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§1 Introduction

This class will be about Young tableaux. There are several recommended (but not required) textbooks:
• Enumerative Combinatorics, Volume 2 by Richard Stanley. (Young tableaux appear specifically in

Chapter 7.)
• Young Tableaux by William Fulton.
• The Symmetric Group by Bruce Sagan.

To start with, we’ll define what Young tableaux are.

Definition 1.1. A partition λ ` n is a sequence of positive integers (λ1, λ2, . . . , λk) such that λ1 ≥ λ2 ≥
· · · ≥ λk and λ1 + λ2 + · · ·+ λk = n.

We can think of partitions as ways of writing n as the sum of positive integers, where order does not matter.

Definition 1.2. The Young diagram associated with a partition λ is the diagram which has λ1 boxes
in its first row, λ2 in its second, and so on.

Example 1.3
The partition (3, 2, 2) ` 7 corresponds to the Young diagram

.

In an abuse of notation, we’ll identify the Young diagram with the partition — we may write

λ = (3, 2, 2) = .

Then a Young tableaux is a way of writing numbers inside a Young diagram, following certain rules.

Definition 1.4. A standard Young tableau of shape λ is a way of writing the numbers 1, 2, . . . , n in
the boxes of the Young diagram associated to λ (without repetition) such that the numbers increase in
each row and each column.

We often abbreviate “standard Young tableau” as SYT.
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Example 1.5
One standard Young tableau of shape (3, 2, 2) is

1 2 4
3 6
5 7

.

We’ll later discuss semistandard Young tableaux as well (where repetition is allowed).
Young tableaux are interesting because they appear in several different areas of math:

• The representation theory of GLn, SLn, and Sn.
• Symmetric functions (polynomials which remain invariant when we permute their variables).
• Geometry, in particular Schubert calculus (for example, this involves Grassmanians and flag manifolds,

and relates to Schubert polynomials).
This is part of why we have three textbooks — Stanley’s textbook focuses mostly on symmetric functions,
Fulton’s on geometry, and Sagan’s on representations of Sn. These perspectives are closely related — for
example, we can go from representation theory to symmetric functions by taking the characters of the
representations.
These perspectives all have extensions. In particular, Young tableaux can be identified with Gelfand–Tsetlin
patterns, which provides a polytopal interpretation of Young tableaux. There are various bijections, such
as the Robinson–Schensted–Knuth correspondence, which can be understood from the point of view of
polytopes — for example, we can cut up one polytope and rearrange its pieces to produce another (this
is sometimes called piecewise linear combinatorics). This then is related to tropical geometry, and then to
birational combinatorics, cluster algebras, and other topics. We probably won’t have time to see all these
connections, but there are many topics in different areas of math that Young tableaux relate to.
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§2 Counting Standard Young Tableaux

§2.1 The Catalan Numbers

Question 2.1. Consider the partition

λ = (n, n) = · · ·
· · ·

of 2n. How many standard Young tableaux of shape λ are there?

This has a very nice answer — in fact, the answer is one of the most famous sequences in combinatorics.

Theorem 2.2
The number of standard Young tableaux of shape (n, n) is the nth Catalan number Cn = 1

n+1
(2n
n

)
.

The Catalan numbers have many combinatorial interpretations (Richard Stanley has a list of about 200
interpretations). They’re most commonly defined as the number of Dyck paths of length 2n:

Definition 2.3. A Dyck path of length 2n is a path from (0, 0) to (2n, 0) consisting of n up-steps (1, 1)
and n down-steps (1,−1), such that the path always remains weakly above the x-axis.

Definition 2.4. The nth Catalan number Cn is the number of Dyck paths of length 2n.

So Theorem 2.2 has two parts — we want to show that the number of standard Young tableaux of shape
(n, n) is equal to the number of Dyck paths of length 2n, and that this number of Dyck paths is 1

n+1
(2n
n

)
.

Proposition 2.5
There exists a bijection between standard Young tableaux of shape (n, n) and Dyck paths of length 2n.

Proof. We’ll first illustrate the bijection by example:

Example 2.6
When n = 5, the standard Young tableau

1 2 4 7 9
3 5 6 8 10

corresponds to the Dyck path + +−+−−+−+−:

In general, we read numbers one at a time. For each i, if i appears in the first row then we take an up-step,
and if i appears in the second row then we take a down-step. This gives a path from (0, 0) to (2n, 0). After
every step k, the number of i ≤ k in the first row is at least the number of i ≤ k in the second, so the path
must stay weakly above the x-axis.

Page 4 of 25



Class by Alex Postnikov (Fall 2022) 18.217 — Young Tableaux

So then the number of standard Young tableaux of shape (n, n) is Cn, and it remains to prove the formula for
Cn. There are many different proofs of this formula (by generating functions, or by the reflection method),
but Professor Postnikov’s favorite is the following proof by cyclic shifts:

Proposition 2.7
For all n, we have Cn = 1

n+1
(2n
n

)
.

