded; and we make the stronger assumption that E[T7] is finite, which is stronger. (We’ll
see counterexamples without these conditions.)

We’ll prove these one by one.

Proof of (1). Here we need to show the stopped process X7 is a martingale. By the definition of a martingale,
we want to show that
E[X7at | Fi-1] = Xpa@t—1) almost surely

for all ¢ € N. (This is the definition of the martingale property.) Recall that last lecture, we showed that
XT is integrable, so these expectations makes sense.

Now we expand the left-hand side — we have

t—1

EXrn | Feoal =B | Xo-Lpegy | Foor | + EB[X7 - 1gpsyy | Fooal.
s=0

What’s the first term? The first term is simply given by
X ir<i-1ys
because the event {T" < t — 1} is measurable with respect to F;_1 (because T is a stopping time), and all

the random variables X we get in this case are measurable with respect to Fs C F;_1.

For the second term, 17~ 1 is measurable with respect to F;_1, so we can move it outside the expectation;
and Xy is a martingale, so its expectation given F;_; is just X;_1. So the second term is X; 11p~;_1. This
gives

E[X7ae | Feo1] = Xrlr<g1 + Xio1lrsi1 = Xpp—1)-

And that’s exactly what we wanted to prove. O

Student Question. Why are we only proving this for t — 1, and not previous indices?
Answer. By the tower property, if this is true for F;_1, then it’ll also be true for F; for any s <t — 1,
by the tower property.

We’ll also prove (2) and (3); we'll leave (4) and (5) as exercises so that we can get familiar on our own with
these techniques (we already have all the ingredients we need).

Proof of (2). Since S and T are bounded, let n € N be some fixed integer such that 7" < n almost surely.
Then we can write

Xr=Xr—Xr1)+ (X1 — Xr—2) + -+ (Xsy1 — Xg) + X,
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because S < T. (So we're writing X7 as a sum of increments.) And we can rewrite this as

n
X = Xs+ Y (Xpp1 — Xp)Ls<her.
k=0

We need to prove (2), so we just need to show that Xg satisfies the properties of the conditional expectation
E[X7 | Fs], and then invoke uniqueness of the conditional expectation (as we’ve done before).
For this, fix A € Fg. Then we have

n

E[X7-14] = E[Xs - 1a] + Y E[(Xp11 — Xi) - Locker - 1a],
k=0

using the above decomposition and linearity of expectation. To complete the proof, it suffices to show that
each term inside the sum is 0, because then we’ll have E[X7 - 14] = E[Xg - 14], and therefore that Xg
satisfies the properties of E[X7 | Fs] (and by uniqueness, they have to be the same almost surely).

To show each term is 0, we use the martingale property and the definition of Fg. We can rewrite this
expectation as

E[(Xkt1 — Xk)1s<k<rinal = E[Xkr11angs<i<r)) — E[Xklan{s<r<r})-

And the point is that AN{S < k < T} is in F. Why? This is because S and T are stopping times, so
{S<k<T}={S<k}n{T > k}. And both of these events are in Fj (because S and T are stopping
times). Then this means, by the definition of Fg — for A € Fg means that if we take A and intersect it
with any event in Fy, then it’ll still be in Fj. So that means AN{S <k < T} is in Fy.

But we know X is a martingale, so we have
E[Xky1 | Fi] = Xi;

that implies the two terms are equal, so their difference is 0.

This means E[X7 | Fs|] = Xg almost surely. O

Then (3) is immediate, by taking expectations in (2) — because the expectation of the conditional expec-
tation is equal to the expectation in the original o-algebra. Explicitly, we have

E[X7] = E[E[X7 | Fs]] = E[X5]

(by properties of conditional expectations, and the fact that E[ X7 | Fs] = Xg almost surely).

And (4) and (5) are a nice exercise, which will be left to us to do. The reasoning is the same. In (4), you
use Y to use the dominated convergence theorem. (5) is something similar with increments, but you have
to be slightly careful; but you do something similar as in the proof of (2) (where we write out differences).

This is a very useful theorem, and we’ll use it a lot of times in the course (and in stochastic calculus).

As a remark, you can have a similar version of the optional stopping theorem when you start with a
supermartingale or submartingale; but here you will have some inequalities (depending on whether you have
a submartingale or supermartingale) — for example, you’ll have E[X7] > E[Xy] or E[X7] < E[Xj]. But the
proofs are the same.
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§18.1.1 Some counterexamples

Now we’ll see that the conditions in (4) and (5) are quite subtle in general.

Example 18.2 (One-dimensional simple random walk)

Let (&k)k>0 be a sequence of i.i.d. random variables such that P[§, = —1] = P&, = +1] = % Set

Xp =& + -+ &, Define the stopping time T as the first time the walk hits the value 1, i.e.,
T =inf{n > 0] X, = 1}.
Then T is finite almost surely (this is not obvious, but can be proven in infinitely many ways). But

E[X7] = 1 # E[Xo] = 0.

(Clearly E[X7]| = 1, by the definition of T'; and E[Xy] = 0 by symmetry.)

What’s going on is that T" doesn’t have finite expectation. We do have bounded increments — the increments
are bounded by 1 — but we don’t have E[T] < oo. So there are counterexamples — it’s not easy to give
very general conditions.

Student Question. Why couldn’t we apply (2) in this example, setting S =07

Answer. They’re not bounded — T is not bounded, and in fact has infinite expectation.

So this shows that when applying the optional stopping theorem, one has to be quite careful.

§18.1.2 A version for nonnegative supermartingales

Proposition 18.3

Suppose that X is a nonnegative supermartingale. Then for any stopping time 7" which is finite almost
surely, we have E[X7] < E[Xj].

The proof is just Fatou’s lemma. So if we have a nonnegative supermartingale and stop it at any time, then
E[X 7] will always be finite (since E[X(] is). We don’t need any assumptions on T’; the only assumption is
that we’re working with a nonnegative supermartingale and a stopping time which is finite almost surely.

Proof. We have E[X7]| = E[lim,,—,00 X7n]. Now we apply Fatou’s lemma to say that this is at most

lim inf E[ X 7).

n—oo

But the latter term is at most E[X(] by the optional stopping theorem (the version of (1) for supermartin-
gales). O

Student Question. Where are we using that T is finite almost surely?

Answer. So that X7 is well-defined — otherwise X7 doesn’t make sense, at least for the moment.

(Note that this result is only for supermartingales, not submartingales.)
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§18.2 Random walks

It’s remarkable how many things you can compute about random walks — they’re remarkable mathematical
objects, and you can say lots of things about them. We’re going to compute certain probabilities, using the
optional stopping theorem.

Suppose we have the same setup as before — we have some i.i.d. sequence (&;);>1 such that each takes the
values +1 with probabilities %, and we consider the simple random walk X, = > | & (where Xy = 0).

For every integer ¢ € Z, we can consider the first hitting time of ¢ by the random walk, defined as
T. =inf{n > 0| X,, = c}.
Here, the point is to calculate certain probabilities.

Question 18.4. What is P[T_, < T}], the probability that the random walk hits —a before b?

(We assume a,b > 0.)

Here we can visualize this by drawing time on the z-axis, and drawing the random walk; it might go up and
then down and then back up. And we have two levels (drawn as horizontal lines) — one level b, and one
level —a. And we stop the walk at the first time it hits either the lower level or the upper level; we want to
compute the probability it hits the lower level before the upper level. And we’ll do this using the optional
stopping theorem.

Here we’ll use the stopping time T' = T_, A T}, (this is the first time we hit either —a or b). There are
certain conditions on the optional stopping theorem; the easiest candidate here is (5), because the X,, have
bounded increments (in fact, the absolute value of the increments is 1, because each time we go either up
or down by 1). To apply the OST, we’ll show that E[T] < co. Individually, each of T_, and T} doesn’t have
a finite expectation; but if we take their minimum, then it does. That’s what we’re going to show.

Claim 18.5 — We have E[T] < cc.

Proof. For this, we’ll do a trick. If you take the random walk and run it for a + b steps, and those a + b
steps are all +1, then clearly the random walk will exceed the bounds. So in particular, T is bounded above
by the first time that there are a + b consecutive +1’s in the walk.

So we want the first time such that & = 1 for a 4+ b consecutive steps; if this happens, then clearly the
random walk is going to exceed the region. So T' is at most this random variable, which we’ll call S — so
S is the first time that you have a 4+ b consecutive +1’s.

To be mathematically precise, we define
S=inf{n | =1foralln—(a+b)+1<i<n}

And we have T' < S.

Now, what’s the probability that the first a + b terms are 417 This is computable — each &; is 1 with
probability %, so the probability the first a 4+ b are (by independence) is 2~ (¢, In other words,

Plgi=1forall 1 <i<a+d=][Pl&=1]= SaTh
i

Then we perform the same experiment for the next block of a + b consecutive numbers. If this first event

happens, then we’re done — the stopping time 7" has already occurred before a + b. If this is not the case

— there is some 1 < i < a+ b with §, =1 — then we go to the next a + b elements. We have

1
P[fizlforalla+b+1§i§2(a—|—b)]:w
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for the same reason; and if this event happens, then T is at most 2(a + b). And we iterate — we keep doing
exactly the same thing.

If we perform the same experiment n times, then for the nth block we again have

Pl =1foral (n—1)(a+b)+1<i<n(a+b)]=

2a+b :
And we consider the first number n for which this happens. If we let this event be A,,, then we have
S <(a+0b)-inf{n € N| A4, occurs}.

(So we're taking the first a + b consecutive integers, and seeing if all their &;’s are 1. If they are, we stop;
this means T has already occurred. If this doesn’t happen, we move on to the next a 4+ b, and so on. We
keep doing this until the first n for which a + b consecutive integers all have the value 1.)

Student Question. Why are we using blocks of a + b — if you begin with a —1, why don’t we use the
block starting with 2¢

Answer. We want the events to be independent, so that we can bound the expectation.

And we have E[T] < E[S], which is at most the expectation on the right.

And the thing in the infimum is a geometric random variable, so we know its expectation — if we call that
random variable I = inf{n € N | A, occurs}, then we have E[I] = 2%*? (if you have a geometric random
variable with success parameter p, the expectation should be 1/p). In particular, this is finite. So

E[T] < E[S] < (a + b)E[I] = (a + b)2*T?,

which is a finite number. O

So now T has finite expectation and the increments of the random walk are bounded, so we can apply the
optional stopping theorem — by (5) of the optional stopping theorem, we have

E[X7] = E[Xo] =0
(because we start the random walk at 0). But X7 can only take two values, —a and b. This means
0=E[X7] = —aP[T_, < Tp] + bP[T_, > Tp).
And the two probabilities sum to 1, so we get
0=—aP[T_o <Tp| +b—bP[T_o < Tp| = (b —a)P[T_, < Tp] + b.

Now we rearrange, and we get

b

]P)[T_a < Tb] - m .

So we’ve explicitly computed this probability using the optional stopping theorem. Here the hard work was
proving that E[T] < oo, so that we could apply the OST; then we just did some manipulations. There are
other ways to compute this probability as well, but this is an elegant way that avoids a lot of computations
and combinatorial things.

In general, we should try to understand the optional stopping theorem as well as possible — it’s a very
important result, and there’s a huge range of problems one can generate using it (and it’s useful in stochastic
calculus, if we plan to study that).

Of course, random walks also make sense in higher dimensions, but things are more complicated.
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§18.3 The martingale convergence theorem

Now we’ll move to the next topic, which is the martingale convergence theorem. We’ll state it and a quick
consequence, and we’ll try to prove it in the next lecture.

Theorem 18.6 (Almost sure martingale convergence theorem)

Let X = (X,)n>0 be a supermartingale which is bounded in L' (meaning that sup, E[|X,|] < 00).
Then there is a random variable X, € Ll(}"oo) such that X,, — X, converges almost surely (where
Foo =0(Fpn | n>0)).

So this theorem says that if we have a sequence of supermartingales which is bounded in L', then you have
convergence almost surely to some limit. We'll also see other kinds of convergence in the next lectures.

As a quick comment, this in particular means L'-bounded martingales converge almost surely, because a
martingale is a supermartingale.

Usually when we try to prove convergence in general, we do it by guessing what the limit should be, and
after we’ve guessed the limit, we prove that it actually converges. That trick doesn’t work here — here it’s
not easy to construct the limit explicitly. So we’ll instead follow an indirect approach — a very beautiful
trick that counts the number of up-crossings of every fixed interval (we’ll explain what this means later).

Before we do this, we’ll write down an easy corollary of this theorem.

Corollary 18.7

Let X = (X,)n>0 be a nonnegative supermartingale. Then X,, converges almost surely as n — oo, to
an almost surely finite limit.

Proof. To prove this (given the theorem), it suffices to show that X, is bounded in L!. That follows from
the supermartingale property: since X, is nonnegative, we have

E[|X,|] = E[X,] < E[X(] < o0

(and this bound is uniform for all n). So (X,) is bounded in L', and by the almost sure martingale
convergence theorem, the X,, will converge almost surely to some limit (which is in L', so therefore finite
almost surely). O

Student Question. Are we assuming Xg is integrable?

Answer. When we defined martingales, we required the random variables to be integrable.

§18.3.1 Up-crossings

As mentioned earlier, the main goal is to prove the almost sure martingale convergence theorem. But it’s
not easy to explicitly construct the limit, and that’s why we’re going to employ a very nice trick, which
counts the number of up-crossings of a sequence. In particular, we have the following definition.

Imagine we have two (positive) levels @ and b (with a < b), and we want to count how many times the
sequence X,, makes a crossing — how many times you start with some X,, < a, and end up with another
term X, > b (with some intermediate terms in between). So we're interested in how many times the
sequence crosses this strip.
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The point is that a sequence converges if and only if for all finite ¢ and b, the number of times the sequence
crosses this strip (up and down) is finite. This is a fact from real analysis that we’ll prove.

We'll consider our sequence (X,), and we’re going to bound the number of times it crosses this strip up and
down, for all a and b. We’ll prove that this expectation is finite, and from that we’ll conclude almost sure
convergence in an indirect way.

Now we’ll use mathematical symbols to explain what we mean by this picture. For this, fix a sequence
(Zn)nen € R, and two real numbers a < b. We inductively define the following times:

e We define T) = 0, and Sy = inf{n > 1| 2, < a} as the first time the sequence goes below a. So S is
the first time our sequence goes below the level a.

e We define Ty = inf{n > S1 | x,, > b} as the first time after S; that the sequence goes above level b.
Whenever this happens, we say the sequence makes a crossing of the strip.

e Inductively, we define
Si+1 = inf{n > T} | x, < a}

to be the first time after 7T} such that the sequence goes below level a, and
Ti+1 = inf{n > Sky1 | xn > b}
as the first time after Si; that the sequence goes above b.

To more rigorously define the number of crossings, for each fixed n, we define
Ny ([a,b];2) = sup{k > 0| T); < n}.

(This is the number of crossings of the strip up to time n.) This is an increasing sequence in n, so it’ll
converge increasingly as n — oo to some N([a, b]; z); and this number N is the total number of crossings of
the strip (the number of times the sequence goes from the lower to the upper level).

We’re mentioning this for the following lemma.

Lemma 18.8
A sequence z,, converges in R U {£oo} if and only if N([a,b];z) is finite for all @ < b in Q.

That’s the key point behind Doob’s up-crossing proof of the almost sure martingale convergence theorem.
So if for every fixed strip the number of times the sequence crosses from bottom to top is finite, then the
sequence converges.

Student Question. [s the statement equivalent if you allow a,b € R?

Answer. Yes, by the density of Q. If you fix a,b € R, then you can fix rational numbers a bit less
than a and a bit larger than b; then the number of crossings between a and b is at most the number of
crossings between these two rationals. So it suffices to just deal with rational numbers.

So the strategy to prove the almost sure convergence theorem is to show that for all fixed a and b, the
expected total number of crossings is finite; then we can apply the lemma (we can take the intersection over
all pairs of rationals, since the intersection of countably many events with probability 1 still has probability
1). And the bound we’ll find is the Doob’s up-crossing inequality.

8§19 November 12, 2024

§19.1 The martingale convergence theorem

Last lecture, we stated the almost sure martingale convergence theorem — if we have a supermartingale
bounded in L', then it converges almost surely. We said the main component of the proof was bounding
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the number of up-crossings this sequence makes in a fixed interval. Imagine we draw the horizontal lines at
a and b. Then we consider the number of times we have a picture where we go from Xg, < a to X7, > b
(where T}, is the first time after Sy, that the sequence goes above b). We said a sequence converges if and only
if for every fixed interval, the number of up-crossings is finite. We want to prove an almost sure convergence
theorem, so it suffices to show that for any such a and b, the number of up-crossings is finite almost surely.
That’s the content of Doob’s upcrossing inequality, which we’ll prove today.

§19.1.1 Doob’s upcrossing inequality

Theorem 19.1 (Doob’s upcrossing inequality)

Let X be a supermartingale and fix any a < b. Then we have

(b — a)E[N,(X,a,b)] <E[(X, —a)”].

(Here E[(X,, — a)7] is the expectation of the negative part of X,, — a, i.e., min{X,, — a,0}.)
Recall that N, (X, a,b) is the number of up-crossings up to time n.

In particular, because X is a supermartingale, E[(X,, — a)~] is finite, and we can show it’s in fact bounded
above by a constant that doesn’t depend on n. So if we let n — co, we get that the expected total number
of up-crossings of the interval made by X is finite (since E[N,, (X, a,b)] will converge to the expected total
number of up-crossings); and that means the number is finite almost surely (since its expectation is finite).
And since this is true for all @ and b, this completes the proof.

Unfortunately, this proof doesn’t give an explicit construction of the limit, but it proves it exists.

Student Question. How do you know Ny (X, a,b) is measurable?

Answer. This is because the S and T} are stopping times, and we can express N, (X, a,b) in terms of
these stopping times.

The proof is short, but it’s the most important input.

Proof. Let N = N, (X, a,b) for convenience. By the definition of Sy and T}, we have
XTk —Xsk Zb—a.

We also have that

n

N
Z(XTk/\” - XSk/\”) = Z(XTk - XSk) + (Xn - XSN+1)1SN+1§TL'
k=1 k=1

(this is just by the definition of N as the total number of up-crossings up to time n). This is because if
k> N +1, then Sy An =T, An =n, sowe don’t have any contributions from the second term.

Now we need an upper bound, so we need to somehow apply the optional stopping theorem for these times.
In order to apply the optional stopping theorem, we need to say T} and S} are stopping times. This follows
relatively easily by induction. When k = 1, this is easy (by their definitions) — 7} is the first time the
martingale enters a certain Borel set, and we’ve seen this is a stopping time. And then for general k, we
just use induction — we assume 7}, is a stopping time, and given that we prove that Ty, is.

So Ty and S are all stopping times, by induction on k. This implies that

E[X.S'k/\n] 2 E[XTkAn]7
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by the optional stopping theorem (because the minimum between two stopping times is always a stopping
time, and since Si An < Ty A n, we can apply the optional stopping theorem (the version for supermartin-
gales)). In particular, this means

0 Z E [Z XTk/\n - XSkAn] )
k=1

because each of the terms has nonpositive expectation. Note also that each difference is always at least
b — a, as seen above (by the definitions of T} and Sg). So we have

n N
0=E Z(XTk/\n = Xgan)| =E [Z(XTk - Xg,)| +E [(Xn - XSN+1)]-SN+1S”] :
k=1 k=1
The first term is at least (b — a)E[N]. And the second is at least —E[(X,, — a)”] — this is because

(Xn - XSN+1)1SN+1§” > _(Xn - a)_'

And if we rearrange, we get
(b— Q)E[N] < E[(X, —a)7]. =

§19.1.2 Proof of the martingale convergence theorem

Now we'’re almost done, but not quite, because we need to be a bit careful. Fix a,b € Q with a < b. Then
by Doob’s upcrossing inequality, we have that

B[(X, —a)]

E[Nn(n, [a,b])] < ———

But (X,, —a)” < E[|X,|] + |a| by the triangle inequality, so
E[Nn(X, [a,8])] < (b —a) " (E[|X]] + |a]).