Proof. We can rewrite our formula as

1
n+ 1

(
2n
n

)
= 1

2n+ 1

(
2n+ 1
n

)
.

This suggests a nice combinatorial interpretation —
(2n+1

n

)
is the number of all lattice paths from (0, 0) to

(2n+ 1,−1), meaning paths with n up-steps and (n+ 1) down-steps.

Example 2.8
One such path for n = 5 is +−−−+ +−+ +−−:

Call such a path an almost Dyck path if only the last step goes below the x-axis — so an almost Dyck path
is a Dyck path with one extra down-step at the end. Then we want to show that the probability that a
randomly chosen path to (2n+ 1,−1) is an almost Dyck path is exactly 1

2n+1 .
To do so, we’ll form groups of 2n+ 1 paths, by grouping together all cyclic shifts of one path:

Example 2.9
Suppose our initial path is +−−+ +−−. Then we have a group consisting of its seven cyclic shifts:

+−−+ +−−
−−+ +−−+
−+ +−−+−
+ +−−+−−
+−−+−−+
−−+−−++
−+−−+ +−

Claim — Each group has exactly 2n+ 1 elements — in other words, for any path, all its 2n+ 1 cyclic
shifts are distinct.

Proof. If two cyclic shifts were the same, then our sequence would be nontrivially periodic — it must consist
of the same sequence repeated k times, for some k > 1. But there are n up-steps and n down-steps, so k
would have to divide n and n+ 1; since gcd(n, n+ 1) = 1, this is a contradiction. �
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Claim — Exactly one of these cyclic shifts is an almost Dyck path.

In the above example, the cyclic shift + +−−+−− is the only almost Dyck path.

Proof. To produce a cyclic shift of a given path p, we split p into two parts as p′ ◦ p′′, and reverse the order
of these two parts to get p′′ ◦ p′.

Then the one cyclic shift which produces an almost Dyck path is cutting at the first minimal point (as
shown above) — it’s fairly easy to show that this cyclic shift works, and no others do. �

So then we can partition the
(2n+1

n

)
paths into groups of 2n + 1 where exactly one path in each group is

an almost Dyck path. So the number of almost Dyck paths, and therefore the number of Dyck paths, is
1

2n+1
(2n+1

n

)
.

§2.1.1 Queue-Sortable Permutations

We’ve previously mentioned connections from Young tableaux to many different areas of math. But they also
appear naturally in computer science — in the third volume of Donald Knuth’s famous The Art of Computer
Programming (which is about sorting), a large part of the book discusses standard and semistandard Young
tableau and in particular the Robinson–Schensted–Knuth correspondence (which will be a central topic in
this class).
One connection comes from attempting to sort permutations with queues. A queue is a first-in first-out
data structure — we can insert entries at the back of the queue and remove them from the front.

Question 2.10. Which permutations can we sort using some queues?

If we have only one queue, then we can’t sort any permutation (except the identity) — all elements come
out in the same order they came in, so we can’t change the permutation at all.
A more interesting case is when we have two queues — so we read our permutation one by one, and place
numbers into either the first or second queue (and we can remove numbers from either queue at any time
as well). We say a permutation is queue-sortable if it can be sorted using two queues.
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Example 2.11
The permutation 2, 3, 5, 1, 6, 4, 7 is queue-sortable. To sort it, we can first insert each of 2, 3, and 5
into the first queue:

1, 6, 4, 7
5 3 2

Then we insert 1 into the second queue:

6, 4, 7
5 3 2

1

Now we remove 1 from the second queue, then 2 and 3 from the first queue:

6, 4, 7
5

1, 2, 3

Then we add 6 to the first queue, and add 4 to the second:

7
6 5

4
1, 2, 3

Finally we remove 4 from the second queue, remove 5 and 6 from the first queue, add 7 to the first
queue, and remove it. This produces the sorted permutation 1, 2, 3, 4, 5, 6, 7.

Theorem 2.12
The number of queue-sortable permutations of [n] is Cn.

We can also ask how many permutations we can sort with k queues. In general, there isn’t a nice exact
answer; but there is an asymptotic answer, which can be found using techniques we’ll discuss.

§2.2 The Hook Length Formula

Notation 2.13. For a partition λ, fλ is the number of standard Young tableaux of shape λ.

In this language, we’ve shown that f (n,n) = Cn. So in some sense, we can think of standard Young tableaux
as a generalization of Dyck paths, and fλ as a generalization of the Catalan numbers. It turns out that
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there is also a nice formula for fλ in general.

Definition 2.14. Given a partition λ ` n, for each box (i, j) ∈ λ, its hook length hij is the number of
boxes below it and to its right, including itself.

For example, the following is a hook, and the corresponding square has hook length 7:

Theorem 2.15 (Frame–Robinson–Thrall)
For any partition λ, we have

fλ = n!∏
(i,j)∈λ hij

.