Now we want to take n — oo, and get a uniform bound in n for the left-hand side.

First, we have that
No(X, [a,B]) T N(X, [a,B])

as n — oo (the total number of up-crossings up to time n converges to the total number of up-crossings),
by definition. So we can apply the monotone convergence theorem (because we have nonnegative increasing
sequences) to say that

E[N(X, [a,b])] < (b—a)~"(la| + sup E[|.Xn[]).

And this is finite, because we assumed that X is L'-bounded.

So for any a < b, the otal number of up-crossings of this interval has finite expectation, which means it
is finite almost surely. Now one might wonder why we just consider rationals; this is because eventually
we’ll take the intersection of these events over all a and b, and we need this to be countable to say that the
probability of the intersection is still 1 (a countable intersection of probability-1 events is also probability
1). So we get that

Pl () {Na(X,[a,b]) <oo}| =1

a<beQ

And we’ll show that under this event, we have convergence. Let Qo = [, peq{N (X, [a,8]) < co}. Recall
that this means for any real a < b, the total number of up-crossings of [a, b] is finite (since for any a and
b, you can find rationals arbitrarily close to a and b, so you can bound the number of up-crossings by one
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where the interval is finite). So on g, X,, converges (i.e., the pointwise limit lim,_,~, X, exists). Then we
can just set
limX, weq
Xoo(w) = " 0.
0 otherwise

(it doesn’t matter how we define it outside €y, because € is a probability-1 event).

It’s clear that X, is a random variable, because pointwise limits of measurable functions are measurable
functions (we showed this, on the second problem set).

So the remaining ting is to show that X,, € L'. But this follows by Fatou’s lemma — we have
E[|X|] = E [liminf | X,[] < liminf E[|X,,|].

But this liminf is finite, because we assumed X is bounded in L' (meaning there is a uniform bound on
| X,,| for all n). This implies X, € L', which was the last component of the proof.

Remark 19.2. In particular, if X is a martingale, then it is also a supermartingale; and therefore a
L'-bounded martingale converges almost surely (which is why we call it the martingale convergence
theorem).

This of course constructs the limit in an abstract way; we don’t have an explicit form for it from this
approach.

Student Question. How do you go from E[X,, — Xs,_,] to E[X,, —a]?

Answer. This is because X, ., < a by the definition of Syy1. What it means for Sy 1 < n is that
X, hasn’t gone below a yet, so X,, > a.

§19.2 Doob’s inequalities

Now we’ve completed the proof of the martingale convergence theorem, and the next topic is to mention
Doob’s inequalities, which will help us prove other notions of convergence (specifically, LP convergence).

§19.2.1 Doob’s maximal inequality

The first is Doob’s maximal inequality, which bounds the probability that the martingale is very big.
Theorem 19.3 (Doob’s maximal inequality)
Let X = (X,) be a nonnegative submartingale. If we set X, = supg<j<,, X, then we have
AP[XE > A] < E[Xplx:sa] < E[X,)
So what this says is that if we have a nonnegative submartingale, then we have an upper bound that the

maximum of the submartingale, over the first n units of time, is large. We’ll see this is another consequence
of the optional stopping theorem.

Proof. To apply the optional stopping theorem, we need to construct a stopping time. Here we have an
obvious choice — we can just consider the first time the process goes above A. So we let

T =inf{k > 0| X, > A}
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Then T' A n is a bounded stopping time, so the optional stopping theorem implies that

(here we have a submartingale, so the optional stopping theorem works in the reverse direction compared
to before). And we can write
IE[‘XVT/\n] = E[XT]-TSn] + E[Xn1T>n]

(by the linearity of the integral). Now remember that if 7" < n, then X7 > A by the definition of 7'; this
means the first term on the right-hand side is at least AP[T" < n]. And now we can rearrange to get

A-P[T < n] <E[X,] - E[l7s,] = E[Xnlr<).

But T' < n if and only if there is some 0 < k < n with X; > A, which is the same as saying X > X. Then
we can just replace these two events (which are the same) to get

APIX;, > A <E[X,1x:>a],

and since X, is nonnegative, this is of course at most E[X,,]. O

This will be useful because it’ll let us upgrade the convergence in the martingale convergence theorem.
Essentially what this says is it bounds the probability that the maximum value of the submartingale during
the first n units of time is big. It’s a Markov-type inequality, with the difference that in Markov’s inequality,
instead of X, in E[X,,1x:>,], we would have X:. Here we have X,, instead of X, so we have a stronger
inequality.

We should consider this as an analog of Markov, in the context of submartingales; but the difference is that
it’s stronger.

§19.2.2 Doob’s L? inequality

One might wonder if we have similar bounds for the LP norms. The answer is yes — we also have LP type
inequalities, also due to Doob. We’ll prove these next, and it’ll help us prove LP convergence for martingales.

Theorem 19.4 (Doob’s L? inequality)

Let X be a martingale or nonnegative submartingale. Then for every p > 1, letting X = supg<j<,, | Xn|,
we have »
*
1Xallp < 2= - I Xnll,

This means in other words that the pth norms of X,, and X, are comparable, up to constants that depend
only on p. (Clearly || X7, > [|Xn|| by the definition of X7; but the point is that we also get a reverse
inequality with a constant only depending on p.)

Proof. If we assume X is a martingale (the theorem states it can be either a martingale or nonnegative
submartingale), then by Jensen’s inequality, we have that |X| is a nonnegative submartingale. (Here we're
applying Jensen’s inequality for conditional expectations on the absolute value function.) This theorem is
about |X]|, so if X is a martingale, we can directly apply the nonnegative submartingale case to |X|. In
other words, for this theorem, it suffices to consider the case where X is a nonnegative submartingale.

The idea is that we’re going to use Doob’s maximal inequality to bound from above the probability that
| X | is very large during the first n units of time. Suppose that we fix some large k < co. Then we have

k
E[(X;ANk)P]=E [/ pa:p_llxﬁzx dx
0
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(this was also on the problem set, or something of a similar flavor). Now we can apply Fubini’s theorem to
bring the expectation inside, which gives

k
/ prPIP[XF > 2] da.
0
Now we can apply Doob’s maximal inequality to bound this probability — this is at most

k
/ pa;psz[anxézgc] dx.
0
And for this, we can take the expectation outside again, so this is just

P

k
E [Xn / PP P lyas, da;] =E[X, - (X} Ak)PY. o
0 B p—

And now we just apply Holder’s inequality to say that this is at most
p -1
b1 [ Xnll, (1 X5 A E[D
And this is true for all k. Now if we rearrange, we obtain that
15 Akl < == Xl -
n P=p—1 P

And this is true for all k, so we can let k — oo, and this gives that || X[, < p%l [ Xnll,- (Here we also
used the monotone convergence theorem, since X,, A k is an increasing nonnegative sequence that converges
almost surely to X,,.) O

So this is an LP version of Doob’s maximal inequality.

§19.3 L” martingale convergence theorem

We’ve now seen two nice inequalities; one bounds the probability that the maximum of a nonnegative
submartingale (during the first unit of times) is too big, and the second bounds the pth norm of that
maximum.

The reason we mentioned these two is that Doob’s LP inequality is the main input to the LP martingale
convergence theorem — an analog of the martingale convergence theorem from before, but where now the
convergence is in LP.

Theorem 19.5

Let X be a martingale, and fix p > 1. Then the following statements are equivalent:
(1) X is bounded in LP(€2, F,P), i.e., sup,>q || Xnll, < co.
(2) X, converges almost surely and in £” to a random variable X .

(3) There exists a random variable Z € LP(Q), F,P) such that X,, = E[Z | F,,] almost surely.

What this says roughly is that a martingale converges in L? if and only if it’s LP-bounded. Of course, it’s
not obvious at all why this is the case, but we’re going to prove it by combining everything mentioned so far.
And not only that, but it also has a nice expression — it can be expressed as this conditional expectation,
for some random variable Z. This characterizes the LP convergence of martingales.
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Proof (1) = (2). We'll start by assuming (1) and proving (2). The almost sure limit follows from the
almost sure martingale convergence theorem. Note that an LP-bounded sequence is also L'-bounded, by
Jensen’s inequality — Jensen’s inequality gives that || X, |, < [[Xn|, for all n, which means sup,, || X,[|; <
supy, || Xn|,, which is finite by our hypothesis in (1). So this implies X is L!'-bounded, and therefore X,
converges almost surely to some X, as n — oo by the martingale convergence theorem — so the martingale

convergence theorem guarantees a limit actually exists.
Now we need to upgrade this to LP convergence. For that, we’re going to use Doob’s LP inequality.

First, in order to ask for LP convergence, we need to show that X, € LP. This follows by Fatou’s lemma
— if we apply Fatou’s lemma, we have

E[|Xx|’] = E[linlinf | X [F] < lirginfEUXn]p] < sup || X,||P,

which we assumed is finite. So X is indeed an LP random variable.

Now we know the almost sure convergence, and we somehow need to apply the dominated convergence
theorem to obtain LP convergence. For this, we need to apply Doob’s LP inequality — because we know a
bound on the mazimum of the sequence up to time n. And somehow we need to say that if we take the
supremum over all n, this is in LP; for that we're going to use Doob’s LP inequality.

Doob’s L inequality gives that || X7]|, < 7% [ Xnll,- And we have a uniform bound on the right-hand side
— if we call sup,,>¢ || Xnll, = I, then we get || X;||, < ;271 This is a uniform bound, and if we take n — oo,
then the left-hand side converges to || X%, || by the monotone convergence theorem, where X3 = sup,,~o Xy;
so we get

* p
X< —- 1
X0 < 25

In particular, this implies that
’Xn - X0<>|p <2 |X:o’

for all n; we know the left-hand side converges to 0 almost surely, and here we have a bound which is
in L' (by the above). So we can apply the dominated convergence theorem to get that E[|X,, — Xoo|?] =
[ Xn — Xoolly — 0 as n — oo. This means X, — Xoo in L? (as n — 00), which is exactly what we wanted
to show. O

Proof (2) = (3). This is easier, because we assume almost sure and LP convergence, and this gives us
a candidate for Z — we just set Z = X, to be the almost sure limit. Then of course Z € LP, because
Xoo € LP by (2). Here we want to show that

X, =E X | F
almost surely; if we can show this, then we’ll be done.

For this, it suffices to show that the pth norm of their difference is 0 (then the random variable has to be 0
almost surely). And for that, we’ll use the martingale property of X,,. We have

[ Xn = E[Xoo | Falll, = [E[Xm — Xoo [ Falll,

for all m > n — this is because X,, = E[X,, | F,] for all m > n, by the martingale property. Now we can
apply the conditional Jensen’s inequality to get that this is at most

HXm - Xoo”p'

This is true for all m > n, so we can take m — oco. By (2), we know this term converges to 0 (that’s what
LP convergence means). So that measn

HXn - E[Xoo ‘ ]:n]Hp =0,

and therefore this random variable is 0 almost surely; so X, = E[X | F,] almost surely. This proves
(3). O
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Proof of (3) = (1). The easiest direction is to go from (3) to (1); for that, we can just apply the conditional
Jensen’s inequality. Recall that the conditional Jensen’s inequality (applied to the function x — xP) implies
that

[ Xnll, = IE[Z | Fa]ll, < [12]], < oo

(for all n) — so here we have a uniform bound on the pth norm of X, over all n, which means sup,, || X,|, <
oo. This completes the proof. O

That’s the end of the proof; this gives equivalent characterizations for LP convergence of martingales. A
martingale converges in LP and almost surely if and only if it’s LP-bounded, which is true if and only if it
has this nice form. It’s worth mentioning that for any LP random variable Z and every filtration F,,, the
sequence X, = E[Z | F,,] is a martingale (by the tower property). And this says that a martingale converges
in LP if and only if it has this nice representation.

Next lecture we’ll look at uniformly integrable martingales and backwards martingales and prove a few more
theorems, before we see some applications of martingales.

8§20 November 14, 2024

Last class we proved the almost sure martingale convergence theorem — if we have a supermartingale
bounded in L', then it converges almost surely to some random variable. For that, we used Doob’s upcrossing
inequality. Then we also mentioned the LP martingale convergence theorem, which gave necessary and
sufficient conditions for a martingale to converge in LP. We showed that L? convergence is equivalent to the
martingale being LP-bounded (having a uniform bound on the LP-norms of the sequence).

Today we’ll give necessary and sufficient conditions for L'-convergence. That condition will be uniform
integrability.

§20.1 Uniform integrability
Definition 20.1. A collection (X;);es of random variables is called uniformly integrable (UI) if

sup E[|X;| - 1x;)>¢] = 0 as a — oo.
iel B

Another equivalent way to describe uniform integrability involves € and 4. That’s the definition we gave
earlier — that for every € > 0, we can find § > 0 such that for every A € F with P[A] < §, we have

supE[| X;| 14] < e.

iel
(This is something we did several lectures ago.)
One observation (which we also made when we talked about uniformly integrable families before) is that any
uniformly integrable family is bounded in L'. But the converse is not true, and we saw some counterexamples

— you can have a collection which is bounded in L' but not uniformly integrable. However, if the family is
bounded in LP for p > 1, then you do have uniform integrability (we also showed this earlier).

We’ll now state a theorem that will be useful.
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Theorem 20.2
Let X € L'. Then the class of random variables

{E[X | G] | G is a sub-o-algebra of F}

is uniformly integrable.

Note that here our set I is potentially uncountable — it’s the collection of all possible sub-c-algebras that
F has.

This will be useful because we’ll later take G = F,,. Proving this is not very hard — it follows by the
definition of conditional expectation and its basic properties.

Proof. First, the collection {X} is uniformly integrable (any finite collection of L! random variables is
uniformly integrable, and this is just a single-element collection); so for every ¢ > 0, we can find 6 > 0 such
that for all P[A] <4, we have E[|X| - 14] < € (by the equivalent characterization of uniform integrability).

Now for this value of §, we choose some very large (but finite) A > 0 such that E[|X|] < Ad (we can do this
because R is unbounded, and E[|X]|] is finite). This will help us find a uniform bound on the conditional
expectations.

Now take any sub-o-algebra G. Then we have
E[[ELX | G]l] <E[IX]] < Ad

(by the conditional Jensen’s inequality). This is a bound which is uniform in G. And now if we set
Y = E[X | G], we can apply Markov’s inequality to say that

E[lX]]

PllY| > )] <
V1= N < =%

< 4.

(So this bound is uniform.)

Since we have {|Y| > A} € G (because Y is G-measurable by construction), we have
E[IY]-1jy;>a] = E[IX]- 1)y 2]

(by the property of the conditional expectation). But since {|Y| > A} has probability at most 4, the
right-hand side is less than e.

But that gives the definition of uniform integrability, which is what we wanted to prove. O
Now that we have this, we're ready to characterize the L'-convergence of martingales. Recall a sequence of

L' random variables converges to another in L! if and only if the sequence is uniformly integrable (given
that you have almost sure convergence) — we stated (and probably proved) this earlier.

Fact 20.3 — Let (X,,)n>1 be a sequence of random variables in L' such that X, — X almost surely
as n — oo. Then X,, — X in L' if and only if (X,,) is uniformly integrable.

In fact, here we replaced almost sure convergence by convergence in probability — we said that if you have
convergence in probability, then you have L' convergence if and only if the sequence is uniformly integrable.
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§20.2 L' convergence of martingales

Theorem 20.4

Let X = (X,,) be a martingale. Then the following statements are equivalent:
(1) X is uniformly integrable.
(2) X,, converges almost surely and in L! to some limit X.

(3) There exists a random variable Z € L'(Q, F,P) such that X,, = E[Z | F,] for all n.

The third characterization is very similar to what we had with L” convergence. So for martingales, you
have almost sure and L' convergence if and only if the martingale is uniformly integrable. But even for
martingales, L'-boundedness is not enough to guarantee L'-convergence; we will see a counterexample.

Proof (1) = (2). First, we need to extract an almost sure limit. But that we obtain from the martingale
convergence theorem — the sequence is uniformly integrable, so it is L'-bounded, and we’ve seen that L!-
bounded martingales converge almost surely to some limit. In other words, since X is uniformly integrable,
it is L'-bounded, and so the martingale convergence theorem implies that X,, — X, almost surely, for some
random variable Xo, € L! (the fact that X, € L! follows from Fatou’s lemma).

And now we have a sequence which converges almost surely, and it’s uniformly integrable, so it converges
in L' by the previous fact — since X is uniformly integrable, we have X,, — X, in L! as well, which gives
(2). O

Proof (2) = (3). For this proof, we’ll use similar reasoning to as in the last lecture. We know a limit
exists, so we just set Z to be that limit — i.e., Z = X (just as in the previous lecture for LP convergence).
First, we clearly have Z € L' (because X,, = X in L', so X is certainly in L!).

As in last lecture, for every m > n, we have
HXn - E{Xoo | ]:n]Hl = H]E[Xm — X | fn]”l

(by linearity of the conditional expectation, and the fact that X,, = E[X,, | F,,] by the martingale property).
Now we can apply Jensen’s inequality for conditional expectations to say that this is at most || X, — Xl|;-
But the right-hand side tends to 0 as m — oo. And || X,, — E[X« | F,]|| doesn’t depend on m (only n, which
is fixed); so it has to be 0. This implies X,, = E[X | F»] almost surely, which is exactly what we wanted
to prove. 0

Proof (3) = (1). It is just an application of the tower property to show that this sequence (X,,) is a
martingale — for m > n, we have
E[E[Z|]:m] |]:n]:E[Z|]:n]

by the tower property of conditional expectations. And uniform integrability follows by the previous theorem.
O

So this completely characterizes the L! convergence of martingales.

Now we’ve shown almost sure convergence; and we’ve also characterized convergence in LP for p > 1, as well
as convergence in L'. So we have a complete picture.
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§20.3 Some counterexamples

We've said L' convergence is equivalent to uniform integrability — you need to assume something more
than L' boundedness. We’ll now see an example where L' boundedness isn’t enough.

Example 20.5

Let (X,,) be an i.i.d. sequence of random variables such that

Let Y, = X;---X,,. It’s clear that (Y},) is a martingale, because E[X,| = 1 for all n. And (Y,) is
L'-bounded, since ||Y,,||; =1 for all n.

And Y,, — 0 almost surely — this is because we have an independent sequence, so if we consider the
events X,, = 0, we have a collection of independent events whose probabilities sum to co. So by the
second Borel-Cantelli lemma, the event X;, = 0 has to occur infinitely many times; and whenever an
event X,, = 0 occurs, Y, = 0.

But we cannot have L! convergence to 0, because ||Y;||, = 1 for all n (which does not tend to 0).

What’s wrong here is that Y, is not uniformly integrable — you have L!-boundedness but not uniform
integrability.

§20.4 Stopping martingales at infinity

One advantage of uniformly integrable martingales is that we can stop the process even at oo, because we
know the limit exists.

Definition 20.6. If X is a uniformly integrable martingale, and 7" is any stopping time (possibly taking
infinite values), then we define

XT = Z anT:n + XoolT:oo‘

n=0

So when the stopping time T is infinite, the process stopped at oo is just the almost sure limit, which we
know exists; now there’s no problem with this defintion (while for an arbitrary martingale there are some
issues, which is why we needed some assumptions in the optional stopping theorem).

Now the advantage is that in the optional stopping theorem for uniformly integrable martingales, you can
get rid of all the assumptions on stopping times being finite almost surely or bounded or so on.

Theorem 20.7 (Optional stopping for Ul martingales)

Let X be a uniformly integrable martingale, and let S and T" be stopping times (possibly taking infinite
values) such that S < T. Then

E[X7 | Fs] = Xg almost surely.

Recall that in the OST for general martingales, we had a similar result, but we had to impose certain
restrictions on the stopping time — we couldn’t define the process at arbitrary stopping times. But now we
can; the proof is quite smooth, and in a similar spirit to what we did last time when we proved the optional
stopping theorem.
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The main idea of the proof, which makes it much easier, is (3) from the previous theorem — that because
X, is uniformly integrable, we can write it in a certain nice way. So we’ll be able to write Xp = E[X, | Fr],
and then apply the tower property.