Example 2.16
Consider the partition λ = (3, 2). The hook lengths are

4 3 1
2 1

,

so the hook length formula gives
f (3,2) = 5!

1 · 1 · 2 · 3 · 4 = 5.

The original proof of the hook length formula is quite complicated, but people have found nicer proofs. For
example, there is a probabilistic proof based on a random walk on the Young diagram (presented in 18.212
last semester). The proof we will see today is the one Professor Postnikov thinks is the best proof — it’s the
easiest to understand and most conceptual. This proof is especially nice because understanding the essence
of the proof also gives a lot of other constructions — the idea relates to RSK, the octahedral recurrence,
cluster algebras, and other topics.
This proof is based on polytopes.

§2.2.1 Construction of Polytopes

Fix a partition λ ` n. We’ll start by defining two polytopes in Rn:
• The first polytope ∆λ is the set of (xij) for (i, j) ∈ λ such that xij ≥ 0 and ∑hijxij ≤ 1.
• The second polytope Pλ is the set of (yij) for (i, j) ∈ λ such that yij ≥ 0, entries are nondecreasing in

rows and columns, and ∑ yij ≤ 1.
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We can write our coordinates inside the Young diagram of λ:

x11 x12 x13 · · ·

x21 x22 · · ·

x31 · · ·
...

Example 2.17
Take the partition λ = (3, 2). Then

∆λ =


x11 x12 x13

x21 x22

∣∣∣ xij ≥ 0 and 4x11 + 3x12 + x13 + 2x21 + x22 ≤ 1

 ,
and meanwhile

Pλ =


y11 y12 y13

y21 y22

∣∣∣ yij ≥ 0,
y11 y21 y22

y21 y22

6 6

6

6 6

,
∑

yij ≤ 1

 .

These polytopes are five-dimensional, so we can’t draw them on the blackboard. Let’s instead look at a
more trivial example, so that we can actually draw the polytopes:

Example 2.18
Take the partition λ = (2). Then ∆λ is defined by the conditions x1, x2 ≥ 0 and 2x1 +x2 ≤ 1, while Pλ
is given by the conditions 0 ≤ y1 ≤ y2 and y1 + y2 ≤ 1.

(1
2
, 0)

(0, 1)

(1
2
, 1
2
)

(0, 1)

In this case, both polytopes have area 1
4 . In fact, there’s a simple map sending ∆λ to Pλ that preserves area

— we can send (x1, x2) 7→ (y1, y2) = (x1, x1 + x2). It turns out that this generalizes to all λ!
First let’s see the connection between these polytopes and the hook length formula, by calculating their
volumes. First, ∆λ is a simplex — it’s the standard coordinate simplex with its coordinates rescaled, so

Vol(∆λ) = 1∏
(i,j)∈λ hij

Vol
{

(xij) | xij ≥ 0 and
∑

xij ≤ 1
}

= 1∏
(i,j)∈λ hij

· 1
n!

(since 1
hij

are the factors we’re rescaling each coordinate by).
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Meanwhile to find Vol(Pλ), note that the number of possible orderings of the yij is exactly fλ (since each
ordering corresponds to a standard Young tableau), so

Vol(Pλ) = fλ ·Vol {(y1, . . . , yn) | 0 ≤ y1 ≤ · · · ≤ yn and y1 + · · ·+ yn ≤ 1} .

But this new figure is exactly 1
n! of the standard coordinate simplex, since the standard coordinate simplex

(corresponding to points with yi ≥ 0 and y1 + · · ·+ yn ≤ 1) can be split into n! equal pieces depending on
the order of the yi, and this is one of those pieces. So then

Vol(Pλ) = fλ · 1
n! ·Vol

{
(yij) | yi ≥ 0 and

∑
yi ≤ 1

}
= fλ

(n! )2 .

So then the hook length formula is equivalent to stating that the volumes of our two polytopes are equal!

§2.2.2 A Bijection Between Polytopes

So far, all we’ve done is reformulated the hook length formula into a polytopal form — we now want to
show that Vol(∆λ) = Vol(Pλ). In order to show that two polytopes have the same volume, we can try to
construct a volume-preserving map between them.

Theorem 2.19
There exists a continuous bijective piecewise-linear volume-preserving map ϕλ: ∆λ → Pλ.

In Example 2.18, we found a linear map between ∆λ and Pλ, but this usually isn’t possible — ∆λ is always
a simplex, while Pλ may not be. But the theorem states that it is always possible to find a piecewise linear
map — we can break ∆ into polytope pieces and define a linear map on each of those pieces (where all these
linear maps are volume-preserving).

Student Question. Why is it important that ϕλ is continuous?

Answer. It isn’t necessary for proving that Vol(∆λ) = Vol(Pλ). But it’s nice that we have this additional
property of continuity — and the map ϕλ that we’ll construct can actually be used to prove many other
facts as well, not just the hook length formula.

We’ll actually construct a map between the two cones

ϕλ:
{

xij
∣∣∣ xij ≥ 0

}
→
{

yij

6

6

∣∣∣ yij ≥ 0
}

such that ∑hijxij = ∑
yij — then ϕλ must also map ∆λ → Pλ, since these two finite pieces of the cones

will be defined by corresponding constraints.
We’ll construct ϕλ by induction on |λ|. The base case is when λ is the empty partition ∅ of 0 — then both
polytopes are a point.
For the inductive step, suppose we’ve already constructed ϕλ, and we want to construct ϕµ for a partition
µ which comes from adding one box to λ.
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Now we want to modify our map

ϕλ:


xij


→


yij


into a new map

ϕµ:

 z

xij


→


yij


such that the conditions are all preserved.
It turns out that we can do this without modifying very many of the yij — we’ll only modify the entries
on the diagonal of the new square, and this modification will only depend on the diagonals above and
below it. Label our diagonal entries y1, y2, . . . , and the diagonals above and below it a1, a2, . . . and c1, c2,
. . . respectively.

y1

y2

a1

a2 c1

c2

c3

For each entry y in this diagonal, suppose that initially we have

a

b y c

d

in ϕλ. Then we’re going to send y to some new value y∗. To motivate the choice of y∗, our constraints y are
y ≥ max(a, b) and y ≤ min(c, d) (and since we’re not modifying any of a, b, c, and d, then we have the same
constraints on y∗). So we would like a bijective transformation that sends this interval [max(a, b),min(c, d)]
to itself. The simplest such map is reflecting the entire interval, so we’ll take

y∗ = max(a, b) + min(c, d)− y.

This operation is called a toggle move.

max(a, b) min(c, d)y y∗

So then we perform a toggle move on each of the entries on our diagonal, sending each yi to y∗i =
max(ai−1, ci−1) + min(ai, ci) − yi. Finally, we also need to define one new entry, in the box we added.
If in the (xij) this box contains z, then in this box we place max(a1, c1) + z — this is motivated by the fact
that this entry must be at least a1 and c1, and should relate somehow to z.
When we try to perform this construction, it’s possible that some of the values we’re attempting to use
don’t exist (our indices may be out of bounds). In that case, we use 0 instead.
We’ll soon check all the relevant properties, but first we’ll see a few examples.
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Example 2.20
For the partition λ = (1), our map is simply

ϕ(1): x11 7→ x11 .

Example 2.21
For the partition λ = (2), we can begin with (1) and add one box on the right:

x11 x12
.

This box doesn’t have any other entries on its diagonal, so we don’t need to modify any of the already
existing yij ; meanwhile we add a new entry here, to get the map

ϕ(2): x11 x12 7→ x11 x11 + x12 .

Example 2.22
For the partition λ = (2, 1), we can begin with (2) and add one box in the second row:

x11 x12

x21

.

Again there are no other boxes on the diagonal, so we simply add a new entry to ϕ(2) to get

ϕ(2,1):
x11 x12

x21
7→

x11 x11 + x12

x11 + x21
.

So far, all of our maps have been linear — in fact, this is true for any λ shaped like a hook. We’ll now see
a more interesting example:

Example 2.23
For the partition λ = (2, 2), we can begin with (2, 1) and add a box in the corner:

x11 x12

x21 x22

.

Then we need to perform a toggle move on y11, replacing x11 with min(x11 + x12, x11 + x21) − x11 =
min(x12, x21), so we get the map

ϕ(2,2):
x11 x12

x21 x22
7→

min(x12, x21) x11 + x12

x11 + x21 x11 + max(x12, x21) + x22
.
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In this example, since min(a, b) + max(a, b) = a+ b, we have∑
yij = min(x12, x21) + max(x12, x21) + x22 + x11 + x21 + x11 + x12

= 3x11 + 2x21 + 2x12 + x22,

which is exactly ∑hijxij . So ϕλ has the property we want in this example.

Student Question. If we add boxes in a different order when inductively constructing ϕλ, do we still
get the same map?

Answer. The answer is yes — to see this, suppose it’s possible to add box a and then b, or b and then
a. Then a and b can’t be in adjacent diagonals, so they don’t influence each other — this means either
order would produce the same result. Given this, we can use the diamond lemma to deduce that the
map is independent of the order in which we add boxes.

It’s easy to see that ϕλ satisfies most of the conditions of Theorem 2.19 — it’s bijective because all steps are
reversible, it’s piecewise linear because min and max are piecewise linear, and it’s not hard to check that
it’s volume-preserving (in particular, toggle moves are volume-preserving). So the property that it remains
to prove is the following:

Lemma 2.24
If ϕλ sends xij 7→ yij , then ∑hijxij = ∑

yij .