But first, (3) right now is only true for actual integers; we need to show it when n is replaced by an arbitrary

stopping time.

Claim 20.8 — We have E[X, | Fr] = Xr almost surely, for any stopping time 7.

Proof. There are two steps — first we need to show X7 defined in this way is in L!, and then we’ll show
it satisfies the properties of the conditional expectation; then by uniqueness of the conditional expectation,
these two things have to be hte same.

First we’ll check that this is indeed a L! random variable. Recall that
|Xn’ = |E[Xoo | -Fn” < E[|XOO| | fn}

by the conditional Jensen’s inequality. This implies that

E[|Xr[] = ZEHX’R‘ Lr—p] + E[| Xoo| 1r=c0]-

n=0

(This is just by the definition.) To bound these terms, we just use the above inequality — this is at most

ZE[EHXOO| | Fr]lr=n] 4+ E[[Xoo| 17=c0].

n=0

And the event that T' = n is F,-measurable, so we can get rid of the conditioning (by properties of the
conditional expectation) — we can write this as

ZEHXOO‘ 1T:n] + EHXoo’ 1T:oo]-
n=0

And this is just E[|Xol|], which is finite (because X € L'). This implies X7 € L!. So indeed we have an
L' random variable.

Now, we want to show the equality E[X | Fr] = Xr. For this, we’ll show that Xt satisfies the properties
of the conditional expectation. To do this, fix B € Fp. Then we have

EXrlgl= Y  E[X,lr—,1p]
neNU{0,00}

But now, we have BN {T = n} € F,, by the definition of Fr. So we'’re integrating |X,| on an event which
is F-measurable. And X, is the conditional expectation of X, given F,, and we're integrating it on an
event which is F,-measurable. This means we can replace it with X,, by the definition of the conditional
expectation — so this is
> ElXeo Lir—nyns).
neNU{0,00}

But this is just E[X - 1], because we’re summing over all possible values of T

So we’ve shown that E[X71p] = E[Xs15]. By the uniqueness of the conditional expectation, this means
E[Xo | Fr] = X7 almost surely. d
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Proof of OST for UI martingales. Now we can just plug in the value of X7 = E[X | Fr] and use the tower
property — we have

E[Xr | Fs] = E[E[Xs | F] | Fs] = E[Xo | Fs] = X
(the second step is the tower property, and the third is the same fact). O

So now we have the OST in full generality for uniformly integrable martingales.

Student Question. How did we replace X,, with X in E[X,1p-,15]?
Answer. We can write X,, = E[X | F,] by the previous theorem, so this is

E[E[Xos | Fullpn{r=n}]-

But the event BN{T = n} is in F,,, by the definition of Fr. So then we can get rid of the conditioning,
and this is exactly E[Xoo1pn{1=n}]-

§20.5 Backwards martingales

So that’s more or less the theory of forwards martingales — forward in the sense that time goes forward
(to infinity). But one might wonder what happens if you have backwards martingales — what if you take
negative times? That’s the next thing we’ll analyze.

Here we have negative time, which is counterintuitive; so we’ll have to be careful making things precise.

We'll start with a sequence of g-algebras indexed by the set of negative integers — so we have a sequence
Go2G_1 2G99 2D ---. (So now we have a decreasing sequence of o-algebras.) This is still a filtration,
because if we saw this in the forwards direction, it’s an increasing sequence; we just don’t have a starting
point.

Notation 20.9. We use Z_ to denote the set of negative integers.

Definition 20.10. Given a filtration --- C G_5 C G_; C Gy, a sequence (X, )nez_ is called a backwards
martingale if it is adapted to the filtration (i.e., X,, is G,-measurable), Xq € L', and

E[Xn—l-l ‘ gn] - Xn
almost surely for all n € Z_.

Here things are more or less almost the same, but not quite. The definitions are very natural. But the
difference is we have reversed time — we're going towards the past rather than the future.

This has certain advantages that we’ll see — it has nice behavior. One advantage is that you can express
X, in a very nice way. By the tower property of conditional expectations, we have

Xn = E[XO | gn]

for all n € Z_ (almost surely). So now X,, has this nice form; we didn’t have this in the forwards case,
where time ran forwards. We’ll see that this somehow makes things easier.

The first observation is that (X,,) is uniformly integrable, because it has the form E[X( | G,,] (by the previous
theorem) — since Xo € L', we get that the family X is uniformly integrable. And using this, we can prove
things. We will see that we’ll have almost sure convergence and L' convergence. Actually what we’ll show
is that if we start with a LP random variable for some p > 1, then X,, converges almost surely and in L? (as
n — —o0), because of this nice expression.

Intuitively, someone could see that step by step, we’re losing a bit of information and going backwards.
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§20.6 Convergence of backwards martingales

Theorem 20.11

Let X be a backwards martingale, and suppose that Xy € LP for some p € [1,00). Then X,, converges
almost surely and in LP as n — —o0, to the random variable given by

X o= E[XO ’ g—oo]

(where G_oo =<0 Gn)-

So here we have almost sure and LP convergence, because X has this nice expression.

Student Question. Why can’t p be 0o ?

Answer. If you have p = oo, then you can’t really prove a reasonable notion of convergence — L is
not a very rich space, so you can’t hope for convergence there.

The spirit of the proof is similar to the proof of the almost sure martingale convergence theorem. We're
again going to use Doob’s upcrossing inequality to extract the limit. And for LP convergence, we’ll use
uniform integrability; but we’ll still need to go through Doob’s upcrossing inequality.

§20.6.1 Adapting Doob’s upcrossing inequality

First, we’ll adapt Doob’s upcrossing inequality — for any a < b, we set N_,,([a,b], X) to be the number of
up-crossings of [a, b] by the process X between the times —n and 0. Now, somehow in order not to repeat
ourselves, we need to go back to the setup where time is forwards and use Doob’s upcrossing inequality in
the forwards case. For that, we’ll reverse time — to go from 0 to n rather than —n to 0. But in order to
apply Doob’s upcrossing inequality directly, we need to be a bit careful — we need to create a martingale
and the appropriate filtration.

For this, we consider F, = G_,,+x (for kK =0, ..., n). Then we get a filtration (stopped at some time n).
Then if we consider (X_,,1x) for 0 < k < n, this is a martingale with respect to our filtration. So now we
have created a martingale.

And now we can apply Doob’s upcrossing inequality up to time n for this martingale. The crucial observation
here is that the number of upcrossings doesn’t change if we reverse time — it doesn’t matter whether we're
going in the forwards or the backwards direction. So this means Doob’s upcrossing inequality implies that

(b —a)-E[N_n([a,b], X)] < E[(Xo —a)”].

(This follows by the forward Doob’s upcrossing inequality — there we have the bound E[(Y,, — a)~], and
here we've defined Yy = X_, 41, so Y, = Xo.)

Now we let n — co. The bound on the right-hand side is finite, because we assumed Xo € L! (actually it’s
in LP, which is even better), and uniform in n. So we can take n — 0o, using the monotone convergence
theorem — by the monotone convergence theorem, we get that

E[N_,([a,8], X)] = E[N_o([a, ], X)]

(where N_. denotes the total number of upcrossings). This implies the expected total number of up-
crossings is at most E[(X¢ — a)~], which is finite. In particular, the total number of up-crossings of the
interval is finite almost surely. In particular, it’ll be finite over all rationals ¢ and b and so on, and we can
use exactly the same thing as we did in the almost sure martingale convergence theorem, which implies
X, converges to some random variable X_,, almost surely. So now we have our limit, where X_,, is some
random variable (though not explicit); but it will be G_-measurable.
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So we have the almsot sure convergence. Now what we want to do is to prove the LP convergence. For that,
we're going to use uniform integrability.

First, as we mentioned earlier, by the conditional Jensen’s inequality we have HXan < || Xol| p < oo for all
n. So all of them are in LP, and the bound is uniform. In particular, this implies that X_, is also in LP —
this follows by Fatou’s lemma, because

E[|X_oo[’] = Efliminf | X, |"] < lim inf E[| X, |”] < E[|Xo["] < oo
n——0oo n—oo

So X_ is indeed a LP random variable.

Now we want to bound the pth power of the distance between X,, and X_,.. And because X,, has this very
nice expression, we’re going to use conditional Jensen’s inequality — by the conditional Jensen’s inequality,
we have that

| Xn — X*OO‘p = ’E[XO - X | gn”p-

And now we can bring |e|” inside by Jensen’s — so this si at most
E[|Xo — X700|p | Gnl.

And Xy — X_ is a fixed random variable, so this sequence is uniformly integrable (by the first theorem);
and that implies |X,, — X_I|? is also uniformly integrable (as a collection over n). And it converges to 0
almost surely, so that implies this sequence will also converge in L' — it’s uniformly integrable and converges
almost surely to 0, so it will converge to 0 in L!. In particular, this means E[|X,, — X_|"] — 0 as n — —oo0,
which is exactly LP convergence. So indeed, we also have LP convergence.

So we’ve proved the almost sure existence of the limit, and also LP convergence. The last thing it remains to
show is that X_o, = E[X( | G_o]. For that, as usual we’ll use the properties of the conditional expectation.

If we fix any set A € G_, then A € G, for all n (because G_ is the intersection of all these o-algebras),

then we have
]E[XolA] = E[anA]

for all n < 0, by the fact that X,, = E[X( | G,]. And now we know that X,, — X_ in LP, which means
Xnla — X _oly in LP. And LP convergence implies L' convergence, so E[Xo14] — E[X_14]. And A
was arbitrary, so this completes the proof. So this implies X_o, = E[X( | G_], by the uniqueness of the
conditional expectation.

So the point is when we reverse time, we have some nice behavior.

Next lecture we’ll prove some nice properties like Kolgomorov’s 0-1 law, the strong law of large numbers,
and so on using martingale theory. And this will be the end of the chapter on discrete-time martingales;
then we’ll move to continuous-time martingales, where n is a nonnegative real number instead of an integer.

§21 November 19, 2024

Last lecture, we completely characterized the L' convergence of martingales — a martingale converges
almost surely in L' if and only if it’s uniformly integrable. This completes the characterization of LP and
almost sure convergence of martingales. We also introduced martingales where we reverse time (where we
look to the past instead of future); we also proved that in that case we have LP convergence if and only if
the sequence is bounded in LP (for p > 1).

We’ve now exhausted most of the theory of discrete-time martingales, and now we’ll see some applications.
One is to Kolgomorov’s 0-1 law (which we’ve already proved, but we’ll prove again using martingales), and
another is the strong law of large numbers. We'll also prove the Radon—-Nikodym theorem (the existence of
the Radon—Nikodym derivative), and Caputani’s martingale product theorem.
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§21.1 Kolgomorov’s 0-1 law

We'll start with the first application, an alternative proof of Kolgomorov’s 0—1 law.

Theorem 21.1

Let (X;)i>1 be a sequence of i.i.d. random variables, and let F,, = o(X}, | k > n) and Foo =(),,>1 Fn-
Then for all A € F, we have P[A] € {0,1}. N

Recall that Fo, is called the tail o-algebra. And this theorem states that it’s trivial, in the sense that every
event in it has probability either 0 or 1.

Proof. In order to construct a martingale, we first need to construct a filtration — an increasing sequence
of o-algebras with respect to which our sequence (X;) is measurable. The obvious choice is to consider
Gn = 0(Xi | K <n) (the o-algebra generated by the first n terms).

Now fix some A € Fu; we want to show P[A] is either 0 or 1. The martingale we’ll consider is
Y, =E[14]| Gyl
It’s easy to see that Y,, is a martingale (we’ve already encountered this kind of martingale).

But the point is that this martingale is constant. Why? We have that G, and F,4+1 are independent
(because G,, encodes information about the first n terms of the sequence, and F, 1 encodes information
about the rest; and since we have independent random variables, these two o-algebras are independent).
And we also have that Foo C Fp41, 850 A € Fy1. So Y, has a simple form — it’s just P[A] (by properties
of the conditional expectation). So we obtain that

Y, =P[A] almost surely
for all n. So here we have a constant sequence (almost surely).
And also, we know that (Y},) converges, by the almost sure martingale convergence theorem — so
Y, = E[14 | Gu]

almost surely (this follows by the almost sure martingale convergence theorem).
But Fo C G, which implies that this conditional expectation is just

E[14 | Goo] =14 almost surely
(because 14 is measurable with respect to Goo). So this means

Y, =P[A] — 14 almost surely,

and this implies P[A] = 14 almost surely. But 14 takes values either 0 or 1; so this implies P[A] (which is
just a fixed number) has to be either 0 or 1. And that’s the end of the proof. Ul

Student Question. Which result are you using when you say Y, = P[A]?

Answer. If you have a random variable and condition on an independent g-algebra, then the conditional
expectation is just the expectation, and E[1 4] = P[A].

This is a very elegant and simple proof, given that you know martingales. The idea is to construct the right
martingale and the right filtration, and then just apply the almost sure martingale convergence theorem.
The nontrivial thing is to come up with the right martingale.

So far, we’ve seen two different ways to prove Kolgomorov’s 0-1 law. Of course there are infinitely many
ways to do this; we’ve only seen two because there’s a limit on the time. But Prof. Kavvadias prefers the
second, because it’s much more elegant and illustrates all the theory we’ve learned.
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§21.2 The strong law of large numbers

Our next result will be the strong law of large numbers. We've already proved this. (We proved two versions
— in the other version we assumed that the variables were independent, but instead of assuming they had
the same law, we just assumed they have the same expectations and a uniform bound on the 4th moments.
Here we’ll consider the version where they’re i.i.d.)

Theorem 21.2 (Strong law of large numbers)

Let (X;)i>1 be a sequence of i.i.d. random variables in L with mean pu = E[X;]. Let S,, = X1 +---+ X,
(with Sy = 0). Then S,,/n — u almost surely and in L' as n — oo.

Proof. We're going to prove this now using martingale theory. Here it’s not clear directly what kind of
martingale to consider — something analogous to before doesn’t work because we're dividing by n, and n
changes. So it’s not clear how to cook up a martingale. For that reason, we’ll reverse time — we’ll consider
a backwards martingale.

But first, we need to consider a decreasing sequence of o-algebras. For this, we let

Gr = (S, Sns1, Snaas ).

This is the same as o(Sp, Xn+t1, Xnt2,...) (because if you know S,, and the remaining averages then you
can recover X1, Xni2, --., and the reverse as well).

Claim 21.3 — If we define M,, = S_,/(—n) (for n < 0), then M, is a backwards martingale with
respect to the filtration JF,, = G_,,.

So we're going to show that M, is a backwards martingale, and then we’re going to invoke the almost sure
and L' convergence of those martingales to deduce the strong law of large numbers (the statement of the
strong law of convergence is equivalent to the almost sure and L' convergence of M,,).

Proof. Consider E[M,,+1 | Fi]. By definition, this is

o S—m—l
E[Myi1 | Fn] =E [_m_l | gm]

(for m < 0). Let’s analyze the term on the right-hand side; because what we want to show is that the
left-hand side is M,,.

Let n = —m. Then because X, is independent of X, 11, Xpnt2, Xpy3, ..., we obtain that
n— n - Xn
SESTP RS AP
-1 n—1

And S, /(n — 1) is G,-measurable, so we can take it out of the expectation, and this is

Su _E[Xn

n—1 n—1

‘ U(Snu Xn—i—l, Xn+27 H ):| .

And there’s a property we proved of conditional expectation — here o (X411, Xp42,...) is independent of
o(Xpn, Sp), and this means we can forget it. So this reduces to just

= E [n)inl ‘ Sn] '
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And now we actually need to compute this last conditional expectation. The crucial thing is the observation
that
Sp =E[S, | Sn] =E[X1 | Sp] +E[X2 | Sy + -+ E[X,, | Sh)

(by the linearity of the conditional expectation). And now, the point is that all the E[X}, | S,] are the same
(because the X} have the same law and are independent). This implies that the right-hand side is just

n - E[X,]. So dividing by n, we obtain

Sn
E[X, | S] = 2.

And then we just plug it into our earlier equation, and obtain that

Sn—]_ _ Sn S’I’L _STL
E[n—l’gn]_n—l nn—1) n

(almost surely). And this converts to the claim we want — recall that n = —m, so this implies that
E[Mp+1 | Fm] = M,

(for all m < —1) almost surely. So this shows that M is indeed a backwards martingale. O

And now we have the theory, and we can apply the backwards martingale convergence theorem. We’ve
already done most of the hard work — we’ve shown almost sure and L' convergence of backwards martin-
gales. So by the backwards martingale convergence theorem, we obtain that (S, /n) converges almost surely
and in L' as n — oo.

So we've shown (S, /n) converges to something. We're not exactly done, but we're almost done — we need
to show that the limit is constant almost surely (because then it has to be y, because we have L' convergence
— this is the same argument as in the ergodic theory proof). So set Y = lim,,_,o0(S,/n) (this is an almost
sure and L' limit). The idea is to prove that Y is measurable with respect to the tail o-algebra generated
by the X,; if that’s the case, then it has to be constant almost surely, because the tail g-algebra is trivial
(by the Kolgomorov’s 0-1 law). (We’ve seen in a previous lecture that if a random variable is measurable
with respect to a trivial o-algebra, then it has to be constant almost surely.)

To see this, observe that if we shift time by any constant integer, the limit is still the same — so we have

Y — lim Xi+1 + Xg2 + -+ Xigyn

n—00 n

almost surely for every k € N.

This implies Y is measurable with respect to o(Xgi1, Xgto,...), for all k. So therefore it’s measurable
with respect to their intersection — if we let T, = 0(Xg41, Xg12,-..), then Y is measurable with respect to
(i Tr- But the intersection is just the tail o-algebra, and by Kolgomorov’s 0-1 law, we obtain that there
exists some ¢ € R such that Y = ¢ almost surely.

And in particular, this implies S,/n — ¢ as n — oo almost surely and in L'. In particular, we have
E[Sn/n] = p — ¢ as n — oo, which means u = ¢; and that completes the proof (showing that the average
converges to u almost surely and in L1). O

So that’s the proof of the strong law of large numbers using martingale theory. We still used Kolgomorov’s
0-1 law, but you can use martingale theory to prove that as well.

This was a bit tricky — we had to reverse time, because we had to divide by n and it wasn’t clear what
martingale to consider if we considered forwards time. But if you reverse time, you magically obtain a
backwards martingale.
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§21.3 Kakutani’'s product martingale convergence theorem

We’ve already seen two applications of martingales. Another application is Kakutani’s product martingale
theorem. This is related to the convergence of products of random variables (instead of sums of random
variables) — it’s some kind of a version of the strong law of large numbers, but instead of summation, you
have multiplication.

Theorem 21.4 (Kakutani's product martingale convergence theorem)

Let (X,)n>0 be a sequence of independent nonnegative random variables with E[X,,] = 1 for all n, and
consider the product martingale M where My =1 and

M, =X1 X X,.

Then (M,) is a nonnegative martingale, and converges almost surely to some random variable M.
Furthermore, let a,, = E[v/X,,].

(1) If I], an > 0, then the convergence M, — M is also in L', and E[M] = 1.

(2) If I], an =0, then My, = 0 almost surely.

Note that the X,, don’t necessarily have the same law.

This is a result which is very similar in flavor to martingale convergence theorems and the strong law of
large numbers, but instead of sums we have products (so far we’ve dealt only with sums, not with products).

This was originally proved with a different method, but now we’re going to use martingale theory.

Proof. The first thing we want to do is extract an almost sure limit. This follows by the almost sure
martingale convergence theorem (so we’ve already done the hard work for that) — by the almost sure
martingale convergence theorem, we have that M, — M., almost surely for some random variable M.
(Recall that E[M,] is always 1, which is bounded uniformly in n; and if you have a martingale which is
bounded in L', then it converges almost surely (but not necessarily in L') to some random variable.)