In fact, a stronger lemma is true. We want to prove one linear relation between the xij and yij , but there
are actually many linear relations!
To describe these linear relations, we focus on the border ribbon of our Young diagram λ:

1 2
3
4 · · ·

`

Number the boxes on this ribbon 1 through `. For each box k, let Rk be the rectangle which starts at k and
goes as far up and left as possible:

k

Meanwhile, let Dk be the diagonal starting at box k:

k
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Lemma 2.25
For each k, we have ∑(i,j)∈Rk

xij = ∑
(i,j)∈Dk

yij .

In other words, the rectangular sums of the xij equal the diagonal sums of the yij . Denote these sums by
rk and dk respectively.

Example 2.26
For the partition λ = (2, 2), in Example 2.23 we found

ϕ(2,2):
x y

z t
7→

min(y, z) x+ y

x+ z x+ max(y, z) + t
.

The rectangular sums in (xij) and diagonal sums in (yij) are:

r1 = x+ z d1 = x+ z

r2 = x+ y + z + t d2 = min(y, z) + x+ max(y, z) + t = x+ y + z + t

r3 = x+ y d3 = x+ y.

We can see that rk = dk for all k.

First let’s see why the second lemma implies the first.

Proof of Lemma 2.25 =⇒ Lemma 2.24. First, since every yij appears in exactly one diagonal dk, we have∑
dk = ∑

yij . Meanwhile, we have ∑ rk = ∑
aijxij for some multiplicities aij .

xij

The rectangle Rk contains xij if and only if box k is between the jth column and the ith row (inclusive) —
or in other words, in the rectangle starting at xij and extending as far down and right as possible. But the
number of boxes in this segment of the ribbon is exactly the hook length of xij :

xij
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So the the multiplicity of xij in ∑
rk is exactly hij , and ∑

rk = ∑
hijxij . Then since ∑ dk = ∑

rk by
Lemma 2.25, we have ∑ yij = ∑

hijxij , as desired.

Now it remains to prove Lemma 2.25. The proof is actually quite simple.

Proof of Lemma 2.25. We use induction — suppose we begin with a partition λ with sums r1, . . . , r` and
d1, . . . , d`, and we add one extra box in the mth diagonal.

1 2

...

m · · ·

`

Then all the rectangular sums except rm stay the same, since none of the other rectangles change (and none
of the values in xij change, apart from the new one we added); suppose rm becomes r̃m. Similarly, all the
diagonal sums except dm stay the same, since we’re only modifying the entries yij in diagonal Dm; suppose
dm becomes d̃m. Then it suffices to show that rm and dm change “in the same way.”

 
z

When we add our box, the rectangle Rm grows by one row and one column. To construct the new rectangle,
we can take Rm−1 and Rm+1, subtract the overlap — which is exactly the initial rectangle Rm — and add
in the new box. So we have

r̃m = rm−1 + rm+1 − rm + z.

Meanwhile in the (yij), suppose that the (m− 1)st diagonal for λ was a1, a2, . . . , the mth diagonal was b1,
b2, . . . , and the (m+ 1)st diagonal was c1, c2, . . . , so that dm−1 = ∑

ai, dm = ∑
bi, and dm+1 = ∑

ci. Then
each toggle move replaces bi with max(ai−1, ci−1) + min(ai, ci)− bi, so we now have

d̃m = (max(a1, c1) + z) + (max(a2, c2) + min(a1, c1)− b1) + (max(a3, c3) + min(a2, c2)− b2) + · · · .

But max(ai, ci) + min(ai, ci) = ai + ci, so then we can eliminate all the maxes and mins to get

d̃m = (a1 + a2 + · · ·) + (c1 + c2 + · · ·)− (b1 + b2 + · · ·) + z,

so then d̃m = dm−1 + dm+1− dm + z. But this is exactly the same as the formula for r̃m! So the rectangular
sums and diagonal sums change in the exact same way, which means they must remain equal.

§2.2.3 Another Application

We’ve completed the proof of the hook length formula, but that isn’t the end of the story — we proved the
identity that we needed (Lemma 2.24), but we also proved many other identities as well (in Lemma 2.25),
and we can use these to prove other claims than the hook length formula. In fact, this construction implies
many different results. Here is one example, which will be on the problem set:
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Exercise 2.27. Suppose that λ is a m×n rectangle with m ≤ n. Then consider standard Young tableaux
of shape λ. For each such tableau T , let its entries on the main diagonal be a1 < a2 < · · · < am, and
define its weight as

wt(T ) = 1∏m
i=1 i

ai+1−ai

(where am+1 is defined as amn + 1). Prove that if we sum over all T of shape λ, then∑
wt(T ) = 1.

Example 2.28
When λ is a 2× 3 rectangle, the standard Young tableau are

1 2 3
4 5 6

, 1 2 4
3 5 6

, 1 3 4
2 5 6

, 1 2 5
3 4 6

, 1 3 5
2 4 6

.