For (1) and (2), the idea is to somehow apply martingale theory for an appropriate martingale. The first
observation is that a,, = E[v/X,] < v/E[X,] =1 by Cauchy-Schwarz or Holder’s inequality. Set

XX,

al...an

N, =

This is again a martingale whose expectation is E[N,,] = 1 for all n, which means we can again apply the
almost sure martingale convergence theorem to deduce that it converges almost surely to some random
variable N,. So again by the almost sure martingale convergence theorem, we have that N,, - N, almost
surely (as n — oo) for some random variable N.

Now we need to deduce certain properties of N using (1) and (2). First, we’ll assume (1), which states
that the infinite product [[, ~, an is positive. This will be useful because we want to somehow apply the
dominated convergence theorem to deduce L' convergence of M, but a priori it’s not clear what the
dominant function is. Somehow we need to take a supremum over n and find a bound that’s uniform in
n. For that we’ll use Doob’s maximum inequality combined with condition (1), which will guarantee that
the expectation of the supremum of the first n terms of the sequence is bounded uniformly, and then take
a supremum over all n and get a uniform bound.

So assuming (1), we have that

1
sup E[N] = sup =7
n>0 n>011i=1;

< 00,
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because we assumed the denominator is nonzero. And also, since M,, = N2 - [[lL, a? < N2, we get that

E [supMi| <E

k<n

sup N,?
1<k<n

(again by Holder’s inequality). And by Doob’s maximal inequality, this is at most 4 - E[N2]. And this
expectation is bounded uniformly — we have
4-E[N?] < !
" IInZOa%

So taking n — oo, we get that
4
E [supMn] <= < 00,
n>0 n

And now we have a dominant function — the dominant function is sup,, M,,. This random variable dominates
all the M,,, and we know the M,, converge almost surely to M., so by the dominated convergence theorem
we have that the convergence is in L' as well.

So by the dominated convergence theorem, we obtain that M, — My, in L'. And clearly then E[M,] = 1,
because E[M,,] = 1 for all n. So we have shown (1). Here we used the martingale convergence theorem to
deduce that this indeed converges almost surely, and then we crucially used Doob’s maximal inequality to
bound the expectation of the supremum of the first n terms.

Now we need to prove the second case (2), where we want to show M,, — 0 almost surely (if [],, a, = 0).
For this, remember that

n
_ 2 2
M, = N2 a3
=1

If the infinite product is 0, then the product on the right converges to 0, and N,, converges to some (finite)
limit. So their product has to converge to 0. So we get that

n
_ N2 2 2 2
M, = N2]]a? — N2 ] 2.
i=1 i>0

And N2 is some finite random variable (almost surely), while the infinite product is 0 almost surely. So
this means M,, — 0 almost surely.

Here we used the martingale convergence theorem to deduce that the martingale N converges somewhere
(so that’s a nontrivial input here). O

This can of course be shown using different ways, but Prof. Kavvadias prefers this way because we somehow
convince ourselves that all this theory can be very useful.

Student Question. Why does E[sup M,,] being bounded imply that M, — My, in L'?

Answer. This is the dominated convergence theorem — the dominated convergence theorem gives L'
convergence. You have almost sure convergence, and that all your functions are dominated from above
by some function with finite integral. Under these assumptions, you have L' convergence as well. Here
the function that dominates everything is sup M,,, and we showed here that it has finite expectation.

Alternatively, this bound on E[sup M,] shows that (M,,) is uniformly integrable, and we know uniformly
integrable martingales converge in L' (we showed this in the previous lecture).
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§21.4 The Radon—Nikodym theorem

This is the third application of martingale theory. We’ll see one more, the last for today (next lecture we’ll
see continuous-time martingales), the Radon—Nikodym theorem — the existence of the Radon—Nikodym
derivative between two measures which are absolutely continuous.

Theorem 21.5 (Radon—Nikodym)

Let P and Q be two probability measures on the same measurable space (€2, F). Assume that F is
countably generated, i.e., that there exists a (countable) collection of sets (F),),en such that F, =
o(Fy | n € N). Then the following statements are equivalent:

(a) Q is absolutely continuous with respect to P — i.e., if P[A] = 0, then Q[A] = 0 (for all A € F).
(b) For every € > 0, there is § < 0 such that for every P[A] < ¢, we have Q[A] < e.
(c) There exists a nonnegative random variable X such that Q[A] = E[X - 1 4] for all A € F.

This can be generalized to o-finite measures, but we’ll focus on probability measures. The assumption that
F is countably generated is not needed in general, but here it makes the proof easier.

Note that (a) doesn’t require the converse — every P-0 event is also @Q-0, but the converse isn’t required.
And (b) is a rephrase of (a); this is not obvious, but we're going to prove it. And (c) is very important.
Then X is called a version of the Radon—Nikodym derivative of Q with respect to P. If the measures are
absolutely continuous in this sense (as in (a) or (b)), then this theorem says the Radon—Nikodym derivative
exists.

Here we’ve assumed the o-algebra is countably easier just to make the proof easier, but this is also true in
an arbitrary measurable space (with no restriction). And the same is also true, with the same proof, for any
finite measures (instead of probability measures), or even o-finite ones.

We're going to prove this using martingale theory. (If you don’t use martingale theory, you can still do it,
but the proof is more technical and complicated, which is why people don’t usually teach it.)

Proof (a) = (b). Here we assume absolute continuity, and want to prove an -6 version. We’ll prove this
by contradiction — suppose that (b) does not hold, so there exists some ¢ > 0 such that for all n € N, there
is a set A,, € F with the property that

(this is the negation of (b), replacing J with n—lz) Then by the first Borel-Cantelli lemma, we have that
P[A,, i.0.] = 0 (i.e., the probability that A, happens for infinitely many values of n is 0 — i.o. stands for
‘infinitely often’).

So then (a) gives that Q[A,, i.0.] = 0 as well. But on the other hand, by definition we have
Q4 io]=Q | 4
n k>n
And | k>n Ak 18 a decreasing sequence, so this is just

lim Q | | ) A

n—00
k>n

And this term is at least e (because Q[Uy,, Ax] > Q[Ay], which is at least € by assumption). So Q4 i.0.] >
€ > 0, which is a contradiction. O
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Proof (b) = (c). From (b) to (c), we need to construct an appropriate martingale; and we’ll show that
this martingale converges almost surely to the Radon—Nikodym derivative. But for that, we need a filtration
(as usual). We'll consider the natural filtration F,, = o(Fi, Fa,..., F,) — the o-algebra generated by the
first n of our events F;.

How do we describe this o-algebra? It’s not too hard to describe — we can write it as o(A;) where
A, ={HiN---NH, | Hi=F,or F; foralll<i<n}.

So here we'’re taking all the possible intersections of events which are either F; or its complement, for all
i=1, ..., n. And F, is the o-algebra generated by events of this form (this is not hard to see — clearly
o(Ay) contains all the F}’s, and F;, also contains A, so this shows both directions).

Now we also need a martingale. For this, we define X,,: 2 — R>q by

Q[A]
Xp(w) = 1
PR

(note that there are finitely many sets in \A,,). This might remind you of the Riemann or Lebesgue integral.
There we discretize space, and that’s exactly what we’ve done here, using A,, — F has a nice form, so we just
discretize it. And this thing we’re summing is just the value of the integral of the supposed Radon—Nikodym
derivative on A.

Then for this choice of X,,, we have
Q4] = E[X,,14]

(all expectations are with respect to PP) for all A € F,, — this follows by the definition of X,,. We also have
that (X,)n>0 is a nonnegative martingale with respect to the filtration (F,).

So now we have a filtration and a martingale, and it’s also bounded in L! — we have
E[X,] =Q[A] =1 for all n,

so X, is an L'-bounded martingale. This means by the almost sure martingale convergence theorem that
we have X,, — X, almost surely, for some random variable Xo,. And this X is our candidate — this is
what’ll be the Radon—Nikodym derivative of Q with respect to P.

But we’re not exactly done — we had the nice equality Q[A] = E[X,, - 14], but somehow we need to take
limits inside. To do this, we’d like to know that X,, — X in L!. For that, we need the L' martingale
convergence theorem, and for this we need to show uniform integrability — a uniformly integrable martingale
converges almost surely and in L. So if we can show X, is uniformly integrable, then we're done (because
we can put the limit inside to get that Q satisfies (c)).

For this, fix some d > 0, and set A = 1/§. Then by Markov’s inequality, we have

E[X, 1
P[X, > \] < = - <4
Ko 2 A < =5 NS0

This implies that
E[Xn : ]-XnZ)\] = Q[Xn > )\] <e

by (b) (since whenever the probability of an event under A is less than §, its probability under Q is less
than e by our assumption (b)). This is true for all n, so therefore (X)) is uniformly integrable.

And so we also obtain that X, — X. in L' (not just almost surely, but also in L'). And we had
Q[A] = E[X,, - 1 4], so this means
Q[A] = E[Xoo14]

for all A € F,, (for all n). And since all the F,, generates the entire space, we obtain that
Q[A] = E[Xx14] forall Ae F.
So X indeed satisfies the properties of the Radon—Nikodym derivative, which proves (c). O
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Proof (¢) = (a). This direction is obvious — if we assume P[A] = 0, and we integrate a nonnegative
random variable over an event of measure 0, then we also get something of measure 0 (by properties of the
integral that we have shown). So E[X - 14] = 0. But this integral is just Q[A], so Q[A] is 0 as well. O

The same proof works in an arbitrary space (not just one that can be discretized), but you have to be more
careful. We chose to present the proof here because here the definition of X, intuitively makes sense —
we’re just discretizing F using the fact that it’s generated by countably many elements.

Next lecture we’ll study martingales in continuous time. We’ll have to be a bit careful, but the essence is
the same as in the discrete case — we’ll repeat some of the proofs with some care.

§22 November 21, 2024

Last class, we completed the chapter on discrete-time martingale theory, where we proved many results on
martingales and showed why this theory is important — we proved some very nice results (Kolgomorov’s
0-1 law, the strong law of large numbers, and so on) using them. But one might wonder what happens in
continuous time — if we have a sequence indexed by R>q instead of Z>p. We can still make sense of the
notion of a martingale in that case, and we can still prove results. (You'll see a lot more of this in 18.676
if you take that next semester.) Most results transfer with the exact same statements; but things become
more delicate in the continuous case, so we have to be careful.

§22.1 Setup for continuous-time martingales

We always work in a probability space (2, F,P). We’ll always consider a filtration: a collection of sub-o-
algebras (F;);>0 of F (indexed by nonnegative real numbers) such that F;, C Fy, for all 0 < ¢; < t5. We'll
also have a process X = (Xt)t>0 — a collection of random variables indexed by nonnegative real numbers
t (living in the same probability space). It’ll be adapted to our filtration (F;):>0, in the sense that X; is
Fi-measurable for all ¢ > 0. (This will always be the case.)

Here we’ll consider processes where X; € RY for all ¢ > 0 (we won’t consider more weird processes).

So we can still make sense of filtrations and adapted processes with respect to filtrations. And we can
actually still have a notion of stopping times.

Definition 22.1. A stopping time 7T is a random variable taking values in [0, oo] such that the event
{T <t} is Fi-measurable for all ¢ > 0.

This is just like what we had in the discrete-time case — the definition is completely analogous.

So this is going to be our setup for this chapter. We have a notion of a filtration, a notion of an adapted
process, and a notion of a stopping time.

§22.2 Differences to discrete case

One way to think about this is that you have a mapping Q x [0,00) — R? where you take the pair (w,t)
Xi(w). So this process can also be considered a random variable — [0, 00) is endowed with a Borel o-algebra
and  with F, so their product is endowed by the product of F with the Borel o-algebra. So another way
to view this process is as a random variable on this product space.

In the discrete-time setup, we had a similar setup — our process was a random variable Q x N — R¢ given
by (w,n) — X, (w). If we endow N with e.g. the power set o-algebra (the collection of all possible subsets),
then this is indeed a random variable, so it is a measurable function. But in the continuous-time case, this
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is not necessarily the case — we have to be a bit careful. This function X;(w) may not always be a random
variable — you need some regularity for the function. For example, if you have continuity, then this will
indeed be a random variable.

Student Question. How can you make it so that the measure of the product space is 17

Answer. Here measurability doesn’t have to do with measures. (The definition of a random variable is
just another name for a measurable function. This space doesn’t have measure 1, but it doesn’t matter
— all we care about is measurability.)

In general, (w,t) — X;(w) is not necessarily a random variable; that’s the first difference to the discrete
case.

Another difference is that if you fix A C R and consider T4 = inf{t > 0| X; € A} to be the first time that
the process hits A, then this is not a stopping time in general. Intuitively, we can write

{Ta <t} = J{T =5}

s<t

But this is a union over an uncountable set, so this set is not in F; in general. So that’s one intuitive reason
why this is not necessarily a stopping time in our case. This means we need to impose regularity conditions
on X, as well as further conditions on the set A (as we will see soon).

§22.3 Measurability

A natural requirement to impose on X so that X;(w) becomes a measurable function is continuity — if we
know that for every w, the function ¢ — X;(w) is continuous, then this is indeed a measurable function. This
is something we’re going to prove. More generally, if we assume it’s right-continuous and has left-limits,
then we do have measurability.

Proposition 22.2

Suppose that (for every w) the function ¢ — X;(w) is Caedlag, meaning that it is right-continuous and
has left limits. Then the function Q x [0, 00) — R? defined by (w, t) ++ X;(w) is measurable with respect
to the product o-algebra F ® B([0, 00)).

By having a left limit, we mean for every fixed ¢, if we approximate from below, then we get a limit — it
might not necessarily be X;(w), but it will be some number.

So under this additional assumption, we have measurability.

Proof. For each w, we can express X;(w) as

2n—1
Xt(w) = lim Z lte(kQ—n’(kJrl)g—n] . Xk.g—n((.d),

n—oo
k=0
for all t € [0,1] (we’ll restrict ourselves to this interval; the same argument works for ¢ > 1). This is by right
continuity.

The idea is that for fixed n, we have finitely many linear combinations here, so this function is indeed
measurable with respect to our o-algebra, because we assumed that X is adapted. Explicitly, for fixed n,
the function Q x [0, 00) — R% mapping

2" —1

(w, t) — Z 1te(k2—n7(k+1)2—n] : XkQ—n (LL))
k=0
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is (F ® B([0, 00)))-measurable. So we have a sequence of functions which are measurable, and they converge
pointwise to the function that we want. Therefore this function (w,t) — X, (t) also has to be measurable
(as it’s the pointwise limit of measurable functions).

(With the finite sum, we’re using the fact that X is adapted; in the sum we only have to worry about finitely
many terms.) O

There are some subtle things going on in continuous time, so we have to be careful; but nothing extremely
unusual is going on, and we’ll see that exactly the same statements hold. But we have some delicate
situations, like here; so we have to be a bit careful while proving things.

From now on, we’ll always work with Caedlag processes — ones that are right-continuous and have left
limits, so that we know X;(w) is measurable with respect to the product o-algebra.

Just for a bit of notation:

Notation 22.3. We use C(Ry, F) and D(R4, E) denote the spaces of continuous and Caedlag (respec-
tively) functions from Ry to E. We endow these spaces by the o-algebras generated by the projections
e X — X (t).

In our case, F will be R or R. So 7; is a function defined either on the space of continuous or Caedlag
functions; it takes in a function X, and maps it to X(¢). And we endow the spaces with the smallest
o-algebra that makes these measurable. If we assume our process is Caedlag, then it will be measurable
with respect to this o-algebra.

§22.4 Stopping times and stopped processes

In discrete time, for any stopping time 7', we considered all the information of the process stopped at that
time. We have a similar notion here — we can still stop the process at a random time, and look at the
information up until that time.

Definition 22.4. For a stopping time 7', we define

Fr={AeF|AnN{T <t} e F forallt>0}.

Definition 22.5. We define X7 = Xp(,(w), and we define the stopped process XT = (X[') given by
X' = Xppe(w).

These definitions are exactly the same as the discrete case.

That’s our setup — the setup we're going to work with in this brief chapter (it will be brief because we’ve
already done most of the work).

Now that we have the setup, let’s try to start proving some things.

Proposition 22.6

Let S and T be two stopping times, and let X be a Caedlag adapted process. Then we have the
following:

1. S AT is a stopping time.

2. If S <T, then Fg C Frp.

3. We have that X7 - 174 is Fp-measurable.
4. X7 is adapted.
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(1) is immediate, and the proof is the same as the discrete case. (2) is also exactly the same as in the
discrete case. But (3) is not immediate — we have to be a bit careful. (Of course, we’ve shown the
analogous property for discrete time.) Given that we have (3), (4) is immediate (we just apply (3) when T
is replaced by min{7,t}). So the whole point is to prove (3) — that’s the nontrivial thing.

(We're not going to prove (1) and (2), because they’re exactly the same thing as the discrete case and quite
easy.)

Proof of (3). How do we approach this? The main idea is the following observation:

Claim 22.7 — A general random variable Z is Fp-measurable if and only if the random variable Z-17<¢
is Fp-measurable for all ¢.

If we know this, then we just need to show that X717+ (which is going to be our Z) has this property;
that’ll be the second step of the argument. But the first step is to prove this claim.

Proof. If we assume Z is Fp-measurable, then Z - 17<; is always JFi-measurable, by the definition of Fr
(and the definition of a stopping time). So one direction is immediate. One way to see this, for instance,
is that if you take the event A = {Z17<; < x} (we want to show this is in F; for all , by an equivalent
definition of real-valued measurable functions), this is just

(Z <z n{T <t}

But by our assumption, {Z < z} € Fr, and {T' < t} € F; (because T is a stopping time). So their
intersection is still in F; (by the definition of Fr). So this is always in F;, for every x. This means Z1p<
is Fi-measurable.

So one direction is not that hard, and essentially follows from the definitions. What’s less trivial is the other
direction — we assume Z - 17<; is measurable for all ¢, and want to prove that Z is Fpr-measurable.

For this direction, we're going to apply the monotone class theorem, an old theorem from the first lectures.

First, if we assume that Z = ¢-14 is a constant multiple of an indicator function where A € Fp, then clearly
Z is Fp-measurable. (This is obvious because A is just in Fp.) Similarly, if Z is a linear combination of
indicator functions in Fr, i.e.,

n
7 = ZcilAz‘ A; € Fp,
i=1
then Z is still /pr-measurable. Now in the general case, we approximate Z by functions of this form. If you
consider
Zn=2""2"Z] An,

then we have that Z, — Z as n — oo almost surely. (We've already used this kind of thing.) And in fact,
it converges increasingly.

If we assume that Z - 1{7<;y is Fi-measurable for all ¢, then we have that Z,, - 1;7<;y is also Fi-measurable
for all t. And this random variable has the earlier form, so Z, is Fp-measurable. And then we’re done
— because Z is the pointwise limit of the Z,’s, so it has to be measurable with respect to the stopped
o-algebra.

(Here it’s not clear a priori that A € Fr. The point is that if Z = ¢- 14 for some A and Z - 17<; is in F¢
for all ¢, then we automatically get that A € Fr.) O

So now it suffices to just prove that Z = X717« is Fi-measurable for all ¢. So we’ll show that Xr1lr<; is
Fr-measurable for all ¢; if we manage to show this, this will complete the proof.
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To show this, we can write
Xrlr<y = Xplpo + Xylp—y

(because if we restrict to the event T' = ¢, then X7 = X;). We want to show this sum is F;-measurable.
But X is adapted, so X; is Fi-measurable. And 7' is a stopping time, so 1;7_4 is also Fi-measurable. So
it suffices to show that the first term X717 is Fy-measurable.

Now let’s see how to prove this. The idea to prove such things is to discretize T', so that it takes discrete
values — values on a set which is countable. In general we're in the continuous case, so T" doesn’t necessarily
take values on a countable set. The way we discretize it is by considering

T, = 27" [2"T]

for all n € N — this is a discretized version (it takes countably many values).

Then we have that T), is a stopping time for all n, taking values in the discrete set D, = {k-27" | k € N}.
Why is it a stopping time? If you consider the event {7}, < t}, this is the same as the event {|2"T| < 2"t},
and by the definition of [e], this is the same as saying {T" < 27" [2"¢|}. And the latter is measurable with
respect to Fy-n|ony| € Ft (because T is a stopping time). So T, is indeed a stopping time.

And now the idea is that
XT]-T<t = hrn XTn/\t]-T<t-
n—oo

So if we manage to show that X7, r+17<; is measurable, then we’ll be done.

But this random variable is a finite sum, because T,, A t takes only finitely many values. So it’s the sum of
finitely many terms, where each is Fi-measurable; and that means it’s F;-measurable.

To write this more explicitly, for every fixed n € N, we consider

Xrondr<e = Y Xalp,—a + Xz, sidrer.
deD,, d<t

And now we have a finite sum, where each is F;-measurable — the event T,, = d is Fy-measurable because
T, is a stopping time, X, is Fg-measurable and therefore Fi-measurable as well (because d < t), and of
course X; is Fi;-measurable.

This completes the proof, because pointwise limits of measurable functions are still measurable functions.
So this is indeed JF;-measurable.

(Here we are using the fact that ¢t — X; is right-continuous, and 7T;, approximates T' from the right. So here
we crucially used the right-continuity of the process.) O

As we can see, it’s a bit delicate because T can take values in an uncountable set, which is why we had
to introduce this approximation. So things are more delicate, but the statements don’t change. If we like
intuition, it’s just the same as the discrete case; there’s just a few more technicalities. In stochastic calculus,
unfortunately you’ll work with continuous time martingales, so it’s nice to have a rough idea about them.

So here the main idea is the approximation with 7,, where we can reduce everything to the discrete case,
where everything works well (and crucially using right continuity to say that Xolpor = lim(Xp,arlr<t)).

§22.5 Hitting times and stopping times

We’ll mention two more things before the end of the lecture. One is we mentioned earlier that if we fix a set
A and take the first time the process hits that set, this may not necessarily be a stopping time. We gave an
intuitive reason, but not a mathematical one; we’ll now give a counterexample (of a set and process where
the first time the process hits the set is not a stopping time).
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Example 22.8
Let J be a random variable with the property that
1
PJ=1]=P[J=-1]= 3
Consider the process
t <t<l1
X = Osts
1+J(t—-1) t>1.

So we’re considering a process that’s just ¢t up to 1, but suddenly changes. Graphically, X represents the
following picture:

/

So up until 1 you go up on the diagonal (this is fixed); but after that, you either continue in the same
direction or start dropping down, randomly.

Now let A = (1,2). Then if we consider the event {T4 < 1}, this is not in F; — because whether the
process hits A at the point 1 or not actually depends on J. If J = —1, then this event doesn’t happen —
the process starts dropping, so it never goes above 1. So the event {77 < 1} depends on J. But J is not
measurable with respect to F; — JF7 only depends on the process up to time 1, and does not depend on J.
So information about this process related to J is not contained in J7; so this is not in /7, which means it’s
not a stopping time.

So in continuous time, we have to be a bit careful — in order to decide whether the process has hit A or
not by time 1, we need to know J, and J is independent of F7.

Student Question. Why does this argument not work in the discrete case — why can’t we construct
something such that at time 10, it depends on some random variable J ¢

Answer. Because the information {74 < 1} is encoded in what happens in an infinitestimal neighbor-
hood around 1. But if you had discrete values, this wouldn’t make sense — your next time would be
at 2, not close to 1. Now the event T4 < 1 depends on the values of the process in an infinitestimal
neighborhood around 1, and this doesn’t make sense in discrete time. That’s why you need to be careful
in continuous time — you have to worry about controlling the process in infinitestimal neighborhoods
of time, which isn’t a thing in the discrete case (where different times are isolated from each other).

Then one might wonder, is it possible for the first hitting time of A to be a stopping time? The answer is
yes, when X is continuous (not just right-continuous) and A is closed — in that case it is a stopping time.
That’s the next thing we’re going to do.

Here we’ll invoke a compactness argument (though it’s not extremely difficult).
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Proposition 22.9

Suppose that A is a closed set and X is a continuous adapted process. Then
Ty=inf{t >0| X, € A}

is a stopping time.

So if A is closed and X is a continuous process, then the first hitting time of A is a stopping time in that
case.

Proof. The idea is again somehow to restrict things to discrete cases. So how can we do that? For this, we
use continuity.

First, we claim that it suffices to show that

{TAgt}:{ inf dist(Xs,A)zo}.

s€Q,s<t

For this, consider any s < ¢, and we consider the distance from X, to A.

If we fix s <'t, then the event dist(Xs, A) = 0 is Fs-measurable, because X is an adapted process. But this
will also be Fi-measurable, because s < t. So another way to write this is second event is that

lim sup U dist(Xs, A) < 1

n—300 s€Q,s<t n
If there are infinitely many n such that we can find rational s <t with distance at most 1/n, then we have
this. And if we can show {T4 < t} is this, then we’re done — for every fixed n, this thing is a countable
union of events (because Q is countable). So for every fixed s and n, the event {dist(Xs, A) < 1/n} is in
Fs C F:. ANd we're taking a countable union of events in F3, so it’ll be in F;. ANd the limsup of events in
Fi is also in F;. So if we can show {T4 <t} is equal to this other event, then we're done.

And in order to show this, we will use continuity, and the fact that A is closed. So now our goal is to show

{T4 <t} =limsup U {dist(Xs, A) < 1/n}.

n—reo s€Q,s<t

First we’ll show the forwards direction — that if T4 < t, then the other thing holds. Suppose that T4 = s < t.
Then by the definition of the infimum, there exists a sequence (s,) of times such that s, | s as n — oo
(by the definition of the infimum) and X, € A for all n. This follows by the definition of the infimum; we
haven’t used any kind of continuity so far.

Now we use continuity — by the continuity of X, and since A is closed, we have that X, — Xsasn — oo
(because s, — s) and X € A (because if you have a closed set and a sequence inside the set which converges
somewhere, then the point it converges to has to be in the set). So in particular, this implies X7, € A.

And you can also take any sequence of rationals (g,) with ¢, T T4 (we can always do this, because the
rationals are dense in R). But since X is continuous, this means dist(X,,, A) — dist(X7,,A) as n — oo.
And the latter is 0, because we’ve shown that X7, € A.

So what we’ve done is found a sequence of rational numbers g, <t such that dist(X,,, A) — 0. That means
infgecq,s<¢ dist(Xs, A) = 0, which is precisely what we wanted.

So we proved that if T4 < ¢, then this holds. Now to complete the proof, we’ll assume that

inf dist(Xs, A) =0,
s€Q,s<t
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and prove that T4 < t.

By the definition of the infimum, there exists a sequence s, € Q with s,, < ¢ such that dist(Xs, , A) — 0 as
n — oo. There’s a theorem (Bolzano—Weirstrass) that if you have a sequence of real numbers in a bounded
interval, then they have a convergent subsequence. Here we have a sequence s,, which is bounded by ¢, so
it’ll have a subsequence which converges. So there exists a subsequence s, and some time s < ¢ such that
Sk, — 8 as n — oo. By the continuity of X, this means dist(Xs, ,A) — dist(Xs, A). And the left-hand side
converges to 0, so dist(Xs, A) = 0. And this means X; € A (because A is closed). So X € A, which means
Ty < s <t. This gives the other direction. So we have our equality, and by the argument discussed earlier,
this is JF;-measurable. O

8§23 November 26, 2024

§23.1 Hitting times and an enlarged filtration

Last lecture, we started the next chapter on continuous-time martingales. Now our process is indexed by
R>p, instead of the set of positive integers. We mentioned that more or less, most of the concepts and
properties are almost identical. But to prove exactly the same statements, we have to be a bit careful —
we saw a few counterexamples last lecture. For instance, if you take an open set and consider the first time
the process enters it, this is not necessarily a stopping time. But if you have a closed set and a continuous
process, then the first time it hits the set is indeed a stopping time.

We also saw we need to use some sort of regularization (approximating by the discrete case) to prove things
like optional stopping.
Sometimes we’ll also have to work with a slightly better g-algebra — sometimes we’ll need regularity on the

filtration.

Definition 23.1. Suppose we have a filtration (F;);>0. Then for each ¢ € R>q, we define Fy+ = (1,5, Fs-
If i+ = F; for all ¢, then we call (F;) right-continuous.

In general, F; is a new o-algebra which always contains F;, but they’re not necessarily equal. But if they
are equal (always), we say the filtration is right-continuous.

So we’ve slightly enlarged the filtration by going from (F;) to (F;+); as we'll see, this will be quite useful.
For instance, under this filtration, if you consider the first time a continuous process hits an open set, this
is in fact a stopping time.

Proposition 23.2

Let A C R be open, and let X be a continuous process. If we define
Ty = inf{t >0 | X; € A},

then T4 is a stopping time with respect to (Fy+).

Here X is a continuous and adapted process with respect to the original filtration (F); and if we slightly
enlarge the filtration (allowing a bit more ‘information’), then this becomes a stopping time.

Proof. The first thing to show is that {T'4 < t} € F; for all ¢. This is what we’ll show, and then we’ll deduce
our result.

For this, we’ll use the continuity of X and the fact that A is open. By combining these, we have that
{Ta <t} = Uyeqq<:{Xq € A} (this follows by continuity, because if at some time you're in A, then in an
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interval around that time you’ll still be in A because A is open). But {X, € A} is always in F,, because X
is an adapted process. And since this is a countable union, we obtain that the entire union is in F; (because
Fq C F; for all ¢ <t). So the event that the first hitting time is strictly less than ¢ is always in F;.

But now we can write {74 <t} = J,en{Ta < t+2}. And we have {Ty <t+1} € Fit1/n for all n, and the
intersection over all n of these g-algebras is just F;+. So this belongs to F;+, which is what we wanted. O

This says if we slightly enlarge our filtration, then the first hitting time of an open set is a stopping time as
well — we just have to add a bit of information in order to keep track. (If A is a closed set, we don’t need
this extra information — we don’t need to enlarge the filtration, as shown last lecture.)

This enlarged filtration will be useful (as we’ll see later).

Student Question. Where did we use that A is open?

Answer. When saying that {T4 <t} = J,{X, € A}. For the forwards direction, suppose T4 < ¢. This
implies we can find some s < t such that X; € A. And since A is open, this means we can find € > 0
such that the ball centered at X, with radius € is in A. But now X is continuous, so we can find § > 0
such that X, € B(Xs,e) C A for all uw € (s — d,s + 0). And since Q is dense, we can always find a
rational ¢ in this interval (and by taking § sufficiently small, we can ensure that ¢ € (0,1)).

That’s the harder direction; the other direction is obvious, because if X, € A for some ¢ < ¢, then
TA S ]:q Q ]:t-

Student Question. Are there assumptions under which we can generalize this to any Borel set?

Answer. No — continuity isn’t enough, and there aren’t really stronger assumptions that make sense.

That’s more or less the introduction to continuous-time martingales. They’re slightly different, but the
main ideas are the same as the discrete case. What’s left to prove is some results — for example, we have
analogous results to the martingale convergence theorem, Doob’s maximal inequality, LP convergence, and
so on. But because of continuous time we have some slight technicalities.

§23.2 Almost sure martingale convergence theorem

Recall that to prove the martingale convergence theorem in the discrete case, we had to prove Doob’s
upcrossing inequality. Here it’s not a priori obvious how to define upcrossings, so that’s what we’ll do now.

We'll have the following lemma, which is the analogous result about convergence for functions defined on R>q
rather than N (of the statement that a sequence with finitely many upcrossings of every interval converges).

Lemma 23.3

Let f:Q+ — R be a function. Suppose that for all a < b (for a,b € Q) and all bounded subsets
I C Qy, the function f is bounded on I and N([a,b], 1, f) is finite. Then for all ¢ > 0, we have that

lim,; f(s) and limgy f(s) exist and are finite.
As before, we use N([a,b], I, f) to denote the number of upcrossings of [a, b] by f on the time-interval I. To
be precise, we define
N([a,b], I, f) =sup{n |exist 1 <t] < s3 < -+ < s, in I with f(s;) <a, f(t;) > b}.

So the assumptions here are quite similar to the ones we had in the discrete case.

We use lim,; and limg to denote the left and right limits at ¢, respectively. And we have this result, which
is somehow a version of the result from the previous lecture. Here we have a function defined on the set
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of positive rationals, which is bounded on bounded subsets, such that the number of upcrossings on any
interval (when f is restricted to any bounded subset of the rationals). Then the left and right limits exist,
and are finite; but they’re not necessarily the same. Here we have to be careful — we’re not assuming that
the total number of upcrossings of any interval is finite. We’re only assuming this when resticted to any
bounded interval. So we’re assuming something weaker.

Of course, we’ll use this lemma where f is our martingale, restricted to the positive rationals.

We won’t prove this; the proof is elementary analysis (Prof. Kavvadias suggests we try to do it ourselves,
and we can discuss it in office hours). So for the moment we’ll take this for granted; and we’ll use it to
prove the almost sure martingale convergence theorem, or rather, its continuous version — the main result
for today’s lecture.

Theorem 23.4 (Almost sure martingale convergence)

Let X be a cadlag martingale, and assume that X is bounded in L'. Then X; — X, almost surely as
t — oo, for some random variable Xo, € L! which is F-measurable (where Foo = o(lJ, Ft)).

So we have exactly the same result as in the discrete case; but a bit of care is needed, because we need to
prove convergence as t — 0o. So it has to converge simultaneously over every subsequence tending to oo
(whereas with discrete time, that sequence was fixed — it was just the integers). That makes things slightly
more technical here.

Proof. Set Iy = Q4 N[0, M]. Here the first thing to do is to show that the number of upcrossings of X
restricted to Ip; of any interval is finite (as in the setup of the above lemma).

The idea is to somehow invoke the discrete case — we need to construct a discrete martingale in order to
apply Doob’s inequality. Let’s see how to do this carefully. Suppose we fix any a < b. Then we have that
N([a,bl], Ins, f) (the total number of upcrossings of that interval by f restricted to Ijs) is given by

sup  (N([a,b], ], X))

JCIpr finite
(this makes sense because we can write Ij; as an increasing union of finite sets).

Now suppose we fix such a set J, and let its elements be a1 < ag < --- < a,. Then we have that (Xg, );c[,) is a
discrete-time martingale. And for this discrete-time martingale, we can apply Doob’s upcrossing inequality.
(That’s what we meant by saying the results are the same, but some care is needed to deal with the
continuous time.)

So Doob’s upcrossing inequality implies that
(b — a)E[N([a,0], J, X)] < E[(Xq, —a)”] <E[(X) —a)7]

where k is such that Ip; C [0, k]. (The first step is Doob’s upcrossing inequality.) Now we have a bound
that’s uniform in J, and N([a,b], Ips, X) is the supremum over all J, so we get

E[N([a, ], Inr, X)] < (b —a) 'E[(Xg — a)7].
And this expectation is finite, because we assumed we have a L!-bounded martingale. (We used L!-
boundedness in exactly the same way in the discrete case.)

In fact, we can actually get something stronger — we can get a bound of (b—a) ™! supyso E[|X¢[]. (We want
something that’s uniform in M as well.) (We probably get an extra term of |a|.)

Now we take M — oo. Then we’ll obtain an upper bound on the expected total number of upcrossings of
X when restricted to Q4 (because as N — oo, Ijs increases to Q4 ). This means

E[N([a,b],Q+, X)] < 00
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for all @ and b. (For example, this is by the monotone convergence theorem.) In particular, this implies that
if we define Qo = (), _peco{N([a,b], Q4+, X) < oo}, then P[Qo] = 1.

As with discrete-time martingales, we’ll prove that when €y occurs, X; indeed converges. So far, what
we’ve obtained is we have the required convergence of X;, but when ¢ is restricted to Q* — we don’t
have convergence over arbitrary sequences. We have convergence when ¢ is restricted to Q*, but that’s not
enough; we somehow need to upgrade this.

So far, on 29 we have that X, converges as ¢ — 0o, where ¢ € Q; let’s suppose it converges to Xo,. We'd
like to upgarde this convergence so that ¢ is allowed to be any positive real number. So we want to prove
X; — X as t — oo along any subsequence.

For this, we just apply the definition — we fix ¢ > 0. Since X, — X along the positive rationals, we can
find a positive rational gy such that | X, — X| < § for every ¢ € Q4 with ¢ > go. (This is just the definition
of convergence of sequences.) We want to say a similar bound is true for all ¢ > g (without necessarily
having ¢t € Q4).

This is where we’ll use the right continuity of X. If we take any t > qg, then by the right continuity of X,
there exists ¢ > t such that |X; — X,| < § (X is right-continuous, so if you approach ¢ from the right by
rational numbers, then the limit exists and equals X;). By the triangle inequality, this means

e g
X0 = Xoo| < |X0 = Xl + X, — Xoo| < 5 + 5.

And this is true for every t > ¢qp. So what we’ve done is fixed &, and we’ve found a positive number ¢gg such
that | X; — Xoo| < € for all ¢ > gg. But this is just the definition of convergence. So this means that indeed
X — X almost surely,. And of course, we also want X, € L', but this is clear by Fatou’s lemma (we have
E[| Xoo|] < sup E[|X,|], and we assumed our martingale is L'-bounded, so E[| X,,|] is bounded uniformly). [

The main idea is the same as the discrete case, but we have some technicalities, and we have to be a bit
careful. To justify convergence as ¢ — oo for ¢ a positive rational, we’ve used that lemma. (The lemma
might actually not be needed — you can directly prove convergence arguing in the same way as in the
discrete case.)

Student Question. How do we know X 15 Foo-measurable?

Answer. X, is F,-measurable and therefore F,-measurable for all ¢, so the limit is measurable as well.

This might be slightly boring because we have the same result, but there are some subtleties here that are
not that obvious.

§23.3 Doob’s maximal inequality

The next thing one could ask is whether we have the nice inequalities that we had in the discrete time case
— e.g. Doob’s maximal inequalities, which were quite useful in proving L? convergence results. We’ll now
prove the same results in our setting, starting with a version of Doob’s maximal inequality for continuous
time martingales.

Theorem 23.5 (Doob’s maximal inequality)
Let X = (X;)¢>0 be a cadlag martingale, and let X} = supy<,<;[Xs|- Then

AP[X] > A < E[|X:]] forall ,A> 0.

Page 171 of 196



18.675 — Theory of Probability Class by Konstantinos Kavvadias (Fall 2024)

This is exactly the same thing as we had in the discrete case. Recall Doob’s maximal inequality is stronger
than just applying Markov’s inequality — if you applied Markov’s inequality then X; would be replaced
with X;. But in general X is larger than X;; so the point is that we get a better bound in the case of
martingales.

Proof. Again, there are some subtleties and we can’t go directly from the discrete case; we have to do
something similar to what we did for the martingale convergence theorem.

Here, the main idea is to write

sup |Xs| = Sup |Xs’ :

0<s<t s=t or s€Q4N[0,t)
So we can always write the supremum over a discrete set. (This is because X is cadlag — so here we've
crucially used the cadlag property of X.) This means it suffices to show the same inequality where X} is
replaced by a supremum over this discrete set. And the main idea is writing this discrete set as an increasing
union of finite sets and applying the discrete version of Doob’s maximal inequality to each of those.

More carefully, we consider a sequence of finite sets (J,) C {t}U([0,¢)NQ) such that J, T {t}U([0,1)NQ)
(meaning the set on the right-hand side is a countable union of J,, over all n). Now if we restrict X onto the
set J,, it is a martingale — if we let J, = {z'gn), . ,i,gz)}, the point is that if we restrict X to this finite set
Jn, then this is a discrete-time martingale, so we can apply Doob’s maximal inequality to this discrete-time
martingale (and then take n — o).