We always have a1 = 1, and a2 is 5 for the first three tableaux and 4 for the last two. So the first three
tableaux have weight

1
15−1 · 27−5 = 1

4 ,

and the last two have weight
1

14−1 · 27−4 = 1
8 .

So ∑wt(T ) = 1
4 + 1

4 + 1
4 + 1

8 + 1
8 = 1.

In fact, if λ is a 2 × n rectangle for any n, then as we’ve seen earlier, standard Young tableaux are in
bijection with Dyck paths. The weight we get will always be of the form 1

2k , where k depends on the number
of up-steps in the first two diagonals. In this case there’s a probabilistic interpretation of the weight in
terms of the Dyck path.
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§3 Robinson–Schensted–Knuth Correspondence

Another identity involving the numbers fλ is the following:

Theorem 3.1
We have ∑λ`n(fλ)2 = n!.

This identity has many nice interpretations. In particular, it’s related to the representation theory of Sn:

Fact 3.2 — The irreducible representations of Sn (up to isomorphism) can be labelled by Young dia-
grams with n boxes, or equivalently partitions λ ` n. Furthermore, if Vλ is the irreducible representation
corresponding to λ, then dimVλ = fλ.

Fact 3.3 — For every finite group, the sum of squares of the dimensions of irreducible representations
is the order of the group.

So this identity directly follows from representations of Sn. But we’d like to see this identity combinatorially.

§3.1 Robinson–Schensted Correspondence

The Robinson–Schensted correspondence proves ∑λ`n(fλ)2 = n! by constructing a bijection between sets
counted by the left-hand and right-hand sides: it produces a bijection

Sn → {(P,Q) | P and Q are SYT of the same shape λ ` n}.

The classical construction of the Robinson–Schensted correspondence works via the Schensted insertion
algorithm: we read the entries of w in order and insert them into a tableau P , called the insertion tableau.
Meanwhile we’ll use Q as the recording tableau, which keeps track of the order in which boxes were added
to our Young diagram. We insert entries in the following way:

Algorithm 3.4 (Schensted Insertion) — Suppose we currently have the intermediate tableau T , and we
want to insert a. Then:

(1) Set i := 1 and x := a.
(2) If all entries in the ith row are at most x (or if the ith row is empty), then add a new box at the

end of the ith row, fill it with x, and stop.
(3) Otherwise, find the leftmost entry y in the ith row such that y > x. Replace y with x, set x := y

and i := i+ 1, and return to step (2).

Note that the distinction between weak and strict inequalities doesn’t really matter here, since all entries
of a standard Young tableau are distinct. However, the distinction will matter in the case of semistandard
Young tableaux (where entries can be repeated).
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Example 3.5
Suppose that we want to insert 3 into the tableau

1 4 5 9
2 7
6
10

.

We first attempt to insert 3 into the first row. The leftmost entry greater than 3 is 4, so 3 bumps out
4. Now we have

1 3 5 9
2 7
6
10

and we want to insert 4 into the second row. The leftmost entry in the second row greater than 4 is 7,
so 4 bumps out 7, and now we have

1 3 5 9
2 4
6
10

and we want to insert 7 into the third row. All elements in the third row are at most 7, so we can
simply insert 7 at the end. So

1 3 5 9
2 4
6 7
10

is the final result of the insertion.

Algorithm 3.6 (Robinson–Schensted Correspondence) — Suppose we have a permutation w = w1 · · ·wn.
We initially start with P and Q both empty. Then we insert w1, w2, . . . into P in order, so that

P = ((((∅ ← w1)← w2)← · · ·)← wn).

When we insert wi into P , we insert i into Q in the same position as the new box added to P .

So we build P in the order w1, w2, . . . and Q in the order 1, 2, . . . , while always keeping them the same
shape.
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Example 3.7
Suppose our permutation is

w =
[
1 2 3 4 5 6
3 4 1 6 5 2

]
.

We start with both P and Q empty. Then we insert 3, which produces

P = 3 and Q = 1 .

Then we insert 4 into the first row, to get

P = 3 4 and Q = 1 2 .

Then we insert 1 into P . This bumps 3 (the smallest entry strictly greater than 1) from the first row,
so now we have

P =
1 4
3

and Q =
1 2
3

.

Now we csn insert 6 into the first row to get

P =
1 4 6
3

and Q =
1 2 4
3

.

Then we insert 5 into the first row. This bumps 6, giving

P =
1 4 5
3 6

and Q =
1 2 4
3 5

.

Finally we insert 2, which bumps 4, and inserting 4 into the second row bumps 6, so

P =
1 2 5
3 4
6

and Q =
1 2 4
3 5
6

is the end result.