Here we have that
P sup | Xs| > Al = lim P[sup |X;| > A]
se{t}u[0,t)NQ+ n=oo sed,
(because J,, increases to the set on the left; this equality may also make use of right continuity). What
remains to prove is that the desired bound is true for this probability on the right, for all fixed n (if we can
prove this, then we’ll be done by taking n — 00).

Recall that (X¢)ics, is a discrete-time martingale. So we can apply Doob’s maximal inequality to this
martingale, to deduce that
XP[sup | X, > X] < E[[X]].
s€Jn
(When we define J,, we should require that ¢ € J,, for this to hold.) And this is true for all n, so we can
just let n — oo, and then we obtain the desired result. O

Again, the main idea is that you want to prove a property for a process in continuous time, so you want to
discretize time and consider the process restricted to this discrete set. We’ve proved many things for such
a process. And then we take that discrete set larger and larger. But in order to make the step where we go
between discrete and continuous time, we need the regularity condition that X is cadlag; so this is what we
need those further properties for.

§23.4 Some more results

Now we’ll write down some more results; we won’t prove them, because hopefully we’ve gotten a feel for
how to prove things.

Recall that in the discrete case, we had Doob’s LP inequality; we can get a continuous time version by
arguing in the exact same way as in the maximal inequality (except applying the LP inequality instead of
the maximal inequality).
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Theorem 23.6 (Doob's L? inequality)
Let X = (X¢)t>0 be a cadlag martingale. Then we have

* p
| XE ]y < pleXth
forallt >0 and p > 1.

So this is the LP? Doob’s inequality, just like in the discrete setting; and the proof is the same as with the
maximal one.

Again, just as with discrete time, we also have the LP martingale convergence theorem, which is translated
almost identically; we’ll state it without proving it, because the reasoning is the exact same as with the
previous two theorems. (You can try to do it as an exercise.)

Theorem 23.7 (LP martingale convergence theorem)
Let X = (X;) be a cadlag martingale, and let p > 1. Then the following statements are equivalent:

(1) X is bounded in L?, i.e., sup, || X[|, < oo.
(2) X converges almost surely and in LP to some random variable X .

(3) There exists a random variable Z € L? such that X; = E[Z | F;] almost surely (for all ¢ > 0).

Again, this is exactly the same thing; as in the discrete case, this characterizes the LP convergence of
continuous time martingales. (The proof is again discretizing time and applying the discrete version of the
theorem, as with the previous proofs.)

We also characterized L' convergence for discrete time martingales; we said a martingale converges almost
surely and in L! if and only if it’s uniformly integrable, and exactly the same thing holds here (we just
combine the discrete time version of the theorem with the method applied in the proof of the almost sure
martingale convergence theorem, discretizing time in an appropriate way).

Theorem 23.8 (Uniformly integrable martingale convergence theorem)

Let X = (X}) be a cadlag martingale. Then X is uniformly integrable if and only if X converges almost
surely and in L' to some X, € L.

So this is a characterization of L! convergence of continuous time martinales; the proof again combines the
discrete case with the technique introduced in the proof of the almost sure martingale convergence theorem.

Student Question. In the discrete version, we also had a third statement that there exists Z with
E[Z | 7] = X;. Is that also true in this case?

Answer. Here it is more delicate — there we used backwards martingales, and here it’s not clear how
to define backwards martingales.

§23.5 Optional stopping theorem for uniformly integrable martingales

We also proved one last thing in discrete time — the optional stopping theorem for uniformly integrable
discrete time martingales. Here we have the same statement; but we’ll prove it, because it requires approx-
imating stopping times.
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Theorem 23.9 (Optional stopping theorem)

Let X be a cadlag and uniformly integrable martingale. Then for all stopping times S and T' (possibly
infinite) with S < T, we have
E[X7 | Fs] = Xs almost surely.

Here we don’t have to assume T is finite almost surely — this can hold for infinite stopping times (where
we set X7 = X, where X, is the almost sure limit that we know exists).

The proof is similar to the discrete case, but we need to discretize time. In the discrete case, all stopping
times took values in N; but here our stopping times might take any positive real values. So we have to be
careful when discretizing the stopping times.

Proof. Let A € Fg. By the uniqueness of conditional expectation, what we need to show is that
E[X7-14] = E[Xg - 14].

(If we manage to show this, this means Xg satisfies the properties of the conditional expectation E[ X7 | Fg],
and then by the uniqueness of the conditional expectation, we will have the required equality.) For this, we
want to discretize time and apply the corresponding property for the discrete case.

To discretize these times, we define
T,=2""[2"T] and S,=2""[2"95].

The advantage of introducing these new stopping times 7}, and S, is that we have T}, | T (i.e., T}, decreases
toT) and S, | S as n — 00. So we can apply the right continuity of X to get that Xg, — Xg almost surely
as n — oo, and X7, — X7 almost surely.

And now we can apply the discrete time optional stopping theorem for X7, and Xg,. By the discrete time
optional stopping theorem, we have that

almost surely (for all n) by the discrete-time optional stopping theorem — we’re applying the same theorem
where T is replaced by co and S by T},. And since X7, has this form, this implies X7, is uniformly integrable;
so it’s indeed a uniformly integrable martingale. And so it converges almost surely and in L'. We know it
converges almost surely to X7, so this means it also converges in L' to T.. So we get X7, — X7 in L.

Also, we have that E[X7, | Fs,] = Xg, almost surely — this is by the discrete-time optional stopping
theorem. This implies in particular that

E[X7, - 14] = E[Xg, - 14].

But Xg, — Xg in L! (by the same argument as above) and X7, — Xp in L'. So we can take limits as
n — oo; the first term converges to E[X71 4] and the second to E[Xg1 4], and since the sequences are the
same, their limits are too.

So we have the desired equality, and by uniqueness of conditional expectations we get the theorem. (The
main idea was again to discretize appropriately and then apply the discrete-time results. But discretizing
appropriately is not trivial; here we used the discretization with T, and S,, so that we have convergence
from the right, crucially using the cadlag property.) O

Those were our results about continuous time martingales. The important thing is to understand discrete
time; then the ideas are the same, but with some technicalities.
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Student Question. How do we know X1, = E[X | Fr1,]?

Answer. This is the discrete-time optional stopping theorem — we know X7, — X by the almost
sure martingale convergence theorem. (We started with X being a uniformly integrable martingale, so
X exists and is in L)

Next lecture we’ll start with Kolgomorov’s continuity criteria, which is quite important. And then we’ll
have an introduction to large deviation theory, though we won’t have time to do too many things. And
Prof. Kavvadias will also upload some problems about martingales that he hasn’t yet; we can consider this
as a 6th problem set, but it won’t be graded, just for our own practice. There’s also an announcement about
the exam, which is 12/16 at 1:30-4:30 in 32-155. The material covered in lectures is on the exam; we have
to know statements and proofs of the theorems (the proofs may be asked for), and we should be able to
solve the problems on the problem sets. There are some logistics as usual; there is a deadline for sending a
deadline for accommodations.

§24 December 3, 2024

Last lecture, we completed the chapter on martingales in general. We showed that the same results hold
when instead of a discrete-time martingale, we have one indexed by nonnegative real numbers. The main
ideas are the same, but there are some nontrivial technicalities.

§24.1 Kolgomorov’s continuity criterion

This lecture, we’ll first state and prove Kolgomorov’s continuity criterion. This will be useful in the last
lecture (or next one), where we’ll rigorously construct Brownian motion. The main idea of Kolgomorov’s
continuity criterion is we have two steps in order to construct a process indexed by [0, 1]. The idea is to first
construct the process at a countable set of points, and then use Kolgomorov’s continuity criterion to extend
it to all of [0, 1].

Theorem 24.1 (Kolgomorov's continuity criterion)

Let D, = {k-27"| 0 < k < 2"} be the set of dyadic numbers of order n, and let D = | J,, D,, be the set
of dyadic numbers in [0, 1]. Let X = (X;):ep be a stochastic process taking real values.

Suppose that there exist p,e > 0 such that E[|X; — X,|P] < ¢ |t — s|'T° for all 5,t € D (for some finite
constant ¢). Then for any a € (0, %), we have that (X;)iep is a-Holder continuous, i.e.,

‘Xt - XS|

sup ———

7— < oo almost surely.
s#teD |S - t|

So we start with a process X indexed by a discrete set. The idea is to impose certain conditions on this
process so that we can define it continuously over the entire interval. And this says that under the given
condition, when we restrict to dyadic rationals, the process is Holder continuous. This means it extends to
the entire interval — if we fix any ¢ € [0, 1], then we can approximate ¢ by a sequence (t,,) C D (because D
is dense). And if we consider (X, ), then letting the above supremum be K,, we have

| X, — Xt | < Ko ltn — tm]®-

This tends to 0 as n,m — 0o, so X;, is Cauchy, which means it has to converge; and then we can just set
X = limy 00 X¢,,. So this means Kolgomorov’s continuity criterion is a very nice way to define a process
on the entire unit interval, or the entirety of R as well. There’s two steps — to define it on the set of dyadic
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rationals, and then once we have the condition on E[|X; — X,|’], this guarantees Holder continuity, which
lets us extend it to the entire unit interval.

The proof is not extremely difficult, but it is slightly technical.

Proof. The first step of the proof is to bound these distances when s and ¢ are in D,, — that’s the main
idea — and for that, we’ll use our hypothesis combined with Markov’s inequality. By Markov’s inequality,
we have that

PlXe 277~ Xgyarn| 2270 < 0200 27000

(this is Markov’s inequality on the pth powers, using the bound on the expectation). Now we can apply a
union bound over all 0 < k£ < 2" — by a union bound over k, we get that

P| max |Xpon — X(epi)on| > 27| <O 27EP0)

omax, | X (h+1)2-n| > <

(this is a union bound — we just sum over all k, because the probability the maximum is at least 27" is at
most the sum over all £ that the probability the difference for that & is at least 27"%). And so this bounds
the distances between dyadic rationals which are consecutive and of order n.

By summing over all n (applying Borel-Cantelli), we obtain that this is true for all sufficiently large n,
almost surely — by the first Borel-Cantelli lemma, we have that

max |Xpo-n —X o-n| < 27" for all sufficiently large n, almost surely.
ogk<2n‘ k-2 (k+1)-2 |_ y larg y

(This is because the exponent of 2 is negative, so when we sum over all n, we get something finite; this
means almost surely, this event only happens finitely many times.)

What does this mean? It means there exists a finite random variable M with the property that

sup max | Xpo-n — X(pt1)2-n|

0<k<2m 2—na =M
neNUsk<

(because our inequality was true for all sufficiently large N, and for small N, this quantity is always finite —
there are finitely many terms, and they’re all finite random variables). Now we’ve bounded the distance for
consecutive dyadic rationals of the same order. (If we just define M as the left-hand side, this is a random
variable, and this is finite almost surely — we showed it’s finite if you take the supremum over all n > ny,
and the supremum for 1 < n < ng has to be finite because all terms are finite random variables, and there
are finitely many.)

So far, we’ve proved the Holder continuity condition for consecutive dyadic rationals of the same order;
we now need to generalize it to arbitrary dyadic rationals. For this, we’ll use the dyadic representation of
numbers — fix any t,s € D (assume without loss of generality that s < ¢) and let » € N be the unique
integer with the property that 2=+ < ¢ — s < 277, In other words, this means there exists some integer
k € N with the property that s < k-2~ < ¢ — 50 between s and ¢, we can find a dyadic rational of order
r (because if you fix r and let k run between 0 and 2" !, this partitions the unit interval, and s and ¢ can’t
be in the same part; so for some k, we will have an inequality like this). Set x = k - 2-(r+1) to that number.
Then we have that t —x € (0,27") (by the upper bound on ¢ — s). This means in the dyadic representation
of t — x, all the dyadic numbers of order at most r don’t appear — because it’s strictly less than 27". In
particular, we have that .
t—x = Z 2—2

n>r+1

for some x,, € {0,1} (any number in [0, 1] can be written as an infinite sum of the form ) 22 — this is the

dyadic representation of a number, which we discussed during the first lectures; and by the choice of r this
number is strictly less than 27", which means n can only be larger than r + 1). Similarly, we can write

= Yi
xT s = Y

j>r+1
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for some y; € {0,1}. So here we have these nice representations. The point is, what does this imply? This
implies that if we take the interval [s,t), we can write it as a disjoint union of dyadic intervals of length 27"
for n > r +1 — because we can first break it as

[s,t) = [s,x) U [x,1)

as the union of two disjoint intervals, and then since ¢t —x and x — s have the form mentioned, if you partition
them into dyadic intervals, all the intervals that appear will have length at most 2-(r+1) S we can express
this interval as a disjoint union of such dyadic intervals.

This means if we apply the triangle inequality, we can bound
X1 — X <D 1 Xa— Xgson]
dn

where d and n simultaneously range over the endpoints of the dyadic intervals and their length. (Here we’ve
just written [s,t) = [s,x1) U [z1,22) U---, and w're just saying | X; — Xs| < | Xz, — Xo| + | Xgy — Xoy |+ -
Here the x;s are consecutive dyadic rationals of some order n > r + 1.)

And we can bound each of these terms using our nice bound from before — we can sum over all n > r + 1
(instead of just the relevant ones), and we get at most

2. Z M .27 "e
n>r+1

(where M is the random variable defined from earlier). But the quantity on the right-hand side is just a
geometric series, so it has an explicit form; and that explicit form is

9—(r+l)a
2M - ——.
1—-2"¢
But recall that by our choice of 7, we have |s — t| > 27"+ which means this is at most
2M
Tga 7ol
And this is exactly what we wanted to prove — | X; — X|* is at most a (random) constant times |t — s|,
which is exactly what we wanted, with
2M
Ko=1"5 -

The importance of this criterion is in constructing processes which are defined in [0, 1] and are continuous
— the first step is to define them on a discrete set, prove that they satisfy the moment condition on
E[|Xs — X¢|"], and deduce the Holder continuity when restricted to the dyadic rationals. And then we
can extend the process on the entire interval. We’ll do this when defining Brownian motion — we’ll first
construct it on dyadic rationals, and then extend it continuously by proving it satisfies our condition.

Remark 24.2. You don’t have to know the details of this proof; what’s important is how to use this
theorem. Usually we use it to extend processes continuously in an uncountable set, like [0, 1] or R.

Student Question. The process that’s induced by this theorem is continuous, right?

Answer. Yes — because the process we constructed earlier will satisfy Hoélder continuity for all s,t €
[0, 1], and a Holder continuous function is also continuous. (The property doesn’t apply just to dyadic
indices; it applies to real indices as well once we extend it.)

Now there is some flexibility on what to cover for this lecture and the next two. Prof. Kavvadias decided
to mention some things about large deviation theory and introduce Brownian motion. We don’t have time
to go into its details; you will probably do this in Stochastic Calculus if you attend this next semester. But
we’ll construct it and prove some properties.
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§24.2 Large deviation theory

First let’s motivate why people are interested in large deviations, and what this is.

Suppose we have a sequence (X;);en of i.i.d. random variables with finite mean E[X;] = T, and we set
Sp = > X;. We studied this sum and its behavior, and proved limit theorems about it. One of those
was the central limit theorem:

Theorem 24.3 (CLT)
Assuming that Var[X;] = o? is finite, we have that

P [Sn > n T+ aoy/n] — P[Z > q]

for all (fixed) a > 0, where Z ~ N(0,1).

So this is the central limit theorem — in other words, the central limit theorem just computes the asymptotic
behavior of the probability that the average of the X,,’s is concentrated around the mean Z. And it says
that this behaves like a normal Gaussian.

So far, all our results were focused on examining the asymptotic behavior of averages of large sums near
their mean. Large deviation theory asks the following natural question:

Question 24.4. What are the asymptotics of
P[S, > an] asn — oo,
where a > Z7

This probability will tend to 0 by the central limit theorem (which says the average S, /n has to be con-
centrated around the mean). But it doesn’t talk about the rate of convergence — is it polynomial in n?
Exponential in n?

That’s the point of large deviations — to actually compute how fast this tends to 0 as n — oo, when n is
a fixed number larger than the mean. In this brief chapter, we’ll characterize this convergence, for certain
types of random variables.

Let’s first see an example where we can actually compute the asymptotic behavior of this probability easily.

Example 24.5

Let X; arei.i.d. N(0,1). Then P[S,, > an| can be explicitly computed, because the sum of n independet
Gaussians is still a Gaussian, and we can compute all the relevant information about it.

In that case, we have
1
P[S, > an] = P[X; > ay/n] ~ ————e 9""/2,

a-v2mn
So in that case, we have an explicit description of this probability. In other words,

a?

1
——logP[S), > an| —» —
n 2
as n — oo. This is just a function of a, which is explicit.

We're going to prove a similar result, generalizing the function a/2 (it’ll depend on the law of X;), when
X; is not necessarily a Gaussian (but we still have a sequence of i.i.d. random variables). We’ll still prove
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that —% log P[S,, > an| converges to some function, and we’ll identify this function. So in other words, the
probability the average is far from the mean decays exponentially to 0. This means i.i.d. random variables
concentrate around the mean — the probability they’re far from the mean decays exponentially.

(In the general case, it won’t be easy to explicitly give the form of the function replacing §.)

So the main idea of large deviations is to understand the asymptotics of P[S,, > an]. We know this tends to
0, but we want to identify the rate of convergence, and this turns out to be exponential in n; this means it
converges to 0 very strongly.

§24.3 Existence of the limit

Before identifying the limit here, the first thing is to actually prove that the limit exists. For that, we're
going to invoke a fact from real analysis for subadditive sequences, which says that if you take a sequence
by, which is subadditive, then b, /n converges.

(This has a name; we’re not going to prove it, but it’s not hard and is a nice exercise, and we can try to do
it on our own.)

Fact 24.6 — Let (b,)n>1 C R be subadditive, meaning that b,y < b, + by, for all n,m € N. Then
lim,, oo %" exists.

The limit might be £o00, but in any case it exists.

The main observation here is that by independence (and the fact that the X; have the same law), if we set
b, = —logP[S,, > an], then this will be subadditive; and therefore our sequence will converge. Next lecture,
we’ll actually identify the limit.

Claim 24.7 — The sequence b, = —logP[S,, > an] is subadditive.

Proof. We have P[S),+m > a(n+m)] > P[S,, > an, Spmin — Sn > am] (because if S,, > an and Sy, 4n — Sy >
am, then their sum will be at least a(n+m)). Now these two events are independent — the first event only
depends on the first n terms, and the second event only depends on the next m terms (X1, Ximt2, -+,
Xm+n). So this probability is the product of the probabilities. And since all of the X; have the same law,
the law of Sy4m — Sy is the same as the law of S,,. So this is

P[Sh+m > a(n+m)] > P[S,, > an|P[S,, > am).
And now we just take logarithms (because the logarithm of a product is the sum of logarithms). This gives
og P[Sy 1 > aln +m)] > logP[S, > an] + log P[Sy, > am),

and now by negating everything, we obtain that by, < b, + b, (for all n,m € N). O

So this means limy,_, —% logP[S,, > an] exists, by this subadditive argument. Our job now, for the rest of
this lecture and half of the next, is to actually identify the limit.

One observation is that this limit might be infinite as well, because the result from real analysis doesn’t
necessarily say whether the limit is finite or not; it just says the limit exists.
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§24.4 The limit

Now one might wonder, what’s the best way to approach such a problem? Here, what we’re going to use is
moment generating functions (we briefly introduced this when discussing characteristic functions).

Definition 24.8. We define the moment generating function of X as M()\) = E[e*].

This moment generating function might be infinite — it’s always nonnegative, but there’s no reason it has
to always be finite.

What w're interested in is ¢(\) = log M (X) — this will play a crucial role in identifying our limit. In fact,
the limit (as a function of a) will be constructed using 1; we're going to see this in a few minutes.

Let’s look at properties of this function ¢ (the logarithm of the moment generating function).
Fact 24.9 — We have ¢(0) = 0.

This is clear, because if we set A = 0, we get M(0) = E[e°] = 1.
Also, by Markov’s inequality applied to exponentials, we have
P[S,, > an] = P[eMn > ] < emAnag[eA5n),

And E[e*] is just M ()™, because e*n = [Je*Xi, and by independence the expectation of the product is
the product of expectations. SO we get

P[S,, > an] < (e MM(\)" = exp(—n(ra — ¥(N))).
So we’ve found an upper bound on this probability, and this is true for all A > 0.
Now we can take logarithms of both sides, which gives
log P[S,, > an] < —n(Aa — (M),

and dividing by —n on both sides (which reverses the inequality), we get that
1
——logP[S,, > an] > Aa — ¥ (A)
n

for all A > 0. So we’ve obtained a lower bound on the quantity that we wanted to find a limit for. And this
is true for all A > 0; so in other words, this means

~LiogPS, > an] > v*(a),
n

where we define

¢*(a) = sup(Aa — P(X)).

A>0

Definition 24.10. We call ¢* the Legendre transform of .

So we’ve obtained that our sequence —% log P[S,, > nal is bounded from below by the Legendre transform
of 1. This depends on v, but in lots of cases it’s not explicit. This is a lower bound. It turns out that we’re
extremely lucky, and our sequence actually converges to ¥*(a). And that’s what we’re going to prove.

This is really remarkable because we got a lower bound of ¥*(a) just by using Markov’s inequality, but it
turns out it’s actually the true limit. This gives a complete description of the asymptotics of our probability.
Unfortunately, this ¥* can be extremely complicated; but in some cases we can still compute it.

First let’s state the main theorem.
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Theorem 24.11 (Cramer's theorem)
Let (X;) be a sequence of i.i.d. random variables with mean E[X;] = Z, and let S,, = Y | X;. Then

1
lim ——logP[S,, > an] = ¢*(a) for all a > 7.

n—oo n

In other words, what this means is that P[S, > an] behaves like e %" (®" as n — 0o — we indeed have
exponential decay, but we also have a complete characterization of that decay due to ¢*(a). The exponential
decay is unsurprising because averages of i.i.d. random variables tend to concentrate around the mean, and
here we want the asymptotics of the probability that the average is far away from the mean.

Student Question. Have we used the fact that a > T?

Answer. So far, in our lower bound argument, we haven’t. But we’ll see it in the proof of the other
direction.

§24.5 Some examples

In the last ten minutes of today’s lecture, we’ll give a few examples where we can actually compute *(a),
and therefore give an explicit description of this limit. One example is the Gaussian, where we have an
explicit description of ¥*(a); it’ll be a?/2, as we discussed earlier.

Example 24.12
Suppose that X; ~ N(0,1).

Then we can explicitly compute 1* — we have M()\) = E[e*¥], and we know the density of a normal
Gaussian, so we can explicitly compute this as

M(N) :/16_12/26)\md$.
R V2T

And by standard integration techniques, this is e’/ 2 which implies 1(\) = A\2/2 for all A > 0. Then

We want to maximize this quantity — we want to find A for which \a — %2 is maximized. And it’s maximized
when its derivative is 0, which occurs when ¢’(\) = a. And we have ¢/(\) = A, so this means A\ = a, which

means ¥*(a) = a?/2.

Example 24.13

Suppose that X; ~ Exp(1) is the exponential random variable with parameter 1 — this is the random
variable with density f(s) =e~* for all s > 0.

The exponential random variable is quite common; it appears all the time. Let’s try to compute its Legendre
transform. If A < 1, then we have
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(If A > 1, then this blows up and is infinite.) This implies
P(A) = —log(1 - )

for A < 1. So we also have an explicit form here. We want to minimize Aa — ¢)(a), so we want its derivative
to be 0, which means we’re looking for A for which

This means A =1 — %, which implies

Y*(a) =a—1—log(a).
So for the exponential random variable with parameter 1, we again have an explicit form of the Legendre
transform, and this limit is again explicit and easy to compute.

Example 24.14
Suppose that X; ~ PoOIsSON(1) — this means X; takes values on nonnegative integers, with P[X =
k| = ek;,l for every nonnegative integer k.

Now we have a discrete random variable with explicit density, so its moment generating function is

1 _ A
M()\) = H Ak—1 =€ 1.
. !

e

So this is again explicit, and so

YA =et -1

for all A € R. We need to solve the equation a = 9/()\), and that gives a = ¢, so A = loga. Then plugging
this into the definition of ¢*, we obtain

Y*(a) =aloga —a+ 1.

So in this case as well (the Poisson random variable with parameter 1), we have an explicit form of ¢*. But
in general we don’t — we can see it’s defined in a complicated way. In order to find the explicit form, we
have to find the value of A maximizing Aa — ¢(a); this means there’s an optimization problem hidden here,
and in most cases it’s not easy. So the limit exists and is described explicitly, but the explicit form is not
easy to obtain.

In the next lecture, we’ll prove this theorem, and also define Brownian motion.

§25 December 5, 2024

§25.1 Cramer’s theorem

Last lecture we started the chapter on large deviations. The main purpose of this chapter is to prove
Cramer’s theorem. We also gave an intuitive interpretation — suppose we have i.i.d. random variables with
finite second moment. The cenral limit theorem states that if we take the average of this sequence, this will
behave roughly as a Gaussian — so the probability the average is far away from the mean tends to 0 as
n — oo. But the central limit theorem doesn’t give you the decay rate of this probability. The purpose of
Cramer’s theorem is to explicitly describe the asymptotic behavior of the probability that the average is far
away from the mean. And it makes sense because in general, i.i.d. things have the tendency of concentrating
around their mean.
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Theorem 25.1 (Cramer’s theorem)
Let (X;) be an i.i.d. sequence of random variables with mean E[X;] = Z, and let S, = """ ; X,,. Then

. 1 o
n11_>rro10 o log P[S,, > na] = ¢¥*(a)
for all @ > Z, where ¥*(a) = sup,>o(Aa — 9()\)), where 1)(\) = log M () (where M is the moment
generating function of each X;, i.e., M()\) = E[e?M1]).

Here the only assumption we make is that all the random variables are in L', so their expectation is
well-defined.

We said last lecture that the Legendre form * is complicated — it’s hard to find a nice explicit form —
but in certain cases we can find such a form (e.g., for Gaussians, Poisson random variables, and exponential
random variables, as we saw last lecture). Last lecture we also proved that for all n, we have

—% log P[S,, > an] > ¢*(a).

So what remains to do is prove an upper bound.

Before we do this, we’ll need a lemma which states some regularity properties of the moment generating
function.

Lemma 25.2

The functions M and v are continuous on the set D = {\ > 0 | M()\) < oo}. Furthermore, they are
also differentiable in the interior of D, i.e.,

D = {z € D | exists ¢ > 0 such that (z — e,z +¢) C D},

with M'()\) = E[X1e*¥1] and 9/(A) = M'(\)/M(N).

The moment generating function might be infinite, so we consider all the values at which it’s finite; and this
lemma says that on that set, both M and its logarithm 1) are continuous and differentiable (of course, it
doesn’t make sense to talk about continuity or differentiability where they’re infinite).

Proof. We’re not going to prove continuity; we just apply the dominated convergence theorem to change
between integration (here, expectation) and limits. So continuity follows from the dominated convergence
theorem.

Now we’re going to prove differentiability. The first thing to observe is that D is an interval (a sub-interval
of R) — this is because if we take any \; < A < Ay and we have that both A\; and Ay are in D, then we also
have that A € D, since

6)@ < 6)\133 —}—6>\2$

for all x € R, which implies that
E[e*1] < E[eM™1] 4+ E[e*X1],

and the right-hand side is finite (because A, A2 € D). And the only subsets of R with this property are
intervals. So D is indeed an interval (because whenever we take any two points, any point in between these
two points is also in our set; and this is a property characterizing intervals).

In order to show differentiability (and that the derivative has the desired form), we’ll take limits — we’ll
write down the definition of the derivatives, and try to justify that you can interchange between expectations
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and limits using the dominated convergence theorem. For this, note that

MOA+h)— M) . [e(,\+h)xl _ eAXl]
N h

(we think of \ as fixed, and h # 0). The term on the inside converges to X; - e**t as h — 0. So what we
need to show is that as h — 0, we can interchange between limits and expectation. For this, we need an
upper bound on the inner function which is uniform in A when h is very small.

If we take h such that 2 |h| < min;—; 2 |A — A;j| = 2¢, then we have

A +h)z _ Az
R g P

e
h

for some A € [Az, (A +h)z] (by the mean value theorem). But this is at most (e*® 4-e*2%) . £~!, This means
if we fix any A1, Ao, and A with this property and take h sufficiently small, then the term inside is bounded
by this. But this term has finite expectation, because A1, As € D. So this function dominates the thing
inside our expectation. And since that converges to X;e**1 as h — 0, we're done. (And the same thing
works for 1.) O

Here the main tool is just the dominated convergence theorem. We’ll see how we’re going to use this in the
proof.

Now let’s proceed with the proof of Cramer’s theorem. First, recall that we showed last lecture that

1
lim ——logP[S, > na] > ¢*(a)
n—oo n
(for all @ > T, where T is the mean). We also justified why this limit exists (by proving that the sequence
of logarithms is subadditive, and there’s a fact that subadditive sequences of real numbers converge).

So the harder direction is to prove an upper bound, and that will be slightly complicated. Now the first
thing we’d like to do is reduce to the case where a = 0, to get rid of a (so that we're just considering
P[S,, > 0]). This is relatively simple — if we set X; = X; — a, then we have

P[S, > na) = P[S, > 0]

(where S, = S X;). Also, if we take the moment generating function M of X, this is given by ]/\Z()\) =
e M (), which implies that ¥(\) = ¥(A) — Aa. So if we just shift everything by a, then we have these
two equalities. This implies we need to show that

1 ~ ~
——log P[S,, > 0] = sup —¢(A) = ¥*(0).
n A>0
So from now on, we can assume a = 0, and that the mean of each X; is at most 0. We’ll see that it’s useful
because it makes some things a bit easier.

From now on, we’ll drop the tildes; we’ll treat all the X; as having mean 0 (because we’ve seen here how to
get the general case from this specific case). So from now on, we’ll assume that Z < 0 and a = 0.

Now it suffices to show that )

im inf — > > .

hnrggéf - log P[S,, > 0] > }\g%w(k)
Note that we wanted to show our original limit was at most ¥*(a) (since we proved the opposite). But it
originally had a minus sign (and the limit is equal to the liminf, because the limit exists). And then the
right-hand side is the negative of ¥*(0), so this is exactly what we wanted to prove.
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Now there are some technical arguments, but we’ll go through them carefully.
The first observation, which makes our lives a bit easier:

First, consider the case where P[X; < 0] = 1. Then we can write
E[eAXl] = E[eAXl 1X1<0} + E[e)‘Xl . 1X1:0]-

The first term remains as it is. and the second term — when X; = 0, it doesn’t matter what A is — it’s
always equal to 1 — so we just get P[X; = 0]. So we get

M()\) = E[eM11x, o] + P[X; = 0].

And the first term converges to 0 as A\ — oo (because it’s always bounded by 1, and for any fixed X it
converges to 0 because the exponent is negative; so we can use the dominated convergence theorem). So
this means

infy(A) < lim $() < log P[X; = 0].

But we also have
P[S, > 0] =P[X; =0,...,X, =0]

(since all of them are always negative). And these events are independent, so the right-hand side is P[X; =
0]™. Taking logarithms, we get

1
—log P[S,, > 0] > log P[X; = 0]
n

for all n, and the latter term is at least infy> 1(\) (as we just saw). This is true for all n. So the required
bound holds, in the case that X; is nonpositive with probability 1 — in that case, we get the statement
relatively easily by this analysis.

So to prove the required bound, it suffices to consider the case where X; takes positive values with positive
probability. (We know X; has negative expectation, but certainly it can take positive values with positive
probability.) So from now on, we’ll assume that P[X; > 0] > 0; this is the hard case.

This will have two steps, and we’ll see how we use the lemma from before. In the first step, we’ll assume
M () is always finite. (This is in general not true — for example, with the exponential random variable
with parameter 1, it’s infinite for A > 1.)

The idea is to reduce to the case where we have mean 0. In our case, it’s
not 0 — it’s . So how do we construct a mean-0 random variable starting with a variable of nonzero mean?
The idea is to change the law of X — if X has law p, we're going to weight it by some other function. And
we’ll do this by using Radon—-Nikodym derivatives.

What we mean by this is that for some § € R which we’ll determine later, we define ug to be the Borel
measure defined by
d/J 0 69X

dp — M(9)
(the left-hand side is the Radon-Nikodym derivative of ugy with respect to p, where p is the law of X7).

Recall that this means
o9X
4) = /
/.Lg( ) N M(@)

(from the definition of a Radon—Nikodym derivative). The idea is that for an appropriate value of 6, the
random variable with law 1y has mean 0, which will allow us to reduce to the mean-0 case. (This is a
standard technique in general when we want to shift the mean of a random variable — to weight its law by
an appropriate function, as we did here.)
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This means that for any bounded measurable f defined on R, we have

69:(:
@ du(x)

mwmnzéﬂmﬂ

(where Ey is the expectation with respect to py). In particular, if we define g(8) = Eg[X1] (this is a function

of ), we get ,
o) = [ & 57 dula).

And the idea is to show that for a particular value of @, this is 0.

What’s the idea here? We know that X takes positive values with positive probability. If we look at the
term on the inside, if we take 8 > 0, then this is at least

o0 1
A‘”M@mﬂw

because e’ > 1 when we integrate over all z € (0,00). And [~ z du(z) is positive, because P[X; > 0] > 0.
This means 0
lim 9(6)

70,
0—oc0 >

because limg_,oo M (0) = P[X; > 0] > 0. So g(@) is bounded by a number (depending on €) which tends to
something positive, which means this limit is positive.

But we also know that
9(0) =E[X;]=7<0

(where E denotes expectation with respect to p). So we have a continuous function g whose limit at oo is
positive and whose starting point is nonpositive, and this means there exists some 6 > 0 such that g(6) = 0.

This means Eg[X;] has been shifted, and now it’s 0 — so now we have a new random variable with mean
zero. And for that random variable with zero mean, we can apply known theorems — the central limit
theorem and so on. (We’ll see soon how this is used.)

(This is a standard technique, called the weighting technique — we’ve weighted p by the function e*.)

Student Question. How did we get that limgy_,o, M (0) = P[X; > 0]7

Answer. There is some issue here; what we wrote earlier is not correct. We should write

_ Jp ze% du(x)
Jg €% du(x)

What we actually ahve is that this ratio tends to something positive as # — oo — if we take 8 — oo, in
the case where P[X; > 0] > 0, this quantity will tend to some positive number. The point is that if z is
a positive value, then ze?® will be larger than €%?; so when we take § — oo, we’ll get something which
is positive. And we have a continuous function starting from 0, whose limit is positive; this means we
can find some 6 such that Eg[X;] = 0.

9(0)

From now on, we fix such a 6; and let’s see how to lower-bound P[S,, > 0]. For this, we’ll do the following.
We fix € > 0, which we’ll eventually take tending to 0. Then we have that

P[S,, > 0] > P[S,, € [0, ne]].
And now is the tricky part — this probability is at least

E[e?Cr ™ 1g, ci0.ne]]-
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This is because if S,, € [0, ne] then this exponent is nonpositive.

And now the point is that this expectation here can be estimated using the central limit theorem. That’s
the main advantage, and why we’ve shifted the mean — this can be interpreted as the expectation with
respect to our new measure g, and for this we can use the central limit theorem — this is

(M (0))"Py[S, € [0, en]]e .

And the idea is that we know the asymptotics of Py[S,, € [0,en]], because we can apply the central limit
theorem — we have i.i.d. random variables which have mean 0 (under this measure), so we can apply the
central limit theorem. That’ll give us a lower bound on this probability. Remember that we couldn’t have
directly applied the central limit theorem to P[S,, > 0] because the mean isn’t 0; but it can help us with
this probability.

And by the central limit theorem, this will tend to the probability that a Gaussian random variable with
mean 0 is nonnegative, and this probability is % (by symmetry). So by the central limit theorem, we have
that

1
Py[Sy, € [0,en]] — 3

as n — oo. This means if we take logarithms, then

log1/2
og/_>0

1
ElogP[Sn € [0,en]] ~

as n — oco. And this means )
liminf — log P[S,, > 0] > 9(0) — Oe.
n

n—oo

And since € was arbitrary, we can now take € — 0, and we obtain that

1
liminf — log P[S,, > 0] > v(8) > inf ¥ ().
iminf ~log P[S, > 0] > ¥(9) = tnf ()
So if we assume the moment generating function is always finite, then we are done — we’ve completed the
proof, using this trick. The whole point of shifting the mean to 0 was to be able to apply the central limit
theorem — we couldn’t have directly applied it to the original, whose mean was negative.

Now we’ve already seen the main ideas of the proof; but we need to generalize
it to the general case, where M (\) is not always finite; and there are some slightly annoying issues. In that
case, you have to truncate — you have to condition on the event that your random variable takes values on
a fixed compact set. We’ve done this many times in the course, where we truncate a random variable.

So let v be the law of X7 conditioned on the event that | X1| < k (where k is some fixed positive number that
we’ll eventually let tend to co). The point is that under this measure v the moment generating function of
X1 (where we're conditioning on this event) is finite. So the theorem holds when X; has law v, from the
previous step.

In particular, suppose we define
k

r(A) = log / A du(z).

—k
This quantity is some finite real number (because the integral is truncated), so if we consider the moment
generating function of X; with respect to v, this is

log /R % du() = ¥i(N) — log [~k K]).

And this is a real number, with this expression.
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And the idea is that the theorem statement holds for X if it has law v, and somehow we need to use this
by taking k — oo.

In particular, if we set p, as the law of S, under p (the original measure), and v, to be the law of S,, under
v, then we have that

1 1
lim inf — log 115, ([0, 00)) > log u([—k, k]) + — log lim inf 1, ([0, 00))

n—oo 1 n n—00

(recall the left-hand side is just the probability in our statement — p,([0,00)) = P[S,, > 0] by definition),
by the definitions of u, and v,. And this is at least

inf 1y, ().

A>0
Call this quantity J;. That’s because this is at least log fR e’ dy(x), by the previous step. And this
logarithm can be expressed as the desired sum.

But now v, converges increasingly to 1 as k — oo. This means Jj, (as k — oo) will also converge increasingly
to some number J. And since this is true for all k, this implies

1
lim inf — log 11, ([0, 00)) > J.

n—oo n

In order to complete the proof, we need to show that J > inf) ¢()\); if we manage to prove this, then we'’re
done. So that’s the remaining step.

There’s only one final step, which is to show this.

Remark 25.3. Explicitly, we have
(AN [k, k)
v(A) = —————=
(=)

So v, is uy, conditioned on all the X;s being between —k and k. This means
{Sn = 0} N{X; € [k, k]})
pu([—Fk, k])" '

And that’s how you obtain our inequality. So v, is just u, conditioned on all of X7, ..., X, being in

[—k, k).

val([0, 00)) = #24

The rest is a compactness argument, which is brief but not conceptually easy. However, we have seen it
before. The main idea is the following: consider (\,~o{A > 0 | ¥x(X) < J}. What is this set? If we fix
k and consider all A for which v, ()\) < J, this is a closed set (because 1), is a continuous function). And
these sets, because ¥ increases to 1, are decreasing in k. So this means we have nonempty compact sets,
and we take their intersection; this means the intersection is also nonempty (whenever you have a sequence
of nested compact sets, its intersection is nonempty; we also showed this several lectures ago, maybe when
constructing the Lebesgue measure). This means you can find Ay > 0 such that 13 (Ao) < J for every k € N.
And since 95 (Ao) = ¥(No), this means ¥ (Ag) < J. And this implies infy> (X)) < ¥(Ng) < J. Therefroe
the liminf we were interested in, which is exactly this %log P[S,, > 0], is at least this infimum; and that’s
the end of the proof.