To see that this correspondence is a bijection, it’s not hard to check that all steps are reversible.
This proves the identity in Theorem 3.1, but it’s actually much more powerful — the correspondence has
many additional properties as well. For example, the length of the first row of λ is the size of the longest
increasing sequence of w, and the length of the first column is the size of the longest decreasing sequence.
ore generally, the sum of the first k rows of λ is the maximal number of entries that can be covered with k
increasing subsequences, and the same is true for columns and decreasing subsequences.

Example 3.8
In the above example, the longest increasing subsequence is 3, 4, 6 or 3, 4, 5, which both have 3 entries,
corresponding to the first row having 3 boxes. Similarly, the longest decreasing subsequence is 6, 5, 2,
corresponding to the first column having 3 boxes.

Another feature of this bijection is that if w 7→ (P,Q), then w−1 7→ (Q,P ).
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Both these properties look mysterious — in this construction, P and Q play very different roles, so it’s not
clear why we have some sort of symmetry between them. So it would be nice to find a construction of this
correspondence that makes this symmetry more clear. We’ll see such a construction soon, but first we’ll
generalize to semistandard Young tableaux.

§3.2 Semistandard Young Tableaux

Definition 3.9. A semistandard Young tableau is a labelling of the boxes of a Young diagram with
positive integers, such that entries are weakly increasing in rows and strictly increasing in columns.

So a semistandard Young tableau is similar to a standard Young tableau, but numbers can be repeated or
missing.

Example 3.10
One example of a semistandard Young tableau is

1 1 1 2 2 4
2 2 4 5 7
4 5 5 7

.

Note that the entries can be arbitrarily large — we could have replaced 7 by 70.

Definition 3.11. The shape of a semistandard Young tableau is the Young diagram λ. Its weight is
the sequence β = (β1, β2, . . .) where βi is the number of i’s in the tableau.

Example 3.12
In Example 3.10 we have λ = (6, 5, 4) and β = (3, 4, 0, 3, 3, 0, 2).

Remark 3.13. Some people use the word content instead of weight. Professor Postnikov doesn’t like
this because the word content is reserved for something else — the content of a box in a Young diagram
is i− j (where i and j refer to its row and column), which will be important later.

§3.3 Robinson–Schensted–Knuth Correspondence

The Robinson–Schensted–Knuth correspondence (abbreviated RSK) generalizes the Robinson–Schensted
correspondence to semistandard Young tableaux. First, fix a number n, which represents the maximal
possible entry that can appear in the tableau. (For the tableau in Example 3.10, we could set n to be any
integer at least 7.)
RSK then provides a bijection between n×n matrices with entries in Z≥0, and pairs (P,Q) of semistandard
Young tableau of the same shape. We also fix two vectors α = (α1, . . . , αn) and β = (β1, . . . , βn) with∑
αi = ∑

βi. Then more specifically, RSK provides a bijection between n × n matrices with column sums
α1, . . . , αn and row sums β1, . . . , βn, and semistandard Young tableau such that the weight of P is α and
the weight of Q is β.

Remark 3.14. Sometimes the correspondence is stated for m× n matrices instead. But we can always
transform general matrices into square matrices by inserting some number of 0’s in the end, which has
no effect.
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The first step of RSK is to convert the matrix into a ‘generalized permutation’ in the following way: for
each matrix entry a in (i, j), we write down a copies of (i, j)t, arranged in the lexicographical ordering.

Example 3.15
For n = 3, we would replace the matrix0 1 0

2 1 0
3 0 1

 [
1 2 2 2 3 3 3 3
2 1 1 2 1 1 1 3

]
.

Now if our n× n matrix is sent to

A 

[
u1 u2 · · · uN
w1 w2 · · · wN ,

]
then P is again the result of the sequence of insertions

(((∅ ← w1)← w2)← · · ·)← wN

using the Schensted insertion algorithm (now we have to be careful about whether inequalities are weak or
strict), and when we insert wi, in Q we add the new box created and fill it with ui.
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Example 3.16
Consider the matrix in Example 3.15.
We insert 2, 1, 1, 2, 1, 1, 1, 3 into P (and record the numbers above them in Q). We start out with
both P and Q empty, and after the first step we get

P = 2 and Q = 1 .

We then insert 1, which bumps 2, so now we have

P =
1
2

and Q =
1
2
.

Now we insert 1 again (and record 2) to get

P =
1 1
2

and Q =
1 2
2

.

Then we insert 2 (and record 2) to get

P =
1 1 2
2

and Q =
1 2 2
2

.

Now we insert 1 (and record 3). This bumps the first number in the first row strictly greater than it,
which is 2; so we then insert 2 into the second row, giving

P =
1 1 1
2 2

and Q =
1 2 2
2 3

.

The remaining two 1’s and 3 can be inserted into the top row, so

P =
1 1 1 1 1 3
2 2

and Q =
1 2 2 3 3 3
2 3

is the final result.