So the theorem has three main steps. The first is to prove it when X is nonpositive with probability 1 (the
easy case). The next is to prove it in the case where the moment generating function is finite always. Iin
the third step, we handle the general case; for this, we truncate by conditioning on the event that X lies
in the large compact set [—k, k]. This defines a new measure v (the conditional law of X; given that it lies
in the interval with endpoints +k). And then we use a slightly complicated argument to actually complete
the proof.
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This is a complicated proof, and you don’t have to have followed all the details. But it’s one of the proofs
that needs to be done at least once in life, and the result is quite important — Cramer’s theorem is quite a
strong theorem.

This is more or less all we’ll mention about large deviations.

We have one more lecture, next Tuesday. Then we’ll define Brownian motion, and if possible, prove some
of its properties. If you want to learn more about it, attend Stochastic Calculus. It was first constructed
by Wiener using Fourier restriction theory; we’ll give a more elegant proof due to Kolgomorov, using his
continuity criterion.

§26 December 10, 2024

Today is the final lecture. Prof. Kavvadias thought it would be a good idea to rigorously define and construct
Brownian motion, and possibly mention a few properties of this object. Unfortunately we don’t have much
time. But you’ll see lots of properties of Brownian motion in 18.676.

Last lecture we finished a very complicated proof of Cramer’s theorem; but it’s useful to know. (We will
not be asked for that proof on the exam; but he may ask other results, like Kolgomorov’s 0-1 law or the
dominated convergence theorem — things whose proofs are relatively short. So we should be aware of those
proofs. But there will be problems as well, so we’ll have to think a bit and be a bit original.)

§26.1 Brownian motion

Brownian motion, as the name suggests, was named after Browne, who observed that the erratic motion
of small particles in water follows a certain patter. So it was first invented to describe how these particles
behave. Then there was a physical model developed by Stein (1905), without a rigorous proof. The rigorous
construction was done later in 1923. But this proof is complicated because it uses Fourier theory, specifically
random Fourier series. We’ll construct it using Kolgomorov’s continuity criterion (this is due to Kolgomorov
and Levy).

First, let’s define what exactly Brownian motion is. (We’ll work in one dimension, but this also applies in
higher dimensions.)

Definition 26.1. Let B = (B;):>0 be a continuous process on R (indexed by nonnegative real numbers,
and taking real values). We say B is a Brownian motion started from x (where z is a fixed real number)
if the following conditions hold:

(i) By = z almost surely.
(ii) We have By — Bs ~ N (0,t — s) for all 0 < s < t.

(iii) B has independent increments, and these increments are also independent of By. In other words,
for any increasing sequence 0 < t; < to < --- < t,, the n random variables B;,, By, — By,
B, — By,, ..., By, — By, , are independent.

So a Brownian motion is a random process which is continuous (we’ll work with the one-dimensional case)
and satisfies these three properties. We're going to construct such a process; so such a process exists.

It’s also unique. If we assume the process is continuous, (ii) and (iii) uniquely determine the law of the
entire process — that requires a bit of work, but it’s not extremely hard to show. However, if you don’t
assume continuity, this is not the case — you can have two different processes which satisfy (i), (ii), and
(iii), but are not the same (where they’re not continuous). To see this, we have the following example.
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Definition 26.2. A standard Brownian motion is one where By = 0 almost surely.

Example 26.3

Suppose we start with a standard Brownian motion B = (By);>0, and let U be a random variable,
independent of B, which is uniformly distributed on [0, 1]. Define the process

- By t
&_{t £U

0 otherwise.

Then this process has the same finite-dimensional distributions as B — i.e., if we take any fixed ¢; <
-++ < t, and consider the vectors (By,,...,By,) and (By,,..., By, ), then these two vectors have the
same law. In particular, this means (ii) and (iii) are satisfied by B.

But B is not continuous at 0 — the point is that By is nonzero almost surely.

So B is not continuous, but satisfies (i), (i), and (iii). This means these three conditions aren’t enough to
define the process; you need continuity.

To see why By is nonzero almost surely, we can condition on U — we can write
P[By = 0] =E[E[1p,=0 | U]].

And if we condition on U, then By is just a normal random variable with mean 0 and variance U. And if
you have a normal distribution, then the probability it takes any fixed value is 0. So E[1p,-¢ | U] = 0 for
any U, which means this probability is 0.

So with probability 1, B is not continuous; but it satisfies (2) and (3), showing that we do need continuity
in order to get uniqueness.

§26.2 Existence of Brownian motion

Theorem 26.4 (Wiener)

There exists a Brownian motion on some probability space.

(Wiener was the first person to rigorously construct Brownian motion, but the proof we’ll see is not due to
him.)

Let’s try to prove this; we’ll come back to Kolgomorov’s continuity criterion (which we said earlier we're
going to use).

The first thing to do is construct the process in [0, 1]; then by translating, we can define it for all real
numbers.

First, we’ll define the process on the set of dyadic rationals. Then we’ll prove this process satisfies a
certain Holder continuity condition (the one in Kolgomorov’s continuity criterion), and use that to extend
it continuously to the entire unit interval.

Now let’s proceed with the details. Define Dy = {0,1} as the set of dyadic rationals of order 0, and for
every n > 1, let D, = {k-27" | 0 < k < 2"} be the set of dyadic rationals of order n (as in the proof of
Kolgomorov’s continuity criterion). Let D = |J,, D, be the set of all dyadic rationals in [0,1]. The idea is
to construct a process indexed by this set satisfying (ii) and (iii) when s and ¢ are dyadic rationals, and use
Kolgomorov’s continuity criterion to extend the process to the entire unit interval.

For that, we start with a sequence (Z4)4ep (indexed by D) of independent random variables, which are
Gaussians with mean 0 and variance 1, all defined on the same probability space (2, F,P). Remember that
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here we have a countable collection of random variables with some fixed distribution, and we’ve shown (at
the beginning of the course) that for any such situation, we can find a probability space such that all of
them are defined on the same probability space.

The idea is to use this process to construct Brownian motion inductively, using induction on n (to define it
on all dyadic rationals).

The first step, where we define the process on Dy, is quite easy — we just set Bg = 0 and B} = Z;.

Now, we use induction in the following way. Suppose we’ve already constructed the Brownian motion on
Dy—1 — so we've already constructed (Bg)gep,_,. We'll build the process (Bg)q4ep, as follows. We fix a
dyadic rational d € D,, \ D,,—1 (if d € D,_1, then we already know the process there, by the induction
hypothesis). The set D,,_1 partitions the unit interval, so d lies in a unique interval with endpoints in D,,_1;
let d— and d4 be the endpoints of that interval, i.e.,

d_=d—-2"" and dy=d+2".
In other words, imagine we draw the unit interval and partition it using a1, a2, a3, and a4; and imagine d

is in the middle of a9 and as.

And we know the Brownian motion at as and ag, so we define the Brownian motion at d as it should be,
taking (ii) and (iii) into consideration. We set By to be the average of the Brownian motion at the two
endpoints, plus a correction term — so we set

_ Bq, +Bq_ i Zad
- 2 2(n+1)/2"

By

What does this result in? If we consider By — By_, this difference is

B, — B Z,
dy d- d

Bi—Baq = 9 o(nt1)/2”

and similarly
By

— B4 Zq
Bd+ — By = +

9 ~ 9(nt1)/2°
So we have these explicit forms. And the idea is to show that indeed, these two increments By — B, and
By, — By are independent, so that (iii) is satisfied. By choosing By in this way, indeed we see these satisfy

(ii) — that’s why we added the correction term 2@{%' So what we need is these two increments are
independent.

And remember this is a linear combination of Gaussians, so it’s also Gaussian. And both have mean 0. So
it remains to verify that their covariances are 0 — because the vector of the two differences is a Gaussian,
so they’re independent if and only if their covariance is 0 (this is something we’ve already done).

For that, we need the following simple observation. If we set

Ba, — Ba_ Zq

— and Ng = YCEsTE
then we see by the induction hypothesis that that Nq and N} are independent centered Gaussian random
variables, with the same distribution A/(0,2~(+1). (This follows by the induction hypothesis, which states
that Ng has this law; and N, does because Zg ~ N(0,1), and when you divide by a number, the variance
is divided by its square.)

What this means is that if you take the covariance of By — By_ and By, — By, then this is just

COV[Bd — By ,Bg_ — Bd] = COV[Nd + Né, Ng — Ncll]
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And since Ng and N}, are independent, this is just
Var(N4) — Var(N}).

But their variances are equal, so this is 0. This means indeed our increments are independent. And then we
proceed inductively. So far, we’'ve constructed a process indexed by D,, such that it satisfies (ii) and (iii),
when s and t are restricted to D,. This shows indeed we can define the process on the set of all dyadic
rationals D (inductively), and this satisfies (ii) and (iii) when s and ¢ are dyadic rationals.

(The point is that at every step, you define the Brownian motion as it should be in order to satisfy (ii) and
(iii).)

Now that we’ve defined the process on D, we need to define it on the entire unit interval, and for that we
need Kolgomorov’s continuity criterion. For that, we need some regularity condition on the increments —
we need the pth moment of B, — B; to satisfy a bound with respect to |t — s|. But this is not hard to see
— if we fix any s <t in D, then if we take any p > 0, we have

B; — B, |

Vi—s

And by (ii), this random variable inside the moment is a standard Gaussian. So this is the same as

E[|B, - BJ"] = |t — s|"/? - E'

|t — s[P/% - E[| Z|7)

where Z is a standard Gaussian. And the E[|Z|"] term is a constant, only depending on p.

So now we can apply Kolgomorov’s continuity criterion, since this is truee for all p. This implies by
Kolgomorov’s continuity criterion that (Bg)gep is a-Holder continuous for all a < %, almost surely (this is
exaxctly what Kolgomorov’s continuity criterion states). It doesn’t matter which exponent you have for the
construction; it’s enough to have Holder continuity for some exponent.

Now if you fix any ¢ € [0, 1] and consider any (t,) C D such that ¢, — ¢ (recall that the dyadic rationals
are dense in the unit interval), we can just set By = lim, _,o By,. And the Holder continuity condition
guarantees that this limit exists; and that the process we obtain is continuous as well.

And now we have a continuous process. So what remains to prove is that this continuous process we’ve
constructed satisfies (ii) and (iii).

Now that we have constructed our process, let’s prove that it satisfies (ii) and (iii). For that, fix an increasing
sequence 0 =ty < t1 < to < --- < tg; and we’ll just approximate them. We want to know that if we take B
and restrict to these times, the increments are independent. And we’ll do this by approximating them by
dyadic rationals — because for dyadic rationals, we know we really do have independent increments.

So we also let 77 <t < --- <t} be numbers in D such that ¢}, — ¢; as n — oo, for each 0 < j < k. In other
words, we’re just approximating our numbers by dyadic rationals.

Now we have continuity, so if you take the vector (Btrlz, . vBtZ)’ we have that this vector converges to the
corresponding vector (By,,..., By, ) as n — oo, almost surely.

And for every fixed n, we have that the increments Bin — By | (for 1 < j < k) are independent Gaussians
with mean 0 and variances =17 Somehow we need to prove that the corresponding increments in
(Bt - .., B, ) are also Gaussians and independent. For that, we're just going to compute the characteristic
function of the increments of By, and use this almost sure convergence and the fact that the increments for
all n are independent Gaussians with the specified variances.

This means if we take

j—1

k
E exp ZZ Uj (Bt;z - Btﬂ y
j=1
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we know this for all n because we’ve got independent Gaussians wth known variances. So this expectation
is given by
H (5 —t5_y) u2 /2.

Jj=1

And as n — oo, the first term converges to

k
E |exp zZuj By, — By, 1) ||

Jj=1
and the second term converges to
k

H e (ti—ti1)uz/2

j=1
This is true for any wuy, ..., ug. So if you take the increments of the variables, we’ve computed the
characteristic functions. And this is the characteristic function of independent Gaussians with variances
tj —tj—1. So if we take increments, then our vector (B;, — By, ..., B, — By, _,) has the same characteristic

function, and therefore the same law, as (v/t1 — to - Zo, Vt2 —t1- Z1, ... y\/tn — tn—1 - Zn—1), where here the
Z; ~N(0,1) are independent standard Gaussians. So we’ve seen that the increments of B (on any arbitrary

increasing sequence) are independent Gaussians, with variance given by the gap. So this shows (ii) and (iii)
are satisfied.

So we have constructed a process in [0, 1] which is continuous and satisfies (i), (ii), and (iii). The last step
is to just define the process for the entire real line. (This is quite easy.)

Now to complete the proof, somehow the idea is we partition R with intervals whose endpoints are consecutive
integers; and in every such interval, we just sample an independent Brownian motion — we just translate
by n units of time. And somehow we glue everything together so that we have a single process.

To do this rigorously, we take a sequence (Bf) where ¢ € [0,1] and i € N U {0}, of independent Brownian
motions. And then we set

lt]—1
_ gl

tLtJ+ZB

(note that ¢ — [¢] is always in [0,1); the sum corresponds to gluing the rest). It’s not hard to see this is a
continuous process which satisfies (ii) and (iii).

So the whole point is to construct the process on [0, 1], and that’s all the hard work that we’ve done (the
essence is defining it on [0, 1] — first defining it on the dyadic rationals, proving the regularity condition,
and invoking Kolgomorov). That constructs the process in one dimension. So indeed such a process exists,
and we have rigorously constructed it. (If we want to construct the process in higher dimensions, we take d
independent Brownian motions, and consider their vector.)

§26.3 Some comments

One quick comment is that we get from the proof that the process is Holder continuous with any a < % —
so we don’t just have continuity. One could ask what other properties it has. It is highly non-differentiable
— it’s ‘fractal’ and has a lot of corners. If you try to draw the function, you’ll get something whose graph
is not smooth. It’s quite an irregular, messy function.

(The reason we needed to do [0, 1] first and then extend to R>¢ is that Kolgomorov’s criterion only works
for compact sets.)
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Student Question. Is this construction unique — can we show two Brownian motions started at the
same time have the same law?

Answer. Unfortunately we won’t show it. But uniqueness is hidden in the definition. If you restrict to
probability measures on the set of continuous functions, and you know their marginals (if you take any
fixed vector and you know its law), then you determine the law of the process. And we have determined
the law of the vector restricted to any fixed times. So this guarantees uniqueness. This is not obvious,
but it’s some usual theory about m-systems and so on.

But you need continuity — otherwise you don’t have uniqueness, as we showed with our example
earlier.
As mentioned earlier, if we want to define the process in d dimensions, we can take B = (B, ... ,Bd) to be

a vector of d independent one-dimensional Brownian motions.

§26.4 Some properties

People are interested in studying Brownian motion because it has some very nice invariance properties.
We'll state some of these properties without proof, in d dimensions.

Proposition 26.5
Let B be a standard Brownian motion on R? (i.e., one that starts from 0). Then we have the following
properties:

(1) (Rotational invariance) It is invariant under multiplication by orthogonal matrices — i.e., if U
is an orthogonal matrix on R?, then if we consider the process U - B = (UB)>0, this is also a
Brownian motion. In particular, the Brownian motion is symmetric (i.e., —B is still a Brownian
motion).

(2) (Scaling property) For any fixed A > 0, if we consider the process (\™'/2By;);>0 (Where we scale

time, and partialy scale the values), then this is also a Brownian motion.

(3) (Markov property) For every ¢t > 0, (Bgs — Bt)s>0 is still a Brownian motion, and is independent
of (Bu)o<ust-

So (1) says we have rotational invariance and so on. And (2) is a scaling property, where we scale time
by A. And (3) is called the Markov property — if we run the process up to time ¢, and then subtract the
value of the process at time t from the remainder, what you get is independent of what you saw before. As
a picture, imagine we’ve run the process up to some point 1, and then we continue the process in a yellow
part. If you translate the yellow part so that its starting point goes to 0, then (3) states that the yellow
part has the same distribution as the white part.

These are some basic but very important properties of the Brownian motion.

We unfortunately don’t have time to do many things. So the last property is time inversion of the Brownian
motion.

Theorem 26.6 (Time inversion)

Suppose that (B;):>0 is a standard Brownian motion. Then if we define a process X = (X;);>0 by

t=
X, = 0 0
t'Bl/t t#oa

then X is also a standard Brownian motion.
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So if you invert time — you take the process t By, — this process is still a Brownian motion. Again, proving
this is simple. We have to prove two things. The first is that the increments of X are independent and
are Gaussians with specified variances (this is conditions (ii) and (iii)). And you have to prove continuity.
Clearly X is continuous for ¢ > 0, so what we have to show is that it is continuous at 0. So these are the
two steps: continuity at 0, and specifying the laws of the increments.

Proof. First, if we fix any 0 <t < --- < t,, then

COV[Bt Bt] = tj—l

J=1 7

for all 1 < j < n. (This follows by (ii) and (iii).) So in order to specify the marginals of X (or any finite
list of increments), it suffices to show that this property holds when we replace B by X. For this, we have

1
COV[thfl’th] =tj-1t; COV[Bl/tj_pBl/tj] =tj-1t; - t-
J
(note that order gets reversed, because we've taken inverses). And this is just ¢;_1, for all 1 < j < n. So
this means if we take the vector

(BtluBtzv .. ‘7Btn)7

then this vector has the same law as the corresponding vector
(Xty, Xtgy ooy Xt,)

(because we have explicit formulas for their covariance).

But we also need continuity (this alone isn’t enough). What it remains to show is that lim;_,o X; = 0 almost
surely (that’s the only thing it remains to show). How do we show this? The first observation is that since
(Bt;) and (X;) have the same law for any (¢;), we get that if we restrict to positive rationals, (X;);eq and
(Bt)teq have the same law (because Q is countable, and this is true for any finite collection of rationals by
what we’ve shown).

This means if you take the limit as ¢ — 0 when ¢ is a positive rational, you get lim;_, ;cq X¢ = limy_—0.+cq Bs-
But the latter Imit is the same as lim;_,¢o B¢, which is 0 almost surely.

So if you restrict ¢ to positive rationals tending to 0, then X; — 0. From that, we want to deduce that the
limit is indeed 0 along any sequence. This follows by the density of rationals. What does it mean to have
limy_,0 Xy # 0?7 Negating the definition of a limit, this means you can find € > 0 and a sequence t,, — 0 in
R~ such that |X;,| > ¢ for every n € N. But the point is that these t,,’s can be approximated by positive
rationals — you can always find a positive rational arbitrarily close to this ¢,.

And our limit over rationals was 0 almost surely, which means you can find § > 0 such that |X;| < ¢/2 for
every t € Q4 with ¢t < § (by the definition of the earlier limit).

And now we have a contradiction. Why? If you take n € N such that t, < ¢ (we can do that because
tn, — 0), then we can find ¢ € Q4 with ¢ < ¢ such that |X;, — X,| < €/2, because X is continuous at ¢,
and Q is dense in R. By the triangle inequality, this means | X;,| < [ Xy, — X,| + | X,|. But the first term is
less than /2 by the choice of Q. And for the second term, since ¢ < ¢ is rational, this is also less than £/2.
So we get | X| < €, which is a contradiction.

So indeed the limit has to be 0. ]

Student Question. Why is the covariances being equal enough to mean the covariances are the same?

Answer. Because if you have a vector of Gaussians, then the law is determined by the covariance
matrix. The fact
COV(Bt Btj) = tj—l

j—1)

determines the covariance matrix of (By,, ..., By, ); and we showed the same is true of X, so they have
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the same covariance matrix, and therefore the same law. (Here the right thing to do is actually to
consider ¢; and tj, rather than just ¢;_; and ¢;.)

(Brownian motion will not be on the exam. Everything else can be. All the material is in summaries, so we
know exactly what was covered, and what he can or cannot ask. For the proofs, we should look at the proofs
of basic results; we won’t be asked for Cramer’s theorem’s proof, as that’s impossible. We should also pay
attention to the problem sets; this might be helpful. Some of the problems might be very similar. But there
will be some problems which cannot necessarily be derived from problem sets. The exam is arranged so 40%
is bookwork, 20 or 25% is some variation of a problem from psets, and 25% will be something different that
you have to think a bit more for.)
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