RSK is also a bijection, but there’s a difficulty that wasn’t present in the case of standard Young tableaux:
when we’re trying to reverse the last step, there are several maximal entries in Q, so we need to be able to
tell which one was added last. But it’s not hard to check that the boxes with a given entry in Q must have
been added from left to right, so the box that was added last is the rightmost box with the maximal entry.
This lets us invert the correspondence, as before.
This correspondence has similar properties to the Robinson–Schensted correspondence for standard Young
tableaux — the length of the first row of λ is the size of the longest weakly increasing subsequence (of
w1, . . . , wn), and the length of the first column is the size of the longest strictly decreasing subsequence.
Also, if A 7→ (P,Q), then Aᵀ 7→ (Q,P ). In the specific case where A is a permutation matrix (so all rows
and columns sum to 1), P and Q are standard Young tableaux, and the correspondence is the same as the
Robinson–Schensted correspondence.
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§3.4 Gelfand–Tsetlin Patterns

We’ll soon see an alternative way to look at RSK, and to explain this construction, we’ll define another
combinatorial object.

Definition 3.17. A Gelfand–Tsetlin pattern is a triangular array of numbers where the first row is a
partition (λ1, . . . , λn) (here ‘partition’ means that entries are weakly decreasing, but are allowed to be
0), the second row is a partition (µ1, . . . , µn−1), and so on (where the last row has one number), and
consecutive rows are interlaced — we have

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn,

and the same is true for the other rows.

In other words, a Gelfand–Tsetlin pattern (abbreviated as GT pattern) is a triangle of numbers which weakly
decrease going both southeast and northeast:

λ1 λ2 λ3 · · · λn

µ1 µ2 · · · µn−1

ν1 · · · νn−2

. . . . .
.

ω1

>
>

>
>

>
>

>
>

>
>

>
>
>

>

>
>

> >

Proposition 3.18
There is a bijection between semistandard Young tableaux with entries in {1, 2, . . . , n} and Gelfand–
Tsetlin patterns of size n.

We’ll illustrate this by example:
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Example 3.19
Let n = 7 and take the tableau

1 1 1 2 2 4
2 2 4 5 7
4 5 5 7

.

We start by writing the number of 1’s in the bottom row; here that number is 3. Then we look at the
shape formed by the 1’s and 2’s:

1 1 1 2 2 4
2 2 4 5 7
4 5 5 7

This shape is (5, 2), so we write down (5, 2) in the second-last row. Next we look at the shape formed
by 1, 2, and 3; this shape is also (5, 2), so we write down (5, 2, 0) in the third-last row. We keep doing
this, and the end result is the following:

3
5 2

5 2 0
6 3 1 0

6 4 3 0 0
6 4 3 0 0 0

6 5 4 0 0 0 0

In general, the ith row of the Gelfand–Tsetlin pattern from the bottom is the shape of the Young diagram
formed by the numbers 1, 2, . . . , i in the tableau — so the jth entry in the ith row is the number of entries
at most i in the jth row of the tableau. This example has a lot of 0’s because a generic semistandard Young
tableau with numbers up to 7 can have up to 7 rows, but this one only has 3 rows.

Example 3.20
Consider the third entry in the fifth row from the bottom:

3
5 2

5 2 0
6 3 1 0

6 4 3 0 0
6 4 3 0 0 0

6 5 4 0 0 0 0

To find this entry, we count the number of entries less than or equal to 5 in the third row:

1 1 1 2 2 4
2 2 4 5 7
4 5 5 7
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Question 3.21. Given a Gelfand–Tsetlin pattern p, what are the shape and weight of the corresponding
semistandard Young tableau?

The shape is easy to describe — it’s the top row of p (since the top row by definition records the shape of
the entire tableau). Meanwhile, to find the weight β, by definition β1 is the number of 1’s in the tableau,
which is the entry in the bottom row. Then β1 +β2 is the number of 1’s and 2’s, which is the sum of entries
in the second-last row. In general, β1 + · · ·+ βi is the ith row sum of p from the bottom.
We now have an alternative way of thinking about semistandard Young tableaux. Both semistandard Young
tableaux and Gelfand–Tsetlin patterns are arrays of numbers satisfying some inequalities. But semistandard
Young tableaux have weak inequalities in rows and strict inequalities in columns, while Gelfand–Tsetlin
patterns only have weak inequalities. The nice thing about this is that we can think of the entries in a
Gelfand–Tsetlin pattern as a collection of

(n
2
)

variables satisfying some inequalities, and if we let the entries
be real, then we get a polytope. Then semistandard Young tableaux correspond to the lattice points on this
polytope. (Creating a polytope directly from semistandard Young tableaux would work less well, because
the strict inequalities would mean we’d have to remove some faces.)

§3.5 RSK for Gelfand–Tsetlin Patterns

As we’ve seen earlier, RSK gives a bijection sending n×n matrices with nonnegative integer entries to pairs
(P,Q) of semistandard Young tableaux of the same shape λ.
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